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Abstract

With the swift progress in tool-based learn-
ing, the number of tools available has also
increased significantly. In comparison to the
correct utilization of tools, the significance of
precisely choosing the appropriate tool from
an increasingly large selection is crucial. At
present, depending solely on retrieval methods
that use keywords and embeddings faces new
challenges in the realm of tool selection. On
one hand, it becomes difficult to distinguish
between tools with similar functionalities. On
the other hand, some queries require further
reasoning to uncover the true tool needs, where
direct matching with keywords or semantic
embeddings does not yield the correct result.
To address this issue, we introduce the Self-
Assist method, which fully leverages the inher-
ent knowledge and reasoning capabilities of
large language models. Through a series of sys-
tematic steps, large language models actively
engage in deliberate thought and select the most
appropriate tool for a given query. In essence,
our work champions a blend of LLMs and re-
trieval tools in a flexible, efficient, and univer-
sally compatible design, significantly bolster-
ing retrieval outcomes. Evaluations on three
datasets reveal superior performance over the
previous approaches in retrieval accuracy and
overall success.

1 Introduction

Recent advances in large language models (LLMs)
introduce remarkable capabilities in natural dia-
logue, mathematical reasoning, and program syn-
thesis. However, these LLMs face constraints due
to their fixed weight set and limited context. By
integrating specialized tools (Nakano et al., 2021b;
Lazaridou et al., 2022; Paranjape et al., 2023b),
LLMs can overcome several challenges and en-
hance the expertise across tasks beyond their origi-
nal scope (Wu et al., 2023; Shen et al., 2023).
Initial efforts have been towards fine-tuning
LLMs to work with specific tools (Nakano et al.,
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2021b; Lazaridou et al., 2022; Paranjape et al.,
2023b). For example, Schick et al. (2023a) finetune
a language model to solve various NLP tasks by
leveraging question answering system, Wikipedia
search engine, calculator, calendar, and machine
translation system. Yet, this approach faces a fun-
damental limitation: it binds the model’s ability
strictly to tools learned during training, making it
difficult to generalize to newer tools. As the few-
shot capability of large language models intensifies,
in-context-learning has emerged as one of the most
promising approaches to tool learning today (Wu
et al., 2023; Shen et al., 2023; Suris et al., 2023;
Paranjape et al., 2023b). For instance, Wu et al.
(2023) integrated ChatGPT with a variety of visual
foundation models using in-context-learning.
However, no matter finetune-based method or
in-context-learning method, the prevailing focus of
them lies in tool utilization, enhancing language
model capacities, and addressing a myriad of spe-
cific tasks. As shown in Figurel, with an ever-
expanding array of available tools and plugins,
ranging from the inception of search engines to
a multitude of specialized domain APIs (Lazari-
dou et al., 2022; Schick et al., 2023a; Patil et al.,



2023; Liang et al., 2023), the selection from this
burgeoning pool in response to a specific query be-
comes increasingly imperative. The current main-
stream methodology employs an external retriever.
However, common methods based on keyword and
embedding retrieval can easily generate significant
errors, especially when there are numerous tools
with similar functionalities, or when a query re-
quires reasoning to determine the actual tool needs,
making differentiation through mere retrieval meth-
ods challenging.

In this paper, we introduce the Self-Assist
method, which can fully leverages the inherent
knowledge and reasoning capabilities of large lan-
guage models to facilitate the tool selection. For
a given query, the method undertakes the follow-
ing steps: 1. Actively analyze the query to discern
the requisite tool for the task. 2. Generate a gen-
eral tool description tailored to address the specific
query. 3. Employ the retriever using the query
and tool description to search for the relevant tool.
4. Analyze the core functionalities of top-k candi-
date tools from the original tool documentations.
5. From the top-k candidate tools returned by the
retriever, further discern the most apt match based
on the query, general tool description and analysis
of candidate tools. Experimental results on three
public datasets demonstrate that our approach sig-
nificantly outperforms the baseline in both retrieval
accuracy and final success rate.

Our main contributions can be summarized as
follows:

1. In addressing the issue of tool selection, to
overcome the limitations of traditional re-
trieval methods, we propose the Self-Assist
method. This approach involves large lan-
guage models actively engaging in deliber-
ate thought to select the most suitable tool,
thereby fully leveraging their knowledge and
reasoning prowess.

2. This method offers notable flexibility. It not
only integrates smoothly as a plug-and-play
feature with prevalent models, but it also
prides itself on universal compatibility with a
vast array of retrieval tools.

3. Empirical evaluations on three public datasets
demonstrate that our method markedly en-
hances retrieval accuracy and the overall suc-
cess rate.

2 Related work

2.1 Tool Usage in Large Language Models

Recent advancements have utilized existing tools
to enhance task-specific performance across vari-
ous domains. Examples include WebGPT (Nakano
et al., 2021a) and ReAct (Yao et al., 2022), which
improve text generation through search APIs, and
PaLM-SAYCAN (Brohan et al., 2023) and PaLM-
E (Driess et al., 2023), which use robotics APIs for
real-world tasks. Pal (Gao et al., 2022) addresses
mathematical problems using code from text in-
puts. ToolFormer (Schick et al., 2023b) integrates
multiple APIs for NLP challenges. ART (Paran-
jape et al., 2023a) enhances model performance
with a comprehensive toolkit for complex reason-
ing. Further enriching this landscape, (Patil et al.,
2023) unveils APIBench, a massive dataset featur-
ing HuggingFace, TorchHub, and TensorHub APIs.
(Qin et al., 2023) collect 16,464 real-world REST-
ful APIs spanning 49 categories from RapidAPI
Hub. Examples like AutoGPT ! and hugginggpt
(Shen et al., 2023) are at the forefront, crafting
agents predicated on LLMs and thereby captivating
a broad public audience and sparking vibrant dis-
cussions. Experiments with LLM-based agents are
also making waves in social and gaming spheres
(Wang et al., 2023; Park et al., 2023). While the
highlighted techniques prioritize optimizing tool
utilization for problem-solving across sectors, our
focus uniquely hones in on addressing the nuances
of tool selection.

2.2 Information Retrieval

Information Retrieval (IR) is now an indispens-
able tool in numerous applications, transitioning
from traditional methods to more advanced sys-
tems. Conventional models, such as TF-IDF(Salton
and Buckley, 1988), depend primarily on term
matches between documents and queries. An ad-
vancement, BM25 (Robertson et al., 1995), gen-
erally yields better results than TF-IDF. However,
these models grapple with issues like polysemy and
synonymy. Recognizing these challenges, there’s
been a shift towards embeddings—dense vector
representations that encapsulate word semantics.
Le and Mikolov (2014) introduced unsupervised
vector representations for whole texts, and works
like Karpukhin et al. (2020) and Hofstétter et al.
(2021) have effectively leveraged dense representa-
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tions for improved search and retrieval tasks. Ope-
nAl’s text-embedding-ada-002 model offers versa-
tile embeddings suitable for a spectrum of tasks.

Furthermore, there has been a surge in attempts
to harness the prowess of large language models
to boost search performance, which mainly focus-
ing on single modules such as generating pseudo-
queries or ranking algorithms, for example, InPars
(Bonifacio et al., 2022; Dai et al., 2022) gener-
ates pseudo-queries using large language models.
Sun et al. (2023) demonstrate that guided Chat-
GPT and GPT-4 exhibit competitive performance
of generative ranking algorithms, even outperform-
ing supervised methods. Different from them, our
approach emphasizes integrating the capabilities
of large language models and retriever through in-
context learning. It neither requires additional train-
ing nor is specific to a particular retrieval method,
making it universally compatible for tool selection.

2.3 Self-Feedback for LLM

Recent research indicates that the LLM itself can
be employed as a feedback provider (Madaan et al.,
2023; Shinn et al., 2023; Gero et al., 2023). A direct
approach is to evaluate the quality of its generated
outputs through prompting and then harness this
feedback to enhance the results. This process can
be iterative, with the model persistently refining its
output until it achieves a specified standard. For ex-
ample, Self-Refine, as introduced by Madaan et al.
(2023), offers an elegant self-correction framework.
It harnesses a robust pre-trained LLM to generate
outputs, provide feedback, and subsequently re-
fine those outputs based on the received feedback.
Meanwhile, Reflexion (Shinn et al., 2023) has aug-
mented this framework by integrating the long-term
memory feature. This enhancement allows the sys-
tem to retain previous feedback and outputs, ef-
fectively circumventing the recurrence of past er-
rors. In contrast to the self-feedback approaches,
where the LLM iteratively refines its outputs post-
generation, our method presents a novel way of
leveraging large language models to enhance their
problem-solving capabilities: self-assisted tool se-
lection. Before addressing the problem, our ap-
proach prioritizes selecting the appropriate tool.
On one hand, proactive decision-making proves
more efficient than post-hoc correction. On the
other, our Self-Assist method can be synergistically
integrated with the self-feedback approach.

3 Method

Let’s first agree on the abbreviations for the terms:

* T: The total tool set T' = {t1,t2,...,tn},

* M: The instruction about tool usage,
* gq: The user-provided Query,

e R: The Retriever,

e LLM: The Large language model,

* D: The tool description generated by the
LLM,

* P,: The prompt used for query analysis and
generation,

e Py: The prompt used for analysis of candidate
tools,

¢ Pj: The prompt used for ascertainment,
* t*: The tool that best matches the query g,
* T}.: Top-k set of candidate tools,

e Fi: The functionalities generated by the
LLM,

When faced with a multitude of tools, the con-
textual capabilities of language models can become
constrained, thereby limiting their direct in-context
learning. To address this, we have distinctly seg-
mented the process into two phases: tool selection
and tool usage. For large language models, tool
selection is defined as follows: Given a query ¢ and
a collection of tools 7', the method should identify
and return the single most pertinent tool ¢*. It’s cru-
cial to emphasize the selection of the most relevant
tool over a top-k list. If the model were to return a
top-k list, it would inevitably need to make an addi-
tional selection during the tool usage phase, which
contradicts our goal of clear separation. To address
this challenge, the current mainstream methodol-
ogy utilizes an external retriever R, such as BM25.

"= R(q,T) )]

They uses the user’s query to retrieve the tool
documentations corresponding to each tool and
identify the most suitable tool, which is then
fed into the large language model for in-context-
learning. The accuracy of this retrieval process
significantly dictates the ultimate success rate. For
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Figure 2: Systematic Workflow for Tool Selection via Large Language Model Itself. Unlike previous approaches
that directly retrieve tools for a given query through a retriver, our method fully leverages the inherent knowledge
and reasoning capabilities of large language models to achieve deliberate tool selection.

tasks necessitating specific tools, a failure to re-
trieve the correct API means even the most potent
LLM cannot produce the correct outcome. Hence,
enhancing retrieval accuracy is of paramount im-
portance.

We have proposed a novel approach, self-
assisted tool selection, which constructs an lan-
guage agent for tool retrieval scenarios, built upon
the integration of large language models and re-
trievers. This strategy aids the language model in
achieving an autonomous tool selection process.
Given a specified query, traditional paradigms of-
ten depict the language model as a passive entity,
merely awaiting the feedback from the retriever to
provide the pertinent tool. Contrary to this conven-
tional approach, our framework postulates a more
proactive role for the language model. Instead of
being a mere recipient of the retriever’s suggestions,
the language model engages in an analytical con-
templation, discerning the type of generalized tool
that might best address the query at hand. Subse-
quent to this cognitive process, the model actively
engages the retrieval mechanism to curate a list of
suitable candidate tools. A meticulous examination
of these candidates is then undertaken. Drawing
upon the insights gleaned from the initial query
and the subsequent analytical deliberation, the lan-
guage model discerns and selects the most fitting
tool from the curated set, exemplifying a synergy
of active thought and dynamic retrieval in problem-
solving.

Moving forward, we shall delve into a compre-
hensive, systematic, and formalized exposition of
the methodology.

1. Query Analysis: The inception of the proce-
dure commences with a a meticulous examination
of the user’s query g, facilitated by the utilization of
prompt F,. At this juncture, it is imperative for the
expansive language model to comprehend the intri-
cacies of the query and prognosticate the archetype
of tool that may be requisite for the specific inquiry.

2. Tool Description Generation : Post query
analysis, the emphasis shifts towards formulating a
general description of the requisite tools tailored to
the specific query, symbolized as D. The equation
encompassing both the aforementioned stages is
articulated as:

D = LLM(P,,q) @)

3. Tool Retrieval Process: Armed with the metic-
ulously generated tool description, the subsequent
step entails invoking the retriever, denoted as 2, to
systematically scour for potential tools that align
with both the query and the tool description. The
retriever R proficiently returns a subset comprising
the top-k most pertinent candidate tools, symboli-
cally represented as T}. The formalized representa-
tion encapsulating this phase can be mathematically
articulated as:



4.Analysis of Candidate Tools: Leveraging the
individual documentation associated with each tool,
the Large Language Model conducts a compre-
hensive examination of each retrieved candidate.
The original API documentations might encompass
specialized terminologies, detailed code snippets,
among other intricacies. The primary objective of
this phase is to enable the LLM to generate a suc-
cinct description of the core functionalities F}, for
each candidate tool, facilitated by the utilization of
prompt Py :

Fy = LLM (Py, Ty) )

5.Determining of the Optimal Tool: Following
the analysis F} of the top-k candidate tools, the
task gravitates towards the judicious selection of a
singular, most fitting tool £*. This decision-making
process necessitates a comprehensive evaluation,
factoring in both the original query, the derived
tool description and the analysis of candidate tools.
The process of tool selection, which facilitated by
the utilization of prompt Py, can be academically
formalized as:

t* = LLM(Py,q, D, Fy) 5)

Thus far, we have developed an langauge agent
based on a large language model (LLM) that can
autonomously retrieve tools. This method presents
three significant advantages:

1. Leveraging the Profound Capacities of the
LLM: Throughout the multifaceted stages of this
paradigm, the LLM is actively engaged in discern-
ing the nuances of both the query and candidate
tools and invoking the retrieval tool. The knowl-
edge and reasoning ability that the LLM has ac-
quired during its pre-training phase are fully uti-
lized.

2. Universal Retrieval Tool Compatibility: A
meticulous examination of our methodology elu-
cidates its agnostic stance towards the nature of
the retriever. It manifests a harmonious interplay
with retrieval mechanisms, be they anchored on
traditional keyword-based methodologies or con-
temporary embedding techniques.

3. Plug-and-Play : Our method aligns seam-
lessly with the input and output of current main-
stream approaches, allowing for plug-and-play in-
tegration within the entire pipeline. The responsi-
bility for tool selection and operation can be dis-
tributed among various Large Language Models,
enabling each to harness its distinct capabilities. If

Source Domains Filtered Models/APIs
HuggingFace 37 925
TensorFlow Hub v2 57 696
Torch Hub 6 95

Table 1: Dataset details for APIBench.

the LLMs designated for tool selection and tool
operation are the same, we clearly can construct
a more autonomous agent by appending a tool-
usage step after stage 5. In this configuration, the
Large Language Model, by mastering the use of a
retriever tailored for tool retrieval, can markedly
boost its success rate in resolving queries.

4 Experiment

4.1 Dataset

APIBench (Patil et al., 2023) is a comprehen-
sive benchmark built from APIs documented in
HuggingFace, TorchHub, and TensorHub model
cards. The benchmark collection process involved
meticulously gathering and filtering online model
cards to create a robust dataset of 1,645 API
calls. Each API calls has a json object with the
following fields: domain, framework, functional-
ity, api_name, api_call, api_arguments, environ-
ment_requirements, example_code, performance,
and description.. APIBench also contains a dataset,
which is enriched with synthetic instruction data
generated by the GPT-4 model, creating 10 unique
instruction-API pairs per API call.

4.2 Prompts

To ensure reproducibility, we present the prompts
utilized by the agent during the experiment.

* The prompt used for query analysis and gen-
eration F;: "Kindly analyze the user’s request
in detail and provide a precise description of
the technology they require."

* The prompt used for analysis of candidate
tools Py: "Briefly describe the core function-
ality based on the tool documentation."

* The prompt used for Determining of the op-
timal tool P;: "ldentify the technology that
best fulfills the user’s requirement from the
given options."



4.3 Baseline

Based on (Patil et al., 2023), we explore three
distinct retrieval methods as baselines: BM25,
text-embedding-ada-002> and Sentence-BERT
(Reimers and Gurevych, 2019), which is trained
on the training set of APIBench. For more details,
please refer to the appendix.

4.4 Evaluation Method

Considering the limited context of language mod-
els and the extensive nature of API documenta-
tion.Both the baseline method and our approach,
are designed to return the most pertinent API, with
accuracy gauged against the provided labels. In our
approach, every API undergoes a comprehensive
core functionality analysis as depicted in Equation
5. This analysis is typically much more concise
than the full API documentation. Hence, we can
consider the top-k candidate tools before making a
final decision. By default, we set k to 5. In subse-
quent phases, we’ll delve deeper with experiment
ablation and detailed analysis. For instance, we’ll
compare the final success rate about a baseline
method, which returns the top-k for direct input
into the primary model, measures up against an
agent-based approach that pinpoints the top-1 op-
tion.

For the final success rate evaluation, we feed
both the query and the relevant API document into
a large language model, with the default being GPT-
3.5. The objective is to ascertain the correctness of
the method invoked by the language model. Given
the plethora of models and challenges in direct de-
ployment, we follow (Patil et al., 2023) and evalu-
ate our model’s output by examining its functional
equivalence. The solution employs the Abstract
Syntax Tree (AST) tree-matching technique. Since
our study zeroes in on a singular API call, the pro-
cedure becomes relatively straightforward. By ex-
amining if the AST of the proposed API call exists
as a sub-tree within the benchmark API call, we can
effectively pinpoint the exact API being employed
from our dataset.

All the experimental results in this paper are
the statistical average of different runs. Unless
otherwise specified, we default to GPT-3.5 as the
agent’s LLM Kernel.

Zhttps://openai.com/blog/mew-and-improved-embedding-
model

4.5 Result

The Table 2 provides a comprehensive view of the
retrieval accuracy rates of various methods across
three different datasets: TorchHub, HuggingFace,
and TensorFlow Hub. We can derive the following
insights:

1. Challenges in Retrieval from Diverse APIs:
Selecting the most relevant results from the set
of APIs using a specific query is inherently dif-
ficult. This can be confirmed by looking at the
performance scores of the two baseline meth-
ods across the datasets. For instance, BM25
achieved a success rate of 16.13% on Torch-
Hub, 18.03% on HuggingFace, and 42.92%
on TensorFlow Hub. Both methods, as shown
in the table, found it challenging to consis-
tently retrieve relevant results. This empha-
sizes the complexities of developing an effec-
tive retrieval system for a wide range of API
functionalities.

2. Diverse Challenges Across Datasets: The na-
ture and quality of API documentation can
differ markedly across datasets. While some
datasets offer clearly discernible documenta-
tion, others present more nuanced distinctions.
The contrasting success rates, particularly the
disparity where BM25 fetches 42.92% on Ten-
sorFlow Hub but only 16.13% on TorchHub,
underscore the unique challenges each dataset
introduces, emphasizing the nuanced task of
retrieval.

3. Superiority of Agent-Aided Methods: All
three methods showed enhanced performance
when coupled with the Agent. This points
towards the efficacy of the Agent in improv-
ing the accuracy of the retrieval process. The
‘Agent with BM25’ and ‘Agent with Ada Em-
bedding’ methods seem to outperform their
standalone counterparts by a significant mar-
gin, underscoring the importance of integrat-
ing agent-based methodologies in the retrieval
process. Even for advanced retrieval models
such as Sentence-BERT, our agent method has
also resulted in a substantial enhancement in
performance.

4. Agent Benefits Increase with Baseline’s Poor
Performance: When the base retrieval method
falters, the agent’s contribution is more pro-
nounced, improving the overall retrieval rate.



Method TorchHub HuggingFace TensorFlow Hub
Retrieval Accuracy Final Success Retrieval Accuracy Final Success Retrieval Accuracy — Final Success

BM25 16.13 13.57 18.03 16.47 42.92 37.10
Agent with BM25 39.65 35.78 42.19 39.28 65.04 58.71
Ada Embedding 38.71 33.92 52.16 48.33 70.01 64.60
Agent with Ada Embedding 57.38 51.20 69.54 62.11 75.53 69.91
Sentence-BERT 76.44 70.35 84.15 77.49 88.01 82.62
Agent with Sentence-BERT 85.39 78.17 91.23 83.12 95.28 90.07

Table 2: Comparison of retrieval accuracy rate and final success rate for different methods across three datasets.

This can be largely attributed to the agent’s
design, which maximally leverages the knowl-
edge and reasoning capabilities of the large
language model.

5. Retrieval Accuracy Directly Influences Final
Success: A higher retrieval accuracy rate nat-
urally bolsters the final success rate. If a re-
trieval system missteps, it restricts the sub-
sequent process’s efficacy. Conversely, with
apt tools, the success likelihood surges. How-
ever, the model’s inherent limitations, like pro-
ducing incorrect or hallucinated information,
can still slightly affect its success rate. This
highlights the importance of accurate retrieval
systems in the whole process

In summary, the result serves as a testament to the
evolving challenges in the realm of API retrieval.
While baseline methods may falter in consistently
delivering accurate results, the integration of spe-
cialized agents, as seen in the case of BM25 and
Ada Embedding, offers a promising avenue for en-
hancing retrieval accuracy rates.

LLM Kernel HuggingFace
Alpaca 26.12
Vicuna 30.78
Llama2Chat 34.10
GPT-3.5 42.19
GPT-4 48.52

Table 3: Comparison of BM-25 retrieval accuracy rate
across different LLM kernels.

4.6 Different LLM Kkernels

The table 3 showcases the retrieval accuracy rates
of agents built upon various Language Learning
Model (LLM) kernels when tested on the Hugging-
Face dataset. As the capacity of the underlying
LLM kernel increase, there is a corresponding im-
provement in the success rate of agent-driven infor-
mation retrieval.

Experiment HuggingFace
Agent with BM25 42.19
w/o Tool Description Generation 36.22
w/o Analysis of Candidate Tool 39.41
w/o Determining of the Optimal Tool 26.07

Table 4: Ablation study showing the impact of the three
core functionalities of the agent.

4.7 Ablation Study

In the ablation study presented in Table 4,we em-
ploy GPT-3.5 as the LLM Kernel. By removing
each functionality one at a time, we measure its
relative contribution to the agent’s overall effective-
ness. The data from the table clearly shows that
every functionality is pivotal to the agent’s success.
Notably, when "Determining of the Optimal Tool"
is omitted, the performance drops substantially to
26.07%. This highlights the pivotal importance of
the language model’s decision-making prowess in
attaining the best results. Another contributing fac-
tor to this decline is that without "Determining the
Optimal Tool", the system automatically selects the
first tool from the prior step’s candidate list as the
correct choice. This action indirectly weakens the
significance of the "Analysis of Candidate Tool"
feature.

4.8 Top-k Performance

Table 5 demonstrates the performance of the re-
trieval accuracy rate and the final success rate of
both BM25 and Agent with BM25 methods on the
HuggingFace dataset under different top-k values.
From the data, we can draw the following conclu-
sions:

* Growth in k-values and Accuracy: As the
value of k increases, the accuracy rate of our
method continues to rise. This is evident when
comparing the retrieval accuracy across dif-
ferent top-k values. For instance, the retrieval
accuracy for the BM25 method increases from
18.03% (Top-1) to 51.99% (Top-10). Simi-
larly, the Agent with BM25 method exhibits



Method Top-1 Top-5 Top-10

Retrieval Accuracy Final Success Retrieval Accuracy Final Success Retrieval Accuracy Final Success
BM25 18.03 16.47 37.94 30.92 51.99 40.26
Agent with BM25 26.07 23.11 42.19 39.28 54.37 49.70

Table 5: Comparison of retrieval accuracy rate and final success rate for different top-k.

a rise in accuracy from 26.07% (Top-1) to
54.37% (Top-10).

* Comparison with Direct Top-k: Although
directly feeding the top-k outputs from the
BM25 method into a large language model
for usage and then calculating the final suc-
cess rate does not align with our tool selection
definition given in method 3 (since the large
model would have to make an implicit choice
during the execution phase), it serves as a valu-
able comparison. The results clearly demon-
strate that our method outperforms the direct
BM?25 top-k, which mainly benefit from three
functionalities explored by ablation study.

* This disparity between retrieval accuracy and
final success rate is more pronounced in the
top-k method compared to ours. This suggests
that selecting the most optimal tool and then
providing it to the large language model can
help alleviate its burden. Furthermore, this
highlights the appropriateness and validity of
our definition of tool selection as the most
pertinent.

4.9 Chain-of-Tool

Method HuggingFace
Agent with BM25 39.28
Agent with BM25 + context 41.21
Agent with Ada Embedding 62.11
Agent with Ada Embedding + context 63.92

Table 6: The impact of context about tool selection on
final success rate.

Much like a chain-of-thought, the way we select
and use tools can be viewed as a logical progression.
This observation prompts a deeper inquiry: Could
the contextual information present during the tool
selection enhance the success rate of its subsequent
use? After the agent selects the appropriate tool,
the LLM kernel maintains the previous context.
We directly passes the query and the tool back to
this language model. Table 6 indicates that this
method has improved the final success rate on the
Huggingface dataset.

5 Conclusion

In this paper, we present the self-assisted tool se-
lection method and have developed an language
agent based on the the integration of large language
model and retrievers. For any given query, the
agent systematically analyzes the query, creates a
tailored tool description, employs a retriever to find
the relevant tool, examines the functionalities of
the top-k tools from their original documentation,
and finally, pinpoints the most suitable tool based
on various analyses. On publicly available datasets,
our method significantly enhances the accuracy of
tool retrieval, leading to an improved success rate
in problem-solving. Since APIBench consists of
queries that can be resolved with just a single tool,
in the future, we plan to extend our approach to
queries that require the combined use of multiple
tools. Some potential strategies include decom-
posing complex task queries into multiple single
queries using large language models, and then ap-
plying our current method for tool selection.

6 Limitations

The primary limitation of our method lies in the se-
quential nature of the Self-Assist approach, which
is susceptible to cumulative errors. For instance,
inaccuracies in the initial Query Analysis could
propagate through to later retrieval stages. Empiri-
cally, we have found that with advanced language
models, such hallucination errors are minimal and
often inconsequential. However, for less sophisti-
cated open-source LLLMs, they have an observable
impact in certain scenarios. Overall, our method
still yields positive gains in practice. Another po-
tential concern is the additional token usage. In
the appendix, we compare the average token usage,
and despite incorporating more steps, there isn’t a
significant increase in the number of tokens used.
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Parameter Settings

Specifically, the Self-Assist framework does not in-
troduce any additional hyperparameters. Similarly,
BM25 inherently does not have extra parameters.
For the text-embedding-ada-002, we set the maxi-
mum input length to 2048. The parameters in our
paper primarily relate to the Large Language Mod-
els (LLMs), which are set as follows: frequency
penalty at 0, logit bias not applicable (null), a max-
imum of 4096 tokens, a single response generation
(n=1), presence penalty at 0, no specific stop se-
quence (null), streaming disabled (false), tempera-
ture at 1, and top_p also at 1.

Baseline

Based on (Patil et al., 2023), we explore three dis-
tinct retrieval methods as baselines:

BM25 BM25 is a popular ranking function used
in information retrieval systems, particularly in
search engines. The BM25 function then evalu-
ates the relevance of a document relative to a query
based on the frequency of the query terms in the
document, taking into account factors such as the
length of the document and the average document
length in the collection. For BM25, we consider
each API as a separate document. During retrieval,
we use the user’s query to search the index and
fetch the relevant APIs.

Embedding-based We use the text-embedding-
ada-0023for embedding-based retriever. First, we
extract the embedding representations for both the
query and the API documents. We then assess
their relationship using cosine similarity. All API
documents are ranked according to this similarity
measure with the query. Depending on the need, we
either return the single document with the utmost
score or the top N highest-scoring documents.

Sentence-BERT We incorporated Sentence-
BERT (Reimers and Gurevych, 2019) to train a
dense retriever on the training set of APIBench.
This API retriever generates embeddings for both
the instruction and the API document and assesses
their relevance through embedding similarity.

Additional Token Usage

Table 7 in our paper shows the average tokens used
for retrieving the top-5 tools and executing. De-

3https://openai.com/blog/new-and-improved-embedding-
model
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Method  HuggingFace TensorFlow Hub TorchHub

Baseline 2039.4 1795.2 2663.5
Ours 2186.3 1976.4 2805.8

Table 7: Comparison of average token usage.

spite our method’s complexity, token use remains
low, primarily for API documentation. We encour-
aged concise commands like "Briefly describe" to
conserve tokens, detailed in our Prompts Section.
Plus, the cost of token usage is decreasing due to
improved inference and technology.
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