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Abstract

Modern CNN-based object detectors assign anchors for ground-truth objects under the restriction of object-anchor
Intersection-over-Unit (IoU). In paper FreeAnchor [1], it proposed a learning-to-match approach and breaks the IoU
restriction, which allows objects to match anchors in a flexible manner. For a better understanding of Freeanchor,
we conducted different experiments based on the code published by FreeAnchor. First, we reproduced the baseline
result and found this network is robust according to consistent results. Second, we did two ablation experiments by
changing two components in this network, which are saturated linear function and mean-max function respectively.
Basically, FreeAnchor updates hand-crafted anchor assignment to “free” anchor matching by formulating detector
training as a maximum likelihood estimation (MLE) procedure. It targets learning features which best explain a
class of objects in terms of both classification and localization [1]. FreeAnchor proposed a detection customized
likelihood including precision and recall and improved them with a likelihood optimization process. In this paper,
we conducted different experiments based on this FreeAnchor method to demonstrate its reproducibility. Overall,
we reached the baseline published in the paper, and performed ablation experiments and hyperparameters tuning
which showed the network’s robustness.

I. INTRODUCTION

In recent years, the convolution neural network (CNN) has dominated fields such as computer vision [2]–[8]. Many
works [5]–[8] use feature pyramid network and anchor boxes in multiple scales and aspect ratios to represent objects
in various spatial layouts, appearance and aspect ratios. Therefore, one typical approach of object localization and
classification is by assigning each object to a single or multiple anchors, bounding box regression and classification
are then carried out based on those anchors.

For clarifying roles of anchor, Intersection over Unit (IoU) needs to be introduced. Anchor-based detectors
leverage spatial alignment, i.e., IoU between objects and anchors, as the criterion for anchor assignment [1]. Each
assigned anchor independently supervises network learning for object prediction, based upon the intuition that the
anchors aligned with object bounding box are most appropriate for object classification and localization. However,
FreeAnchor doubts such intuition and thus states that the hand-crafted IoU is not the best choice [1]. Furthermore,
for objects with acentric features, e.g., slender object, the most representative features are not close to object centers.
A spatially aligned anchor might correspond to fewer representative features, which deteriorate classification and
localization capabilities. On the other hand, it is infeasible to match proper anchors/features for objects using IoU
when multiple objects come together [1]. FreeAnchor is an approach to solve this problem, and this report shows
its robustness and reproducibility.

The rest of this report is organized as follows: FreeAnchor’s working mechanism will be explained in Sections II.
In Section III, we would reproduce the results in FreeAnchor and the outcome of ablation experiments is shown.
Section IV discusses the results and potential further improvements of the FreeAnchor, and the contribution is
drawn in Section ??.

II. RELATED WORK

A. CNN-based Detector

In a traditional anchor-based training process, hand-crafted criterion based on IoU is used to assign anchors for
objects, and a matrix C ∈ {0, 1} is defined to indicate whether object bi matches aj or not. Specially, when multiple
objects’ IoU are greater than this threshold, the object of the largest IoU will successfully match this anchor, which
guarantees that each anchor is matched by a single object at most, i.e.,

∑
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bi∈B
CijLclsij (θ) + β

∑
aj∈A+

∑
bi∈B
CijLlocij (θ) +

∑
aj∈A−
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where θ denotes the network parameters to be learned, Pclsij (θ) and Pbgij (θ) denote classification confidence and
P locij (θ) denotes localization confidence (all parameters reference [1]). Lclsij (θ) = BCE(aclsj , bclsi , θ), Llocij (θ) =

SmoothL1(alocj , bloci , θ) and Lbgj (θ) = BCE(aclsj ,
−→
0 , θ) respectively denote the Binary Cross Entropy loss (BCE)

for classification and the SmoothL1 loss defined for localization. β is a regularization factor and “bg” indicates
“background”.

From the MLE perspective, the training loss L(θ) is converted into a likelihood probability, as follows:
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∏
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B. FreeAnchor Theory

FreeAnchor has three main objectives. First, to achieve a high recall rate, the detector is required to guarantee
that for each object, at least one anchor’s prediction is close to the ground-truth [1]. This is achieved by maximizing
the detection customized likelihood, as defined in Eq.3:

P ′(θ) = Precall(θ)Pprecision(θ)

=
∏
i

max
aj∈Ai

(Pclsij (θ)P locij (θ))×
∏
i

(1− P{aj ∈ A−}(1− Pbgi (θ))), (3)

Second, in order to achieve high detection precision, the detector needs to classify anchors with poor localization
(large bounding box regression error) into background [1]. This specifically is implemented by optimizing the
flowing function, Eq.4:

Pprecision(θ) =
∏
i

(1− P{aj ∈ A−}(1− Pbgj (θ))) (4)

Third, the predictions of anchors should be compatible with the non-maximum suppression (NMS) procedure, i.e.,
the higher the classification score is, the more accurate the localization is [1]. This point is realized by introducing
Saturated Linear Function as following Eq. 5:

SaturatedLinear(x, t1, t2) =


0, x ≤ t1
x−t1
t2−t1 , t1 < x < t2

1, x ≥ t2
(5)

To fulfill these objectives, FreeAnchor formulates object-anchor matching as a maximum likelihood estimation
(MLE) procedure [9] which selects the most representative anchor from a “bag” of anchors for each object. This
introduces learning-to-match approach, as shown in Fig. 1. For jointly optimizing object classification, object
localization, the detection customized likelihood is converted to a detection customized loss function, as follows:

L′(θ) = −logP ′(θ)

= −
∑
i

log(mean−maxaj∈Ai
(Pclsij (θ)P locij (θ)))−

∑
j

(1− P{aj ∈ A−}(1− Pbgj (θ))), (6)

where the mean-max function is used to select the best anchor for each object. During training, a single anchor is
selected from a bag of anchors Ai, which is then used to update the network parameter θ [1].

III. EXPERIMENTS

In this section, we present the results of our ablation experiments and hyperparameter testing. We use the same
dataset as the original paper (i.e. COCO 2017 [10]), which contains around 118k images for training, 5k for
validation and around 20k for testing. All result are reported on validation dataset except the baseline comparison,
which is based on testing dataset. For simplicity, We only choose ResNet [11] as our backbone and all setting are
same with FreeAnchor [1] except specifically noted. We use 8 Tesla V100 GPUs and training with synchronized
SGD of 16 images per batch.
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Fig. 1: Comparison of hand-crafted anchor assignment (top) and FreeAnchor (bottom).

TABLE I: Baseline Result

Backbone FreeAnchor Training Time AP AP50 AP75 APS APM APL

ResNet-50 Published 5.27h 38.7 57.3 41.6 20.2 41.3 50.1
ResNet-50 Reproduced 8.43h 38.8 57.4 41.5 21.4 42.3 51.5

ResNet-101 Published 7.26h 40.9 59.9 43.8 21.7 43.8 53.0
ResNet-101 Reproduced 10.17 40.8 59.8 43.8 21.7 44.0 53.0

A. Baseline Result

Table I and table II gives us the reproduced results of FreeAnchor. Generally, there is no difference between
reproduced results and that of the paper published. Increase of training time is negligible in this content because it
happened in both backbones. In this case, we would say freeanchor is stable and robust.

TABLE II: Reproduced NMS recall (%) on COCO val set.

FreeAnchor Inference Time NR NR50 NR60 NR70 NR80 NR90

Published 7.02m 83.8 99.2 97.5 89.5 74.3 53.1
Reproduced(sigmoid) 11.27m 83.8 99.3 97.5 89.3 74.5 52.9

B. Ablation Experiments

We tested two model components, i.e. Saturate linear function and Mean-max function in this section. From the
original paper, both components are set for solving certain problem, which are compatibility with NMS and wrongly
learning when training insufficiently. For NMS compatibility, we evaluated NMS recall; for wrongly learning, we
made parameter learning curve.

1) Saturated Linear Function: To achieve the third objective in II-B, FreeAnchor introduced Saturated Linear
Function [1], Eq. 5, which has the following three properties: (1) P{aj → bi} is a monotonically increasing function
of the IoU between alocj and bi, IoU locij . (2) When IoU locij is smaller than a threshold t, P{aj → bi} is close to
0. (3) For an object bi, there exists one and only one aj satisfying P{aj → bi} = 1. We replace linearity with
Sigmoid (Eq. 7), which also meets those requirements listed above except it is a continuous function. As shown in
Fig. 2, we set its upper limit to infinitely near 1 and lower limit to infinitely near 0. For simplicity, we define that
when IoU reaches lower threshold, its probability reaches 0.01; and 0.99 in the opposite. The result is shown in
table III and IV. As the results, training time increased while other index mostly remain constant. This is because
anchor bag construction only recognizes the rank of probabilities of anchors. In other words, changing to sigmoid
does not vary the rank. Though some miner increase among AP, which may due to increase of anchor probability,
it costs large inference time. Inference is carried on COCO2017 validation set, and time is calculated based on 4
Tesla V100 GPU. Therefore, saturated linear function is efficient enough for being compatible with NMS.
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Fig. 2: Change Saturated Linear Function to Sigmoid Function

TABLE III: Comparision of Saturated Linear Function and Sigmoid Function

Function Training Time AP AP50 AP75 APS APM APL

Linear 8.43h 38.8 57.4 41.5 21.4 42.3 51.5
Sigmoid 9.09h 38.3 56.7 41.0 20.9 41.3 52.3

Probability(x, t1, t2) =
1

1 + ek(a−x)
where a =

(t1 + t2)

2
, k = log(99)(2/t2 − t1) (7)

TABLE IV: Comparison of NMS recall (%) on COCO val set.

FreeAnchor Inference Time NR NR50 NR60 NR70 NR80 NR90

linear 11.27m 83.8 99.3 97.5 89.3 74.5 52.9
Sigmoid 11.35m 83.8 99.2 97.4 89.6 74.3 52.7

2) Mean-max Function: One key element in learning-to-match is the Mean-max function, Eq. 8. Due to the
confidence of all anchors being small at early training stage, it is meaningless to select the anchor with maximum
confidence to train because selected anchor may not contain useful information of object. Mean-max function can
alleviate this defect by calculating mean instead of max when training is insufficient. In our study, we tested it by
replacing it with max function and found that accuracy dropped significantly, but training time shrank as shown in
table V.

Mean−max(X) =

∑
xj∈X

xj

1−xj∑
xj∈X

1
1−xj

(8)

C. Hyperparameter Tuning

In this section, we present our results of implementing different FreeAnchor detectors with different hyper-
parameter settings. Results are listed in Table VI. In general, Focal loss parameters i.e. alpha and gamma have
relatively large effects, which indicates using validated settings of Focal Loss Eq. 9 [8] is optimal. γ is the focusing
parameter and it facilitates detector to focusing objective. α balances the importance of positive/negative examples
during training. Theses two parameters may depends on dataset type. Besides, the results of changing the background
threshold and anchor bag size show that 0.6 and 80 is the best to fit COCO dataset.

FL(Pt) = −(1− Pt)γ log(Pt) (9)
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TABLE V: Comparison between Mean-max and Max

Function Training Time AP AP50 AP75 APS APM APL

Mean-max 8.43h 38.8 57.4 41.5 21.4 42.3 51.5
Max 7.09h 34.2 53.4 36.1 19.4 37.1 45.3

TABLE VI: Hyperparamenter Tuning Results

Anchor Bag Size Background IoU threshold alpha gamma AP AP50 AP75 APS APm APL
40 0.6 0.5 2.0 38.5 57.1 41.4 20.8 42.1 51.8
50 0.6 0.5 2.0 38.8 57.4 41.5 21.4 42.3 51.5
60 0.6 0.5 2.0 38.2 56.6 40.8 20.1 41.5 52.0

100 0.6 0.5 2.0 38.1 56.4 40.8 20.0 41.7 51.7
50 0.5 0.5 2.0 38.4 57.2 41.1 20.2 41.9 52.1
50 0.7 0.5 2.0 38.5 56.8 41.1 21.2 42.0 52.0
50 0.6 0.25 2.0 37.8 56.0 40.6 19.4 41.5 51.3
50 0.6 0.75 2.0 38.0 56.2 40.2 19.5 41.2 50.9
50 0.6 0.5 1.5 38.2 54.2 40.1 20.1 41.9 48.9
50 0.6 0.5 2.5 38.1 55.2 41.0 20.2 40.2 40.2

IV. DISCUSSION AND CONCLUSION

In this project, we successfully reproduced the baseline result of FreeAnchor paper. We also conducted ablation
experiments to testify the practicality of Saturated Linear function and Mean-max function. Moreover, we explored
the effect brought by changing different hyperparameters in the model. After setting control variables towards those
hyperparameters, (i.e. anchor bag size, Background IoU threshold and Focal Loss parameters), we gained a deeper
understanding of the network’s learning process. Overall, results show that FreeAnchor is robust and reproducible.

Some possible directions for future investigation may lie in more complicated anchor-selection criterion, such as
a combination of hand-crafted and learning-to-match.
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