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Abstract

We present a method to dynamically deform 3D garments, in the form of 3D polygon
mesh, based on body shape, motion, and physical cloth material properties. Considering
physical cloth properties allows to learn a physically grounded model, with the advantage
of being more accurate in terms of physically inspired metrics such as strain or curvature.
Existing work studies pose-dependent garment modeling to generate garment deformations
from example data, and possible data-driven dynamic cloth simulation to generate realistic
garments in motion. We propose D-Garment, a learning-based approach trained on new data
generated with a physics-based simulator. Compared to prior work, our 3D generative model
learns garment deformations conditioned by physical material properties, which allows to
model loose cloth geometry, especially for large deformations and dynamic wrinkles driven
by body motion. Furthermore, the model can be efficiently fitted to observations captured
using vision sensors such as 3D point clouds. We leverage the capability of diffusion models to
learn flexible and powerful generative priors by modeling the 3D garment in a 2D parameter
space, and learning a latent diffusion model using this representation independently from
the mesh resolution. This allows to condition global and local geometry with body and
cloth material information. We quantitatively and qualitatively evaluate D-Garment on
both simulations and data captured with a multi-view acquisition platform. Compared to
recent baselines our method is more realistic and accurate in terms of shape similarity and
physical validity metrics. Code and data will be shared upon acceptance.

1 Introduction

Dressing avatars with dynamic garments is a long-standing challenge in computer graphics and learning-
based modeling. Garments are used in virtual applications, ranging from entertainment industries such as
video games and animation, to fashion with clothing design and virtual try-on. In applications involving an
avatar such as telepresence and virtual change rooms, an important use case is accurately fitting a dynamic
garment model to observations captured using vision sensors such as 2D videos, or dynamic 3D point clouds.

We consider the problem of deforming a 3D garment based on physical inputs, via learning a conditional
generative model of 3D geometry deformation. Given a garment template mesh, physical parameters of the
cloth material, and the wearer’s body shape, pose and preceding motion, our method models the distribu-
tion over dynamic garment geometries p(garment deformation | body motion, shape, material), and outputs
temporally consistent 3D deformations.

Existing work can be categorized into two main classes. Pose-dependent garment models (Vidaurre et al.,
2024; De Luigi et al., 2023; Zheng et al., 2024; Shen et al., 2020; Corona et al., 2021) output a garment
draped over a body given a characterization of the cloth, a body shape, and a pose. These methods have
been successfully tested on downstream tasks such as garment reconstruction from observations and garment
retargeting to different users. However, the problem is under-constrained as the 3D geometry of the same
garment on the same body performing the same pose can vary depending on the velocity and acceleration of
the body parts. Existing work outputs a motion-independent solution, which prevents these methods from
generating temporal garment details caused by different dynamics.
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In contrast, dynamic cloth simulation methods
(Bertiche et al., 2022; Tiwari et al., 2023; Santeste- Sequence 1
ban et al., 2022; Chen et al., 2024; Grigorev et al.,
2023) realistically animate dynamic clothes on hu-
mans in motion. They produce physically plausible
deformations given a garment in rest-pose, body
shapes and motions. However, these models lever-
age cloth motion descriptors to predict the next
cloth state. Hence, they are not designed for fit-
ting to observations captured using vision sensors.

To allow for dynamic garments that can be fitted .
to observations using optimization, we present a
physically grounded conditional generative model
of 3D garment deformation. We define cloth mate-
rial as the combination of the three physical quan-
tities bending, stretching and density. To work
at high resolution, we take advantage of a latent
diffusion model (Ho et al., 2020; Rombach et al.,
2022) in a two-dimensional uv-space to condition-
ally deform a fixed garment template. The model
provides fine-grained control over input conditions
related to the person wearing the garment and the
garment’s material. The diffusion model defines a
distribution over plausible garment deformations,
enabling the generation of multiple consistent out-
puts conditioned on the same input. Figure 1: For two different motions (lines) and three
varying cloth materials (colors), D-Garment uses a la-
tent diffusion model to generate dynamic garment defor-
mations from physical inputs defined by a cloth material
and the underlying body shape and motion. Our model
can represent large deformations and fine wrinkles.
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To efficiently condition our model on motion and
body shape information, we leverage a parametric
body model and condition the garment deforma-
tion on body shape and a sequence of poses de-
scribing the motion. While our model is agnostic to
the parametric body model as long as it decouples
identity and pose e.g. Neophytou & Hilton (2013);
Pishchulin et al. (2017); Loper et al. (2015); Xu et al. (2020); Mihajlovic et al. (2022), we use SMPL (Loper
et al., 2015) as it is easy to integrate. For physical grounding, we condition our model on parameters con-
trolling cloth material by training the model with the output of a physics-inspired simulator. While any
physics-inspired simulator that allows controlling material via parameters is applicable e.g. Baraff & Witkin
(1998); Provot (1995); Narain et al. (2012); Bouaziz et al. (2014); Li et al. (2018a), we use a projective
dynamics simulator (Ly et al., 2020) due to computational efficiency and a low number of parameters.

For training and evaluation, we use the physics-based simulator to generate a synthetic dataset of a dynam-
ically deforming wide dress with complex geometry. The dress is simulated using different body shapes, mo-
tions, and material parameters. The resulting dataset contains 172 unique body motions from AMASS (Mah-
mood et al., 2019). Each motion is randomly performed by 3 body shapes and simulated with 3 cloth
materials. The sewing pattern of the dress used for simulation was chosen to correspond to a dress in 4DHu-
manOutfit (Armando et al., 2023), a dataset of reconstructed dressed 3D humans in motion acquired using
a multi-view camera platform. This allows for evaluation on acquired data.

We apply our model to a registration task, where we optimize our model’s parameters to fit the result
to dynamic 3D point cloud sequence of 4DHumanOutfit. We build a two stage pipeline that first fits a
parametric body model to the sequence, and subsequently optimizes the latent vector of our model by
minimizing the Chamfer distance.
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Comparative experiments show that our approach outperforms state-of-the-art baselines in terms of geomet-
ric shape fidelity and physically inspired metrics due to its capability of disentangling body motion and cloth
material.

In summary, the main contributions of this work are:

e A physically grounded method to dynamically deform a 3D garment to match input cloth materials,
body shape and motion, based on a 2D latent diffusion model.

o A dataset of a dynamic 3D dress with a complex sewing pattern simulated for different body shapes,
motions and cloth materials. It contains simulated sequences of 172 motions with variations of body
shape and cloth material, totaling more than 1500 sequences.

e A registration method fitting our model’s parameters to dynamic point cloud sequences of captured
dressed humans in motion.

2 Related Work

Dynamic garment modeling is a growing research area in computer vision. Current learning-based models
can be categorized into two classes: pose-dependent garment modeling and dynamic cloth simulation. Achar
et al. (2024) provide an exhaustive review on cloth draping methods. We focus on works that learn garment
models, which in particular excludes works that reconstruct possibly animatable garments.

Pose-Dependent Garment Modeling. Modeling 3D garments is traditionally time-consuming and re-
quires expertise. Data-driven cloth models alleviate this process by enabling parametric 3D modeling and
automatic cloth-body draping. These models can be applied to various tasks, such as 3D model recon-
struction from images or point clouds. SMPLicit (Corona et al., 2021) is a parametric model capable of
generating diverse garments with a fine-grained control over cloth cut and design. Follow-up works modeled
diverse garments given different inputs such as image (Sarafianos et al., 2025), 2D masks (Zheng et al., 2024),
sketches (Wang et al., 2018) and more recently text (He et al., 2024; Nakayama et al., 2025; Bian et al.,
2025). To fit the generated 3D model over different body shapes, a parametric body model (Loper et al.,
2015) is commonly used. The garment can be posed using the body’s Linear Blend Skinning (LBS) weights.
This straightforward approach needs to compute LBS weights of the garment w.r.t. the body and does not
model pose-dependent high-frequency details.

Yang et al. (2018) studied cloth deformation across different body poses and motions by analyzing statistics
of clothing layer deformations modeled w.r.t. an underlying parametric body model. While this allows to
generalize to new factors, the model has limited capacity.

TailorNet (Patel et al., 2020) proposed a scalable model that generalizes across body poses by predicting
low and high frequency wrinkles driven by body shape, pose and garment style. DiffusedWrinkles (Vidaurre
et al., 2024) leveraged a diffusion model in uv-space to generate wrinkles conditioned like TailorNet. Another
line of works (Ma et al., 2020; Laczko et al., 2024; Shen et al., 2020) models deformations directly over the
body surface learning pose-dependent information. DrapeNet (De Luigi et al., 2023) splits the problem into
a 3D generative model and a draping model. A recent approach based on point clouds (Ma et al., 2022)
learns dynamic LBS weights to model humans in loose clothing but it is not adapted for generative modeling.
Shi et al. (2024) built a transformer model capable of synthesizing dynamic garments from body sequences.

Most of these approaches represent static deformations driven by a single pose, omitting dynamic deforma-
tions driven by body motion and the physical properties of the garment. Loose garments pose significant
challenges due to reliance on either pre-computed LBS weights or deformations defined on the body surface.
In contrast, we propose a latent diffusion model conditioned on physics-informed parameters, body pose
and motion, enabling the generation of temporally coherent dynamic garments. Our approach is capable of
capturing both static and dynamic wrinkles which are traditionally predicted by cloth simulators.
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Dynamic Cloth Simulation. Physics-based simulation is a traditional approach in computer graphics
for garment animation (Nealen et al.; 2006b; Baraff & Witkin, 1998). While state-of-the-art simulators are
capable of accurately reproducing cloth dynamics (Li et al., 2018a; Romero et al., 2021), these methods are
computationally expensive. Learning-based simulation has been introduced to accelerate computation (Pfaff
et al., 2021; Sanchez-Gonzalez et al.; 2020; Kairanda et al., 2024). The line of work most closely related to ours
focuses on cloth-body interactions to animate dynamic garments over humans (Li et al., 2024; Santesteban
et al., 2022; Chen et al., 2024; Grigorev et al., 2023; 2024; Zhang et al., 2022). The use of a parametric body
model, instead of a generic rigid-body mesh, allows to predict dynamic deformations from a canonical space
leveraging LBS for pose and shape deformations.

Recent works focus on deforming garments in response to body motion. Santesteban et al. (2021) formulated
the motion given a current pose and body part velocities and accelerations. SNUG (Santesteban et al.,
2022) introduced a self-supervised model to prune computationally expensive data generation. GAPS (Chen
et al., 2024) improved SNUG by predicting LBS weights adapted to loose garments. HOOD (Grigorev
et al., 2023) built a graph neural network enabling free-flowing motion without relying on LBS for posing.
ContourCraft (Grigorev et al., 2024) added new losses to HOOD reducing cloth-body collisions and cloth
self-penetration. Motion Guided Deep Dynamic Garments (MGDDG) (Zhang et al., 2022) predicted garment
deformations in a generative way given previous states of garment and body.

Note that to achieve consistent cloth dynamics, current learned-based cloth simulation methods leverage
previous cloth states either explicitly with vertices velocity (Grigorev et al., 2023; 2024; Zhang et al., 2022)
or implicitly using recurrent architecture (Santesteban et al., 2021; 2022; Chen et al., 2024). In contrast,
our approach is not auto-regressive, thereby enabling dynamic garment deformations at any given frame
facilitating tasks such as fitting to observations.

Positioning. Table 1 positions our work w.r.t. scalable 3D garment models that generalize over body shape
and pose. Our work combines advantages of existing works and allows for generalization across materials,
dynamic detail modeling, and fitting to observations.

Table 1: Positioning of our work w.r.t. existing learning-based 3D garment models that generalize over
multiple body shapes and poses. Our model additionally generalizes across materials, models dynamic
details, and allows fitting to observations in the form of dynamic 3D point clouds.

Generalization Models Allows fitting
across cloth material dynamic details to observations

Pose-Dependent Garment Modeling
TailorNet (Patel et al., 2020)
DiffusedWrinkles (Vidaurre et al., 2024)
Laczké et al. (2024)
Cape (Ma et al., 2020)
Shen et al. (2020) v
DrapeNet (De Luigi et al., 2023)
SkiRT (Ma et al., 2022)
Shi et al. (2024)
Dynamic Cloth Simulation
Santesteban et al. (2021)
SNUG (Santesteban et al., 2022)
GAPS (Chen et al., 2024)
HOOD (Grigorev et al., 2023) v
ContourCraft (Grigorev et al., 2024) v
MGDDG (Zhang et al., 2022)

Ours v
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Figure 2: D-Garment generates garment deformations conditioned on body shape, motion and cloth material.
It builds upon a 2D latent diffusion model (Sec. 3.2) to learn how to deform a template in uv-space (Sec. 3.1).
3D mesh vertex displacement from template is parameterized by the uv displacement map, and our model
is trained on it along with the conditional inputs. At inference, our model generates the deformed garment
by iteratively denoising the Gaussian noise w.r.t. its conditional inputs.

3 Method

Given a garment template represented as 3D triangle mesh 7T, our goal is to learn a conditional generative
model G, called D-Garment, that deforms 7 into new mesh instances M while keeping the mesh topology
fixed. We condition the generation on the underlying body shape, pose, pose velocity, and physical material
properties of the garment. Conditioning on physical material properties allows to physically ground the
model. At test time, D-Garment can be used for generation and fitting.

D-Garment represents a dynamic garment on top of a parametric human body model that decouples body
shape and pose parameters. In our implementation, we use SMPL (Loper et al., 2015), and represent body
shape B and pose sequence 6;_5,0;_1,0; as concatenation of the two preceding poses and the current one,
where t denotes a discrete time step and [ = 2 the pose sequence length. The representation of cloth
material is inspired by traditional works in physics-inspired simulation (Baraff & Witkin, 1998) and includes
stretch coefficient s (in N/m), mass density coefficient d (in kg/m?) and bending coefficient b (in N - m)
as v := [s,d,b]. Parameter s controls resistance to stretching or compression, d controls the influence
of inertia, and b controls resistance to bending or curvature changes. These parameters will be used to
physically ground the model.

Inspired by the recent success of diffusion models in 2D domain generation, our 3D mesh generator G consists
of a 2D latent diffusion model, based on the latent diffusion architecture of Rombach et al. (2022). Our model,
illustrated in figure Figure 2, directly generates a mesh deformation

Mt ~ g(et—270t—170t71677)' (1)

This formulation is independent of intermediate body-driven skinning, unlike prior works e.g. (Patel et al.,
2020; Zhang et al., 2022; De Luigi et al., 2023; Vidaurre et al., 2024), which removes the need to rig 7.

3.1 Garment Representation

To leverage powerful diffusion models in the 2D domain for generation, we reframe our 3D generation problem
by representing garment deformations in a 2D domain encoding (u,v) coordinates. Inspired by geometry
images from Gu et al. (2002), we encode relative 3D mesh vertex displacements from 7 into a 2D geometric
displacement map D := {d; ;} € R"*™*3 via a pre-computed uv parametrization ¢ of 7.
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Given an inferred displacement map D, the inverse wv-map ¢~ ! allows to lift pixels to mesh vertices as
MFE=TF 4 dy1,,), (2)

where vy, is the k*" vertex in 7. Inversely, forward mapping, combined with triangle barycentric coordinate-
based interpolation, computes a continuous displacement map for a deformed mesh M as

dij = MO _ eig), (3)

3.2 Diffusion Model

Using a canonical 2D representation of 3D garment meshes allows to benefit from well established scalable
2D latent diffusion architectures and their pre-trained weights. Being the state-of-the-art in text to image
generation, diffusion models have been extended to various applications (Po et al., 2024). The latent diffusion
model introduced by Rombach et al. (2022) is made of a variational auto-encoder (VAE) that maps high
resolution images to a lower resolution latent space where reverse diffusion is learned based on denoising
diffusion probabilistic models (Ho et al., 2020) by a denoising network ey. The key strength of diffusion
models lies in their reversibility. The forward process involves learning to predict artificially added noise in
images. The reverse process, formulated as an iterative refinement, enables the model to gradually remove
noise from the latent space, reconstructing high-quality data step by step. We adapt this model to learn
generation of geometric displacement maps with conditions that allow for physical grounding.

Training. First, we adapt the VAE of Podell et al. (2024) to our mesh displacement map data distribution
{My, D, };. Since the statistics of this displacement map differs from natural images, pre-trained VAE would
be sub-optimal. We finetune the decoder via an extended training loss combining Lo reconstruction error
|D — D||, and the displaced vertex-to-vertex error ||M — M)||y. Next, the conditional denoiser ey is trained
with denoising score matching using samples {D;, 0;_2,0;_1, 0, 8,~}; from our training data corpus as

IEz,e,s [”6 - 69(Z57 S‘Bt—%et—lv gta /37'7)”%} ) (4)

where z € R64%64%4 ig the latent for Dy, € ~ N(0,1), s the diffusion time step, and the noisy latent obtained
with forward diffusion z; = @z + os6. The scaling factor and standard deviation of the forward diffusion

are
s

as:H(l_Bu)a 045:\/5757 Os = \/l_ds7 (5)

where variance 3, is determined by the noise schedule.

Inference. At test time, a latent Gaussian noise zr is iteratively denoised with €y to generate a latent
displacement map zg, conditioned on body shape, poses and cloth material. The VAE then decodes zg into a
displacement map ﬁ, which allows to compute mesh M with Equation (2). Several algorithms can be used
to reverse the latent diffusion (e.g. DDPM (Ho et al., 2020) or DDIM (Song et al., 2021)) with varying levels
of inference speed, sample quality and stochasticity. We use the DPM-Solver++ (Lu et al., 2022) sampler
thanks to its quality for the number of denoising steps required.

Fitting. Inspired by a registration method (Guo et al., 2024), we use our model to deform T to fit
observations represented as a 3D point cloud sequence P. As P typically contains additional points belonging
to the body or other garments, we fit our model to P using Chamfer Distance Lcp with the adaptive robust
function p (Barron, 2019), a cloth-body collision loss £, and a regularisation loss L4 consisting in Laplacian
smoothing (Nealen et al., 2006a), normal consistency and edge length minimization. This can be viewed as
generating sample meshes M* that match P, leading to the optimization of the latent z7, as:

zp = arg n;linp (Lep (P, M) + Lo+ Lyeg, (6)

where M™ is generated in a differentiable way through our sampler from a latent z7,, conditioned on « and
the body motion 3,6,’s. The latent z% is optimized with Adam (Kingma & Ba, 2014).
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Inspired by the clothing energy term in Yang et al. (2016), £, is defined as:

L= Z Oin(v, B) Ibréig [lv — bl|2, (7)
veEM*

where 0y, is an indicator function for points inside a mesh, and B contains the body mesh vertices.

4 Dataset

Prior works often use datasets containing tight garments, with little dynamic effects. To test our approach,
we created a dataset of a simulated 3D loose dress. We use a design approaching one of the outfits in
4DHumanOutfit (Armando et al., 2023), allowing to test our model on multi-view reconstructions of a
real dress. The dress is simulated over 172 motion sequences, performing walking and running motions from
AMASS (Mahmood et al., 2019). For each sequence, three body shapes were uniformly sampled following 8 ~
U(—1,1), where U is a uniform distribution. Furthermore, for each sequence, three cloth materials (bending
b, stretching s, density d) were also uniformly sampled following v ~ U([10~8,1074], [40, 200], [0.01,0.7]).
Each sequence was simulated for all combinations of the sampled parameters.

Simulation. We used a simulator based on projective dynamics (Ly et al., 2020) which is less physically
accurate but 10 times faster than implicit solvers. It also only requires a single value for each cloth material
parameter: bending, stretching, density. Other simulation parameters, which does not only depend of the
cloth (friction, air damping, collision tolerance), were fixed across all sequences. The simulation frame rate
was set to 50 fps. To initialize the simulation, the garment size was manually draped over the canonical body
model, avoiding any intersection. Then, the garment was simulated over 100 frames, linearly interpolating
from the zero pose and shape to the first frame of the sequence. It was then stabilized over 100 frames to
reduce noisy motion.

Data cleaning. SMPL can contain self-intersections, which cause unsolvable cloth-body intersections for
the simulator. To solve this, we pre-processed AMASS using an optimization used in Tzionas et al. (2016)
to minimize self-penetration. We optimized for body joints that are the most disruptive in simulation i.e.
arms and shoulders. Angular velocity of poses and the distance to the initial poses were also minimized to
regularize the output and maintain temporal consistency. We post-processed simulated cloth sequences with
few remaining cloth-body intersections by pushing vertices outside following the nearest body normal. Some
simulation failures have been manually removed from the dataset.

5 Experiments

Implementation details. We implemented the inverse uv mapping ¢! using bi-linear interpolation.
We found that the interpolation technique (e.g. nearest, bi-linear or bi-cubic interpolation) is marginally
impacting the mesh quality thanks to our high resolution image (512x512). By averaging texture coordinates
that correspond to a single mesh vertex, we did not notice any discontinuity on the surface geometry across
seams. To avoid remaining collision artifacts, the vertices are pushed outside the body mesh in a simple
post-processing step ablated in Table 3.

We used a pretrained VAE from SDXL (Podell et al., 2024) downscaling the images to latents as R512x512x3
R64x64x4 "~ The decoder part was finetuned on 40k steps and then frozen during e, training. The denoiser
network €y was built with an U-net (Ronneberger et al., 2015) that takes the encoded latents to 5 con-
volutional layers of output channel size (64,128,256,512,512) and conditions via cross-attention (Vaswani
et al.,, 2017). The following conditional input dimensions were used: v € R3, 8 € R® 0 € R using 6
dimensional rotations (Zhou et al., 2019) of 18 body joints and a global translation. Both decoder and e
weights were optimized using AdamW optimizer (Loshchilov & Hutter, 2019). We have trained €y on 50
epochs using a batch size of 32 lasting 10 days on a single NVidia A6000. The noising schedule was set to
a cosine variance (Lin et al., 2024) increasing from 8; = 107% to 7 = 0.02 sampled in 1000 diffusion steps
during training and 20 steps during inference using SDE-DPM++ (Lu et al., 2022). The inference achieves
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an interactive frame rate of 7.5 fps. We have used the Diffusers (von Platen et al., 2022) library to implement
the diffusion model and PyTorch3D (Ravi et al., 2020) for the regularization loss Lyeg.

5.1 Evaluation Protocol

Dataset. The garment geometry and body poses are normalized according to the current body global
rotation and translation for each frame. The template 7 is the mean geometry of the normalized dataset.
We compute its uv parametrization using OptCuts (Li et al., 2018b) which jointly minimizes the distortion
and the seam lengths, limiting under-sampling and discontinuities induced by seams.

We keep 3 motions from AMASS unseen during training for testing, namely *“C19-runtohoptowalk”, “B16-
walkturnchangedirection” and “B17-walktohoptowalk1”, and combine them with 3 variations of body shape
and cloth material. Note that this test set only comprises data with a combination of unseen motion, unseen
body shape and unseen cloth material, which allows to evaluate how well models generalize. We randomly
leave out 5% of the remaining training data for evaluation purposes.

Metrics. We quantitatively compare the geometric shape fidelity of the results to the test set with common
3D computer vision metrics. Vertex error F, shows the accuracy between the prediction and the ground
truth. Chamfer euclidean distance E¢p assesses the shape similarity of the prediction and the ground truth.
Chamfer normal distance E,, allows to compare the wrinkling between the prediction and the ground truth.
Nearest vertices corresponding normals are compared using absolute cosine similarity. Latter, we note U the
set of uniformly sampled points over the mesh surface M.

ZmlnHv — v,

oel

Bo= g ool Beo= |U\ 2 minllo —oll+

veEM

These shape similarity metrics allow to estimate how well a method produces similar deformations compared
to the simulator. However, they fail to evaluate the physical quality. To address this limitation, we propose
several physically inspired metrics inspired by Santesteban et al. (2022). The cloth-body collision percentage
E. measures the amount of clothing predicted inside the body. Higher values indicate physically implausible
clothing or simulation failure. Wrinkling error Fj, related to bending b, compares dihedral angles to the
ground truth. Area strain error Ej, related to stretching s, compares the in-plane deformation from the rest
shape to the ground truth. The center of mass distance F,, related to material density d, compares the
global rigid motion to the ground truth. Note that F}, Fs and E; are independent of each other providing
a measure of isolated characteristics.

E. |13(|)Z5mv3 Eb:\/|;3|2(9(6)—9(é))27 By = [0, (M) = ¥ (M),

velU ecE

where F is the mesh M set of edges, O(e) computes the signed dihedral angle between adjacent faces, ¥4 (M)
is the integral area strain deformation from the rest pose.

5.2 Comparative Evaluation to Baselines

We compare D-Garment to methods that allow for generalization across cloth materials and that model
dynamic details. While one of the first approaches allowing for varying motions falls in this category (Yang
et al., 2018), this method does not decouple the influence of multiple factors at once due to its limited capacity.
For this reason, we compare to the three strong baselines MGDDG (Zhang et al., 2022), HOOD (Grigorev

t al., 2023) and ContourCraft (Grigorev et al., 2024). MGDDG is trained on a sequence of 175 frames at 50
fps contalnmg walking and running. The tralmng uses the code provided by MGDDG. HOOD’s training on
diverse garments generalizes well to our dress without the need of fine-tuning its original pretrained model.
ContourCraft is based on HOOD with additional losses to overcome self-collisions. To align timings across
methods with varying framerates, we measure all metrics at 10 fps.
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Groundtruth D-Garment Hood ContourCraft MGDDG

Figure 3: We qualitatively compare D-Garment to HOOD (Grigorev et al., 2023), ContourCraft (Grigorev
et al., 2024) and MGDDG (Zhang et al., 2022). D-Garment generates visually plausible wrinkles without
requiring cloth velocity or position input. Corresponding video can be viewed in the supplementary material.

Table 2: Quantitative comparison to HOOD (Grigorev et al., 2023), ContourCraft (Grigorev et al., 2024)
and MGDDG (Zhang et al., 2022). Best scores are in bold.

Shape Similarity Physical Validity
Ev EC’D En | Ec Eb Es Ed
HOOD 19.7510  2.5257  0.6156 | 1.7956  0.8275  7.6536  14.8808
ContourCraft | 9.7465  0.3776  0.5268 | 1.0819  0.6967  7.5901  6.3436
MGDDG 8.5144  0.3389  0.5592 | 0.9638  0.8067 31.2323 4.2763
D-Garment 4.9447 0.1863 0.4525 | 0.7180 0.5951 7.0201 2.3384
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Figure 4: Varying one cloth material parameter at a time. The model provides control over bending,
stretching and density. For each parameter, the color map shows per-vertex distances between minimal and
maximal values. 0 Il Tl 10 cm
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Figure 6: For a given body motion and cloth ma-

terial, our method can generate subtle yet plausible
Figure 5: Results for variations of body shape. Our variations, by varying (from left to right) the ran-
method adapts the garment to the body morphology. dom latent noise of the diffusion model.

Table 3: Ablation study w.r.t. different conditioning and processing strategies. Best scores are in bold.

Shape Similarity Physical Validity
Ev ECD En Ec Eb Es Ed
w/o material 7.0097 0.2421  0.4740 | 0.6677 0.6341 8.6457  3.5387
w /o motion 5.2396  0.1985  0.4576 | 0.7087 0.6013  8.4377  2.3849

w/o post process | 4.9589  0.1888  0.4583 | 1.3632 0.5839 7.2277 2.3163
w/ subdivision - 0.1854 0.4585 | 0.8145 - 11.1532  2.3414
D-Garment 4.9447 0.1863 0.4525 | 0.7180 0.5951 7.0201 2.3384

D-Garment outperforms all baselines in terms of all metrics in Table 2. As all examples in the test set
concern unseen motion, unseen body shape and unseen cloth material, Table 2 shows that D-Garment
provides state-of-the-art results for unseen generation tasks across different cloth material and body motion.

Figure 3 shows a visual comparison to HOOD, ContourCraft and MGDDG simulated on a body motion. The
results of D-Garment are visually closer to the ground truth simulation. HOOD is struggling to handle pleats
around the collar and the wrists because its assumption of a flat surface rest shape. ContourCraft shows less
intersections than HOOD but suffers from the same limitations. MGDDG’s results are visually pleasing but
do not follow the expected material behaviour. More visual results are provided in supplementary material.

5.3 Ablation Study

We perform ablations on the input parameters of the model, the mesh subdivision and the post-processing
technique in Table 3. For material and motion ablations, we remove v and 6 in the input vector of ey,
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respectively, and train the full model. The motion ablation keeps the current pose but omits the prior ones
which indicate body velocity. The full model outperforms all ablations in most metrics. D-Garment can
benefit from the post-processing reducing collision artifacts from 1.3% to 0.7% of intersecting vertices with a
marginal physical quality trade-off. Variations in mesh resolution have a negligible impact on the deformed
shape, demonstrating the robustness of the uv representation. Note that F, and Ej, are not applicable on
meshes with different topology, while the physical validity metrics F. and F, are sensitive to changes in
topology.

Next, we study the influence of material parameters and body shape in the D-Garment outputs. Figures 4
and 5 show results for extreme parameter values used during training. Figure 4 keeps all inputs constant
while only varying a single cloth material parameter at a time. Note that each parameter influences the
resulting geometry of the dress by subtly changing wrinkling patterns. This allows to generate a rich set
of results by controlling cloth material. Figure 5 shows results when keeping all inputs constant while only
changing a single parameter of the body shape 8, along the first two principal components. Note that the
same dress is draped on different morphologies, while adapting its shape.

Figure 6 shows results obtained for the same conditions using different random noise for each latent.
D-Garment allows for high variability, while staying in the space of plausible dynamics.

5.4 Garment fitting to 3D observations

We apply our method to fit temporally consistent garments on humans captured using multi-view videos,
represented as sequence of unstructured 3D point clouds. This task presents challenges as the input data is
noisy, and the points represent the human wearer in addition to the garment.

Using a recent method Toussaint et al. (2024), we first reconstruct point clouds of the multi-view dataset
4DHumanOutfit (Armando et al., 2023). We then fit a human motion prior (Marsot et al., 2022), modeled
as a discrete set of SMPL parameters, to the reconstructed point clouds for each sequence. The body fitting
process uses a one-sided Chamfer loss, manually placed landmarks distances and the clothing energy E.joh
from Yang et al. (2016) enforcing the body shape to stay inside the capture. Points in the capture are filtered
for the cloth fitting process by removing points that are near undressed body parts (feet, legs, hands and
head) and isolating the largest cluster of points. We test two material optimization strategies. The first
uses fixed material parameters ~ initialized to values with minimal constraints (10~8,200,0.01). The second
strategy optimizes v by optimizing v* in addition to z%. in Equation (6). We optimize for a single input
latent of our model following Section 3.2 to fit generated garments to point cloud sequences.

Figure 7 shows a qualitative result for two of the sequences of 4ADHumanOutfit (Armando et al., 2023). The
input point cloud is shown in blue, and the fitted garment in orange. Visual results indicate that D-Garment
can robustly recover the garment from dynamic 3D point clouds. Figure 8 shows quantitative results of the
fitting application on these two sequences. We measure distances from vertices of D-Garment fittings to their
nearest neighbors on reconstructed frames of the capture. All fitting results achieve an accuracy inferior to
2.4cm on 90% of garment vertices. A distance of 2.4cm between our result and the input point cloud is
small compared to the highly dynamic garment motions present in 4DHumanQutfit. Furthermore, the error
is overestimated for some parts as the dress model is complete, while the reconstructions in 4DHumanOutfit
are missing parts due to occlusions in some frames, as shown in Appendix A, where the lower arm and
parts of the torso are not reconstructed. Note that D-Garment fitting results achieve high accuracy despite
this domain gap. Optimizing for material parameters allows for smoother fitted results with a slight loss in
surface to target distance.

6 Conclusion

This paper presented D-Garment, a 3D dynamic garment deformation model based on a 2D latent diffusion
model enabling temporally consistent generation given the body shape, pose, motion and cloth material.
The model was learned on a dataset of garments with physical grounding by conditioning the result on cloth
material parameters. Both the code and dataset will be made available. Experimental evaluations on both
simulated and real data confirm the versatility of D-Garment for diverse tasks while providing state-of-the-

11



Under review as submission to TMLR

art results. These findings highlight the potential of diffusion-based generative models to realistically deform
3D dynamic garments, as well as solving the challenging task of extracting garments from 3D point cloud
observations.

(a) Fixed material (b) Optimized material

Figure 7: D-Garment is used to fit a captured 3D sequence. For each time frame of the corresponding motion
(lines), we show the raw capture (left blue), the sampled point cloud (middle grey), and the estimated
garment (right orange). We can accurately recover garment pose and fine wrinkles using two different
material optimization strategies a and b. Corresponding videos are in supplementary material.
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Figure 8: Cumulative distances of D-Garment fittings to input 3D point clouds for two sequences of 4DHu-
manQutfit with different material optimization strategies a and b. The vertical bar indicates the maximum
distance at 90% of the vertices.
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A Appendix: dress template and capture

Figure 9: The dress model (left) used for D-Garment dataset differs slightly from the captured dress (right)
from 4DHumanOutfit (Armando et al., 2023) in terms of length and wrinkle details.
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