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Abstract
Instruction-based image editing, which aims to
modify the image faithfully towards instruction
while preserving irrelevant content unchanged,
has made advanced progresses. However, there
still lacks a comprehensive metric for assessing
the editing quality. Existing metrics either re-
quire high costs concerning human evaluation,
which hinders large-scale evaluation, or adapt
from other tasks and lose specified concerns, fail-
ing to comprehensively evaluate the modifica-
tion of instruction and the preservation of irrele-
vant regions, resulting in biased evaluation. To
tackle it, we introduce a new metric Balancing
Preservation Modification (BPM), that tailored
for instruction-based image editing by explicitly
disentangling the image into editing-relevant and
irrelevant regions for specific consideration. We
first identify and locate editing-relevant regions,
followed by a two-tier process to assess editing
quality: Region-Aware Judge evaluates whether
the position and size of the edited region align
with instruction, and Semantic-Aware Judge fur-
ther assesses the instruction content compliance
within editing-relevant regions as well as con-
tent preservation within irrelevant regions, yield-
ing comprehensive and interpretable quality as-
sessment. Moreover, the editing-relevant region
localization in BPM can be integrated into im-
age editing approaches to improve the editing
quality, manifesting its wild application. We
verify the effectiveness of BPM metric on com-
prehensive instruction-editing data, and the re-
sults show that we yield the highest alignment
with human evaluation compared to existing met-
rics, indicating efficacy. The code is available at
https://joyli-x.github.io/BPM/.
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(a) Results of evaluation metrics for identical sample.

(b) Visualized Example of Ground Truth Test.

Figure 1: (a) The scores rated by existing metrics LPIPS, CLIP-
Score and DINOScore all witness a contradict trends with human
evaluation, while our proposed BPM aligns with human evaluation.
(b) Previous metrics favor excessively preserved or modified result,
while our BPM favor the well-edited image.

1. Introduction
Instruction-based image editing (Hertz et al., 2022; Kawar
et al., 2022; Brooks et al., 2022; Han et al., 2024; Wang et al.,
2024) has gained increasing attention, which aims to modify
the given image via text instructions, requiring the edited
image faithfully align with the modification requirements
while preserving the unrelated parts of the origin image.
Though a great success, the field still lacks a sufficiently
standardized metric for comprehensively assessing the edit-
ing quality. Ideally, we would expect the most authoritative
evaluations to come from human assessments. However, the
costs and overhead associated with human evaluation are
too high to scale, hindering its practical value in large-scale
evaluations. In response to it, a series of existing works
(Hertz et al., 2023; Basu et al., 2023; Gal et al., 2022; Kim
& Ye, 2021; Brooks et al., 2022; Ruiz et al., 2023; Kocasari
et al., 2022) have proposed automated evaluation metrics.
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One line of metrics evaluate the alignment between edited
image and text instruction, such as CLIPScore (Hessel et al.,
2021). Other metrics, like DINOScore (Liu et al., 2023),
LPIPS (Zhang et al., 2018) and CLIP-I assesses the sim-
ilarity between original images and edited images. But
these metrics often perform contradict human evaluations in
cases, leading their results deemed unreliable. As shown in
Fig. 1(a), two edited images are rated by different existing
metrics, the right image successfully incorporates “human
kayaking” to fulfill instruction requirements, gaining higher
human evaluation score. However, all existing metrics show
an opposite conclusion, highlighting their untrustworthiness.
We emphasize that the flaws in current automatic metrics
arise from the following reasons: (1) These metrics are
not specifically tailored for this task, typically originat-
ing from task evaluation for image generation. They fail
to simultaneously utilize <Origin Image, Edited Image,
Instruction > elements of instruction-based editing task, ig-
noring crucial information: overlooking of instruction fails
to judge the modification quality of target editing element,
while overlooking of origin image results in poor judgment
of the preservation quality of regions should not be mod-
ified. (2) These metrics evaluate the entire image as a
whole, without accounting for the fact that some regions
of the image need to be preserved, while others require
modification. As a result, they fall short of assessing the
different requirements for editing process. To verify it, we
conduct a ground truth test1: for an input image and editing
instruction, apart from the well-edited result (which serves
as ground truth), we introduce two types of images gener-
ated by holistic operations performed on the entire image
for comparison. One is directly adding noise to the original
image, serving as an excessively preserved global edit. The
other is directly generated by a Text-to-Image(Rombach
et al., 2021) model based on the instruction, serving as an
excessively modified global edit. One visualized example is
shown in Fig. 1(b). Existing metrics favor excessively modi-
fied or preserved results that acquired from global editing on
entire image, manifesting their evaluation are biased without
separate consideration for different image regions. Evalu-
ating image as a whole also lead to the inability to assess
whether the changes of edited region properties, such as size
and position, follows the instruction. The above reasons
reveal the urgent need to develop a more comprehensive
metric to evaluate instruction-based image editing.

To this end, we propose Balancing Preservation
Modification (BPM) tailored for instruction-based
image editing. The core idea is to explicitly disentangle
the image region that should be modified or preserved,
separately evaluating the semantical instruction compliance
for the modified region and the content preservation for
the irrelevant region, thus endowing the evaluation process

1The full experiment and detailed analysis is in Sec. 4.

with comprehensiveness and interpretability. However,
given the diversity nature of instructions, accurately
localizing the editing regions is non-trivial: for complex
instruction involving object size change and spatial relation
requirement, the extent of scaling (“make the apple bigger”)
and displacement (“add an apple to the right of banana”)
during the editing process makes editing region highly
flexible, necessitates referring to both original and edited
image to determine it. To enable such accurate localization,
we parse the instruction by a large language model(LLM)
to determine the source and target object during editing,
and utilize detection and segmentation tools to locate the
editing regions (both in original and edited images). Then,
we propose a two-tier evaluation process: Region-Aware
Judge verify whether the size and position of edited
region aligns with instruction, ensuring the overall editing
region is roughly correct; Subsequently, Semantic-Aware
Judge is adopted to conduct more fine-grained evaluation
from semantic perspective: for the localized edited
region, we retain the directional CLIP similarity to assess
whether the modification faithfully complies with the
instruction; for irrelevant regions, we adopt L2-distance to
calculate whether the original content has been successfully
preserved. Such hierarchical evaluation facilitates a
comprehensive and nuanced assessment of all requirements
for editing task. Experimentally, our BPM witnesses
remarkable alignment improvement with human evaluation
on diverse instruction-based editing data, indicating that
BPM can provide more trustworthy evaluation results in
comparison with previous metrics. Furthermore, we find
the modification region localization process within BPM
can be seamlessly integrated into existing image editing
approaches, guiding the editing more focused on target
editing region while reducing unnecessary modifications to
irrelevant regions, yielding more satisfactory results.

The major contributions are summarized as follows. (1)
We delve into the drawback analysis of existing metrics for
instruction-based image editing; (2) We introduce a novel
metric BPM for instruction-based image editing, which eval-
uates editing quality from the region and semantic perspec-
tive with explicit disentangled separate consideration for
editing relevant and irrelevant region, yielding comprehen-
sive and interpretable evaluation score; (3) Through exten-
sive experiments, BPM demonstrates a high correlation with
human evaluation and outperforms previous metrics, indi-
cating its efficacy; (4) We utilize region localization process
within BPM to provide a training-free enhancement for ex-
isting image editing approaches, yielding more accurate
edited results with fewer irrelevant modifications.

2. Related Works
Conventional Image Editing Quality Evaluation Metrics
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Existing metrics evaluate the editing quality from two dif-
ferent perspectives: the first line of metrics, such as LPIPS
(Zhang et al., 2018), DINOScore (Liu et al., 2023) and L2
distance, measures the similarity between the edited and
original image, but they overlook to evaluate the modifi-
cation quality for the given instruction; the other line of
metrics, such as CLIPScore (Gal et al., 2021), evaluates the
success of an edit by assessing the semantic alignment be-
tween the edited image and the instruction. However, such
metrics overlook that instruction-based editing requires both
image content that should be modified and preserved. All
above metrics fail to utilize the “origin image, edited image,
instruction” information for comprehensive evaluation. Be-
sides, we emphasize that simply combining the two lines
of metrics is insufficient: they all serve the entire image
as a whole for evaluation, which is against the fact that
different image regions encompass different requirements,
i.e., preservation or modification. In contrast to their ap-
proach, our BPM not only explicitly separates the image
into relevant and irrelevant regions for editing, allowing for
distinct evaluation, but also incorporates all three elements
of the editing process. This enables the assessment of both
modification and preservation, as well as the accuracy of the
edited regions and content, resulting in a more interpretable
evaluation score.

VLM-based Image Quality Evaluation Metrics

Considering the great reasoning ability and visual under-
standing ability of Vision language models (VLMs), several
prior works adopt VLMs as automatic evaluators for image
quality. (Ku et al., 2024; Lu et al., 2024; Li et al., 2024;
Xu et al., 2024; Hui et al., 2024) proposes to utilize vision
language models to automatically evaluate text-to-image
generation task by assessing image-text alignment. HQ-
Edit (Hui et al., 2024) utilizes GPT-4o (OpenAI, 2024) to
evaluate the image editing from coherence and alignment
perspectives. However, even the state-of-the-art VLMs like
GPT-4o(OpenAI, 2024), are reported to show a decent capa-
bility in such image quality assessment concerning image-
text alignment, and mistakes are often witnessed(OpenAI,
2023) during such evaluation process, hindering the trust-
worthy of VLM-based approaches. Instead of relying on
VLMs for the whole evaluation process, we only adopt them
to parse the instruction to locate the edit-relevant regions,
thus alleviating the above mentioned problem.

3. Method

3.1. Overview

This section presents BPM , a novel evaluation metric that
enables accurate and comprehensive editing quality assess-
ment. The whole process is shown in Alg. 1. Considering
the overlook of simultaneous utilization of origin image

Algorithm 1 BPM Evaluation Process

1: Input: Original Image Iorigin, Edited Image Iedit, text
editing instruction Tedit

2: Functions: large language model LLM to analyze Tedit,
function F(·, ·, ·, ·, ·, ·) calculates the modification and
preservation score for edited image. D(·,·) detects and
segments objects of specific category and return corre-
sponding bounding box and mask. fsize and fposition
verify the attribute alignment in terms of edited object’s
size and position.

3: Output: Region-Aware Evaluation Score Sregion and
Semantic-Aware Score Ssemantic.

4: o1, o2, posst, sizest ← LLM(Tedit) {parse the instruc-
tion to acquire the source and target object o1, o2, and
the size state change sizest(larger, smaller, unchanged)
and location change posst(left, right, up, down, un-
changed) during the editing process. }

5: Morigin, Borigin← D(Iorigin, o1)
6: Medit, Bedit← D(Iedit, o2)
7: Sposition← fposition (Borigin, Bedit, posst, Iedit)
8: Ssize ← fsize (Morigin, Medit, sizest)
9: Smodify, Spreserve ← F(Iorigin, Iedit, Borigin, Bedit,

Morigin, Medit)
10: Sregion← Sposition + Ssize

11: Ssemantic← Smodify + Spreserve

12: BPM ← α * Ssemantic + (1− α) * Sregion

Iorigin, edited image Iedit and instruction Tedit in existing
metrics results in biased evaluation, we incorporate all three
elements for calculation. We first explicitly decompose
both Iorigin and Iedit into editing relevant and irrelevant
regions. It is accomplished by first adopting a Large Lan-
guage Model (Line 4) to parse instruction to acquire the
source and target object o1, o2 involving the editing pro-
cess, then utilizing detection and segmentation tools D(·)
to separately locate the source object o1 and target object o2
in original image Iorigin and edited image Iedit, acquiring
bounding box Borigin/edit and mask Morigin/edit (Line 5-
6) to disentangle the whole image. We also guide the LLM
to output the required edited object size and position chang-
ing state sizest, posst during editing, which are utilized to
conduct following Region-Aware Judge, which aims to ver-
ify the editing process aligns with the instruction in terms
of the size and location changing. We design specific func-
tions fpsosition(·) and fsize(·) acquiring scores for region
size and position alignment (Line 7-8), termed Sposition

and Ssize, which together form Region-aware score Sregion.
To enable more fine-grained Semantic-Aware Judge, we
adopt function F (·) to evaluate the semantical instruction
compliance within editing region (Smodify) as well as con-
tent preservation for irrelevant region (Spreserve) (Line 8),
which together as Semantic-Aware score Ssemantic. Finally,
we obtain the BPM score by adding Ssemantic and Sregion

3



Balancing Preservation and Modification: A Region and Semantic-Aware Metric for Instruction-Based Image Editing

Editing Instruction:
Turn the clock into a 

street sign.

Original Image 
Iorigin

Edited Image
Iedit

Judge the object before 
and after edited.

O1(before): clock 
O2(after): street sign

Object
Identify

Detector &
Segmentor

Borigin Bedit

MeditMorigin

Am
origin Am

edit

Ap
editAp

origin

Spreserve

“clock” 

“street sign”

)

)

(

( _

_

_

Smodify)

(

LLM

Editing 
Irrelevant 
Region

Instruction Compliance

Crop
Modification

Region

Content Preservation

How is the size of 
edited object changed?

Unchanged.

Is the location of 
edited object changed?

Unchanged.

Position State

fsize
Ssize

fposition
Sposition

Size State

Region-Aware 
Judge

) L2

Semantic-Aware 
Judge

Figure 2: Overall Pipeline of BPM . Firstly, LLM is utilized to parse and analyze editing instruction, generates responses to identify the
source and target object, as well as the object size and position changing state requirement during editing. Then we conduct Region-Aware
Judge to verify editing follows the instruction for region size and position, yielding region-aware score Sregion. For Semantic-Aware
Judge, we utilize detection and segmentation tools to locate and segment the edited object, subsequently apart the origin and edited
images into edited regions and irrelevant regions, separately evaluating the semantical instruction compliance in edited regions and content
preservation in irrelevant regions, yielding semantic-aware score Ssemantic.

with different weights (Line 12).

In the following, we separately introduce how we parse the
instruction and localize the modified regions in Sec. 3.2, the
Region-Aware Judge (object position and size alignment ver-
ification) in Sec. 3.3, the Semantic-Aware Judge (semantical
instruction compliance within modified regions and content
preservation for irrelevant regions) in Sec. 3.4. Finally, we
delve into an attempt to utilize the editing region localiza-
tion process within BPM to improve the editing quality of
image editing methods in Sec. 3.5.

3.2. Instruction Parsing and Editing Region
Localization

We employ LLM to parse the editing instruction Tedit based
on three criteria, involving the editing object identification,
object repositioning and size modifications judgement. One
example is shown in Fig. 2. The model is required to first
decide the exact object category involved in the editing pro-
cess, outputting clock as source object o1 and street sign
as target object o2. What’s more, LLM is also guided to
determine whether the editing is required to affect the size
of the corresponding edited object (outputting “larger,” “un-
changed,” or “smaller”, termed sizest) and how the object’s

position undergoes displacement (outputting “left”, “right”,
“up”, “down” or “unchanged”, termed posst). In the exam-
ple, the instruction requires no specific position and size
change, and posst and sizest is “unchanged”. Then for
editing region localization, considering that the diverse edit-
ing instructions necessitates simultaneous consideration of
both the original image Iorigin and edited image Iedit to
accurately determine the modified regions, we employed
detection and segmentation models to identify the position
of o1 and o2 in Iorigin and Iedit, represented as bounding
boxes Borigin/edit and instance masks Morigin/edit, respec-
tively. By incorporating the modified region within original
image Iorigin as well as edited image Iedit, we can accu-
rately acquire the modified region within the editing process.
Specifically, for the case of “add object”, the original object
o1 is set as “None”, and the corresponding mask Morigin

and bounding box Borigin are set identical as Medit/Bedit

in default. Similarly, in the “remove object” case, the edited
object o2 is set to “None,” and Medit/Bedit are initialized
to be identical to Morigin/Borigin.

3.3. Region-Aware Judge

After acquiring the masks Morigin,Medit and bounding
boxes Borigin, Bedit for original object o1 and edited object
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o2, we verify the size and position changing is aligned with
text instruction Tedit, acquiring the region-aware evaluation
score. We provide two rule-based functions, termed size
judgment (fsize in Alg. 1) and position judgment ( fposition
in Alg. 1) respectively, as shown below.

Position Alignment: The pipeline is shown in Fig. 3(a). We
utilize LLM to acquire the position changing state posst re-
quired in instruction, which denotes spatial relation between
edited object and reference object. Specifically, the edited
and reference object is identical for instructions without ex-
plicit reference object, such as “Move the apple to the right.”
With the bounding boxes of edited and reference object, we
employ three criteria to determine whether the editing meet
the requirement: (1)Position Assessment: The center coordi-
nates of bounding boxes are used for direct position assess-
ment; (2)Direction Verification: The difference between the
x- and y-coordinates is required to check the existence of
unwanted edits in unrelated directions; (3)Saliency Check:
A certain spatial distance between the edited object and the
reference object (expressed as bounding box IOU less than
a threshold) is further required to check the editing saliency.
If all three criteria are satisfied, we consider the editing
comply with instruction and score Sposition as 1; otherwise,
we score Sposition as 0. Particularly, for “unchanged” in-
structions, we only evaluate it through Saliency Check by
requiring the bounding box IOU is greater than a threshold.

(a) Position Alignment verification.

(b) Size Alignment verification.

Figure 3: Evaluation functions for region-aware judge.

Size Alignment: The pipeline is shown in Fig. 3(b). The
area of Morigin and Medit represents the original and edited
object size, and we evaluate whether the size change con-
forms to required size change state sizest with following
criteria: (1)Area Examination: Size comparison of Morigin

and Medit is directly adopted to examine the requirements.

(2)Saliency Check: The ratio of the front and rear area needs
to be greater than (for “larger” as sizest) or less than (for
“smaller” as sizest) a certain threshold to check the chang-
ing saliency. According to above criteria, we yield score
Ssize as 1(conformed) or 0(disobey). Instructions with “un-
changed” sizest is evaluated by Saliency Check, restricting
the ratio of areas to be around 1 within a certain range.

Algorithm 2 Semantic-Aware Judge Process

1: Input: Original Image Iorigin, Edited Image Iedit,
mask Morigin Medit, bbox Borigin, Bedit.

2: Functions: CB crops image regions following given
bbox, CLIPI and CLIPT are CLIP image encoder and
text encoder. Norm is min-max normalization.

3: Output: modification score Smodify and preservation
score Spreserve.

4: Am
origin← CB(Iorigin, Borigin)

5: Am
edit← CB(Iedit, Bedit)

6: Ap
origin← CM (Iorigin,Morigin)

7: Ap
edit← CM (Iedit, Medit)

8: Ap
origin← (1−Morigin ∪Medit)⊙ Iorigin

9: Ap
edit← (1−Morigin ∪Medit)⊙ Iedit

10: Smodify ← cos sim{CLIPI(Am
edit)-CLIPI(Am

origin),
CLIPT(o2)-CLIPT(o1)}

11: Spreserve ← 1 -L2(Ap
origin,Ap

edit)
12: Ssemantic← Norm(Spreserve) + Norm(Smodify)

3.4. Semantic-Aware Judge

Furthermore, to conduct more fine-grained evaluation from
a semantic perspective, we leverage the obtained bounding
box and mask information to disentangle the origin and
edited image Iorigin and Iedit for separately evaluating the
quality of semantical instruction compliance and content
preservation. The process is shown in Alg. 2.

Semantical Instruction Compliance: the obtained bound-
ing boxes Borigin, Bedit are utilized to isolate the edited
object’s region, thereby excluding interference from un-
modified areas and enhancing the quality assessment for
modification, yielding cropped edited regions Am

origin for
Iorigin and Am

edit for Iedit (Line 4-5). Then, to measure the
semantic consistency between the editing results and instruc-
tional specifications, following CLIP Directional Similarity
(Kim et al., 2022), we calculate the cosine similarity be-
tween the difference of Am

origin, Am
edit and corresponding

text embedding of o1, o2 in CLIP space as follows:

Smodify = cs
(

CLIPI(A
m
origin)− CLIPI(A

m
edit),

CLIPT(o1)− CLIPT(o2)
) (1)

where cs(a,b) = a·b
∥a∥∥b∥ denotes cosine similarity,

CLIPI(·) and CLIPT(·) is the CLIP image encoder and text
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encoder. The rationale behind such directional similarity
calculation is that by computing the difference in features
before and after editing, we can not only assess whether the
features requiring modification align with the instruction,
but also implicitly verify that other attributes unrelated to the
editing process are successfully retained, thus providing a
more comprehensive reflection of correspondence between
editing and instruction. Higher Ssemantic indicates better
semantic instruction compliance.

Irrelevant Content Preservation: we utilize masks to ex-
clude modified regions to only retain the preserved parts.
Considering the potential object displacement during edit-
ing, we utilize the union of Morigin and Medit to exclude
all areas intended for editing, which is formulated as:

Ap
origin = [1−Morigin ∪Medit]⊙ Iorigin (2)

Ap
edit = [1−Morigin ∪Medit]⊙ Iedit (3)

where ∪ is the union operation between masks, and ⊙
is the element-wise matrix product. Considering the po-
tential object displacement during editing, we utilize the
union of Morigin and Medit to exclude all areas intended
for editing, and subsequently obtain the preserved portion
for original image Ap

origin and edited image Ap
edit. Then,

we measure the L2-distance between Ap
origin and Ap

edit,
subsequently acquiring preservation score Spreserve = 1 -
L2(Ap

origin, A
p
edit). Higher Spreserve denotes better content

preservation.

Ultimately, we acquire the semantic aware score Ssemantic

by normalizing and combining Smodify and Spreserve,
which accurately assess the instrution compliance in edited
region, as well as the content preservation in irrelevant re-
gions.

3.5. Application for Editing Quality Enhancement

Furthermore, considering that the process in Sec. 3.2 enables
accurate editing region localization, we delve into an attempt
to utilize the editing region located as the guidance for im-
age editing model, leading the model to focus attention on
the regions that need editing, thereby reducing modifications
to unrelated areas and achieving results that better align with
the editing instructions. Specifically, we first acquire the
edited image using original editing model, and adopt the re-
gion localization process in BPM to acquire mask of edited
area in both Iorigin and Iedit: Mall = Morigin ∪Medit.
Then in the second-round editing quality enhancement pro-
cess, Mall serves as explicit guidance through classifier-free
guidance (Ho & Salimans, 2022) with following formula-
tion,

ϵθ(zt, t, Iorigin, Tedit) = ϵθ(zt, t,∅,∅)+

sI ∗ (ϵθ(zt, t, Iorigin,∅)− ϵθ(zt, t,∅,∅))+

sT ∗ (ϵθ(zt, t, Iorigin, Tedit)− ϵθ(zt, t, Iorigin,∅))⊙Mall

(4)

where the zt is the denoised latent vector during editing
process, t is the timestep, sI and sT are the guidance scale
for input image Iorigin and instruction Tedit, respectively,⊙
is hadamard product operation. By adopting such class-free
guidance, the instruction guidance is restricted within the
region that is relevant to the editing process, thus reducing
unnecessary modifications in other regions, subsequently
yielding more satisfactory editing results.

4. Experiement
4.1. Implementation Details

We employ a pre-trained CLIP-ViT 14/B(Radford et al.,
2021) model for directional similarity calculation. For
the LLM for instruction parsing, we select gemma-2-9b-
it-SimPO(Meng et al., 2024) in seek of trade-off between
cost and performance. For detector and segmentor, we use
Grounding DINO (Liu et al., 2023) and Grounded SAM
(Ren et al., 2024). For scaling weight α for Ssemantic, we
set it to 0.7 (i.e. BPM = 0.7 ∗ Ssemantic + 0.3 ∗ Sregion.
More results with different LLMs, further details on prompt-
ing the source and target descriptions and the impact of
different α are referred to the appendix.

Evaluation setting. We conduct Human Alignment Test
and Ground Truth Test. Human Alignment Test assess the
correlation between metric evaluation and human judgment.
To implement it, we first conduct user study, asking users
to rate the editing images from 1(worst) to 5(best).2 For
two images I1edit and I2edit edited by two different editing
models with identical input, we examine the consistency
in the ranking of their human scores H1, H2 and metric
scores M1,M2. Human ranking Ph is calculated by com-
paring H1 and H2, where Ph = 1H1>H2 . Similarly, we
calculate the metric ranking as Pm = 1M1>M2

. Finally
we calculate the alignment ratio of Pm and Ph across all
the samples as Alignment Score= 1

N

∑N
k=1 1Pk

m=Pk
h

, where
N is the sample number. Higer Alignment Score indicates
better alignment between human and metric evaluation, and
we report it for each pair editing model for comprehensive
comparison. Ground Truth test assesses whether the met-
rics correctly identify the well-edited image within a triplet
of images categorized as excessively modified, excessively
preserved, ground truth(well edited). The ground truth are
manually filtered and selected as well-edited image, while
the excessively modified images are directly generated by a
text-to-image model (Rombach et al., 2021) according to the
instruction, the excessively preserved images are generated
by adding Gaussian noise to the original image. We report
the proportion of favoring for each metric across these three
types of images, with the total sum equal to 1. A higher
proportion of favoring for ground truth images indicates

2The user study details are provided in Appendix.
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Table 1: Human alignment test on BPM and existing image editing metrics for local edits. We report the alignment of preference
between metric and human evaluation for paired editing images. Bold and underline represent the highest and second-best performance.

MGIE vs FTIP2P ↑ MGIE vs IP2P↑ IP2P vs FTIP2P ↑ DaLLE-2 vs IP2P↑ DALLE-2 vs FTIP2P ↑ DALLE-2 vs MGIE↑ Average ↑
Preservation Metrics
L2 0.651 0.614 0.724 0.762 0.659 0.801 0.702
LPIPS 0.687 0.602 0.665 0.731 0.626 0.791 0.683
CLIP-I 0.578 0.574 0.571 0.705 0.643 0.796 0.644
DINOScore 0.608 0.597 0.606 0.746 0.692 0.796 0.674
Modification Metrics
CLIPScore 0.530 0.477 0.494 0.394 0.429 0.387 0.452
VLM-based Metrics
GPT-4o 0.681 0.676 0.712 0.860 0.780 0.817 0.754
Balanced Metrics
CLIPScore +CLIP-I 0.648 0.667 0.607 0.691 0.573 0.660 0.641
BPM 0.663 0.659 0.818 0.943 0.802 0.911 0.799

Table 2: Human alignment test on BPM and existing image editing metrics for global edits.

PIE vs HQ EDIT ↑ PIE vs FTIP2P ↑ HQ EDIT vs FTIP2P ↑ FTIP2PvsIP2P ↑ IP2P vs HQ EDIT ↑ IP2P vs PIE↑ Average ↑
Preservation Metrics
L2 0.897 0.889 0.333 0.400 0.520 0.925 0.661
LPIPS 1.000 0.917 0.375 0.467 0.480 0.900 0.690
CLIP-I 0.966 0.861 0.417 0.600 0.520 0.850 0.702
DINOScore 0.966 0.833 0.250 0.533 0.520 0.900 0.667
Modification Metrics
CLIPScore 0.897 0.833 0.917 0.667 0.760 0.825 0.817
VLM-based Metrics
GPT-4o 0.759 0.722 0.583 0.733 0.760 0.825 0.730
Balanced Metrics
CLIPScore +CLIP-I 1.000 0.917 0.458 0.750 0.600 1.000 0.787
BPM 0.897 0.889 0.750 0.750 0.840 0.850 0.829

Table 3: The inference speed of metrics.

Metric BPM (Ours) CLIP-T CLIP-I LPIPS DINO L2 GPT-4o
Speed (seconds per image) 1.500 0.225 0.350 0.067 0.050 0.028 11.400

Table 4: Ground Truth test. We report the winning rate out of
three type of images for each editing metric. “EP” represents
“Excessively Preserved”, “EM” represents “Excessively Modified”,
“GT” represents “Ground Truth”. Each row sums to 1, indicating
how many portion of images the metric at that row favors.

Metrics EP EM GT

L2 0.83 0 0.17

LPIPS 1 0 0

CLIP-I 0.87 0 0.13

DINOScore 0.98 0 0.02

CLIPScore 0.04 0.83 0.13

CLIPScore +CLIP-I 0.42 0.14 0.44

GPT-4o 0.08 0.14 0.78

BPM-overall 0.12 0.01 0.87

better evaluation for that metric.

For evaluation setting that compares the correlation between
human scores and metric scores, we explain in the supple-
mentary materials the reasons why this type of experiment
is not recommended in this task, as well as the relevant
experimental results.

Compared Metrics. We compare BPM with three lines

Table 5: Effectiveness verification for component score of
Ssemantic. Spreserve and Smodify separately targets for content
preservation and instruction compliance quality evaluation, we
compare them with corresponding human evaluation.

IP2P vs FTIP2P ↑ DaLLE-2 vs IP2P↑ DALLE-2 vs FTIP2P ↑

preservation L2 0.816 0.893 0.743
Spreserve 0.829 0.893 0.757

modification CLIPScore 0.624 0.484 0.479
Smodify 0.659 0.67 0.606

Table 6: Effectiveness verification for Sposition and Ssize. We
conduct user study to verify the alignment between human and
metric judgment towards editing region size and position change.

MGIE ↑ IP2P ↑ DaLLE-2 ↑ FTIP2P ↑
Ssize 0.89 0.89 0.93 0.92

Sposition 0.71 0.69 0.89 0.75

of existing automatic metrics: (1) Preservation Metrics
focuses on the similarity of original and edited image, in-
cluding DINOscore (Liu et al., 2023), LPIPS (Johnson et al.,
2016), CLIP-I and L2 distance. (2) Modification Metrics
evaluate alignment between edited image and text instruc-
tion, where CLIPScore (Hessel et al., 2021) is the only one.
We also incorporate the trade-off between CLIPScore and
other metrics, like CLIPScore+CLIP-I, for more compre-
hensive comparison. (3) VLM-based Metrics utilize VLM
to automatically evaluate the editing quality, we select most
advanced VLM GPT-4o (OpenAI, 2024) with the evaluation
prompts in HQ-Edit (Hui et al., 2024) for comparison.
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Evaluation Datasets. For local editing, we sample image-
instruction pairs from MagicBrush (Zhang et al., 2024),
which covers six mainstream instruction editing types:
adding objects, replacing objects, changing actions, chang-
ing colors, removing objects and changing patterns. Then
we employ four advanced instruction-based image editing
models IP2P (Brooks et al., 2022), MGIE (Fu et al., 2023),
DALLE-2 (Ramesh et al., 2022), and FTIP2P (Zhang et al.,
2024) to generate edited images. For global editing, we
sample image-instruction pairs from the global edits subset
of PIE-Bench (Ju et al., 2023). In addition to the baseline of
PIE-bench itself, we also used HQ-Edit (Hui et al., 2024),
IP2P (Brooks et al., 2022), and FTIP2P (Zhang et al., 2024)
to generate edited images. Finally, we get 960 entries with
human score annotation.

4.2. Comparison with other evaluation metrics

Human Alignment Test result is shown in Table. 1 (local
edits) and Table. 2 (global edits). For local edits, we can
conclude that: (1) for each editing model pair comparison,
overall score (Ssemantic + Sregion ) of BPM yield the high-
est alignment with human evaluation compared to existing
editing metrics that evaluating editing quality from preser-
vation and modification perspective in most cases(Line 1-5),
indicating BPM can serve as a more trustworthy and authen-
tic metric for image editing evaluation; (2) we also merge
the score of CLIPScore and CLIP-I to serve as a stronger
comparison (Line 7) with both consideration of preservation
and modification, and BPM still outperforms it, indicating
simply summarizing preservation and modification metrics
is insufficient, as they overlook to separate consider the
requirements for region relevant or irrelevant to editing pro-
cess, and BPM resolves it by explicitly disentangling the
image for separate evaluation, yielding more satisfactory
results. (3) BPM outperform the VLM-based evaluation
powered by GPT-4o(OpenAI, 2024) (Line 6), indicating
that directly adopting VLM for automatic evaluation exist
untrustworthiness, and we mitigate such problem to enable
more authentic evaluation. Besides, as shown in Table. 3.
our BPM shows much faster inference speed than GPT-4o,
validating our practicality. For global edits, we can conclude
that: (1) Our BPM still yields the highest human alignment
compared to other metrics, showing its effectiveness and
wild application scope. (2) It is noted that the ClipScore
shows a significant improvement compared to local edits.
This may be because, in global edits, a larger number of
pixels are modified, and the shortcomings of ClipScore in
terms of overlooking original image are less pronounced
compared to local edits.

Ground Truth Test performance is shown in Tab. 4, each
row represents the metric favoring proportion for three types
of images and sum up to 1, higher proportion for GT indi-
cates less biased evaluation results. We can conclude that:

(1) preservation metrics (L2, LPIPS, CLIP-I, DINOScore)
prefer excessively-preserved results, while modification met-
rics (CLIPScore) prefer excessively-modified results, indi-
cating all these metrics exist biased evaluation, leading their
evaluation deemed unreliable. (2) Our BPM -overall favors
the ground truth images, i.e., the well-edited ones with 87%
ratio and surpasses GPT-4o results, which is credit to our
explicit disentanglement of editing relevant and irrelevant
regions for separate consideration, alleviating the biased
towards the preservation or modification.

Figure 4: Visualized example of evaluation metrics comparison.

4.3. Ablation Study

Several ablation studies are conducted to separately verify
the effectiveness of (1) each component score in BPM . (2)
LLM instruction parsing. (3) our directional similarity.

Effectiveness of Component Scores: To verify the editing
quality from each perspective respectively, we further ask
human annotators to separately rate the edited image quality
for preservation, modification, size, and position, and report
the componential evaluation alignment. (1) for preserva-
tion and modification, we compared our scores with L2 and
CLIPScore to validate the necessity of our explicit image re-
gion decomposition, the results are in Tab. 5, Spreserve and
Smodify consistently outperform L2 and CLIPScore, high-
lighting that decomposing the image into editing relevant
or irrelevant regions for separate consideration is crucial
to acquire accurate assessment for modification and preser-
vation, as it removes the interference of regions that owns
opposite requirements; (2) for size and position, we report
the alignment between human and our metric evaluation for
size and position change, as shown in Tab. 6. Our Sposition

and Ssize both yield relatively high alignment with human
evaluation, indicating our design is effective in judging the
position and size changing during editing.

Effectiveness of LLM Instruction Parsing: we validate
it from two aspects, the accuracy of editing region local-
ization as well as the size and position changing judgment
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Table 7: Ablation for our directional Similarity. “CS” denotes
vanilla CLIPScore for the cropped edited object region, “DS” de-
notes our directional similarity. We report the alignment score
between human and metric evaluation.

IP2P vs FTIP2P ↑ DaLLE-2 vs IP2P↑ DALLE-2 vs FTIP2P ↑ DALLE-2 vs MGIE↑
CS 0.635 0.619 0.479 0.536
DS 0.659 0.670 0.606 0.583

alignment with instruction. To verify it, we randomly se-
lect 100 data samples along with their edited region mask
Morigin, Medit and required position and size changing
state Posst, Sizest, then manually judge (1) whether the
Morigin and Medit accurately locate the editing region. (2)
whether the Posst and Sizest express the requirement in
instruction. Finally, we yield 97% accurate editing region
localization and 99% correct position and size changing
requirement expression, validating the trustworthiness of
our LLM instruction parsing, subsequently facilitating the
ultimate editing evaluation.

Figure 5: Visualized example of image editing mask guidance.

Effectiveness of Directional Similarity: we compared
our directional similarity with original CLIPScore, i.e., the
image-text alignment of edited object. From the results in
Table. 7 we can see that our directional similarity yields
higher alignment with human evaluation, validating that
directional similarity indeed implicitly incorporates the ver-
ification of editing-irrelevant attributes maintenance, thus
providing more reliable reflection of editing quality.

4.4. Application as Image Editing Guidance

We adopt three advanced image editing models MGIE(Fu
et al., 2023), FTIP2P(Zhang et al., 2024) and In-
strucPix2Pix(Brooks et al., 2022), and separately implement
our enhancement in Sec. 3.5 for them. The performance is
shown in Tab. 8. For both preservation and modification,
steady alignment improvement are observed across all three
editing models, indicating that by adopting our mask guid-
ance, the model can focus on correct editing region, thus
reducing unnecessary modifications in irrelevant regions to
enhance the preservation performance, as well as harvesting
more high-quality modification within editing regions to

improve the modification performance. We also validate
the quality enhancement through user study, asking users to
select better edited image from original and our enhanced
edited images. Our method achieved 91% of the samples
being rated as better or equally good as the original, refer to
Appendix for details.

Table 8: Results for Editing Quality Enhancement.

Methods Preservation Modification
Origin Ours Origin Ours

IP2P 0.792 0.927 0.318 0.334
FT IP2P 0.907 0.922 0.361 0.364
MGIE 0.876 0.923 0.327 0.341

4.5. Qualitative Results

We present qualitative results to separately verify (1) BPM
can comprehensive evaluating the edited images with trust-
worthy scoring. In Fig. 4, we compare three editing images
for identical input image and instruction. The edited im-
age 3 owns accurate editing within the region of source
object “glass”, as well as good content preservation in other
irrelevant regions. Our BPM favors it in terms of preserva-
tion, modification as well as overall quality, highlighting
the alignment of our evaluation towards human judgment;
(2) the edited region localization process can enhance edit-
ing performance. In Fig. 5, our editing region mask Medit

accurately locate the region should be edited, guiding the
model to focus within it, reducing unnecessary modifica-
tions in other regions, thus harvesting more high-quality
editing results. More qualitative results are in Appendix.

5. Conclusion
In this paper, we propose a novel metric BPM tailored for
instruction-based imaged editing, which explicitly disentan-
gle the image into editing-relevant and irrelevant regions for
separate evaluation according to their requirements. Two-
tier evaluations are conducted from region and semantic
perspectives, yielding comprehensive editing quality assess-
ment. What’s more, the editing region localization in can be
integrated into image-editing models to enhance the edited
image quality, indicating its wild application. Experiments
upon editing data with diverse instructions verify the effec-
tiveness of BPM serving as a trustworthy evaluation metric.

Impact Statement
Image editing quality evaluation has broad impacts: while
facilitating community development, it also raises privacy
and misinformation concerns that require careful attention
to ensure responsible deployment and mitigate risks.
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In the appendix, we first provide more information concerning method details, LLM prompts and user studies in Sec. A.
Then we provide extra quantitative results for (1) impact of different scaling weight in Sec. B.1; (2) results of correlation
between metrics and human evaluation score in Sec. B.2. (3) ablation study about the choice of LLM in Sec. B.3; (4)
validation of LLM parsing result in Sec. B.4 (5) user study of masks generated by different pipeline in Sec. B.5 (6) more
comprehensive component score ablation in Sec. B.6. (7) user study results for masking guidance enhancement in Sec. B.7.
Finally, we provide qualitative results to validate (1)the quality of our editing region mask(in Sec. C.1); (2) the effectiveness
of our BPM evaluation.(in Sec. C.2) (3) the effectiveness of our mask guided enhancement.(in Sec. C.3).

A. Method Details
A.1. LLM instruction parsing Prompts

The prompts for LLM instruction parsing is shown in Figure. 6. Our prompts include three parts, separately targets for
object identify, size state and position state judgement.

A.2. User Study for Human Alignment Test

In this part, we provide details about the user study regarding the degree to which the metrics align with human ratings.

User Study Implementation Details: We invited 3 participants to rate the quality of the provided editing images through a
questionnaire. We randomly select 100 image-instruction pairs from MagicBrush(Zhang et al., 2024), and adopt IP2P(Brooks
et al., 2022),MGIE(Fu et al., 2023), DALLE-2(Ramesh et al., 2022), and FTIP2P(Zhang et al., 2024) to generate edited
images. Participants were instructed to rate images from 5 different perspectives, each score from 1 to 5, representing bad
quality to perfect quality. Evaluation criteria are (1) modification quality, which assesses whether the editing accurately
comply the instruction; (2) preservation quality: which assesses whether regions should not be edited is successfully
preserved; (3) size accuracy, which assesses whether the editing region/object size change follows the instruction; (4)
position accuracy, which assesses whether the editing region/object position change follows the instruction; (5)overall
accuracy, which assesses the overall editing quality by considering above perspectives together. Detailed user study
instruction and standards are shown in Fig. 7. We ultimately yield 960 user responses, which is comprehensive enough to
conduct the human alignment test. We also provide one screen shot for our user study page in Fig. 8.

A.3. User Study for Mask Guided Enhancement Quality

To analyze whether the editing performance have improved after adding mask guidance, we conducted preference tests
with three human evaluators comparing images produced by the original models and those generated by models with mask
guidance. We randomly selected 100 original image-instruction pairs. For each pair, we randomly chose one model from
IP2P (Brooks et al., 2022), MGIE (Fu et al., 2023), and FTIP2P (Zhang et al., 2024) to perform image editing, and compared
it with the version that included mask guidance. The users were asked to choose the better image between the edited image
produced by the original model and the edited image produced by the mask-guided model, or to consider them equivalent.
The results from the three evaluators were then aggregated by majority vote; if all three chose differently, that sample was
discarded. Detailed user study instruction and standards are shown in Fig. 9. We also provide one screen shot for our user
study page in Fig. 10.

A.4. fsize and fposition corner case discussion:

There exists some corner cases for size and position judge process: (1)For the add type instruction, where the source object
in the original image is “None”, fsize directly assigns full score to size state. (2)For the remove type instruction, where the
target object in the edited image is “None”, fposition directly assigns full score to position state.

B. More Experimental Results
B.1. Ablation on Different Balance Factors

We conduct experiments with different weight factor α between Ssemantic and Sregion, i.e., BPM = α ∗ Ssemantic +
(1− α) ∗ Sregion, the results are shown in Table. 9. Among all combinations, α = 0.7 reaches the best human evaluation
alignment, verifying that higher yet moderate semantic scale would yield better evaluation results.
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Figure 6: Prompts for parsing instruction.

Table 9: Ablation on different balance factors between Ssemantic and Sregion. Experiment conducted on a 100-entries subset.

α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Human Alignment Score 0.302 0.423 0.598 0.659 0.738 0.793 0.819 0.822 0.776 0.769 0.761

B.2. Correlation between metrics and human evaluation score

We report metrics and human scores correlation for each single model in Tab. 10. Though our BPM yield highest correlation
in this format as well, such calculation is questionable as output from distinct instruction lacks comparability, and all metrics
show performance not high.

The rationale behind our pair model preference calculation is a) Reduce Subjectivity influence: Scores among users exhibit
variance of 1.06(out of 0-5 range), thus using absolute values for single model correlation calculation may introduce bias.
In contrast, employing relative preferences, by introducing a reference, reduces subjectivity in user study to enhance the
credibility of the results. b) Reduce cross-sample bias: Note our metric evaluates which model performs better for the same
instruction, rather than comparing scores across different instructions, as we believe outputs from distinct instructions lack
absolute comparability, as shown in Figure. 11. By pair-wise comparison on identical instructions, we enable more accurate
model-to-model comparisons explicitly than correlating scores from a single model’s diverse outputs.

B.3. LLM Selection Influence

We alter different LLM to parse the instruction, and the performance comparison is shown in Table. 11. From the result we
can conclude that for the task of parsing instructions, current advanced LLM show similar alignment performance between
metric and human evaluation. Specifically, Gemma-9B can achieve performance on par with GPT-4o.
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Figure 7: The instructions for user study.

Figure 8: Screen-shot of our user study page.
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Figure 9: The instructions for user study of preference test.

Table 10: Correlation between metrics and human evaluation score on each single editing model.

MGIE FT IP2P IP2P DALLE2 GenArtist ACE Average

CLIP-T 0.114 -0.028 -0.146 0.079 0.280 0.075 0.062
CLIP-I 0.207 -0.069 0.201 0.018 0.632 0.260 0.208

DINO-Score 0.315 0.039 0.252 0.115 0.695 0.299 0.285
LPIPS 0.264 -0.034 0.276 0.153 0.735 0.198 0.265

L2 0.210 0.082 0.156 0.256 0.628 0.151 0.247
GPT-4o 0.512 0.464 0.491 0.338 0.425 0.430 0.443

BPM( Ours) 0.474 0.374 0.452 0.488 0.537 0.324 0.444

B.4. Validation of LLM Parsing Result

We randomly sampled 100 examples, used Gemma-9b for parsing, and manually evaluated the accuracy. As shown in
Table. 12, gemma’s parsing accuracy has reached over 97%. Specifically, the failure cases of the parsing of object identify
are “Could it be eggs?” and “It could be just french fries.” The errors occurred because the instructions contained ”it” and
since the LLM did not have information from the original image, it was unable to determine what “it” referred to, leading to
mistakes. For the parsing of positions, the errors were due to the LLM’s difficulty in judging other spatial relationships that
were not included in the types we provided, such as “among.”

B.5. Mask Comparison

To quantitatively confirm the quality of our masks (i.e., edited regions), we randomly sampled 100 entries and asked 3
human evaluators to score the masks generated by different methods on a scale of 1(worse) to 5(best). These methods
include the bounding boxes generated by GPT-4o, the masks produced by DiffEdit(Couairon et al., 2022), and the masks
generated by our pipeline. As shown in Table. 13, our average mask quality score is 4.01, which is significantly higher than
the other two methods. In addition to quantitative experiment, some visual results are presented in Figure. 12.
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Figure 10: Screen-shot of our user study page for preference test. Users were asked to evaluate whether the left edited image is better
than the right one from five dimensions.

B.6. Additional Component Score Verification

Due to limited space, the full component score verification is shown in Table. 14 as complement for Table. 5. Our Spreserve

and Smodify consistently yield better alignment towards preservation and modification compared to L2 and CLIPScore for
each pair of editing model comparison.

B.7. User Study Results for Masking Guidance Editing Enhancement

The detail for this user study can be found in Sec. A.3. As shown in Table. 15, the results of user study indicated that for all
evaluation dimensions, the number of mask-guided models that surpassed original models was significantly higher than
those that performed worse. Notably, mask guidance provided a remarkable improvement in maintaining regions outside the
editing area, with 70% of the samples performing better than the original models.

C. Qualitative results
C.1. Visualization of Mask Quality Comparison

In Fig. 12, we compare our mask with GPT-4o generated bounding box and DiffEdit(Couairon et al., 2022) generated mask,
our mask and bounding box can more accurately locate the editing region, providing more precise separation for evaluation,
thoroughly yielding more trustworthy evaluation score.
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Figure 11: Visualized of human score collection procedure. By offering references for identical input (Generated image 1-4 in each
line), the annotators can judge the editing quality more reasonably. On the contrary, cross-sampled score collection lacks absolute
comparison. For instance, scoring samples for two distinct instructions in column 3 (Generated image 2) is difficult to determine whether
the “tie change case”(in first line) or “television change case”(in second line) is better in editing quality.

C.2. Visualization of BPM evaluation

More qualitative results of BPM evaluation is shown in Fig. 13. For each input image and instruction along with their
different editing results, our BPM can accurately verify the editing images’ quality from different perspectives. For example,
in Fig. 13(a), edited image 4 owns totally clean plate, which accurately follows the instruction “mask the plate empty”, and
the other region remains perfectly unchanged. BPM rate it with highest score among four editing images, validating the
authenticity of BPM serving as evaluation metric.

C.3. Visualization for mask-guided enhancement

Visualization of mask guided enhancement in shown in Figure. 14. Our mask accurately locate the region that should be
edited, and successfully maintain the content of irrelevant regions, yielding more satisfactory editing result.
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Figure 12: Visualization of mask comparison. We compare our editing region mask with two approaches, GPT-4o(OpenAI, 2024) and
DiffEdit(Couairon et al., 2022). For GPT-4o, we prompt it to output the bounding box coordinates of editing region; for DiffEdit, we
visualize the attention map that serves as their mask guidance during editing process.
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Table 11: The influence of the choice of LLM. Experiment conducted on a 100-entries subset.

mgie vs ft ip2p mgie vs ip2p ft ip2p vs ip2p dalle2 vs ip2p dalle2 vs ft ip2p dalle2 vs mgie Average
gemma 0.761 0.700 0.831 0.866 0.823 0.773 0.793
gpt-4o 0.761 0.689 0.854 0.876 0.792 0.804 0.796
gemini 0.739 0.689 0.854 0.866 0.792 0.784 0.789

deepseek-v3 0.739 0.689 0.854 0.887 0.823 0.804 0.799

Table 12: The accuracy of instruction parsing.

Object identify Size Position
Accuracy 0.98 0.99 0.97

Table 13: Human ratings of mask generated by different methods.

GPT-4o DiffEdit Ours
Human rating 2.66 1.45 4.01

Table 14: Effectiveness verification for component score of BPM . The component scores of BPM targets for different perspective
evaluation of editing quality, we compare them with corresponding human evaluation(specific scores in the target perspective).

MGIE vs FTIP2P MGIE vs IP2P IP2P vs FTIP2P DaLLE-2 vs IP2P DALLE-2 vs FTIP2P DALLE-2 vs MGIE

preservation L2 0.756 0.816 0.816 0.893 0.743 0.927
Spreserve 0.729 0.839 0.829 0.893 0.757 0.927

modification CLIPScore 0.617 0.645 0.624 0.484 0.479 0.515
Smodify 0.678 0.686 0.659 0.67 0.606 0.583

Table 15: User Study for our Mask Guidance Enhancement. We randomly select 100 image samples for comparison. “Ours” denotes
edited image under our mask guidance is preferred by user, “Equal” denotes no obvious difference between original and our edited image,
“Origin” denotes original edited image is preferred.

Ours Equal Origin
Position 38 54 8

Size 23 75 2
Modification 38 48 14
Preservation 70 26 4

Overall 57 34 9
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(a)

(b)

Figure 13: Visualized Evaluation comparison among different metrics.
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Figure 14: More visualization of mask-guided editing.
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