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ABSTRACT

Off-policy evaluation (OPE) is essential for deploying reinforcement learning in
safety-critical settings, yet existing estimators such as importance sampling and
doubly robust (DR) often exhibit prohibitively high variance when rewards are
sparse. In this work, we introduce Reward-Shaping Control Variates, a new fam-
ily of unbiased estimators that leverage potential-based reward shaping to con-
struct additional zero-mean control variates. We prove that shaped estimators al-
ways yields valid variance reduction, and that combining shaping-based and Q-
based control variates strictly expands the variance-reduction subspace beyond
DR and its minimax variant MRDR. Empirically, we provide a systematic regime
map across synthetic chains, a cancer simulator, and an ICU-sepsis benchmark
showing that shaping-based OPE consistently outperforms DR in sparse-reward
settings, while a hybrid estimator achieves state-of-the-art performance across
sparse, noisy, and misspecified environments. Our results highlight reward shap-
ing as a powerful and interpretable tool for robust OPE, offering both theoretical
guarantees and practical improvements in domains where standard estimators fail.

1 INTRODUCTION

Off-policy evaluation (OPE) is a central problem in reinforcement learning (RL): given data col-
lected by a behavior policy, the goal is to estimate the performance of a different evaluation policy
without deploying it in the environment. Reliable OPE is crucial in high-stakes applications such
as healthcare, education, and recommendation systems, where deploying untested policies can have
significant costs. Standard OPE methods fall broadly into two families: importance sampling (IS)
(Precup et al., 2000; Jiang & Li, 2016), which reweights trajectories to mimic the evaluation policy,
and doubly robust (DR) methods (Dudı́k et al., 2011; Thomas & Brunskill, 2016), which combine
reweighting with regression-based reward prediction. These estimators are well studied and can per-
form effectively when rewards are dense and trajectories contain frequent signals. However, many
real-world settings are characterized by sparse rewards, where meaningful feedback occurs only
rarely or at the end of a long horizon. In such cases, existing estimators become unreliable.

To see why, consider a simple illustrative example. Imagine a maze with 100 decision steps, where
the agent receives a reward of +1 only if it reaches the goal at the very end. Suppose the behavior
policy succeeds 1% of the time, while the evaluation policy succeeds 10% of the time. In this
setting, nearly all trajectories generated by the behavior policy contain zero reward, and only the
rare successful trajectories provide useful information. Importance sampling collapses under this
regime: because nonzero weights arise only when success is observed, the variance of the estimate
grows prohibitively large, requiring thousands of samples to stabilize. Doubly robust methods also
fail: the regression model must extrapolate the outcome of reaching the goal from extremely scarce
reward observations, leading to high bias.

Marginalized estimators, such as DualDICE (Nachum et al., 2019) and GenDICE (Zhang et al.,
2020), reduce variance by directly estimating state(-action) distribution ratios rather than trajec-
tory weights. While effective in moderately sparse domains, they remain brittle in the extreme
setting described above. The reason is that these estimators still depend entirely on reward sup-
port: when nearly all observed rewards are zero, the optimization problem becomes ill-posed,
and the learned distribution ratios are uninformative for evaluation. In practice, this yields es-
timates with low variance but high bias—the estimator stabilizes around a misleading value be-
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cause the reward signal is too scarce to propagate through the state space. Moreover, when the
evaluation policy succeeds in regions where the behavior policy almost never collects reward,
marginalized estimators inherit the same extrapolation gap as DR methods (Uehara et al., 2020).

Figure 1: Sparse-reward maze example.
Most behaviour rollouts (grey) fail and
receive 0 reward; only 1% (blue) suc-
ceed with +1. The evaluation policy
succeeds 10%, but off-policy estimates
(orange) require thousands of samples
to stabilize due to the scarcity of reward
in behavior data.

This simple example illustrates a broader problem: Stan-
dard OPE estimators are fundamentally unreliable in
sparse-reward environments, precisely the regimes where
reliable evaluation is most needed. This limitation under-
scores the need for new approaches that can extract signal
even when rewards are infrequent or noisy.

In this paper, we address this challenge by introducing
reward-shaping control variates (RSCV), a new class of
estimators that reduce variance without introducing bias.
Our contributions are as follows: We introduce a theo-
retical framework showing how potential-based reward
shaping can be leveraged as a control variate in OPE. We
prove that the resulting estimators remain unbiased while
achieving strict variance reduction compared to standard
IS, DR, and marginalized estimators. We analyse sparse
and noisy reward regimes, identifying conditions under
which shaping control variates provides significant im-
provements in performance. We demonstrate with a
suite of experiments on tabular MDPs, a cancer simula-
tor (Ribba et al., 2012) and an ICU-Sepsis benchmark
(Choudhary et al., 2024), that shaped estimators consis-
tently outperform existing OPE baselines in sparse- and
noisy-reward environments. We further provide practical
guidance on constructing shaping functions for real-world
applications, highlighting the trade-off between variance
reduction and robustness. Together, these contributions
establish reward-shaping control variates as a principled
and practical solution for robust off-policy evaluation in
settings where standard estimators fail.

2 RELATED WORK

IS, DR and Marginalized Estimators. A well-established body of work in OPE includes im-
portance sampling (IS) (Precup et al., 2000; Jiang & Li, 2016) and doubly robust (DR) methods
(Dudı́k et al., 2011; Thomas & Brunskill, 2016). IS reweights trajectories to match the evaluation
policy but suffers exponential variance in sparse-reward settings, as rare successes dominate the
weights. DR reduces variance by combining IS with a learned reward model, but incurs bias when
extrapolating from scarce rewards. In contrast, our method instead applies potential-based reward
shaping as a control variate, reducing variance without dense rewards. Marginalized estimators
such as DualDICE (Nachum et al., 2019), GenDICE (Zhang et al., 2020), and VPM (Uehara et al.,
2020) estimate stationary state–action distributions rather than trajectory weights, lowering variance
but remains biased under extreme sparsity, where optimization of the density ratio becomes ill-
conditioned. Our approach injects informative shaped rewards throughout the trajectory, enabling
reliable evaluation even when sparse feedback offers little direct signal.

Model-Based and Representation-Learning Approaches. Another line of OPE research lever-
ages model-based rollouts (Farahmand et al., 2018; Le et al., 2019) or representation learning (e.g.,
invariant or confounder-aware embeddings) to mitigate distributional shifts (Hanna et al., 2017; Ue-
hara et al., 2022).These however require accurate dynamics or strong sufficiency assumptions. Our
method sidesteps this by reshaping rewards rather than modeling dynamics. Majumdar et al. (2025)
incorporate human-interpretable ”concepts” to reduce variance while remaining unbiased, assuming
concept supervision or the ability to discover reflective abstractions. While also targeting variance
reduction, their method depends on concept supervision, whereas ours directly reshapes rewards,
enhancing evaluation fidelity even in standard RL settings with known reward functions.
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Reward Shaping in Reinforcement Learning. Potential-based reward shaping accelerates learning
without changing optimal policies (Ng et al., 1999), and has been used to improve sample efficiency
in online RL (Devlin & Kudenko, 2012; Grzes, 2016). Prior OPE work considered fixed shaping-
based control variates (Parbhoo et al., 2020), but only in limited settings. Unlike Parbhoo et al.
(2020), we explicitly learn zero-mean control variates for variance reduction, prove unbiasedness
and variance reduction for varying strengths of the control variates and also provide an algorithm
that jointly optimizes the potential function and its strength to guarantee variance reduction. This
generalization strictly subsumes Parbhoo et al. (2020) and achieves state-of-the-art performance in
sparse, noisy, and misspecified environments.

3 PRELIMINARIES AND NOTATION

Markov Decision Processes. A Markov decision process (MDP) is a tuple M = (S,A, P, γ,R),
where S is the state space, A the action space, P (s, a, s′) the transition distribution from s to s′ under
action a, R(s, a) the reward for (s, a), and discount factor γ. A stationary policy π : S ×A → [0, 1]
maps states to action probabilities, with π(a|s) the probability of taking a in s. A trajectory τ =

(s0, a0, r0, . . . , sT ) generated by π has return R0:T−1(τ) =
∑T−1

t=0 γtrt, where st+1 ∼ P (·|st, at)
and at ∼ π(·|st). The performance of π is V π = EPπ

τ
[R0:T−1(τ)]. The value and action-value

functions, V π(s) and Qπ(s, a), are the expected returns starting from s, or from (s, a) followed by
π, respectively.

Off-Policy Evaluation. Given a dataset D = {τ (i)}ni=1 of trajectories generated by a behavior
policy πb, we wish to estimate the value of a different evaluation policy πe. A valid estimator V̂ πe

should minimize the mean squared error (MSE):

MSE(V πe , V̂ πe) =
(
EP

πb
τ
[V̂ πe ]− V πe

)2︸ ︷︷ ︸
Bias2

+Var(V̂ πe)︸ ︷︷ ︸
Variance

.

where Pπb
τ denotes the distribution of trajectory τ under behaviour policy πb. This decomposition

highlights that reducing variance while maintaining unbiasedness is central to designing effective
OPE estimators. We adopt the following standard assumptions:

Assumption 1 (Absolute Continuity). For all (s, a) ∈ S×A, if πb(a | s) = 0, then πe(a | s) = 0.

Assumption 2 (Single Behavior Policy). All trajectories in D are sampled independently under the
same behavior policy πb.

Potential-Based Reward Shaping. Reward shaping is a technique that is used to modify
the original reward function using a reward-shaping function F : S × A × S → R to typ-
ically make RL methods converge faster with more instructive feedback. The original MDP
M = (S,A, P, γ,R) is transformed into a shaped-MDP M ′ = S,A, P, γ,R′ = R + F ). Reward
shaping modifies the original reward signal using an auxiliary shaping function F : S×A×S → R,
yielding a new reward function

R′(s, a, s′) = R(s, a) + F (s, a, s′).

While arbitrary shaping may alter the optimal policy, potential-based reward shaping (PBRS) (Ng
et al., 1999) preserves policy invariance.
Definition 1 (Potential-Based Reward Shaping). A shaping function F is potential-based if there
exists a potential ϕ : S → R such that

F (s, a, s′) = γϕ(s′)− ϕ(s), ∀(s, a, s′) ∈ S ×A× S.

Theorem 1 (Policy Invariance under PBRS). If shaping is potential-based, then for all policies
π, the optimal policy under the shaped MDP coincides with the optimal policy under the original
MDP. That is, PBRS modifies value functions by a state-dependent constant shift but leaves the
optimal action distribution unchanged.

This invariance property makes PBRS especially appealing for OPE: it allows us to introduce addi-
tional signal into sparse-reward environments while guaranteeing that the evaluation policy’s value
is estimated consistently with the original reward structure.
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4 REWARD-SHAPING CONTROL VARIATES

In this section we introduce a new class of reward-shaping control variates (RSCV) for variance
reduction in off-policy evaluation. The key idea is to construct an additional random variable CΦ

with zero mean under the behavior-policy distribution. Such a control variate can be added to any
unbiased OPE estimator without altering its expectation, but with the potential to substantially re-
duce variance. We first formalize the construction of CΦ and then show how it can be integrated
into the per-decision importance sampling (PDIS) estimator. While we present results for PDIS, the
same construction can be incorporated into other OPE estimators (e.g., weighted IS, DR, MRDR)
with analogous guarantees. See Appendix C for details.
Definition 2 (A Reward-Shaping Control Variate). Let Φ : S → R be any measurable potential
function such that Φ(sT ) = 0 for all terminal states sT . Define a reward-shaping control variate

CΦ := Φ(s0) +

T−1∑
t=0

γtWt

(
γΦ(st+1)− Φ(st)

)
,

where Wt =
∏t

k=0
πe(ak|sk)
πb(ak|sk) is the cumulative importance weight up to time t.

Lemma 1 (Zero-mean property). Under Assumption 1 (absolute continuity) and the boundary
condition Φ(sT ) = 0, the mean of the control variate under πb, Eπb

[CΦ] = 0. Thus CΦ is a valid
zero-mean control variate for PDIS return Y =

∑T−1
t=0 γtWtrt.

Proof. For each t, by a change of measure using importance weights,

Eπb

[
γtWt(γΦ(st+1)− Φ(st))

]
= Eπe

[γt+1Φ(st+1)− γtΦ(st)].

Summing over t = 0, . . . , T − 1 gives Eπe
[γTΦ(sT ) − Φ(s0)]. Adding the start baseline

Eπb
[Φ(s0)] = Eπe

[Φ(s0)] and using Φ(sT ) = 0 yields zero.

Definition 3 (Shaped PDIS estimator). Given N i.i.d. trajectories, the shaped PDIS estimator
augments PDIS with the a reward shaping control variate CΦ:

V̂ πe

Shaped−PDIS(λ) =
1

N

N∑
n=1

( T−1∑
t=0

γtWtrt + λCΦ,n
)
,

where λ ∈ R is a coefficient controlling the weight of the zero-mean control variate applied.
Theorem 2 (Unbiasedness of Shaped PDIS). For any λ ∈ R, the Shaped PDIS estimator is unbi-
ased. That is, Eπb

[
V̂ πe

Shaped−PDIS(λ)
]
= V πe .

Proof. By linearity of expectation,

Eπb

[
V̂ πe

Shaped−PDIS(λ)
]
= Eπb

[
V̂ πe

PDIS

]
+ λEπb

[
CΦ
]
= V πe

From IS theory, Eπb
[V̂ πe

PDIS] = V πe and by Lemma 1, Eπb
[CΦ] = 0. Thus, the estimator is unbiased

for any choice of λ.

4.1 VARIANCE ANALYSIS OF REWARD SHAPING CONTROL VARIATES

In what follows, we characterize the variance of V̂ πe

RSCV(λ) and discuss the optimal choice of λ that

minimizes the variance, λ⋆ = −Cov[Y,CΦ]
Var[CΦ] .

Theorem 3 (Variance decomposition under discounting). For any λ,

Var
[
V̂Shaped−PDIS(λ)

]
=

1

N

(
Var[Y ] + 2λCov[Y,CΦ] + λ2Var[CΦ]

)
. (1)

The variance-minimizing coefficient is λ⋆ = −Cov[Y,CΦ]
Var[CΦ] with minimized variance,

Var
[
V̂Shaped−PDIS(λ

⋆)
]
= 1

N

(
Var[Y ]− Cov[Y,CΦ]2

Var[CΦ]

)
. (2)

4
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Proof. Expand Var[Y + λCΦ]. Minimization follows by completing the square in λ.

Unlike DR and its variants which cannot guarantee strict improvement (variance may even rise if
the model of Q is bad), RSCV has the following guarantee:
Corollary 1 (Variance bound). The optimal Shaped PDIS estimator never has larger variance than
PDIS

Var
[
V̂Shaped−PDIS(λ

⋆)
]
≤ 1

NVar[Y ],

with strict inequality iff Cov[Y,CΦ] ̸= 0.

Case λ = −1. Note that when λ = −1, we recover the SCOPE estimator from Parbhoo et al.
(2020). Its variance is 1

N

(
Var[Y ]− 2Cov[Y,CΦ] +Var[CΦ]

)
, which may be larger or smaller than

PDIS depending on 2Cov[Y,CΦ] ≷ Var[CΦ].

Case λ = λ⋆ (projection-optimal). When λ is optimized, Shaped-PDIS consistently improves on
PDIS by Corollary 1, with improvement factor 1− ρ2Y,CΦ , where ρ is the correlation between Y and
shaping control variates CΦ.

4.2 LEARNING CONTROL VARIATES CΦ AND λ FOR VARIANCE GUARANTEES

Shaped-PDIS performance hinges on the control variate CΦ and coefficient λ: variance drops when-
ever CΦ correlates with the IS–weighted returns Y . We now learn CΦ and λ directly from data by
parameterizing a state potential ϕβ : S →R with a neural network and training it end-to-end (via
backpropagation) to maximize explained variance between the induced shaping terms and PDIS re-
turns. This aligns the control variate with the return signal and thus guarantees variance reduction
in OPE. The full procedure appears in Algorithm 1.

Computing control variates CΦ using a potential network. The control variates in RSCV are
defined by a potential function Φ : S → R, which assigns a scalar “potential value” to each state.
Φ captures progress toward reward or risk of failure, so that the differences γΦ(st+1) − Φ(st)
absorb predictable structure in the return. To make this practical, we parameterize Φ by a function
approximator Φβ (e.g., a linear model or neural network) and optimize its parameters β for variance
reduction. Concretely, for each trajectory n we form the per-trajectory return

Y (n) =

T−1∑
t=0

γtW
(n)
t r

(n)
t , W

(n)
t =

t∏
i=0

πe(a
(n)
i |s(n)i )

πb(a
(n)
i |s(n)i )

,

and the shaping columns

C(n)(β) =
[
Φβ(s

(n)
0 ), γtW

(n)
t

(
γΦβ(s

(n)
t+1)− Φβ(s

(n)
t )
)]T−1

t=0
.

Stacking over trajectories yields the design matrix C(β) and vector Y. After row centering or
de-meaning, we compute covariances

ΣCC(β) =
1
NC⊤

c Cc + αI, ΣCY (β) =
1
NC⊤

c Yc.

Centering ensures that the control variates cannot shift the expectation of the estimator and alter its
bias, thus stabilizing optimization. The explained variance objective is then

J(β) = ΣCY (β)
⊤ΣCC(β)

−1ΣCY (β). (3)

Note that in practice when N,T are large, computing the matrix inversion in Eq.3 becomes in-
tractable. As a result, we resort to conjugate gradients (Shewchuk et al., 1994) (See Appendix D for
details).

Optimizing the control variates CΦ for variance reduction. Maximizing J(β) via backprop-
agation directly minimizes the residual variance of RSCV, ensuring that the shaping features are
aligned with the noisy IS returns. Unlike standard supervised learning, there are no external labels:
the only training signal comes from how well the shaping columns correlate with the return.

5
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Algorithm 1 Shaping-based OPE with Learned Potential Φβ

Require: Trajectories {τn} from πb, evaluation policy πe, discount γ, potential model Φβ , folds
K, ridge α.

1: for k = 1, . . . ,K do
2: Split data: fit set Ifit, evaluation set Ik.
3: On Ifit, build Y,C(β) from IS returns Y (n) and shaping columns C(n)(β).
4: Form covariances ΣCC ,ΣCY ; maximize J(β) = Σ⊤

CY Σ
−1
CCΣCY by backprop.

5: Compute λk = −Σ−1
CCΣCY at β̂.

6: Evaluate on Ik: V̂k = 1
|Ik|

∑
n∈Ik

(Y (n) + λ⊤
k C

(n)(β̂)).
7: end for
8: return V̂ πe

RS-CV = 1
K

∑
k V̂k.

Cross-fitting and the final estimator. To prevent overfitting, we apply cross-fitting: the dataset is
partitioned into K folds, Φβ and λ⋆(β) are learned on K − 1 folds, and the estimator is evaluated
on the held-out fold. For each fold k, the value estimate is

V̂k =
1

Ik

∑
n∈Ik

(
Y (n) + λ∗(β̂)⊤C(n)(β̂)

)
. (4)

Finally, the overall estimate aggregates across folds,

V̂ πe

Shaped−PDIS(λ) =
1

K

∑
k

V̂k, (5)

with empirical residual variance Ŝ2 = 1
K

∑
k S

2
k .

4.3 RELATION TO DR AND MRDR

It is useful to contrast shaping-based estimators with the doubly robust (DR) and more robust doubly
robust (MRDR) estimators. Both DR and MRDR employ the idea of control variates, but they rely
on learning an approximate Q–function. This is fundamentally more challenging than learning a
potential Φβ : the Q–function is state–action dependent, must satisfy a Bellman consistency condi-
tion, and directly encodes long–horizon returns. By contrast, shaped OPE estimators requires only
a scalar potential over states, grounded at terminal states. This yields two key advantages:

Ease of learning. Potentials can be learned by simple regression or by optimizing the variance-
reduction objective J(β), without requiring value-consistency or bootstrapping. The shaping
columns Cn(β) are therefore easier to estimate reliably than Q-based control variates, especially
in sparse–reward regimes.

Interpretability. The potential Φβ(s) can be interpreted as a measure of “progress” or “risk”
associated with a state: high values near successful outcomes and low values near dead–ends. This
scalar field provides a transparent explanation of what the variance reduction is “taking out,” making
shaped estimators easier to audit than DR/MRDR, whose Q estimates are often opaque.

Tighter concentration via variance reduction. PDIS is unbiased but Hoeffding–type bounds are
often loose because they scale with worst–case rewards and importance weights. Shaped PDIS
reduces the residual variance of the PDIS return Y by adding a zero-mean shaping control variate
CΦ, thereby tightening variance-aware bounds. Under |rt|≤R, |Φ|≤B, |Wt|≤w, Bernstein gives,
for any δ ∈ (0, 1),∣∣V̂ πe

Shaped-PDIS − V πe
∣∣ ≤

√
2σ2(λ)

N
log

2

δ
+

2L(λ)

3N
log

2

δ
, σ2(λ) = Var

[
Y + λCΦ

]
,

where L(λ) bounds |Y + λCΦ|. At the variance–optimal λ⋆, σ2(λ⋆) ≤ Var[Y ] (strict if
Cov[Y,CΦ] ̸=0). An empirical Bernstein variant yields∣∣V̂ πe

Shaped-PDIS − V πe
∣∣ ≤

√
2S2

N (λ)

N
log

3

δ
+

3L(λ)

N
log

3

δ
,

6
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with S2
N (λ) the sample variance of {Y n+λCΦ,n}Nn=1. This bound adapts to the observed variance,

substantially reduced by RSCV in sparse-reward domains to yield tighter uncertainty quantification.
Analogous bounds for shaped DR/MRDR appear in Appendix D.1.

5 EXPERIMENTS

Our experiments are designed to stress-test OPE estimators across domains where standard methods
are known to fail: long-horizons, sparse rewards, noisy reward signals, and real-world clinical tra-
jectories. We begin by evaluating on a tabular Chain MDP environment, followed by an ICU-Sepsis
benchmark and a medical simulator for Cancer.

Baselines. For all domains, we compare the performance of our approach against PDIS, DR and
MRDR baselines. For DR, we use a fitted Q evaluation (FQE) critic with sufficient iterations to
yield accurate value estimates. MRDR trains a critic using an importance-weighted regression
objective to minimize estimator variance within the Q-function class. Finally, each shaping-based
estimator employs reward-shaping control variates, where a potential function Φβ is parameterized
and learned from logged data by maximizing the explained variance between PDIS/DR/MRDR
returns and shaped control-variate columns respectively. This ensures the resulting control variate
is unbiased and directly optimized for variance reduction.

Metrics. Throughout this section, we report the mean-squared error (MSE), bias, variance
and effective sample size (ESS) to assess the quality of our shaped estimators. Detailed descrip-
tions of these metrics can be found in Appendix E.1. Additional experimental setup details and
hyperparameters for each domain can be found in F.

5.1 EVALUATION ON TABULAR CHAIN MDP

Environment Structure. We consider a finite-horizon chain MDP with states {0, . . . , S − 1},
starting at s0. There are two absorbing terminals: success at s20 and dead-end at s10. Episodes
end upon reaching a terminal or after T = 18 steps. At non-terminal states, the agent chooses left
(a = 0) or right (a = 1). Right moves forward with p = 0.9, else stays; left moves backward with
p = 0.2, else stays. Success yields +1, dead-end −1, and all other transitions 0.

Policies. The behavior policy πb is conservative, choosing a = 0 with p = 0.7 and a = 1 with p =
0.3. The evaluation policy πe is aggressive, with probabilities reversed. This induces distribution
shift: πb often stalls or reaches the dead-end, while πe more frequently reaches success.

5.2 EVALUATION ON CANCER SIMULATOR

Environment Structure. We use the cancer simulator of Ribba et al. (2012), which models tumor
progression under chemotherapy via a small system of differential equations. It tracks proliferating
and quiescent tumor cells, with treatment effects delayed through the quiescent compartment, and
drug concentration in the body. For RL, we discretize time into monthly decision steps. The state
space has 4 features (cell counts and drug concentration). Each month a clinician may administer
treatment or not. The per-step reward is the change in tumor diameter: rt = −(MTDt+1−MTDt),
with positive values indicating improvement.

Policies. The evaluation policy πe treats patients monthly for 10 months, then stops. The behavior
policy πb is an ϵ-greedy variant: with probability 1− ϵ it follows πe, otherwise it takes the opposite
action, with ϵ ∈ {0.1, 0.3, 0.5}.

5.3 EVALUATION ON ICU-SEPSIS BENCHMARK

Environment Structure. We evaluate on the real-world ICU-Sepsis benchmark (Choudhary et al.,
2024) derived from MIMIC-III. Patient trajectories are segmented into 4-hour windows over hori-
zons up to 72 hours using the benchmark’s standardized pre-processing. Each state st has 47 fea-
tures, including vital signs (e.g., heart rate, blood pressure), labs (e.g., lactate, creatinine), demo-
graphics, and derived scores (e.g., SOFA), all normalized and imputed per the benchmark. Actions
at are intravenous fluids and vasopressors, with dosages discretized into a 5 × 5 grid (25 discrete
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actions). Rewards are sparse: +1 if discharged alive, 0 if deceased, and 0 otherwise. This reward
structure reflects the clinical challenge of evaluating policies with delayed outcomes.

Policies. We generate πb and πe by training PPO for 1M episodes, taking πb as the actor at episode
250k and πe at episode 1M. Their large optimality gap induces distribution shift. The ground-truth
value of πe is estimated via Monte Carlo rollouts in the benchmark’s learned environment model.

6 RESULTS AND DISCUSSION

Figure 2: Tabular-Chain. We observe the bias, variance, MSE of the shaped estimators is lower than
the bias, variance, MSE of the traditional estimators. Additionally, the ESS of the shaped-estimators
has higher mean and lower deviation as compared to the shaped-estimators.

Shaped estimators have orders of improvement in Variance, MSE and ESS while being unbi-
ased over traditional estimators. Figure 2,3 and 6 (Appendix F) compare the performance of the
shaped and the traditional variants of the OPE estimators on real-world ICU-Sepsis data. Across
all environments, we observe shaped estimators outperform tradtional estimators across all met-
rics. For ICU-Sepsis, we observe, the variance and MSE of the shaped estimators are 3-4 orders of
magnitude better than the traditional estimators, indicating the shaped potential functions ϕ(s) suc-
cessfully provide intermediate signals pertinent to reducing variance. Consequently, we observe the
ESS of shaped OPE estimators to be higher than the traditional variants. Consistent to our theoretical
findings, we observe the shaped-variants of the OPE estimators remain asymptotically unbiased.

Figure 3: ICU-Sepsis. We observe the variance, MSE of the shaped estimators is lower than the
variance, MSE of the traditional estimators, while being unbiased. Additionally, the ESS of the
shaped-estimators has higher mean and lower deviation as compared to the shaped-estimators. The
experiments were performed for a total of 10 seeds.

Shaped estimators are more robust to noise than traditional OPE estimators: Figure 4 presents
the experiment where varying levels of Gaussian noise are added to the final returns of the estimators
in ICU-Sepsis. We observe that the shaped variants are consistently more robust than their traditional
counterparts, even as the noise level increases. This robustness arises because shaped estimators can

8
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Figure 4: ICU-Sepsis Noise comparison. We observe the shaped estimators are more robust to
traditional estimators when the reward signal is contaminated with gaussian noise. The evaluation
was conducted over 10k test-examples and for 10 seeds.

leverage intermediate signals from the shaped potential functions, which help mitigate the effect
of noise. In contrast, traditional estimators rely on sparse signals, making them more vulnerable
to noise, as any corruption in these sparse signals significantly degrades performance. Among the
shaped estimators, the DR and MRDR variants demonstrate greater robustness compared to the
Shaped-PDIS estimator. This is due to the model-based component in DR and MRDR, which helps
counteract the impact of noise, absent in the PDIS estimator.

Shaped-estimators have less deterioration in performance over unshaped-estimators in sparse
reward settings. All our experiments employ sparse reward environments to explore the perfor-
mance of OPE. Overall, shaped estimators outperform their non-shaped counterparts. Notably,
Shaped-DR and Shaped-MRDR estimators have the least deterioration in performance over Shaped-
PDIS in sparse environments. This is directly a consequence of the introduction of explicit reward
shaping control variates.

Shaping potential functions reveal helpful and harmful states and are easier to interpret than
DR. Unlike DR, which learns an action-conditioned control variate via Q(s, a), shaping learns a
state-based control variate from temporal potential differences ϕ(s′) − ϕ(s). In practice, learning
Q(s, a) and using it for evaluation using techniques like FQE is a hard problem in itself. ϕ(s)
is action-agnostic which allows for direct comparison across states, so extremes of ϕ immediately
rank states by risk in terms of variance/MSE contribution and expose the features that drive it. In
our ICU sepsis case, low-ϕ states consistently reflected deterioration through low GCS and blood
pressure, low SpO2, high FiO2, very high WBC, prolonged PTT, and very high PaCO2. High-ϕ
states reflected stability through moderate GCS, normal blood pressure, high FiO2 with moderate
SpO2 and PaCO2, normal WBC, and medium–high bicarbonate (HCO−

3 ). Tables 1–2 (Appendix
G detail these states and their ϕ(s). Beyond variance reduction, this clinically legible, state-level
signal enables targeted policy improvement, a significant advantage over sparse-reward scenarios,
complementing the primary benefit of variance reduction.

7 CONCLUSIONS AND FUTURE WORK

This paper introduced reward shaping-based control variates for off-policy evaluation in sparse and
noisy reward settings. We derived a family of shaping-based estimators and showed theoretically
and empirically that these estimators can both reduce variance and preserve the policy value, while
remaining unbiased. Notably, the shaped OPE estimators offer significant advantages in terms of
their interpretability as their values directly rank helpful and harmful states and reveal the features
that drive them, offering insights that are harder to obtain from doubly robust methods. Future work
should explore how shaping-based OPE methods perform in partially observable environments, as
well as hybrid shaping-based and marginalized estimators, and prospective studies where reward
shaping control variates guide offline policy selection and safe deployment.

9
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A PRELIMINARIES: EXISTING OPE ESTIMATORS

The goal of our approach is to reduce the variance and MSE of off-policy evaluation in sparse reward
settings. Instead of using a value function as a control variate like DR methods, we use a potential-
based reward shaping control variate and optimize over the space of shaped rewards. Because of its
resemblance to DR, we provide a brief overview of the IS and DR approaches.

Per-Decision Importance Sampling. Importance sampling (IS) estimators reweight observed tra-
jectories to correct for the distribution mismatch between πb and πe. The standard trajectory-wise
IS estimator is given by

V̂ πe

IS =
1

N

N∑
n=1

W
(n)
T−1R0:T−1(τ

(n)); W
(n)
T−1 =

T−1∏
k=0

πe(ak | sk)
πb(ak | sk)

, (6)

is the importance ratio of the trajectory.

This estimator is unbiased but suffers from exponential variance in horizon length. To address this,
the per-decision IS (PDIS) estimator decomposes the return into stepwise contributions:

V̂ πe

PDIS =
1

N

N∑
n=1

T−1∑
t=0

γtW
(n)
t r

(n)
t , W

(n)
t =

t∏
k=0

πe(a
(n)
k | s(n)k )

πb(a
(n)
k | s(n)k )

, (7)

Using partial trajectory overlap, PDIS achieves lower variance than trajectory-wise IS, but still relies
on frequent reward observations and performs poorly in sparse-reward settings.

Doubly Robust Off-Policy Evaluation. DR estimators combine DM with IS and have been
widely used in regression (Cassel et al., 1976), contextual bandits (Dudı́k et al., 2011), and RL
(e.g. Thomas & Brunskill (2016); Jiang & Li (2016)). In RL, the DR estimate is given by,

V̂ πe

DR(β) =
1

N

N∑
n=1

T−1∑
t=0

γt
[
W

(n)
t r

(n)
t −W

(n)
t Q̂πe(s

(n)
t , a

(n)
t ;β) +W

(n)
t−1V̂

πe(s
(n)
t ;β)

]
. (8)

The IS part of DR is based on step-IS while the model part relies on Q̂πe and V̂ πe model estimates.
Importantly, the bias of the DR estimator is a product of both the bias of DM and IS. As a result,
DR is unbiased if either IS or DM is unbiased. When the behaviour policy πb is known, Eq. 8 is
unbiased. The MRDR estimator (Farajtabar et al., 2018) modifies classic DR by learning the model
parameter that minimizes the variance of the DR estimator.

B REWARD SHAPING CONTROL VARIATES

We provide complete proofs of the theory mentioned in Section 4 here.

Proof of Lemma 1. For each t, by a change of measure using importance weights,

Eπb

[
γtWt(γΦ(st+1)− Φ(st))

]
= Eπe [γ

t+1Φ(st+1)− γtΦ(st)].

Summing over t = 0, . . . , T − 1 gives Eπe
[γTΦ(sT ) − Φ(s0)]. Adding the start baseline

Eπb
[Φ(s0)] = Eπe

[Φ(s0)] and using Φ(sT ) = 0 yields zero.
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Proof of Theorem 3. Since E[CΦ] = 0, we have

E
[
V̂Shaped−PDIS(λ)

]
=

1

N

N∑
i=1

E[Yi + λCΦ
i ] = E[Y ],

so the estimator remains unbiased. By independence across episodes,

Var
[
V̂Shaped−PDIS(λ)

]
=

1

N
Var
[
Y + λCΦ

]
.

Expanding,
Var[Y + λCΦ] = Var[Y ] + λ2Var[CΦ] + 2λCov[Y,CΦ],

which yields Eq. 2. This is a convex quadratic in λ, minimized at

λ⋆ = −Cov[Y,CΦ]

Var[CΦ]
.

Substituting this value back in and completing the square gives

Var
[
V̂Shaped−PDIS(λ)

]
=

1

N

(
Var[Y ]− Cov[Y,CΦ]2

Var[CΦ]
+ Var[CΦ]

(
λ+

Cov[Y,CΦ]

Var[CΦ]

)2)
.

At λ = λ⋆, the squared term vanishes. Since Cov[Y,CΦ]2/Var[CΦ] ≥ 0, the minimized variance
is no larger than Var[Y ]/N , with equality if and only if Cov[Y,CΦ] = 0.

C A FAMILY OF SHAPED ESTIMATORS AND THEIR PROPERTIES

In addition to the standard Shaped PDIS estimator we present in the main paper, the idea of reward
shaping control variates can be integrated into existing OPE estimators with similar performance
guarantees in sparse reward settings. Here, we show in particular how RSCV can be integrated into
WIS, DR and MRDR estimators.

Lemma 2 (Per-step zero-mean for WIS control variate). If Es0∼d e
0
[Φ(s0)] = 0 and Φ(sT ) = 0 on

terminals, then for every t, Eπe
[ cΦt ] = 0 and hence Eπb

[ρ0:tc
Φ
t ] = 0.

Proof. Telescoping gives
∑T−1

t=0 cΦt = γTΦ(sT )− Φ(s0). Taking Eπe
and using Φ(sT ) = 0 yields∑

t Eπe
[cΦt ] = −Ed e

0
[Φ(s0)] = 0. Since

∑
t is zero and each cΦt is integrable, a sufficient condition

(enforced by centering at t = 0) is Eπe
[cΦt ] = 0 for all t. The equality Eπb

[ρ0:tc
Φ
t ] = Eπe

[cΦt ]
follows by change of measure.

Lemma 3 (Per-step zero-mean for DR/MRDR control variate). If Es0∼d0
[Φ(s0)] = 0 for the com-

mon initial distribution of πb and πe, and Φ(sT ) = 0, then for every t, Eπb
[ ρ0:tc

Φ
t ] = Eπe

[ cΦt ] = 0.

Proof. For any integrable ft, Eπb
[ρ0:tft] = Eπe [ft]. With ft = cΦt and telescoping as above,∑

t Eπe [c
Φ
t ] = −Es0∼d0 [Φ(s0)] = 0, and centering at t = 0 ensures Eπe [c

Φ
t ] = 0 for all t.

Definition 4 (Shaped PDWIS estimator). Given N i.i.d. trajectories, the shaped per-decision WIS
estimator augments PDWIS with a reward shaping control variate CΦ:

V̂Shaped-PDWIS(λ) =

T−1∑
t=0

N∑
i=1

w̃i,t

(
γtri,t + λ cΦi,t

)
, w̃i,t =

ρi,0:t∑N
j=1 ρj,0:t

,

where λ ∈ R is a coefficient controlling the weight of the zero-mean control variate applied.

Theorem 4 (Bias of Shaped PDWIS). Under Assumptions and Lemma 2, V̂Shaped-PDWIS(λ) is
asymptotically unbiased:

lim
N→∞

E[V̂Shaped-PDWIS(λ)] = V πe .

It retains the same O(1/N) finite-sample bias as per-step WIS.
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Proof. Write Xi,t = γtri,t + λcΦi,t, Wi,t = ρi,0:t. Each per-step term is a ratio estimator

µ̂t =

∑
i Wi,tXi,t∑

i Wi,t
.

By the Law of Large Numbers and Slutsky’s theorem,

µ̂t
p−→ Eπb

[W0:tXt]

Eπb
[W0:t]

= Eπe
[Xt].

Summing over t gives
∑

t Eπe
[Xt]. By Lemma 2, Eπe

[cΦt ] = 0, hence the limit is V πe . Finite-
sample bias of ratio estimators is O(1/N) and unaffected by adding a zero-mean control variate.

Theorem 5 (Variance of Shaped PDWIS). Conditioning on weights, define

At = γtrt, Bt = cΦt , αt =

N∑
i=1

w̃2
i,t.

Then

Var[V̂pRSCV-WIS(λ) | {w̃}] =
T−1∑
t=0

αt

(
Varw,t[At] + 2λCovw,t[At, Bt] + λ2Varw,t[Bt]

)
.

Proof. Define

a =
∑
t

αtVarw,t[At], b =
∑
t

αtCovw,t[At, Bt], c =
∑
t

αtVarw,t[Bt].

Then the conditional variance is
a+ 2λb+ λ2c.

Add and subtract b2/c:

=
(
a− b2

c

)
+ c
(
λ+ b

c

)2
.

Thus minimized at

λ⋆ = −b

c
, min

λ
= a− b2

c
.

This is never larger than the baseline a.

Definition 5 (Shaped DR estimator). Given N i.i.d. trajectories, the shaped DR estimator aug-
ments DR with a reward shaping control variate CΦ:

ZDR
t = ρ0:t

(
rt + γV̂ (st+1)− Q̂(st, at)

)
, CΦ

t = ρ0:t c
Φ
t ,

V̂Shaped-DR(λ) =
1
N

N∑
i=1

[
V̂ (si0) +

T−1∑
t=0

(ZDR
i,t + λCΦ

i,t)
]
,

where λ ∈ R is a coefficient controlling the weight of the zero-mean control variate applied.

Theorem 6 (Bias of Shaped DR). Under Assumptions, Lemma 3, and standard DR conditions,
V̂Shaped-DR(λ) is unbiased:

E[V̂Shaped-DR(λ)] = V πe .

Proof. By DR unbiasedness, E[V̂ (s0) +
∑

t Z
DR
t ] = V πe . By Lemma 3, E[CΦ

t ] = 0, hence
E[
∑

t C
Φ
t ] = 0. Therefore, E[V̂pRSCV-DR(λ)] = V πe .

Theorem 7 (Variance of Shaped DR). Let Y = V̂ (s0) +
∑

t Z
DR
t , C =

∑
t C

Φ
t . Then

Var[V̂Shaped-DR(λ)] =
1
N

(
Var[Y ] + 2λCov[Y,C] + λ2Var[C]

)
.
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Proof. For one trajectory,
Var[Y + λC] = Var[Y ] + 2λCov[Y,C] + λ2Var[C].

Add and subtract Cov[Y,C]2/Var[C]:

=
(
Var[Y ]− Cov[Y,C]2

Var[C]

)
+Var[C]

(
λ+ Cov[Y,C]

Var[C]

)2
.

This is minimized at

λ⋆ = −Cov[Y,C]

Var[C]
, min

λ
= Var[Y ]− Cov[Y,C]2

Var[C]
.

Dividing by N gives the estimator variance.

Definition 6 (Shaped MRDR estimator). Given N i.i.d. trajectories, the shaped MRDR estimator
augments MRDR with a reward shaping control variate CΦ:

ZMRDR
t = ρ0:t

(
rt + γV̂MRDR(st+1)− Q̂MRDR(st, at)

)
, CΦ

t = ρ0:t c
Φ
t ,

V̂Shaped-MRDR(λ) =
1
N

N∑
i=1

[
V̂MRDR(s

i
0) +

T−1∑
t=0

(ZMRDR
i,t + λCΦ

i,t)
]
,

where λ ∈ R is a coefficient controlling the weight of the zero-mean control variate applied.
Theorem 8 (Bias of Shaped-MRDR). Under Assumptions, Lemma 3, and MRDR unbiasedness,
V̂Shaped-MRDR(λ) is unbiased:

E[V̂Shaped-MRDR(λ)] = V πe .

Proof. MRDR is an instance of DR with variance-minimizing models. Hence by the same reasoning
as Theorem 6, expectation equals V πe .

Theorem 9 (Variance of Shaped–MRDR). Let Y = V̂MRDR(s0) +
∑

t Z
MRDR
t , C =

∑
t C

Φ
t .

Then
Var[V̂Shaped-MRDR(λ)] =

1
N

(
Var[Y ] + 2λCov[Y,C] + λ2Var[C]

)
.

Proof. Identical to Theorem 7. Completing the square:

Var[Y + λC] =
(
Var[Y ]− Cov[Y,C]2

Var[C]

)
+Var[C]

(
λ+ Cov[Y,C]

Var[C]

)2
.

Thus

λ⋆ = −Cov[Y,C]

Var[C]
, min

λ
= Var[Y ]− Cov[Y,C]2

Var[C]
.

D REWARD SHAPING CONTROL VARIATES FOR VARIANCE REDUCTION

Details for Learning Control Variates for Variance Guarantees. Recall from Section 4, when
optimizing control variates CΦ for variance reduction, we require computing covariances ΣCC and
ΣCY to optimize the explained variance objective in Eqn. 3. When both N and T are large, explicitly
inverting ΣCC is infeasible. Instead, we solve the linear system

ΣCC(β) v(β) = ΣCY (β), (9)
for v(β), using the conjugate gradient (CG) method, which only requires matrix-vector products. In
this formulation,

J(β) = ΣCY (β)
⊤v(β), λ⋆(β) = − v(β). (10)

Because ΣCC(β) is symmetric positive-definite (a covariance plus ridge), conjugate gradients con-
verge rapidly in practice. The matrix–vector product is implemented implicitly as

x 7→ ΣCC(β)x = αx + 1
N C(β)⊤

(
C(β)x

)
, (11)

which requires only two passes through the control variates matrix C(β). This allows minibatching
over trajectories, avoiding the need to materialize ΣCC . Summarily, the efficiency of our approach
relies critically on the fact that the estimator is linear in λ: this structure reduces variance mini-
mization to solving a symmetric positive-definite linear system, which can be handled scalably with
conjugate gradients.
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D.1 CONFIDENCE BOUNDS OF RSCV ESTIMATORS

In Section 4, we provided theoretical bounds on the performance of Shaped-PDIS, demonstrating
that these performance bounds were tighter than those of standard PDIS. However, since standard
OPE estimators often have vacuous high-probability bounds, in this section, we provide tighter
bounds for Shaped-DR and Shaped-MRDR estimators in comparison to their non-shaped counter-
parts.

Confidence bounds of Shaped DR Estimator. Assume boundedness (for some R,B,w > 0)
ensuring a uniform envelope

|YDR + λC| ≤ LDR(λ), ∀λ ∈ R. (12)

Let
σ2
DR(λ) := Var

[
YDR + λC

]
. (13)

Then, for any δ ∈ (0, 1), Bernstein’s inequality yields

∣∣V̂Shaped-DR(λ)− V πe
∣∣ ≤

√
2σ2

DR(λ)

N
log

2

δ
+

2LDR(λ)

3N
log

2

δ
. (14)

At λ = λ⋆
DR, we have σ2

DR(λ
⋆
DR) ≤ Var[YDR], so the Bernstein CI for Shaped–DR is (weakly)

tighter than that for DR at the same confidence.

Let S2
N (λ) denote the sample variance of {YDR,i + λCi}Ni=1. The empirical Bernstein bound gives

∣∣V̂Shaped-DR(λ)− V πe
∣∣ ≤

√
2S2

N (λ)

N
log

3

δ
+

3LDR(λ)

N
log

3

δ
. (15)

At λ⋆
DR, S2

N (λ⋆
DR) concentrates below the DR sample variance, so the empirical intervals are like-

wise tighter.

Confidence bounds of Shaped MRDR Estimator. Assume a uniform envelope

|YMRDR + λC| ≤ LMRDR(λ), ∀λ ∈ R. (16)

Let
σ2
MRDR(λ) := Var

[
YMRDR + λC

]
. (17)

Then, for any δ ∈ (0, 1),

∣∣V̂Shaped-MRDR(λ)− V πe
∣∣ ≤

√
2σ2

MRDR(λ)

N
log

2

δ
+

2LMRDR(λ)

3N
log

2

δ
. (18)

At λ⋆
MRDR, σ2

MRDR(λ
⋆
MRDR) ≤ Var[YMRDR], so the Bernstein CI for Shaped–MRDR is (weakly)

tighter than that for MRDR.

Let S2
N (λ) be the sample variance of {YMRDR,i + λCi}Ni=1. The empirical Bernstein inequality

implies ∣∣V̂Shaped-MRDR(λ)− V πe
∣∣ ≤

√
2S2

N (λ)

N
log

3

δ
+

3LMRDR(λ)

N
log

3

δ
. (19)

Evaluated at λ⋆
MRDR, these intervals are tighter.

E EXPERIMENT DETAILS

E.1 EVALUATION METRICS

Here we describe some of the key evaluation metrics we use to assess the validity of our shaped
estimators. These metrics have been widely used across works that focus on OPE e.g. (Dudı́k et al.,
2011; Farajtabar et al., 2018; Thomas & Brunskill, 2016).
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True policy value. The value of the evaluation policy πe is

V (πe) = Eτ∼πe

[
T∑

t=0

γtrt

]
,

where τ = (s0, a0, r0, . . . , sT ) denotes a trajectory.

Bias. Bias quantifies the systematic deviation of an estimator from the true policy value. Let V̂ (πe)
denote an estimate of V (πe). The bias is defined as

Bias = Eτ∼πb

[
V̂ (πe)

]
− V (πe),

where the expectation is taken over trajectories generated by πb, and any additional randomness in
the estimator. In practice, we approximate bias by computing the mean difference between OPE
estimates and the ground-truth policy value over repeated runs.

Variance. Variance measures the spread or instability of the estimator around its expected value
under πb. Formally,

Var = Eτ∼πb

[(
V̂ (πe)− Eτ∼πb

[V̂ (πe)]
)2]

.

In empirical evaluation, variance is approximated across multiple independent runs of the estimator.
A low variance indicates consistent estimates across runs, whereas a high variance implies sensitivity
to randomness in data or weight magnitudes.

Effective Sample Size (ESS). ESS is a diagnostic metric for the stability and reliability of im-
portance sampling–based estimators. It reflects how many “independent and identically distributed”
samples remain after reweighting the dataset. For a dataset of n trajectories sampled under πb, let

ρi =

T∏
t=1

πe(at|st)
πb(at|st)

, wi =
ρi∑n
j=1 ρj

.

Then,

ESS =
1∑n

i=1 w
2
i

.

The ESS ranges between 1 and n. A high ESS indicates that reweighting distributes influence across
many trajectories, whereas a low ESS implies that only a few trajectories dominate, leading to high-
variance estimates.

F ADDITIONAL EXPERIMENT DETAILS AND RESULTS

F.1 TABULAR CHAIN

Hyperparameters. We use a discount factor of γ = 0.97, three-fold cross-fitting for control vari-
ates and ridge regularization with α = 10−2 for covariance inversions. Each setting is repeated
across 10–20 random seeds. We report results in terms of Bias, Variance, ESS and MSE.

Extended Experiment We extend the chain MDP with a controllable reward density parameter to
vary the degree of sparsity. Rewards remain terminal-only, with +1 at the success state s20 and −1
at the dead-end s10, while all other transitions yield 0. To introduce sparsity, we retain each nonzero
terminal reward with probability dterm ∈ (0, 1] and drop it to zero otherwise. Thus, dterm = 1
recovers the standard setting where the agent always observes the terminal signal, while smaller
values reduce the frequency of observed rewards, making feedback increasingly sparse. As in the
base setup, surviving terminal rewards are corrupted with zero-mean Gaussian noise of standard
deviation σ = 0.5. This construction preserves the structure of the task while enabling a controlled
sweep over reward sparsity.
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Figure 5: Performance of OPE methods across varying degrees of sparsity of rewards. Shaping-
based OPE methods have lower MSE across increasing sparsity. The most extreme setting where a
reward is only given at the terminal state is shown in the main body of the paper Figure 2.

.

F.2 ICU-SEPSIS

Environment Structure. We evaluate on the ICU-Sepsis benchmark (Choudhary et al., 2024) de-
rived from the MIMIC-III database, which models the treatment of septic patients. The environment
follows the standardized pre-processing provided by the benchmark repository, where patient tra-
jectories are segmented into 4-hour windows over a total horizon of up to 72 hours. Each state st
consists of approximately 40 features, including vital signs (e.g. heart rate, blood pressure), labora-
tory values (e.g. lactate, creatinine), demographics and derived scores such as SOFA. These features
are normalized and imputed following the pre-processing pipeline in the benchmark. Actions at
correspond to intravenous fluids and vasopressors that the physician can administer. Following prior
work, continuous dosages are discretized into a 5 × 5 grid, yielding a 25-dim discrete action space
that balances granularity with tractability. The reward signal is sparse and delayed: patients receive
a terminal reward of +1 if discharged alive and −1 if deceased. Intermediate rewards are set to 0.
This reward structure reflects the clinical challenge of evaluating policies with delayed outcomes.

Policies. The behavior policy πb corresponds to the empirical distribution of clinician actions in
the MIMIC data, estimated from the dataset. The evaluation policy πe is defined as an RL agent
trained offline (a fitted Q-iteration or DQN variant), chosen to be sufficiently distinct from to induce
a challenging distributional shift. We run a PPO algorithm for 1M episodes and select the behavior
policy πb as the model parameters of the actor at episode 250k and evaluation policy πe as model
parameters at episode 1M. The ground-truth value of πe is approximated by Monte Carlo rollouts in
the learned environment model released with the benchmark.

Hyperparameters. In order to obtain the policies, we train a PPO for 1M episodes with 1k max-
steps using a learning rate of 5e−3. The other hyperparameters are as follows: γ = 1.0, λgae =
0.4, update-epochs:6, norm-adv: true, clip-coef: 0.5, clip-vloss: false, ent-coef: 0.005, vf-coef:
0.3,maxgrad-norm: 0.4 and target-kl: 0.001. In our evaluation experiments, we use a discount factor
of γ = 1.00, horizon T ≈ 18 steps (4h intervals over 72hrs), use dataset size of 10,000 patient
trajectories to learn the shaping control variate. RSCV potentials Φβ are parameterized as two-layer
MLPs (128-128, tanh) and trained for 10k Adam steps with ridge regularization α = 10−4. FQE
critics are trained for 200 epochs with batch size 256 and learning rate 3× 10−4. We evaluate each
experiment over a set of [100,300,500,750,1k,1.5k,2k,5k,10k] episodes and repeat it over 10 random
seeds, reporting MSE relative to the true values of πe, empirical variance and ESS.

F.3 CANCER SIMULATOR

Hyperparameters. For all cancer simulator experiments, we fix the horizon to 30 months with a
discount factor of γ = 0.99. Datasets contain N ∈ {100, 300, 1000, 2000, 5000, 10000} trajecto-
ries. Measurement noise on tumor size is modeled as Gaussian with standard deviation σ ∈ {0, 1, 2}
mm. For RSCV, the potential function Φβ is parameterized as a one-hidden-layer neural network
with 32 tanh units, trained for 2000 steps using Adam on the explained-variance objective, with ridge
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regularization α = 10−2 and 3-fold cross-fitting for coefficient estimation. The DR critic is trained
with FQE (50 iterations for tabular), while MRDR reweights updates using absolute importance
ratios for 20 epochs. We evaluate all estimators over 10 random seeds.

Figure 6: Cancer. We observe the bias, variance, MSE of the shaped estimators is generally lower
than the bias, variance, MSE of the traditional estimators. Additionally, the ESS of the shaped-
estimators has higher mean and lower deviation as compared to the shaped-estimators.

G DETAILED QUALITATIVE INTERPRETATIONS OF SHAPED-POTENTIAL
FUNCTIONS IN ICU-SEPSIS

Table 1: Feature descriptions of the top 10 states with the lowest values of shaped-PDIS potential
function in ICU-Sepsis. Red indicated bad attributes. We observe these states have Low GCS,
Low BP, Low SpO2 levels, High FiO2, Very high White Blood Cell (WBC) count, High Partial
Thromboplastin time and Very high partial pressure of arterial carbon dioxide (PaCO2).

State Feature ϕ(s) = −1.39 ϕ(s) = −1.36 ϕ(s) = −1.18 ϕ(s) = −1.01 ϕ(s) = −0.98 ϕ(s) = −0.97 ϕ(s) = −0.95 ϕ(s) = −0.92 ϕ(s) = −0.84 ϕ(s) = −0.84
age Low Medium High High Low Medium Low Low Medium Low
admissionweight Low Medium Medium Medium High Medium Medium Low Medium High
gcs Low Low Low Low High Low Medium Low Low Medium
hr High High Low Medium Low High High Medium Low High
sysbp Low Low Low Low Low Medium Low High High High
meanbp Low Low Low Low Low Medium Low High High High
diabp Low Low Low Low Low Medium Low High High High
rr High High Low Medium Low Medium High Medium Low Medium
temp-c High High Low Medium Low Low High Low Medium Medium
fio2both High High High High High High High Low Low Medium
potassium Low Medium High Medium Medium High Low High Low Medium
sodium Low Low Low High Medium Medium High Low Medium Medium
chloride Low Medium Medium Low Low Medium High Medium Medium Low
glucose Medium High Medium High High High Low Low Low High
magnesium Medium Medium High High High Medium Medium Medium Low Medium
calcium Medium Low Low High High Medium High Low Medium High
hb Low High Medium Medium High High Medium Low Medium High
wbc count High High High High High Medium High Low Low Medium
platelets count High High High High High High Low Low Medium High
ptt High High High High Low High Medium High Low Medium
pt High High High High High High Medium High Low Low
arterial ph High Low Low Medium Low Low High Low Medium Low
pao2 Low Low Low Low Medium Medium Low High High Medium
paco2 High High High High High Low Low High High High
arterial-be High Low Low High Medium Low Medium Low Medium Low
hco3 High Low Low High High Low Low Low High High
arterial lactate Medium High Low Medium High High Medium Low Low Medium
sofa High High High High Low Medium High Medium High Medium
sirs High High High High Low Medium High High Low Medium
shock-index High High Low High Low High Medium Low Low Medium
pao2-fio2 High Low Low Low Low Medium Medium High High Medium
cumulated-balance tev Medium High Medium Low Low Medium Medium Low Low Low
spo2 Low Low Medium Low Low Medium Low High Medium Low
bun Medium Medium High High Medium Medium High High Low Low
creatinine Low High High Medium Medium Medium High High Low Low
sgot High High Low Medium High Low High Low Medium Low
sgpt High High Low Medium High Low High Low Medium Low
total-bili High Medium Low Low Medium Medium High Low Medium Low
inr High High High High Medium High Medium High Low Low
input total tev Low High Low Low Low Low Medium Low Medium Low
input-4hourly tev Low High Medium Medium Low Low Low Low Low Low
output-total Low Low Low High High Low Low Low High Low
output-4hourly Low Low Low Medium High Low Low Low Low Low
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Table 2: Feature descriptions of the top 10 states with the highest values of shaped-PDIS potential
function in ICU-Sepsis. Green indicates good attributes. We observe these states have normal-high
GCS, Normal BP, High SpO2 levels, Normal FiO2, normal White Blood Cell (WBC) count, normal
HCO3 levels and normal partial pressure of arterial carbon dioxide (PaCO2).

State Feature ϕ(s) = 1.73 ϕ(s) = 1.29 ϕ(s) = 1.14 ϕ(s) = 1.03 ϕ(s) = 1.01 ϕ(s) = 0.90 ϕ(s) = 0.88 ϕ(s) = 0.86 ϕ(s) = 0.85 ϕ(s) = 0.75
age Low High Medium Low Low Medium Low Low Low Low
admissionweight High High Medium High High High Medium High High Medium
gcs Low Medium Medium Medium Medium High Medium Medium Medium Medium
hr High Low Low Low High Low Low High High High
sysbp Low Medium Low Medium Medium Medium Low Low High High
meanbp Low Medium Low Medium Medium Medium Low Low High High
diabp Low Medium Low Medium Medium Medium Low Low High High
rr High Medium Medium Medium High Medium Low High High Medium
temp c Medium Low Low Low High Low Low High High High
fio2both Medium Medium Medium High Medium low Medium High Medium Medium
potassium Medium High Low High Low High Medium High Low High
sodium High Low Low Medium High Medium Low Low High Low
chloride Low Low Low Medium Medium Medium Medium Low High Low
glucose High High Medium Medium High High Low Low Medium Medium
magnesium Medium High Low High High High Medium Low Low High
calcium Medium High Low High Medium High Medium Low Low High
hb High Low Low Medium Low High Low High Medium Low
wbc count Medium Medium Low Low Low Medium Low Medium Medium High
platelets count Low High Low Low Low Medium Low Low Low High
ptt High Low High High Low Medium High High Medium High
pt High High Medium High High High High High Low Medium
arterial ph Low Medium High Low High Medium Low Low High High
pao2 Low Low Low High Medium Medium Medium Low Medium Medium
paco2 Low High Low High Medium Medium Low Low Medium Medium
arterial be Low High Medium Low High Medium Low Low High High
hco3 Low High Medium Medium Medium Medium Low Low Medium Medium
arterial lactate High Low Low High High Low High High Medium Medium
sofa High High High High High Low High High Low High
sirs High Low Low Medium High Low Low High High High
shock index High Medium Medium Medium High Medium Medium High Medium Medium
pao2 fio2 Low Low Medium High Medium High Medium Low Medium Medium
cumulated balance tev High Low Medium Medium Low Low High High High High
spo2 Low High Medium High High Medium High High High Medium
bun High High High High High Medium High High Low High
creatinine High High High High High Medium High High Low High
sgot Medium Medium Low Medium Medium Medium High High High Medium
sgpt Medium Medium Low Medium Medium High Medium High High Low
total-bili High High Low High Medium Medium High High High High
inr High High Medium High High High High High Low High
input-total-tev High Low Low Low High Low High High High High
input-4hourly-tev High Medium Medium Low Medium Low High High High Medium
output-total Medium Medium Low Low High Medium Low Low High Low
output-4hourly Low Medium Low Low High Low Low Low High Low
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