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Abstract
With the swift progress in tool-based learn-001
ing, the number of tools available has also002
increased significantly. In comparison to the003
correct utilization of tools, the significance of004
precisely choosing the appropriate tool from005
an increasingly large selection is crucial. At006
present, depending solely on retrieval methods007
that use keywords and embeddings faces new008
challenges in the realm of tool selection. On009
one hand, it becomes difficult to distinguish010
between tools with similar functionalities. On011
the other hand, some queries require further012
reasoning to uncover the true tool needs, where013
direct matching with keywords or semantic014
embeddings does not yield the correct result.015
To address this issue, we introduce the Self-016
Assist method, which fully leverages the inher-017
ent knowledge and reasoning capabilities of018
large language models. Through a series of sys-019
tematic steps, large language models actively020
engage in deliberate thought and select the most021
appropriate tool for a given query. In essence,022
our work champions a blend of LLMs and re-023
trieval tools in a flexible, efficient, and univer-024
sally compatible design, significantly bolster-025
ing retrieval outcomes. Evaluations on three026
datasets reveal superior performance over the027
previous approaches in retrieval accuracy and028
overall success.029

1 Introduction030

Recent advances in large language models (LLMs)031

introduce remarkable capabilities in natural dia-032

logue, mathematical reasoning, and program syn-033

thesis. However, these LLMs face constraints due034

to their fixed weight set and limited context. By035

integrating specialized tools (Nakano et al., 2021b;036

Lazaridou et al., 2022; Paranjape et al., 2023b),037

LLMs can overcome several challenges and en-038

hance the expertise across tasks beyond their origi-039

nal scope (Wu et al., 2023; Shen et al., 2023).040

Initial efforts have been towards fine-tuning041

LLMs to work with specific tools (Nakano et al.,042
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Figure 1: Temporal Evolution of Tool Invocation Counts

2021b; Lazaridou et al., 2022; Paranjape et al., 043

2023b). For example, Schick et al. (2023a) finetune 044

a language model to solve various NLP tasks by 045

leveraging question answering system, Wikipedia 046

search engine, calculator, calendar, and machine 047

translation system. Yet, this approach faces a fun- 048

damental limitation: it binds the model’s ability 049

strictly to tools learned during training, making it 050

difficult to generalize to newer tools. As the few- 051

shot capability of large language models intensifies, 052

in-context-learning has emerged as one of the most 053

promising approaches to tool learning today (Wu 054

et al., 2023; Shen et al., 2023; Surís et al., 2023; 055

Paranjape et al., 2023b). For instance, Wu et al. 056

(2023) integrated ChatGPT with a variety of visual 057

foundation models using in-context-learning. 058

However, no matter finetune-based method or 059

in-context-learning method, the prevailing focus of 060

them lies in tool utilization, enhancing language 061

model capacities, and addressing a myriad of spe- 062

cific tasks. As shown in Figure1, with an ever- 063

expanding array of available tools and plugins, 064

ranging from the inception of search engines to 065

a multitude of specialized domain APIs (Lazari- 066

dou et al., 2022; Schick et al., 2023a; Patil et al., 067
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2023; Liang et al., 2023), the selection from this068

burgeoning pool in response to a specific query be-069

comes increasingly imperative. The current main-070

stream methodology employs an external retriever.071

However, common methods based on keyword and072

embedding retrieval can easily generate significant073

errors, especially when there are numerous tools074

with similar functionalities, or when a query re-075

quires reasoning to determine the actual tool needs,076

making differentiation through mere retrieval meth-077

ods challenging.078

In this paper, we introduce the Self-Assist079

method, which can fully leverages the inherent080

knowledge and reasoning capabilities of large lan-081

guage models to facilitate the tool selection. For082

a given query, the method undertakes the follow-083

ing steps: 1. Actively analyze the query to discern084

the requisite tool for the task. 2. Generate a gen-085

eral tool description tailored to address the specific086

query. 3. Employ the retriever using the query087

and tool description to search for the relevant tool.088

4. Analyze the core functionalities of top-k candi-089

date tools from the original tool documentations.090

5. From the top-k candidate tools returned by the091

retriever, further discern the most apt match based092

on the query, general tool description and analysis093

of candidate tools. Experimental results on three094

public datasets demonstrate that our approach sig-095

nificantly outperforms the baseline in both retrieval096

accuracy and final success rate.097

Our main contributions can be summarized as098

follows:099

1. In addressing the issue of tool selection, to100

overcome the limitations of traditional re-101

trieval methods, we propose the Self-Assist102

method. This approach involves large lan-103

guage models actively engaging in deliber-104

ate thought to select the most suitable tool,105

thereby fully leveraging their knowledge and106

reasoning prowess.107

2. This method offers notable flexibility. It not108

only integrates smoothly as a plug-and-play109

feature with prevalent models, but it also110

prides itself on universal compatibility with a111

vast array of retrieval tools.112

3. Empirical evaluations on three public datasets113

demonstrate that our method markedly en-114

hances retrieval accuracy and the overall suc-115

cess rate.116

2 Related work 117

2.1 Tool Usage in Large Language Models 118

Recent advancements have utilized existing tools 119

to enhance task-specific performance across vari- 120

ous domains. Examples include WebGPT (Nakano 121

et al., 2021a) and ReAct (Yao et al., 2022), which 122

improve text generation through search APIs, and 123

PaLM-SAYCAN (Brohan et al., 2023) and PaLM- 124

E (Driess et al., 2023), which use robotics APIs for 125

real-world tasks. Pal (Gao et al., 2022) addresses 126

mathematical problems using code from text in- 127

puts. ToolFormer (Schick et al., 2023b) integrates 128

multiple APIs for NLP challenges. ART (Paran- 129

jape et al., 2023a) enhances model performance 130

with a comprehensive toolkit for complex reason- 131

ing. Further enriching this landscape, (Patil et al., 132

2023) unveils APIBench, a massive dataset featur- 133

ing HuggingFace, TorchHub, and TensorHub APIs. 134

(Qin et al., 2023) collect 16,464 real-world REST- 135

ful APIs spanning 49 categories from RapidAPI 136

Hub. Examples like AutoGPT 1 and hugginggpt 137

(Shen et al., 2023) are at the forefront, crafting 138

agents predicated on LLMs and thereby captivating 139

a broad public audience and sparking vibrant dis- 140

cussions. Experiments with LLM-based agents are 141

also making waves in social and gaming spheres 142

(Wang et al., 2023; Park et al., 2023). While the 143

highlighted techniques prioritize optimizing tool 144

utilization for problem-solving across sectors, our 145

focus uniquely hones in on addressing the nuances 146

of tool selection. 147

2.2 Information Retrieval 148

Information Retrieval (IR) is now an indispens- 149

able tool in numerous applications, transitioning 150

from traditional methods to more advanced sys- 151

tems. Conventional models, such as TF-IDF(Salton 152

and Buckley, 1988), depend primarily on term 153

matches between documents and queries. An ad- 154

vancement, BM25 (Robertson et al., 1995), gen- 155

erally yields better results than TF-IDF. However, 156

these models grapple with issues like polysemy and 157

synonymy. Recognizing these challenges, there’s 158

been a shift towards embeddings—dense vector 159

representations that encapsulate word semantics. 160

Le and Mikolov (2014) introduced unsupervised 161

vector representations for whole texts, and works 162

like Karpukhin et al. (2020) and Hofstätter et al. 163

(2021) have effectively leveraged dense representa- 164

1https://github.com/Significant-Gravitas/Auto-GPT
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tions for improved search and retrieval tasks. Ope-165

nAI’s text-embedding-ada-002 model offers versa-166

tile embeddings suitable for a spectrum of tasks.167

Furthermore, there has been a surge in attempts168

to harness the prowess of large language models169

to boost search performance, which mainly focus-170

ing on single modules such as generating pseudo-171

queries or ranking algorithms, for example, InPars172

(Bonifacio et al., 2022; Dai et al., 2022) gener-173

ates pseudo-queries using large language models.174

Sun et al. (2023) demonstrate that guided Chat-175

GPT and GPT-4 exhibit competitive performance176

of generative ranking algorithms, even outperform-177

ing supervised methods. Different from them, our178

approach emphasizes integrating the capabilities179

of large language models and retriever through in-180

context learning. It neither requires additional train-181

ing nor is specific to a particular retrieval method,182

making it universally compatible for tool selection.183

2.3 Self-Feedback for LLM184

Recent research indicates that the LLM itself can185

be employed as a feedback provider (Madaan et al.,186

2023; Shinn et al., 2023; Gero et al., 2023). A direct187

approach is to evaluate the quality of its generated188

outputs through prompting and then harness this189

feedback to enhance the results. This process can190

be iterative, with the model persistently refining its191

output until it achieves a specified standard. For ex-192

ample, Self-Refine, as introduced by Madaan et al.193

(2023), offers an elegant self-correction framework.194

It harnesses a robust pre-trained LLM to generate195

outputs, provide feedback, and subsequently re-196

fine those outputs based on the received feedback.197

Meanwhile, Reflexion (Shinn et al., 2023) has aug-198

mented this framework by integrating the long-term199

memory feature. This enhancement allows the sys-200

tem to retain previous feedback and outputs, ef-201

fectively circumventing the recurrence of past er-202

rors. In contrast to the self-feedback approaches,203

where the LLM iteratively refines its outputs post-204

generation, our method presents a novel way of205

leveraging large language models to enhance their206

problem-solving capabilities: self-assisted tool se-207

lection. Before addressing the problem, our ap-208

proach prioritizes selecting the appropriate tool.209

On one hand, proactive decision-making proves210

more efficient than post-hoc correction. On the211

other, our Self-Assist method can be synergistically212

integrated with the self-feedback approach.213

3 Method 214

Let’s first agree on the abbreviations for the terms: 215

• T : The total tool set T = {t1, t2, . . . , tn}, 216

• M : The instruction about tool usage, 217

• q: The user-provided Query, 218

• R: The Retriever, 219

• LLM : The Large language model, 220

• D: The tool description generated by the 221

LLM , 222

• Pq: The prompt used for query analysis and 223

generation, 224

• Pf : The prompt used for analysis of candidate 225

tools, 226

• Pf : The prompt used for ascertainment, 227

• t∗: The tool that best matches the query q, 228

• Tk: Top-k set of candidate tools, 229

• Fk: The functionalities generated by the 230

LLM , 231

When faced with a multitude of tools, the con- 232

textual capabilities of language models can become 233

constrained, thereby limiting their direct in-context 234

learning. To address this, we have distinctly seg- 235

mented the process into two phases: tool selection 236

and tool usage. For large language models, tool 237

selection is defined as follows: Given a query q and 238

a collection of tools T , the method should identify 239

and return the single most pertinent tool t∗. It’s cru- 240

cial to emphasize the selection of the most relevant 241

tool over a top-k list. If the model were to return a 242

top-k list, it would inevitably need to make an addi- 243

tional selection during the tool usage phase, which 244

contradicts our goal of clear separation. To address 245

this challenge, the current mainstream methodol- 246

ogy utilizes an external retriever R, such as BM25. 247

t∗ = R(q, T ) (1) 248

They uses the user’s query to retrieve the tool 249

documentations corresponding to each tool and 250

identify the most suitable tool, which is then 251

fed into the large language model for in-context- 252

learning. The accuracy of this retrieval process 253

significantly dictates the ultimate success rate. For 254
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Figure 2: Systematic Workflow for Tool Selection via Large Language Model Itself. Unlike previous approaches
that directly retrieve tools for a given query through a retriver, our method fully leverages the inherent knowledge
and reasoning capabilities of large language models to achieve deliberate tool selection.

tasks necessitating specific tools, a failure to re-255

trieve the correct API means even the most potent256

LLM cannot produce the correct outcome. Hence,257

enhancing retrieval accuracy is of paramount im-258

portance.259

We have proposed a novel approach, self-260

assisted tool selection, which constructs an lan-261

guage agent for tool retrieval scenarios, built upon262

the integration of large language models and re-263

trievers. This strategy aids the language model in264

achieving an autonomous tool selection process.265

Given a specified query, traditional paradigms of-266

ten depict the language model as a passive entity,267

merely awaiting the feedback from the retriever to268

provide the pertinent tool. Contrary to this conven-269

tional approach, our framework postulates a more270

proactive role for the language model. Instead of271

being a mere recipient of the retriever’s suggestions,272

the language model engages in an analytical con-273

templation, discerning the type of generalized tool274

that might best address the query at hand. Subse-275

quent to this cognitive process, the model actively276

engages the retrieval mechanism to curate a list of277

suitable candidate tools. A meticulous examination278

of these candidates is then undertaken. Drawing279

upon the insights gleaned from the initial query280

and the subsequent analytical deliberation, the lan-281

guage model discerns and selects the most fitting282

tool from the curated set, exemplifying a synergy283

of active thought and dynamic retrieval in problem-284

solving.285

Moving forward, we shall delve into a compre- 286

hensive, systematic, and formalized exposition of 287

the methodology. 288

1. Query Analysis: The inception of the proce- 289

dure commences with a a meticulous examination 290

of the user’s query q, facilitated by the utilization of 291

prompt Pq. At this juncture, it is imperative for the 292

expansive language model to comprehend the intri- 293

cacies of the query and prognosticate the archetype 294

of tool that may be requisite for the specific inquiry. 295

2. Tool Description Generation : Post query 296

analysis, the emphasis shifts towards formulating a 297

general description of the requisite tools tailored to 298

the specific query, symbolized as D. The equation 299

encompassing both the aforementioned stages is 300

articulated as: 301

D = LLM(Pq, q) (2) 302

3. Tool Retrieval Process: Armed with the metic- 303

ulously generated tool description, the subsequent 304

step entails invoking the retriever, denoted as R, to 305

systematically scour for potential tools that align 306

with both the query and the tool description. The 307

retriever R proficiently returns a subset comprising 308

the top-k most pertinent candidate tools, symboli- 309

cally represented as Tk. The formalized representa- 310

tion encapsulating this phase can be mathematically 311

articulated as: 312

Tk = R(q,D, T ) (3) 313
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4.Analysis of Candidate Tools: Leveraging the314

individual documentation associated with each tool,315

the Large Language Model conducts a compre-316

hensive examination of each retrieved candidate.317

The original API documentations might encompass318

specialized terminologies, detailed code snippets,319

among other intricacies. The primary objective of320

this phase is to enable the LLM to generate a suc-321

cinct description of the core functionalities Fk for322

each candidate tool, facilitated by the utilization of323

prompt Pf :324

Fk = LLM(Pf , Tk) (4)325

5.Determining of the Optimal Tool: Following326

the analysis Fk of the top-k candidate tools, the327

task gravitates towards the judicious selection of a328

singular, most fitting tool t∗. This decision-making329

process necessitates a comprehensive evaluation,330

factoring in both the original query, the derived331

tool description and the analysis of candidate tools.332

The process of tool selection, which facilitated by333

the utilization of prompt Pd, can be academically334

formalized as:335

t∗ = LLM(Pd, q,D, Fk) (5)336

Thus far, we have developed an langauge agent337

based on a large language model (LLM) that can338

autonomously retrieve tools. This method presents339

three significant advantages:340

1. Leveraging the Profound Capacities of the341

LLM: Throughout the multifaceted stages of this342

paradigm, the LLM is actively engaged in discern-343

ing the nuances of both the query and candidate344

tools and invoking the retrieval tool. The knowl-345

edge and reasoning ability that the LLM has ac-346

quired during its pre-training phase are fully uti-347

lized.348

2. Universal Retrieval Tool Compatibility: A349

meticulous examination of our methodology elu-350

cidates its agnostic stance towards the nature of351

the retriever. It manifests a harmonious interplay352

with retrieval mechanisms, be they anchored on353

traditional keyword-based methodologies or con-354

temporary embedding techniques.355

3. Plug-and-Play : Our method aligns seam-356

lessly with the input and output of current main-357

stream approaches, allowing for plug-and-play in-358

tegration within the entire pipeline. The responsi-359

bility for tool selection and operation can be dis-360

tributed among various Large Language Models,361

enabling each to harness its distinct capabilities. If362

Source Domains Filtered Models/APIs
HuggingFace 37 925

TensorFlow Hub v2 57 696
Torch Hub 6 95

Table 1: Dataset details for APIBench.

the LLMs designated for tool selection and tool 363

operation are the same, we clearly can construct 364

a more autonomous agent by appending a tool- 365

usage step after stage 5. In this configuration, the 366

Large Language Model, by mastering the use of a 367

retriever tailored for tool retrieval, can markedly 368

boost its success rate in resolving queries. 369

4 Experiment 370

4.1 Dataset 371

APIBench (Patil et al., 2023) is a comprehen- 372

sive benchmark built from APIs documented in 373

HuggingFace, TorchHub, and TensorHub model 374

cards. The benchmark collection process involved 375

meticulously gathering and filtering online model 376

cards to create a robust dataset of 1,645 API 377

calls. Each API calls has a json object with the 378

following fields: domain, framework, functional- 379

ity, api_name, api_call, api_arguments, environ- 380

ment_requirements, example_code, performance, 381

and description.. APIBench also contains a dataset, 382

which is enriched with synthetic instruction data 383

generated by the GPT-4 model, creating 10 unique 384

instruction-API pairs per API call. 385

4.2 Prompts 386

To ensure reproducibility, we present the prompts 387

utilized by the agent during the experiment. 388

• The prompt used for query analysis and gen- 389

eration Pq: "Kindly analyze the user’s request 390

in detail and provide a precise description of 391

the technology they require." 392

• The prompt used for analysis of candidate 393

tools Pf : "Briefly describe the core function- 394

ality based on the tool documentation." 395

• The prompt used for Determining of the op- 396

timal tool Pf : "Identify the technology that 397

best fulfills the user’s requirement from the 398

given options." 399
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4.3 Baseline400

Based on (Patil et al., 2023), we explore three401

distinct retrieval methods as baselines: BM25,402

text-embedding-ada-0022 and Sentence-BERT403

(Reimers and Gurevych, 2019), which is trained404

on the training set of APIBench. For more details,405

please refer to the appendix.406

4.4 Evaluation Method407

Considering the limited context of language mod-408

els and the extensive nature of API documenta-409

tion.Both the baseline method and our approach,410

are designed to return the most pertinent API, with411

accuracy gauged against the provided labels. In our412

approach, every API undergoes a comprehensive413

core functionality analysis as depicted in Equation414

5. This analysis is typically much more concise415

than the full API documentation. Hence, we can416

consider the top-k candidate tools before making a417

final decision. By default, we set k to 5. In subse-418

quent phases, we’ll delve deeper with experiment419

ablation and detailed analysis. For instance, we’ll420

compare the final success rate about a baseline421

method, which returns the top-k for direct input422

into the primary model, measures up against an423

agent-based approach that pinpoints the top-1 op-424

tion.425

For the final success rate evaluation, we feed426

both the query and the relevant API document into427

a large language model, with the default being GPT-428

3.5. The objective is to ascertain the correctness of429

the method invoked by the language model. Given430

the plethora of models and challenges in direct de-431

ployment, we follow (Patil et al., 2023) and evalu-432

ate our model’s output by examining its functional433

equivalence. The solution employs the Abstract434

Syntax Tree (AST) tree-matching technique. Since435

our study zeroes in on a singular API call, the pro-436

cedure becomes relatively straightforward. By ex-437

amining if the AST of the proposed API call exists438

as a sub-tree within the benchmark API call, we can439

effectively pinpoint the exact API being employed440

from our dataset.441

All the experimental results in this paper are442

the statistical average of different runs. Unless443

otherwise specified, we default to GPT-3.5 as the444

agent’s LLM Kernel.445

2https://openai.com/blog/new-and-improved-embedding-
model

4.5 Result 446

The Table 2 provides a comprehensive view of the 447

retrieval accuracy rates of various methods across 448

three different datasets: TorchHub, HuggingFace, 449

and TensorFlow Hub. We can derive the following 450

insights: 451

1. Challenges in Retrieval from Diverse APIs: 452

Selecting the most relevant results from the set 453

of APIs using a specific query is inherently dif- 454

ficult. This can be confirmed by looking at the 455

performance scores of the two baseline meth- 456

ods across the datasets. For instance, BM25 457

achieved a success rate of 16.13% on Torch- 458

Hub, 18.03% on HuggingFace, and 42.92% 459

on TensorFlow Hub. Both methods, as shown 460

in the table, found it challenging to consis- 461

tently retrieve relevant results. This empha- 462

sizes the complexities of developing an effec- 463

tive retrieval system for a wide range of API 464

functionalities. 465

2. Diverse Challenges Across Datasets: The na- 466

ture and quality of API documentation can 467

differ markedly across datasets. While some 468

datasets offer clearly discernible documenta- 469

tion, others present more nuanced distinctions. 470

The contrasting success rates, particularly the 471

disparity where BM25 fetches 42.92% on Ten- 472

sorFlow Hub but only 16.13% on TorchHub, 473

underscore the unique challenges each dataset 474

introduces, emphasizing the nuanced task of 475

retrieval. 476

3. Superiority of Agent-Aided Methods: All 477

three methods showed enhanced performance 478

when coupled with the Agent. This points 479

towards the efficacy of the Agent in improv- 480

ing the accuracy of the retrieval process. The 481

‘Agent with BM25’ and ‘Agent with Ada Em- 482

bedding’ methods seem to outperform their 483

standalone counterparts by a significant mar- 484

gin, underscoring the importance of integrat- 485

ing agent-based methodologies in the retrieval 486

process. Even for advanced retrieval models 487

such as Sentence-BERT, our agent method has 488

also resulted in a substantial enhancement in 489

performance. 490

4. Agent Benefits Increase with Baseline’s Poor 491

Performance: When the base retrieval method 492

falters, the agent’s contribution is more pro- 493

nounced, improving the overall retrieval rate. 494
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Method
TorchHub HuggingFace TensorFlow Hub

Retrieval Accuracy Final Success Retrieval Accuracy Final Success Retrieval Accuracy Final Success
BM25 16.13 13.57 18.03 16.47 42.92 37.10
Agent with BM25 39.65 35.78 42.19 39.28 65.04 58.77
Ada Embedding 38.71 33.92 52.16 48.33 70.01 64.60
Agent with Ada Embedding 57.38 51.20 69.54 62.11 75.53 69.91
Sentence-BERT 76.44 70.35 84.15 77.49 88.01 82.62
Agent with Sentence-BERT 85.39 78.17 91.23 83.12 95.28 90.07

Table 2: Comparison of retrieval accuracy rate and final success rate for different methods across three datasets.

This can be largely attributed to the agent’s495

design, which maximally leverages the knowl-496

edge and reasoning capabilities of the large497

language model.498

5. Retrieval Accuracy Directly Influences Final499

Success: A higher retrieval accuracy rate nat-500

urally bolsters the final success rate. If a re-501

trieval system missteps, it restricts the sub-502

sequent process’s efficacy. Conversely, with503

apt tools, the success likelihood surges. How-504

ever, the model’s inherent limitations, like pro-505

ducing incorrect or hallucinated information,506

can still slightly affect its success rate. This507

highlights the importance of accurate retrieval508

systems in the whole process509

In summary, the result serves as a testament to the510

evolving challenges in the realm of API retrieval.511

While baseline methods may falter in consistently512

delivering accurate results, the integration of spe-513

cialized agents, as seen in the case of BM25 and514

Ada Embedding, offers a promising avenue for en-515

hancing retrieval accuracy rates.516

LLM Kernel HuggingFace
Alpaca 26.12
Vicuna 30.78
Llama2Chat 34.10
GPT-3.5 42.19
GPT-4 48.52

Table 3: Comparison of BM-25 retrieval accuracy rate
across different LLM kernels.

4.6 Different LLM kernels517

The table 3 showcases the retrieval accuracy rates518

of agents built upon various Language Learning519

Model (LLM) kernels when tested on the Hugging-520

Face dataset. As the capacity of the underlying521

LLM kernel increase, there is a corresponding im-522

provement in the success rate of agent-driven infor-523

mation retrieval.524

Experiment HuggingFace
Agent with BM25 42.19
w/o Tool Description Generation 36.22
w/o Analysis of Candidate Tool 39.41
w/o Determining of the Optimal Tool 26.07

Table 4: Ablation study showing the impact of the three
core functionalities of the agent.

4.7 Ablation Study 525

In the ablation study presented in Table 4,we em- 526

ploy GPT-3.5 as the LLM Kernel. By removing 527

each functionality one at a time, we measure its 528

relative contribution to the agent’s overall effective- 529

ness. The data from the table clearly shows that 530

every functionality is pivotal to the agent’s success. 531

Notably, when "Determining of the Optimal Tool" 532

is omitted, the performance drops substantially to 533

26.07%. This highlights the pivotal importance of 534

the language model’s decision-making prowess in 535

attaining the best results. Another contributing fac- 536

tor to this decline is that without "Determining the 537

Optimal Tool", the system automatically selects the 538

first tool from the prior step’s candidate list as the 539

correct choice. This action indirectly weakens the 540

significance of the "Analysis of Candidate Tool" 541

feature. 542

4.8 Top-k Performance 543

Table 5 demonstrates the performance of the re- 544

trieval accuracy rate and the final success rate of 545

both BM25 and Agent with BM25 methods on the 546

HuggingFace dataset under different top-k values. 547

From the data, we can draw the following conclu- 548

sions: 549

• Growth in k-values and Accuracy: As the 550

value of k increases, the accuracy rate of our 551

method continues to rise. This is evident when 552

comparing the retrieval accuracy across dif- 553

ferent top-k values. For instance, the retrieval 554

accuracy for the BM25 method increases from 555

18.03% (Top-1) to 51.99% (Top-10). Simi- 556

larly, the Agent with BM25 method exhibits 557
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Method
Top-1 Top-5 Top-10

Retrieval Accuracy Final Success Retrieval Accuracy Final Success Retrieval Accuracy Final Success
BM25 18.03 16.47 37.94 30.92 51.99 40.26
Agent with BM25 26.07 23.11 42.19 39.28 54.37 49.70

Table 5: Comparison of retrieval accuracy rate and final success rate for different top-k.

a rise in accuracy from 26.07% (Top-1) to558

54.37% (Top-10).559

• Comparison with Direct Top-k: Although560

directly feeding the top-k outputs from the561

BM25 method into a large language model562

for usage and then calculating the final suc-563

cess rate does not align with our tool selection564

definition given in method 3 (since the large565

model would have to make an implicit choice566

during the execution phase), it serves as a valu-567

able comparison. The results clearly demon-568

strate that our method outperforms the direct569

BM25 top-k, which mainly benefit from three570

functionalities explored by ablation study.571

• This disparity between retrieval accuracy and572

final success rate is more pronounced in the573

top-k method compared to ours. This suggests574

that selecting the most optimal tool and then575

providing it to the large language model can576

help alleviate its burden. Furthermore, this577

highlights the appropriateness and validity of578

our definition of tool selection as the most579

pertinent.580

4.9 Chain-of-Tool581

Method HuggingFace
Agent with BM25 39.28
Agent with BM25 + context 41.21
Agent with Ada Embedding 62.11
Agent with Ada Embedding + context 63.92

Table 6: The impact of context about tool selection on
final success rate.

Much like a chain-of-thought, the way we select582

and use tools can be viewed as a logical progression.583

This observation prompts a deeper inquiry: Could584

the contextual information present during the tool585

selection enhance the success rate of its subsequent586

use? After the agent selects the appropriate tool,587

the LLM kernel maintains the previous context.588

We directly passes the query and the tool back to589

this language model. Table 6 indicates that this590

method has improved the final success rate on the591

Huggingface dataset.592

5 Conclusion 593

In this paper, we present the self-assisted tool se- 594

lection method and have developed an language 595

agent based on the the integration of large language 596

model and retrievers. For any given query, the 597

agent systematically analyzes the query, creates a 598

tailored tool description, employs a retriever to find 599

the relevant tool, examines the functionalities of 600

the top-k tools from their original documentation, 601

and finally, pinpoints the most suitable tool based 602

on various analyses. On publicly available datasets, 603

our method significantly enhances the accuracy of 604

tool retrieval, leading to an improved success rate 605

in problem-solving. Since APIBench consists of 606

queries that can be resolved with just a single tool, 607

in the future, we plan to extend our approach to 608

queries that require the combined use of multiple 609

tools. Some potential strategies include decom- 610

posing complex task queries into multiple single 611

queries using large language models, and then ap- 612

plying our current method for tool selection. 613

6 Limitations 614

The primary limitation of our method lies in the se- 615

quential nature of the Self-Assist approach, which 616

is susceptible to cumulative errors. For instance, 617

inaccuracies in the initial Query Analysis could 618

propagate through to later retrieval stages. Empiri- 619

cally, we have found that with advanced language 620

models, such hallucination errors are minimal and 621

often inconsequential. However, for less sophisti- 622

cated open-source LLMs, they have an observable 623

impact in certain scenarios. Overall, our method 624

still yields positive gains in practice. Another po- 625

tential concern is the additional token usage. In 626

the appendix, we compare the average token usage, 627

and despite incorporating more steps, there isn’t a 628

significant increase in the number of tokens used. 629
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Parameter Settings 786

Specifically, the Self-Assist framework does not in- 787

troduce any additional hyperparameters. Similarly, 788

BM25 inherently does not have extra parameters. 789

For the text-embedding-ada-002, we set the maxi- 790

mum input length to 2048. The parameters in our 791

paper primarily relate to the Large Language Mod- 792

els (LLMs), which are set as follows: frequency 793

penalty at 0, logit bias not applicable (null), a max- 794

imum of 4096 tokens, a single response generation 795

(n=1), presence penalty at 0, no specific stop se- 796

quence (null), streaming disabled (false), tempera- 797

ture at 1, and top_p also at 1. 798

Baseline 799

Based on (Patil et al., 2023), we explore three dis- 800

tinct retrieval methods as baselines: 801

BM25 BM25 is a popular ranking function used 802

in information retrieval systems, particularly in 803

search engines. The BM25 function then evalu- 804

ates the relevance of a document relative to a query 805

based on the frequency of the query terms in the 806

document, taking into account factors such as the 807

length of the document and the average document 808

length in the collection. For BM25, we consider 809

each API as a separate document. During retrieval, 810

we use the user’s query to search the index and 811

fetch the relevant APIs. 812

Embedding-based We use the text-embedding- 813

ada-0023for embedding-based retriever. First, we 814

extract the embedding representations for both the 815

query and the API documents. We then assess 816

their relationship using cosine similarity. All API 817

documents are ranked according to this similarity 818

measure with the query. Depending on the need, we 819

either return the single document with the utmost 820

score or the top N highest-scoring documents. 821

Sentence-BERT We incorporated Sentence- 822

BERT (Reimers and Gurevych, 2019) to train a 823

dense retriever on the training set of APIBench. 824

This API retriever generates embeddings for both 825

the instruction and the API document and assesses 826

their relevance through embedding similarity. 827

Additional Token Usage 828

Table 7 in our paper shows the average tokens used 829

for retrieving the top-5 tools and executing. De- 830

3https://openai.com/blog/new-and-improved-embedding-
model
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Method HuggingFace TensorFlow Hub TorchHub
Baseline 2039.4 1795.2 2663.5
Ours 2186.3 1976.4 2805.8

Table 7: Comparison of average token usage.

spite our method’s complexity, token use remains831

low, primarily for API documentation. We encour-832

aged concise commands like "Briefly describe" to833

conserve tokens, detailed in our Prompts Section.834

Plus, the cost of token usage is decreasing due to835

improved inference and technology.836
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