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Abstract

Neural named entity recognition (NER) mod-001
els may easily encounter the over-confidence002
issue, which degrades the performance and003
calibration. Inspired by label smoothing and004
driven by the ambiguity of boundary annota-005
tion in NER engineering, we propose bound-006
ary smoothing as a regularization technique for007
span-based neural NER models. It re-assigns008
entity probabilities from annotated spans to009
the surrounding ones. Built on a simple but010
strong baseline, our model achieves results bet-011
ter than or competitive with previous state-012
of-the-art systems on eight well-known NER013
benchmarks.1 Further empirical analysis sug-014
gests that boundary smoothing effectively mit-015
igates over-confidence, improves model cali-016
bration, and brings flatter neural minima and017
more smoothed loss landscapes.018

1 Introduction019

Named entity recognition (NER) is one of the fun-020

damental natural language processing (NLP) tasks021

with extensive investigations. As a common setting,022

an entity is regarded as correctly recognized only023

if its type and two boundaries exactly match the024

ground truth.025

The annotation of boundaries is more ambigu-026

ous, error-prone, and raises more inconsistencies027

than entity types. For example, the CoNLL 2003028

task contains four entity types (i.e., person, loca-029

tion, organization, miscellaneous), which are easy030

to distinguish between. However, the boundaries031

of a entity mention could be ambiguous, because032

of the “boundary words” (e.g., articles or modi-033

fiers). Considerable efforts are required to specify034

the “gold standard practice” case by case. Table035

1 presents some examples from CoNLL 2003 An-036

notation Guidelines.2 In addition, some studies037

1Our code will be publicly released.
2https://www-nlpir.nist.gov/related_

projects/muc/proceedings/ne_task.html.

Text Boundary words

[The [White House]ORG]ORG Article

[The [Godfather]PER]PER Article

[[Clinton]PER government]ORG Modifier

[Mr. [Harry Schearer]PER]PER Person title

[[John Doe]PER, Jr.]PER Name appositive

Table 1: Examples of CoNLL 2003 Annotation Guide-
lines and potential alternatives. The gold annotations
are marked in blue [*], whereas the alternative annota-
tions are in red [*].

have also reported that incorrect boundary is a ma- 038

jor source of entity recognition error (Wang et al., 039

2019; Eberts and Ulges, 2020). 040

Recently, span-based models have gained much 041

popularity in NER studies, and achieved state-of- 042

the-art (SOTA) results (Eberts and Ulges, 2020; 043

Yu et al., 2020; Li et al., 2021). This approach 044

typically enumerates all candidate spans and classi- 045

fies them into entity types (including a “non-entity” 046

type); the annotated spans are scarce and assigned 047

with full probability to be an entity, whereas all 048

other spans are assigned with zero probability. This 049

creates noticeable sharpness between the classifica- 050

tion targets of adjacent spans, and may thus plague 051

the trainability of neural networks. In addition, 052

empirical evidence shows that these models easily 053

encounter the over-confidence issue, i.e., the confi- 054

dence of a predicted entity is much higher than its 055

correctness probability. This is a manifestation of 056

miscalibration (Guo et al., 2017). 057

Inspired by label smoothing (Szegedy et al., 058

2016; Müller et al., 2019), we propose bound- 059

ary smoothing as a regularization technique for 060

span-based neural NER models. By explicitly re- 061

allocating entity probabilities from annotated spans 062

to the surrounding ones, boundary smoothing can 063

effectively mitigate over-confidence, and result in 064

consistently better performance. 065
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Specifically, our baseline employs the contextu-066

alized embeddings from a pretrained Transformer067

of base size (768 hidden size, 12 layers), and the068

biaffine decoder proposed by Yu et al. (2020). With069

boundary smoothing, our model outperforms previ-070

ous SOTA on four English NER datasets (CoNLL071

2003, OntoNotes 5, ACE 2004 and ACE 2005) and072

two Chinese datasets (Weibo NER and Resume073

NER), and achieves competitive results on other074

two Chinese datasets (OntoNotes 4 and MSRA).075

Such extensive experiments support the effective-076

ness and robustness of our proposed technique.077

In addition, we show that boundary smoothing078

can help the trained NER models to preserve cal-079

ibration, such that the produced confidences can080

better represent the precision rate of a predicted en-081

tity. This corresponds to the effect of label smooth-082

ing on the image classification task (Müller et al.,083

2019). Further, visualization results qualitatively084

suggest that boundary smoothing can lead to flat-085

ter solutions and more smoothed loss landscapes,086

which are typically associated with better general-087

ization and trainability (Hochreiter and Schmidhu-088

ber, 1997; Li et al., 2018).089

2 Related Work090

Named Entity Recognition The mainstream091

NER systems are designed to recognize flat entities092

and based on a sequence tagging framework. Col-093

lobert et al. (2011) introduced the linear-chain con-094

ditional random field (CRF) into neural network-095

based sequence tagging models, which can explic-096

itly encode the transition likelihoods between adja-097

cent tags. Many researchers followed this work,098

and employed LSTM as the encoder. In addi-099

tion, character-level representations are typically100

used for English tasks (Huang et al., 2015; Lample101

et al., 2016; Ma and Hovy, 2016; Chiu and Nichols,102

2016), whereas lexicon information is helpful for103

Chinese NER (Zhang and Yang, 2018; Ma et al.,104

2020; Li et al., 2020a).105

Nested NER allows a token to belong to multi-106

ple entities, which conflicts with the plain sequence107

tagging framework. Ju et al. (2018) proposed to108

use stacked LSTM-CRFs to predict from inner to109

outer entities. Straková et al. (2019) concatenated110

the BILOU tags for each token inside the nested en-111

tities, which allows the LSTM-CRF to work as for112

flat entities. Li et al. (2020b) reformulated nested113

NER as a machine reading comprehension task.114

Shen et al. (2021) proposed to recognize nested115

entities by the two-stage object detection method 116

widely used in computer vision. 117

Recent years, a body of literature emerged on 118

span-based models, which were compatible with 119

both flat and nested entities, and achieved SOTA 120

performance (Eberts and Ulges, 2020; Yu et al., 121

2020; Li et al., 2021). These models typically enu- 122

merate all possible candidate text spans and then 123

classify each span into entity types. In this work, 124

the biaffine model (Yu et al., 2020) is chosen and 125

re-implemented with slight modifications as our 126

baseline, because of its high performance and com- 127

patibility with boundary smoothing. 128

In addition, pretrained language models, also 129

known as contextualized embeddings, were also 130

widely introduced to NER models, and significantly 131

boosted the model performance (Peters et al., 2018; 132

Devlin et al., 2019). They are used in our baseline 133

by default. 134

Label Smoothing Szegedy et al. (2016) pro- 135

posed the label smoothing as a regularization tech- 136

nique to improve the accuracy of the Inception 137

networks on ImageNet. By explicitly assigning a 138

small probability to non-ground-truth labels, label 139

smoothing can prevent the models from becom- 140

ing too confident about the predictions, and thus 141

improve generalization. It turned out to be a use- 142

ful alternative to the standard cross entropy loss, 143

and has been widely adopted to fight against the 144

over-confidence (Zoph et al., 2018; Chorowski and 145

Jaitly, 2017; Vaswani et al., 2017), improve the 146

model calibration (Müller et al., 2019), and de- 147

noise incorrect labels (Lukasik et al., 2020). 148

Our proposed boundary smoothing applies the 149

smoothing technique to entity boundaries, rather 150

than labels. This is driven by the observation that 151

entity boundaries are more ambiguous and incon- 152

sistent to annotate in NER engineering. To the best 153

of our knowledge, this study is the first that focuses 154

on the effect of smoothing regularization on NER 155

models. 156

3 Methods 157

3.1 Biaffine Decoder 158

A neural network-based NER model typically en- 159

codes the input tokens to a sequence of represen- 160

tations x = x1, x2, . . . , xT of length T , and then 161

decodes these representations to task outputs, i.e., 162

a list of entities specified by types and boundaries. 163

We follow Yu et al. (2020) and use the biaffine 164

2



decoder. Specifically, the representations x are165

separately affined by two feedforward networks,166

resulting in two representations hs ∈ RT×d and167

he ∈ RT×d, which correspond to the start and168

end positions of spans. For c entity types (a “non-169

entity” type included), given a span starting at the170

i-th token and ending at the j-th token, a scoring171

vector rij ∈ Rc can be computed as:172

rij = (hsi )
TUhej +W (hsi ⊕ hej ⊕wj−i) + b, (1)173

where wj−i ∈ Rdw is the (j − i)-th width em-174

bedding from a dedicated learnable matrix; U ∈175

Rd×c×d, W ∈ Rc×(2d+dw) and b ∈ Rc are learn-176

able parameters. rij is then fed into a softmax layer:177

178

ŷij = softmax(rij), (2)179

which yields the predicted probabilities over all180

entity types.181

The ground truth yij ∈ Rc is an one-hot encoded182

vector, with value being 1 if the index corresponds183

with the annotated entity type, and 0 otherwise.184

Thus, the model can be optimized by the standard185

cross entropy loss for all candidate spans:186

LCE = −
∑

0≤i≤j<T

yTij log(ŷij). (3)187

In the inference time, the spans predicted to be188

“non-entity” are first discarded, and the remaining189

ones are ranked by their predictive confidences.190

Spans with lower confidences would also be dis-191

carded if they clash with the boundaries of spans192

with higher confidences. Refer to Yu et al. (2020)193

for more details.194

3.2 Boundary Smoothing195

Figure 1a visualizes the ground truth yij for an ex-196

ample sentence with two annotated entities. The197

valid candidate spans cover the upper triangular198

area of the matrix. In existing NER models, the an-199

notated boundaries are considered to be absolutely200

reliable. Hence, each annotated span is assigned201

with the full probability to be an entity, whereas all202

unannotated spans are assigned with zero probabil-203

ity. We refer to this probability allocation as hard204

boundary, which is, however, probably not the best205

choice.206

As aforementioned, the entity boundaries may be207

ambiguous and inconsistent, so the spans surround-208

ing an annotated one deserve a small probability to209

be an entity. Figure 1b visualizes ỹij , the boundary210
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(b) Smoothed boundary

Figure 1: An example of hard and smoothed bound-
aries. The example sentence has ten tokens and two en-
tities of spans (1, 2) and (3, 7), colored in red and blue,
respectively. The first subfigure presents the entity
recognition targets of hard boundaries. The second sub-
figure presents the corresponding targets of smoothed
boundaries, where the span (1, 2) is smoothed by a size
of 1, and the span (3, 7) is smoothed by a size of 2.

smoothing version of yij . Specifically, given an 211

annotated entity, a portion of probability ε is as- 212

signed to its surrounding spans, and the remaining 213

probability 1− ε is assigned to the originally anno- 214

tated span. With smoothing size D, all the spans 215

with Manhattan distance d (d ≤ D) to the anno- 216

tated entity equally share probability ε/D. After 217

such entity probability re-allocation, any remaining 218

probability of a span is assigned to be “non-entity”. 219

We refer to this as smoothed boundary. 220

Thus, the biaffine model can be optimized by 221

the boundary-smoothing regularized cross entropy 222

loss: 223

LBS = −
∑

0≤i≤j<T

ỹTij log(ŷij). (4) 224
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Empirically, the positive samples (i.e., ground-225

truth entities) are sparsely distributed over the226

candidate spans. For example, the CoNLL 2003227

dataset has about 35 thousand entities, which rep-228

resent only 0.93% in the 3.78 million candidate229

spans. By explicitly assigning probability to sur-230

rounding spans, boundary smoothing prevents the231

model from concentrating all probability mass on232

the scarce positive samples. This intuitively helps233

alleviate over-confidence.234

In addition, hard boundary presents noticeable235

sharpness between the classification targets of236

positive spans and surrounding ones, although237

they share similar contextualized representations.238

Smoothed boundary provides more continuous tar-239

gets across spans, which are conceptually more240

compatible with the inductive bias of neural net-241

works that prefers continuous solutions (Hornik242

et al., 1989).243

4 Experiments244

4.1 Experimental Settings245

Datasets We use four English NER datasets:246

CoNLL 2003 (Tjong Kim Sang and Veenstra,247

1999), OntoNotes 53, ACE 20044 and ACE 20055;248

and four Chinese NER datasets: OntoNotes 46,249

MSRA (Levow, 2006), Weibo NER (Peng and250

Dredze, 2015) and Resume NER (Zhang and Yang,251

2018). Among them, ACE 2004 and ACE 2005 are252

nested NER tasks, and the others are flat tasks.253

Hyperparameters For English corpora, we use254

RoBERTa (Liu et al., 2019) followed by a BiL-255

STM layer to produce the contextualized represen-256

tations. For Chinese, we choose the BERT pre-257

trained with whole word masking (Cui et al., 2019).258

The BiLSTM has one layer and 200 hidden size259

with dropout rate of 0.5. The biaffine decoder fol-260

lows Yu et al. (2020), with the affine layers of261

hidden size 150 and dropout rate 0.2. We addi-262

tionally introduce a span width embedding of size263

25. Note that the pretrained language models are264

all of the base size (768 hidden size, 12 layers),265

and the model is free of any additional auxiliary266

3https://catalog.ldc.upenn.edu/
LDC2013T19; Data splits follow Pradhan et al. (2013).

4https://catalog.ldc.upenn.edu/
LDC2005T09; Data splits follow Lu and Roth (2015).

5https://catalog.ldc.upenn.edu/
LDC2006T06; Data splits follow Lu and Roth (2015).

6https://catalog.ldc.upenn.edu/
LDC2011T03; Data splits follow Che et al. (2013).

embeddings; this configuration is relatively simple, 267

compared with those in related work. 268

The boundary smoothing parameter ε is selected 269

in {0.1, 0.2, 0.3}; smoothing size D is selected in 270

{1, 2}. 271

All the models are trained by the AdamW op- 272

timizer (Loshchilov and Hutter, 2018) with a gra- 273

dient clipping at L2-norm of 5.0 (Pascanu et al., 274

2013). The models are trained for 50 epochs with 275

batch size of 48. The learning rate is searched be- 276

tween 1e-3 and 3e-3 on the randomly initialized 277

weights, and between 8e-6 and 3e-5 on the pre- 278

trained weights; a scheduler of linear warmup in 279

the first 20% steps followed by linear decay is ap- 280

plied. 281

Evaluation A predicted entity is considered cor- 282

rect if its type and boundaries exactly match the 283

ground truth. Hyperparameters are tuned according 284

to the F1 scores on the development set, and the 285

evaluation metrics (precision, recall, F1 score) are 286

reported on the testing set. 287

4.2 Main Results 288

Table 2 presents the evaluation results on four 289

English datasets, in which CoNLL 2003 and 290

OntoNotes 5 are flat NER corpora, whereas ACE 291

2004 and ACE 2005 contains a high proportion of 292

nested entities. Compared with previous SOTA 293

systems, our simple baseline (RoBERTa-base + 294

BiLSTM + Biaffine) achieves on-par or slightly 295

inferior performance. Provided the strong baseline, 296

our experiments show that boundary smoothing can 297

effectively and consistently boost the F1 score of 298

entity recognition across different datasets. With 299

the help of boundary smoothing, our model outper- 300

forms the best of the previous SOTA systems by a 301

magnitude from 0.2 to 0.5 percentages. 302

Table 3 presents the results on four Chinese 303

datasets, which are all flat NER corpora. Again, 304

boundary smoothing consistently improves model 305

performance against the baseline (BERT-base- 306

wwm + BiLSTM + Biaffine) across all datasets. 307

In addition, our model outperforms previous SOTA 308

by 2.16 and 0.55 percentages on Weibo and Re- 309

sume NER datasets, and achieves comparable F1 310

scores on OntoNotes 4 and MSRA. Note that al- 311

most all previous systems solve these tasks within a 312

sequence tagging framework; in contrast, this work 313

is among the first to introduce a span-based ap- 314

proach to Chinese NER tasks and establish SOTA 315

results. 316
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CoNLL 2003

Model Prec. Rec. F1

Lample et al. (2016) – – 90.94
Chiu and Nichols (2016)† 91.39 91.85 91.62
Peters et al. (2018) – – 92.22
Akbik et al. (2018)† – – 93.07
Devlin et al. (2019) – – 92.8
Straková et al. (2019)† – – 93.38
Wang et al. (2019)† – – 93.43
Li et al. (2020b) 92.33 94.61 93.04
Yu et al. (2020)† 93.7 93.3 93.5
Baseline 92.93 94.03 93.48
Baseline + BS 93.61 93.68 93.65

OntoNotes 5

Model Prec. Rec. F1

Chiu and Nichols (2016) 86.04 86.53 86.28
Li et al. (2020b) 92.98 89.95 91.11
Yu et al. (2020) 91.1 91.5 91.3
Baseline 90.31 92.13 91.21
Baseline + BS 91.75 91.74 91.74

ACE 2004

Model Prec. Rec. F1

Katiyar and Cardie (2018) 73.6 71.8 72.7
Straková et al. (2019)† – – 84.40
Li et al. (2020b) 85.05 86.32 85.98
Yu et al. (2020) 87.3 86.0 86.7
Shen et al. (2021) 87.44 87.38 87.41
Baseline 86.67 88.42 87.54
Baseline + BS 88.43 87.53 87.98

ACE 2005

Model Prec. Rec. F1

Katiyar and Cardie (2018) 70.6 70.4 70.5
Straková et al. (2019)† – – 84.33
Li et al. (2020b) 87.16 86.59 86.88
Yu et al. (2020) 85.2 85.6 85.4
Shen et al. (2021) 86.09 87.27 86.67
Baseline 84.29 88.97 86.56
Baseline + BS 86.25 88.07 87.15

Table 2: Results of English named entity recognition.
BS means boundary smoothing. †means that the model
is trained with both the training and development splits.

In five out of the above eight datasets, integrat-317

ing boundary smoothing significantly increases the318

precision rate with a slight drop in the recall, result-319

ing in a better overall F1 score. This is consistent320

with our expectation, because boundary smoothing321

discourages over-confidence when recognizing en-322

tities, which implicitly leads the model to establish323

a more critical threshold to admit entities.324

Given the use of well pretrained language mod-325

els, most of the performance gains are relatively326

marginal. However, boundary smoothing can work327

effectively and consistently for different languages328

and datasets. In addition, it is easy to implement329

OntoNotes 4

Model Prec. Rec. F1

Zhang and Yang (2018) 76.35 71.56 73.88
Ma et al. (2020) 83.41 82.21 82.81
Li et al. (2020a) – – 81.82
Li et al. (2020b) 82.98 81.25 82.11
Chen and Kong (2021) 79.25 80.66 79.95
Wu et al. (2021) – – 82.57
Baseline 82.79 81.27 82.03
Baseline + BS 81.65 84.03 82.83

MSRA

Model Prec. Rec. F1

Zhang and Yang (2018) 93.57 92.79 93.18
Ma et al. (2020) 95.75 95.10 95.42
Li et al. (2020a) – – 96.09
Li et al. (2020b) 96.18 95.12 95.75
Wu et al. (2021) – – 96.24
Baseline 95.82 95.78 95.80
Baseline + BS 96.37 96.15 96.26

Weibo NER

Model Prec. Rec. F1

Zhang and Yang (2018) – – 58.79
Ma et al. (2020) – – 70.50
Li et al. (2020a) – – 68.55
Chen and Kong (2021) – – 70.14
Wu et al. (2021) – – 70.43
Baseline 68.65 74.40 71.41
Baseline + BS 70.16 75.36 72.66

Resume NER

Model Prec. Rec. F1

Zhang and Yang (2018) 94.81 94.11 94.46
Ma et al. (2020) 96.08 96.13 96.11
Li et al. (2020a) – – 95.86
Wu et al. (2021) – – 95.98
Baseline 95.81 96.87 96.34
Baseline + BS 96.63 96.69 96.66

Table 3: Results of Chinese named entity recognition.
BS means boundary smoothing.

and integrate into any span-based neural NER mod- 330

els, with almost no side effects. 331

4.3 Ablation Studies 332

We perform ablation studies on CoNLL 2003, 333

ACE 2005 and Resume NER datasets (covering 334

flat/nested and English/Chinese datasets), to eval- 335

uate the effects of boundary smoothing parameter 336

ε and D, as well as other components of our NER 337

system. 338

Boundary Smoothing Parameters We train the 339

model with ε in {0.1, 0.2, 0.3} and D in {1, 2}; 340

the corresponding results are reported in Table 4. 341

Most combinations of the two hyperparameters can 342

achieve higher F1 scores than the baseline, which 343
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CoNLL ACE Resume
2003 2005 NER

Baseline 93.48 86.56 96.34

BS (ε = 0.1, D = 1) 93.50 86.65 96.63
BS (ε = 0.2, D = 1) 93.56 86.96 96.66
BS (ε = 0.3, D = 1) 93.65 86.81 96.50
BS (ε = 0.1, D = 2) 93.45 87.15 96.33
BS (ε = 0.2, D = 2) 93.39 86.99 96.62
BS (ε = 0.3, D = 2) 93.57 86.71 96.28

LS (α = 0.1) 93.43 86.31 96.31
LS (α = 0.2) 93.37 86.17 96.38
LS (α = 0.3) 93.26 85.65 96.26

Table 4: Ablation studies of smoothing parameters. F1

scores are reported. BS and LS mean boundary smooth-
ing and label smoothing, respectively.

suggests the robustness of boundary smoothing. On344

the other hand, the best smoothing parameters are345

different across datasets. Hence, if the best perfor-346

mance is desired for a new NER task in practice,347

hyperparameter tuning would be necessary.348

Label Smoothing We replace boundary smooth-349

ing with label smoothing in the span classifier. La-350

bel smoothing cannot improve, or may even impair351

the performance of the model, compared with the352

baseline (see Table 4). As aforementioned, we hy-353

pothesize that the semantic differences between the354

typical entity types are quite clear, so it is ineffec-355

tive to smooth between them.356

Pretrained Language Models We test if better357

pretrained language models can further improve358

the performance. For English datasets, we use359

RoBERTa of large size (1024 hidden size, 24360

layers), and the F1 scores increase by 0.12 and361

0.87 percentages for CoNLL 2003 and ACE 2005,362

respectively. For Chinese, we use MacBERT (Cui363

et al., 2020) of base and large sizes, and both364

improve the F1 score by 0.09 percentage on Re-365

sume NER (see Table 5).366

Note that boundary smoothing contributes to the367

F1 scores by 0.17, 0.59 and 0.32 percentages on368

these three datasets, which are roughly compara-369

ble to the magnitudes by switching the pretrained370

language model from base size to large size.371

BiLSTM Layer We remove the BiLSTM layer,372

directly feeding the output of pretrained language373

model into the biaffine decoder. Absence of the374

BiLSTM layer will result in drops of the F1 scores375

by 0.35, 0.57 and 0.1 percentages on the three376

datasets (see Table 5).377

CoNLL ACE Resume
2003 2005 NER

Baseline + BS 93.65 87.15 96.66

BS w/ RoBERTa-large 93.77 88.02
BS w/ MacBERT-base 96.75
BS w/ MacBERT-large 96.75

BS w/o BiLSTM 93.30 86.58 96.56

Table 5: Ablation studies of model structure. F1 scores
are reported. BS and LS mean boundary smoothing and
label smoothing, respectively.

5 Further In-Depth Analysis 378

5.1 Over-Confidence and Entity Calibration 379

The model performance (evaluated by, e.g., accu- 380

racy or F1 score) is certainly important. However, 381

the confidences of model predictions are also of 382

interest in many applications. For example, when it 383

requires the predicted entities to be highly reliable 384

(i.e., precision is of more priority than recall), we 385

may filter out the entities with confidences lower 386

than a specific threshold. 387

However, Guo et al. (2017) have indicated that 388

modern neural networks are poorly calibrated, and 389

typically over-confident with their predictions. By 390

calibration, they mean the extent to which the pre- 391

diction confidences produced by a model can rep- 392

resent the true correctness probability. We find 393

neural NER models also easy to become miscali- 394

brated and over-confident. We observe that, with 395

the standard cross entropy loss, both the develop- 396

ment loss and F1 score increase in the later training 397

stage, which goes against the common perception 398

that the loss and F1 score should change in the 399

opposite directions. This phenomenon is similar 400

to the disconnect between negative likelihood and 401

accuracy in image classification described by Guo 402

et al. (2017). We suppose that the model becomes 403

over-confident with its predictions, including the 404

incorrect ones, which contributes to the increase of 405

loss (see Appendix A for more details). 406

To formally investigate the over-confidence is- 407

sue, we plot the reliability diagrams and calculate 408

expected calibration error (ECE). In brief, for an 409

NER model, we group all the predicted entities 410

by the associated confidences into ten bins, and 411

then calculate the precision rate for each bin. If the 412

model is well calibrated, the precision rate should 413

be close to the confidence level for each bin (see 414

Appendix B for more details). 415

Figure 2 compares the reliability diagrams and 416
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Figure 2: Reliability diagram of recognized entities on
CoNLL 2003 and OntoNotes 5. Results are computed
on ten bins.

ECEs between models with different smoothness ε417

on CoNLL 2003 and OntoNotes 5. For the baseline418

model (ε = 0), the precision rates are much lower419

than corresponding confidence levels, suggesting420

significant over-confidence. By introducing bound-421

ary smoothing and increasing the smoothness ε, the422

over-confidence is gradually mitigated, and shifted423

to under-confidence (ε = 0.3). In general, the model424

presents best reliability diagrams when ε is 0.1 or425

0.2. In addition, the ECEs of the baseline model are426

0.072 and 0.063 on CoNLL 2003 and OntoNotes 5,427

respectively; with ε of 0.1, the ECEs are reduced428

to 0.013 and 0.034.429

In conclusion, boundary smoothing can prevent430

the model from becoming over-confident with the431

predicted entities, and result in better calibration.432

In addition, as mentioned previously, spans with433

lower confidences are discarded if they clash with434

those of higher confidences when decoding. With435

the better calibration, the model can obtain a very436

marginal but consistent increase in the F1 score.437

5.2 Loss Landscape Visualization 438

How does boundary smoothing improve the model 439

performance? We originally conjectured that 440

boundary smoothing can de-noise the inconsis- 441

tently annotated entity boundaries (Lukasik et al., 442

2020), but failed to find enough evidence – the 443

performance improvement did not significantly in- 444

crease when we injected boundary noises into the 445

training data.7 446

As aforementioned, positive samples are very 447

sparse among the candidate spans. Without bound- 448

ary smoothing, the annotated spans are regarded to 449

be entities with full probability, whereas all other 450

spans are assigned with zero probability. This cre- 451

ates noticeable sharpness between the targets of the 452

annotated spans and surrounding ones, although 453

their neural representations are similar. Bound- 454

ary smoothing re-allocates the entity probabilities 455

across contiguous spans, which mitigates the sharp- 456

ness and results in more continuous targets. Con- 457

ceptually, such targets are more compatible with 458

the inductive bias of neural networks that prefers 459

continuous solutions (Hornik et al., 1989). 460

Li et al. (2018) have shown that residual connec- 461

tions and well-tuned hyperparameters (e.g., learn- 462

ing rate, batch size) can produce flatter minima and 463

less chaotic loss landscapes, which account for the 464

better generalization and trainability. Their find- 465

ings provide important insights into the geometric 466

properties of non-convex neural loss functions. 467

Figure 3 visualizes the loss landscapes for mod- 468

els with different smoothness ε on CoNLL 2003 469

and OntoNotes 5, following Li et al. (2018). In 470

short, for a trained model, a direction of the param- 471

eters is randomly sampled, normalized and fixed, 472

and the loss landscape is computed by sampling 473

over this direction (refer to Appendix C for more 474

details). 475

The visualization results qualitatively show that, 476

the solutions found by the standard cross entropy 477

are relatively sharp, whereas boundary smoothing 478

can help arrive at flatter minima. As many theo- 479

retical studies regard the flatness as a promising 480

predictor for model generalization (Hochreiter and 481

Schmidhuber, 1997; Jiang et al., 2019), this result 482

may explain why boundary smoothing can improve 483

the model performance. In addition, boundary 484

smoothing is associated with more smoothed land- 485

7On the other hand, this cannot rule out the de-noising ef-
fect of boundary smoothing, because the synthesized boundary
noises are differently distributed from the real noises.
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Figure 3: Visualization of loss landscapes on CoNLL 2003 and OntoNotes 5. Training, development and test-
ing losses are in orange, green and red, respectively. CE and BS mean cross entropy and boundary smoothing,
respectively.

scapes – the surrounding local minima are small,486

shallow, and thus easy for the optimizer to escape.487

Intuitively, such geometric property suggests that488

the underlying loss functions are easier to train (Li489

et al., 2018).490

We believe that the sharpness in the span-based491

NER targets is probably the reason for the sharp492

and chaotic loss landscape. Boundary smoothing493

can effectively mitigate the sharpness, and result in494

loss landscapes of better generalization and train-495

ability.496

6 Conclusion497

In this study, we propose boundary smoothing as498

a regularization technique for span-based neural499

NER models. Boundary smoothing re-assigns en-500

tity probabilities from annotated spans to the sur-501

rounding ones. It can be easily integrated into any502

span-based neural NER systems, but consistently503

bring improved performance. Built on a simple but504

strong baseline (a base-sized pretrained language505

model followed by a BiLSTM layer, and the bi-506

affine decoder), our model achieves SOTA results507

on eight well-known NER benchmarks, covering508

English and Chinese, flat and nested NER tasks.509

In addition, experimental results show that 510

boundary smoothing leads to less over-confidence, 511

better model calibration, flatter neural minima and 512

more smoothed loss landscapes. These properties 513

plausibly explain the performance improvement. 514

Our findings shed light on the effects of smoothing 515

regularization technique in the NER task. 516
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A Disconnect between Development Loss779

and F1 Score780

For most machine learning tasks, the desired metric781

(e.g., accuracy or F1 score) is non-differentiable782

and thus cannot be optimized via back-propagation.783

The loss, on the other hand, is a designed differen-784

tiable proxy such that minimizing it can increase785

the original metric.786

However, as illustrated in Figure 4a, when train-787

ing an NER model by the standard cross entropy788

loss, although the development F1 score keeps in-789

creasing throughout, the development loss also in-790

creases in the later stage (e.g., after ten epochs) of791

the training process. Guo et al. (2017) describe792

this phenomenon as a disconnect – the neural net-793

work overfits to the loss without overfitting to the794

metric. They regard this as indirect evidence for795

miscalibration.796

One plausible explanation is that in the later797

training stage, the model becomes too confident798

with its predicted outcomes, including both the799

correct and incorrect ones. Therefore, although800

slightly more spans are correctly classified on the801

development set (as the F1 score increases), a small802

portion of incorrectly classified spans is assigned803

with much more confidence and contributes to the804

increase of loss.805

Figure 4b presents the curves for boundary806

smoothing loss. The development loss decreases807
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(a) Cross entropy loss
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(b) Boundary smoothing loss (ε=0.2, D=1)

Figure 4: Training/development losses and F1 scores of
models with cross entropy loss and boundary smooth-
ing loss on CoNLL 2003. Both the cross entropy loss
and corresponding F1 score on the development set ex-
perience an ascending trend after about ten epochs, sug-
gesting the existence of over-confidence. However, the
boundary smoothing loss on the development set keeps
decreasing through the whole training process.

throughout the training process, opposite to the in- 808

creasing F1 score. This result suggests that bound- 809

ary smoothing can help mitigate over-confidence. 810

B Reliability Diagrams and Expected 811

Calibration Error 812

We generally follow Guo et al. (2017)’s approach 813

to plot reliability diagrams and calculate expected 814

calibration error (ECE). 815

Given an NER dataset and a model trained on it, 816

denote the gold and predicted entity sets as E and Ê , 817

respectively; the model produces a confidence p̂e 818

for each entity e ∈ Ê . With K confidence interval 819

bins, the predicted entities are grouped such that 820

those with confidences falling into the k-th bin 821
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constitute a subset:822

Êk =

{
e | e ∈ Ê , p̂e ∈

(
k − 1

K
,
k

K

]}
.823

The precision rate (equivalent to the accuracy824

with regard to a predicted set) of k-th group Êk is:825

Preck =
|Êk ∩ E|
|Êk|

,826

and the corresponding average confidence is:827

Confk =

∑
e∈Êk p̂e

|Êk|
.828

The reliability diagrams plot Preck against829

Confk for k = 1, 2, . . . ,K. ECE is estimated by830

the weighted average of absolute difference be-831

tween Preck and Confk:832

ECE =
K∑
k=1

|Êk|
|Ê |
·
∣∣∣∣Preck − Confk

∣∣∣∣833

By definition, a perfectly calibrated model will834

have Preck = Confk for k = 1, 2, . . . ,K. In this835

case, the reliability diagrams should lie along the836

identity line, and ECE equals to 0.837

C Loss Landscape Visualization838

We generally follow Li et al. (2018)’s approach to839

visualize the loss landscape.840

Given a trained model of parameters θ?, we sam-841

ple a random direction δ from a normal distribution,842

and rescale it by:843

δi ←
‖θ?i ‖
‖δi‖

δi,844

where δi is the i-th weight of δ.8 On a data845

set/split D, the loss landscape plots the function:846

f(α) = L(D; θ? + αδ),847

where L(D; θ) is the average loss value (in the848

evaluation mode) on D if the model takes parame-849

ters of θ. In practice, we evenly sample 51 points in850

the interval [−1, 1] for α, and plot the loss values851

against α.852

8Li et al. (2018) use filter-wise normalization for convolu-
tional networks, whereas our models have no convolutional
layers, so we simplify it as weight-wise normalization.
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