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Figure 1: Our method, GaussianCut, enables interactive object(s) selection. Given an optimized 3D
Gaussian Splatting model for a scene with user inputs (clicks, scribbles, or text) on any viewpoint,
GaussianCut partitions the set of Gaussians as foreground and background.

Abstract

We introduce GaussianCut, a new method for interactive multiview segmentation
of scenes represented as 3D Gaussians. Our approach allows for selecting the
objects to be segmented by interacting with a single view. It accepts intuitive user
input, such as point clicks, coarse scribbles, or text. Using 3D Gaussian Splatting
(3DGS) as the underlying scene representation simplifies the extraction of objects
of interest which are considered to be a subset of the scene’s Gaussians. Our
key idea is to represent the scene as a graph and use the graph-cut algorithm to
minimize an energy function to effectively partition the Gaussians into foreground
and background. To achieve this, we construct a graph based on scene Gaussians
and devise a segmentation-aligned energy function on the graph to combine user
inputs with scene properties. To obtain an initial coarse segmentation, we leverage
2D image/video segmentation models and further refine these coarse estimates
using our graph construction. Our empirical evaluations show the adaptability of
GaussianCut across a diverse set of scenes. GaussianCut achieves competitive per-
formance with state-of-the-art approaches for 3D segmentation without requiring
any additional segmentation-aware training.

1 Introduction

Recent advances in 3D scene representation have enabled unprecedented quality in 3D view synthesis
without requiring specialized equipment or an excessively high computational budget. Fully leverag-
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ing these advances requires tools for scene understanding and manipulation specifically designed to
operate on such representations. Object selection and segmentation often serve as a crucial first step
in both scene understanding and editing tasks. While 2D image segmentation has been widely studied,
developing analogous techniques for 3D remains challenging. One key challenge is accounting for
the choice of underlying 3D scene representation in the segmentation method.

3D Gaussian Splatting (3DGS) [22] offers an explicit representation of a scene using a set of
Gaussians, each characterized by its own properties. The nature of this representation motivates
the idea that Gaussians corresponding to the segmented object and the background can be isolated
separately. Prior works in 3DGS segmentation involve augmenting each Gaussian with a low-
dimensional feature, that is jointly optimized with the parameters of the Gaussians [6, 43, 54]. This
is supervised by 2D features, which provide semantic information that can be used for segmentation.
While this enables a 3D consistent segmentation, it significantly increases the fitting time and the
already high memory footprint of the method. Thus, enabling 3DGS segmentation without modifying
the optimization process is an important research challenge.

We address this challenge by proposing GaussianCut, a novel method for selecting and segmenting
objects of interest in 3D Gaussian scenes. Our work taps directly into the representation created
by 3DGS and maps each Gaussian to either the foreground or background. The proposed process
mirrors the interactive nature of 2D segmentation tools, where users can engage through clicks,
prompts, or scribbles. We require such user input on a single image and perform the object selection
process in two steps. First, we obtain dense multiview segmentation masks from the user inputs
using a video segmentation model. Subsequently, we construct a weighted graph, where each node
represents a Gaussian. Graph cut then partitions the graph into two disjoint subsets by minimizing an
energy function, which quantifies the cost of cutting the edges connecting the subsets. This approach
effectively segments the selected foreground object from the background by using the energy function
as a measure of dissimilarity between the nodes. An overview of the process is provided in Figure 1.

Our main contribution is a novel approach for segmentation in scenes obtained from 3DGS. Its main
technical novelties are twofold: 1) we propose a method for graph construction from a 3DGS model
that utilizes the properties of the corresponding Gaussians to obtain edge weights, and 2) based on
this graph, we propose and minimize an energy function (Equation 3) that combines the user inputs
with the inherent representation of the scene. Our experimental evaluations show that GaussianCut
obtains high-fidelity segmentation outperforming previous segmentation baselines.

2 Related Work

2D image segmentation is a long studied problem in computer vision [16, 40, 56]. Recently, models
like Segment Anything [24] and SEEM [63], have revolutionized 2D segmentation by employing
interactive segmentation. A range of methods have also been developed for 3D segmentation,
each tailored to different forms of representation, including voxels [9, 35], point clouds [41, 42],
meshes [48, 61], and neural representations [7, 31, 47, 51]. The impressive capabilities of Neural
Radiance Fields (NeRFs) [34] in capturing scene information implicitly have inspired numerous
studies to explore 3D segmentation for NeRFs. Recent works have also explored segmentation with
Gaussians as the choice for scene representation [6, 21, 43, 54, 62].

Training 3D segmentation with 2D masks/features: In addition to the wide adaptation of founda-
tional models for 2D images [57], they are also used extensively by 3D editing and segmentation
models. SAM has been used as an initial mask to facilitate 3D segmentation [6, 7, 32] and also for
distillation into NeRF [58] and 3DGS models [62]. Semantic-NeRF [60] proposed 2D label propa-
gation to incorporate semantics within NeRF so it can produce 3D consistent masks. MVSeg [36]
propagates a 2D mask to different views using video segmentation techniques. ISRF [17] distills
semantic features into the 3D scene of voxelized radiance fields. Nearest neighbor feature matching
then identifies high-confidence seed regions. 2D features have also been used for facilitating the
grouping of Gaussians [54] and for hierarchical semantics using language in 3DGS [43]. Distilled
Feature Fields (DFF) [26] and Neural Feature Fusion Fields [49] distill 2D image embeddings from
LSeg [29] and DINO [5] to enable segmentation and editing. SA3D [7] uses SAM iteratively to
get 2D segments and then uses depth information to project these segments into 3D mesh grids.
SANeRF-HQ [32] aggregates 2D masks in 3D space to enable segmentation with NeRFs.

2



Segmentation in 3D Gaussian Splatting: Gaussian Grouping [54], SAGA [6], LangSplat [43],
CoSSegGaussians [10] and Feature 3DGS [62] require optimizing a 3DGS model with an additional
identity or feature per Gaussian, which is usually supervised by 2D image features. These semantic
features allow segmentation through user interaction. Gaussian Grouping and LangSplat also allow
for textual prompts to segment objects supported through multimodal models like CLIP or grounding-
DINO [30]. Feature-based methods alter the fitting process of 3DGS by adding additional attributes
for each Gaussian and it facilitates learning features for everything in the scene. While useful, this
limits the flexibility of interactivity with a single object. Our method is more flexible in choosing
specific object(s) as we generate the 2D masks after the user interaction. Adding additional parameters
also increases the fitting time for 3DGS. Moreover, such methods often rely on video segmentation
models as they require 2D features from all training viewpoints. In contrast, we can operate on an
arbitrary number of 2D masks, including just a single mask.

Graph cut for 3D segmentation: Boykov and Jolly [4] introduced a novel global energy function
for interactive image segmentation using graph cut [14, 18]. Several follow-up works improved image
segmentation using graph cut by designing better energy function [13], efficient optimization [3, 19],
and reduced user input requirements [50]. Adapting energy minimization methods for 3D volumes
has been difficult, requiring several modifications [19] to manage the higher memory demands.
NVOS [44] trains a special multi-layer perceptron (MLP) to predict voxels in the foreground and
background and applies graph cut on voxels as post-processing. However, training the MLP requires
additional training and memory consumption. Guo et al. [20] propose 3D instance segmentation of
3D point clouds using graph cut. It involves constructing a superpoint graph and training a separate
graph neural network for predicting the edge weights. Unlike their work, our method is a post hoc
application and does not require any additional training. Our graph construction and edge weights
have also been tailored specifically for 3D Gaussian Splatting.

Concurrent with our work, Segment Anything in 3D Gaussians (SAGD) [21], also performs interac-
tive segmentation using 3D Gaussian Splatting without requiring any segmentation-aware training.
However, their focus is primarily on refining object boundaries by decomposing boundary Gaussians,
whereas we propose a graph cut based approach for interactive segmentation.

3 Method

3.1 Preliminaries

3D Gaussian Splatting (3DGS) [22] is a technique for creating a 3D representation of scenes based
on a set of Gaussian ellipsoids G. 3DGS facilitates real-time rendering and provides high-quality
reconstruction. In this representation, each 3D Gaussian is characterized by a set of optimizable
parameters that include 3D position µ 2 R3, spherical harmonics (SH) coefficients (for color)
� 2 R3(d2+1) (d is the degree of spherical harmonics), scale s 2 R3, rotation r 2 R4, and opacity
� 2 R. The optimization process involves iteratively rendering scenes and comparing the rendered
images against the training views, interleaved with adaptive density control that handles the creation
and deletion of the number of Gaussians. The differentiable rendering pipeline in 3DGS uses tile-
based rasterization following [27] to ensure real-time rendering. 3DGS performs anisotropic splatting
by depth sorting the Gaussians and ↵-blending them to project in 2D. The set of differentiable
parameters for G, D := {µi,�i, si, ri �i}

|G|
i=1, are optimized from a set of posed images.

Graph cut is an algorithm that partitions the vertices V of a graph G with edges E weighted by
{we}e2E into two disjoint, non-empty sets such that the sum of the weights of the edges between the
two sets is minimized. This minimum-cost partitioning is known as the minimum cut. In applications
such as image segmentation, the graph cut framework is adapted by defining an energy function,
which includes unary terms representing the cost of assigning a node to a set based on individual
properties, and pairwise terms that incorporate the cost of assigning neighboring nodes to different
sets. The objective of the minimization is to find a cut that optimizes the overall energy, balancing
individual preferences and neighborhood interactions. An efficient way for computing this minimum
cut in a graph is the Boykov-Kolmogorov algorithm [2].
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Figure 2: Overall pipeline of GaussianCut. User input from any viewpoint is passed to a video
segmentation model to produce multi-view masks. We rasterize every view and track the contribution
of each Gaussian to masked and unmasked pixels. Then, Gaussians are formulated as nodes in an
undirected graph and we adapt graph cut to partition the graph. The red edges in the graph highlight
the set of edges graph cut removes for partitioning the graph.

3.2 Overview

Given a set of posed RGB images I = {Ii}ki=1 and an optimized reconstruction of the scene using a
set of Gaussians G, we define the task of interactive 3D segmentation as follows: given a user input
(point clicks, scribbles, or text) on any image I0 2 I , the objective is to partition the set of Gaussians
in two non-empty disjoint sets S and T such that S represents the set of Gaussians representing the
object(s) of interest and T represents the given 3D scene without these object(s). The extracted subset
of Gaussians S can be rendered from any viewpoint to effectively cutout the 3D representation of the
foreground without retraining. Innately, the other set of Gaussians T can be rendered to remove the
foreground object(s). Figure 2 shows an overview of our pipeline.

In order to densify the object selection information provided by the user, we use an off-the-shelf
video segmentation model to obtain dense segmentation masks from multiple views (discussed in
section 4). For transferring the segmentation masks to the 3DGS representation, we trace the 3D
Gaussians that map to the selected region in the masks (discussed in section 3.3). However, the
masks used for propagation are not 3D consistent (as the underlying image segmentation model is
3D-unware). Moreover, the errors from 2D masks can propagate in the traced Gaussians and thereby
provide a noisy 3D segmentation. To achieve a precise set of foreground Gaussians, we formulate the
set of Gaussians G as nodes in a graph network (discussed in section 3.4) and leverage graph cut to
split the nodes into two sets: the foreground S and the background T .

3.3 Mapping user inputs to Gaussians

We first feed the sparse single-view annotations by the user (e.g., point clicks) to a multiview/video
segmentation model to obtain coarse segmentation masks across multiple training views. We then
propagate the information from the 2D masks onto the set of Gaussians. For an already optimized
3DGS model of a scene, G, we obtain n masks M := {Mj}nj=1 from a video segmentation model
corresponding to any n viewpoints I := {Ij}nj=1. Here, Mj indicates the set of foreground pixels in
the viewpoint Ij . For each Gaussian g 2 G, we maintain a weight, wg, that indicates the likelihood
of the Gaussian belonging to the foreground. To obtain the likelihood term wj

g pertaining to mask j
for Gaussian g, we unproject the posed image Ij back to the Gaussians using inverse rendering and
utilizing the mask information,

wj
g =

P
p2Mj �g(p)T j

g (p)P
p2Ij �g(p)T

j
g (p)

, (1)
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where �g(p) and T j
g (p) denote the opacity and transmittance from pixel p for Gaussian g. Combining

over all the n masks,

wg =

P
j

P
p2Mj �g(p)T j

g (p)P
j

P
p2Ij �g(p)T

j
g (p)

. (2)

This likelihood, wg, captures the weighted ratio of the contribution of Gaussian g to the masked
pixels relative to the total number of pixels influenced by it. The complementary value of wg , 1�wg

provides the likelihood of Gaussian g contributing to the background. The value of wg is updated
using n 2D segmentation masks during rasterization. Since the rasterization of 3DGS is remarkably
fast, each pass typically takes less than a second to update. GaussianEditor [12] also learns an
additional tracing parameter but unlike our approach, it maps Gaussians to different semantic classes
and keeps updating it during training.

Having the likelihoods wg, a naive approach to extract the 3D representation of the foreground is
to threshold the Gaussians and prune those with values below a certain threshold ⌧ . We denote
this approach as “coarse splatting”. Figure 4 demonstrates coarse splatting renders for a plant in
the 360-garden scene [1]. Note that the renderings produced by coarse splatting are not accurate,
particularly around the edges. This is due to two main reasons: 1) the 2D segmentation models are
3D inconsistent and can be imperfect, leading to artifacts in the final Gaussian cutout, and 2) lifting
2D masks to 3D can introduce its own artifacts.

3.4 Gaussian graph construction

After rasterization with the masks, each Gaussian g 2 G in the 3DGS representation is characterized
with parameters Dg := {µg,�g, sg, rg �g, wg}, where wg captures the user requirement and the other
parameters encapsulate the inherent properties of the scene. To fuse the two sources of information
and obtain a precise set of foreground Gaussians, we formulate the optimized 3DGS model as an
undirected weighted graph G := (G, E), where each Gaussian in G is a node and E represents the set
of edges connecting spatially adjacent Gaussians. We define the neighborhood N ✓ G ⇥ G of a node
(Gaussian) as its k-nearest Gaussians in terms of their 3D position. The intuition behind constructing
the edges is that Gaussians that map to the same object would be close spatially.

Gaussian graph cut partitions the Gaussians G into two disjoint and non-empty sets S ⇢ G and
T ⇢ G, that represent the foreground and background Gaussians, respectively. Our objective is to
infer the foreground/background label yg 2 {0, 1} of each Gaussian g. Let the unary term �g(·, ·)
represent the likelihood of node g being part of foreground or background and the pairwise term
 g,g0(·, ·) reflect the edge connection between node g and g0. To obtain the label for each Gaussian g,
graph cut minimizes the aggregate of both unary and pairwise terms given by:

E =
X

g2G
�g(Dg, yg) + �

X

g,g02N

 g,g0(Dg,Dg0), (3)

where � provides a trade-off between the two terms.

Neighboring pairwise weights (n-links): The pairwise term models the correlation between neigh-
boring nodes. The neighbors for a node are based on its spatial proximity to other nodes. The edge
weight between each pair of neighbors is a combination of its spatial distance and color similarity.
While segments of an object can have multiple colors, and they often do, neighboring nodes with
dissimilar colors can still be identified and grouped based on their spatial proximity. This ensures
that parts of an object, despite varying in color, can be linked if they are close in space. For color
similarity, we only use the zero-degree spherical harmonic to capture the ambient colors without any
angular dependence. The correlation between the neighboring nodes is formulated as

 g,g0(Dg,Dg0) = f(µg,µg0) + �nf(�g,�
0
g), (4)

where �n is a hyperparameter balancing the contribution of position and color similarity, and the
function f estimates similarity as f(x,y) = exp(��kx� yk22) (� is a positive scalar).

Unary weights (t-links): We designate two terminal nodes for the graph cut algorithm, the source
and the sink node. These terminals represent the foreground (source) and the background (sink) in
segmentation tasks. t-links connect all the nodes to both the terminal nodes and the edge weight for
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Figure 3: Visualization results of different objects in the following scenes: truck from Tanks and
Temples [25], kitchen from Mip-NeRF 360 [1], tools from Shiny [53].

these links represents the pull of that node towards each terminal node. We assign the edge weights
connecting each non-terminal node to the source node to reflect its likelihood of belonging to the
foreground set S (and as belonging to the background set T for edges connecting to the sink node).

Gaussian tracking, from section 3.3, provides the connection of each Gaussian g to the source and sink
terminal nodes, using wg and 1� wg, respectively. However, these weights can be noisy estimates.
Therefore, we introduce an additional term to the edge weights that captures the similarity of node g to
the other nodes that are well-connected to the terminal nodes. To do so, we identify high-confidence
nodes for both the source and the sink terminals. A Gaussian g is considered as a high-confidence node
for the source terminal if wg ⇡ 1 and for a sink terminal if wg ⇡ 0. Since computing the similarity
of a node to all the high-confidence nodes is computationally expensive, we cluster all the high-
confidence nodes (denoted as F and B for the source and sink, respectively) based on their position.
For each node g, we then determine the closest cluster by finding gf = argming02F f(µg,µg0) for
the source, and similarly gb for the sink. Consequently, the unary term based on the user input is,

�g(Dg, yg) =

⇢
wg + �u g,gf (Dg,Dgf ) if yg = 1,
1� wg + �u g,gb(Dg,Dgb) if yg = 0.

(5)

We minimize the objective E in Equation 3 to partition the set of nodes G as S (foreground Gaussians)
and T (background Gaussians). To render the foreground object from any viewpoint, we simply
render the Gaussian collected in S with T as background.

4 Experimental Setup

Datasets: For quantitative evaluation, we test the scenes from LLFF [33], Shiny [53], SPIn-NeRF [36],
and 3D-OVS [28]. All selected scenes from the LLFF and Shiny datasets are real-world front-facing
scenes, with 20-62 images each. SPIn-NeRF provides a collection of scenes from some of the
widely-used NeRF datasets [15, 25, 33, 34, 55]. It contains a combination of front-facing and 360�

inward-facing real-world scenes. 3D-OVS contains scenes featuring long-tail objects.

Input types: Our model accepts all input processed by SAM-Track [8]. It uses grounding-DINO [30]
to process text inputs. For the LLFF scenes used in NVOS [44], we follow their input scribbles to
obtain the initial mask. For SPIn-NeRF and Shiny, we use clicks (each scene typically requires 1-4
clicks). For the 3D-OVS dataset evaluation, we use text query as input (results in Table 11).

Evaluation metrics: Different Image-Based Rendering (IBR) models represent 3D scenes in different
ways. Thus, obtaining universal ground-truth 3D masks is difficult. To avoid this challenge, we
evaluate the segmentation mask of the projected 2D rendering from the scene. The ground-truth
2D masks are typically obtained from professional image segmentation tools. NVOS provides one
ground-truth mask for every scene in LLFF. SPIn-NeRF and 3D-OVS provide masks for multiple
images in every scene. Shiny dataset does not contain any ground-truth masks so we create our own
ground-truth mask. For evaluation, we generate 2D foreground masks by rendering the Gaussians
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from the desired viewpoint. We use pixel classification accuracy (Acc) and foreground intersection-
over-union (IoU) for evaluating the segmentation masks.

Following NVOS, we also assess the photo-realistic appearance of the segmented object by rendering
it against a black background. We trim both the rendered image and the ground-truth image to the
foreground object by applying a bounding box that fits the ground-truth mask. This prevents the
evaluation from being biased by the background, especially when the object of interest is relatively
small. The metrics we report are PSNR, SSIM [52], LPIPS [59].

Implementation details: To obtain segmentation masks from the user inputs (used in Section 3.3),
we leverage the advancements in video segmentation models. The user selects the foreground objects
on I0, and we obtain dense masks for multiple views using SAM-Track [8]. Note that the use of the
video segmentation model is done to enhance the performance further and our method can also work
with a single image mask (Table 4). We use KD-Tree for efficiently finding the k nearest neighbors to
construct the edges between the nodes.

For all the evaluations, we resize the longer image size to 1008, as commonly practiced in novel-
view synthesis. We optimize 3DGS model for each of the considered scenes, without making any
changes to the original 3DGS code. For coarse splatting, we keep the cut-off threshold ⌧ = 0.9 for
front-facing views and ⌧ = 0.3 for the 360� inward-facing scenes. This disparity stems because parts
of objects might not be observed from every viewpoint for the latter and also because of the relative
ineffectiveness of video tracking for inward-facing scenes (Figure 8). For graph cut, we keep � = 0.1
for neighboring pairwise position weights and � = 1 for all other weights, the number of neighbors
for every node as 10, and the number of clusters for high-confidence nodes as 4 for sink and 1 for
source. �, �n, �u can be adjusted depending on the scene and the quality of coarse splatting but
generally, �n = �u = 1 and � = 0.5 give decent results.

Baselines: Our comparison includes a selection of baseline models such as NVOS [44], MVSeg [36],
Interactive segmentation of radiance fields (ISRF) [17], Segment Anything in 3D with NeRFs
(SA3D) [7], Segment Any 3D Gaussians (SAGA) [6], Segment Anything in 3D Gaussians
(SAGD) [21], Gaussian Grouping [54], and LangSplat [43]. Unlike our approach, SAGA, Gaussian
Grouping, and LangSplat alter the Gaussian optimization process by learning additional features
per Gaussian that increases the optimization time (Table 9). SAGD is a concurrent work also de-
signed for 3DGS segmentation and has not yet been published. Thus, their results may be subject to
change. SAGD, similar to our approach, does not require any segmentation-aware training and uses a
cross-view label voting approach to segment selected objects. All the baselines allow for selecting
objects using clicks, except LangSplat, for which we use text queries. Further details on baseline
implementation are provided in appendix section A.1.

5 Results

5.1 Quantitative results

Dataset from NVOS: We take the seven scenes from LLFF dataset used in NVOS. NVOS contains a
reference image with input scribbles and a target view with an annotated 2D segmentation mask. As
shown in Table 1, GaussianCut outperforms other approaches. Unlike NVOS, ISRF, SAGA, Gaussian
Grouping, and LangSplat, GaussianCut works on pretrained representations and does not require any
changes to the training process. Owing to the fast rasterization, 3DGS-based approaches can also

Table 1: Quantitative results for 2D mask seg-
mentation on NVOS dataset [44].

Method IoU (%)" Acc (%)"
graph cut (3D) [44, 45] 39.4 73.6
NVOS [44] 70.1 92.0
ISRF [17] 83.8 96.4
SA3D [7] 90.3 98.2
SAGD [21] 72.1 91.7
SAGA [6] 90.9 98.3
Gaussian Grouping [54] 90.6 98.2
LangSplat [43] 74.0 94.0
GaussianCut (Ours) 92.5 98.4

Table 2: Quantitative results on the SPIn-
NeRF dataset [36].

Method IoU (%) Acc (%)
MVSeg [36] 90.4 98.8
ISRF [17] 71.5 95.5
SA3D [7] 91.9 98.8
SAGD [21] 89.7 98.1
SAGA [6] 88.0 98.5
Gaussian Grouping [54] 88.4 99.0
LangSplat [43] 69.5 94.5
GaussanCut (Ours) 92.9 99.2
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Table 3: Object rendering results on NVOS [44].

Metrics SSIM" PSNR (dB)" LPIPS#
graph cut (3D) [44, 45] 0.600 15.03 0.415
NVOS [44] 0.767 18.40 0.213
SA3D [7] 0.794 20.76 0.198
GaussianCut (Ours) 0.840 22.45 0.132

Table 4: Quantitative results on Shiny [53].

Scenes IoU (%)" Acc (%)"
SA3D [7] 93.3 98.5
SAGD [21] 83.3 84.7
Coarse Splatting 94.3 99.4
GaussianCut (Ours) 95.0 99.5

render foreground Gaussians in real-time. To compare the rendering quality of the segmented objects
using 3DGS, we train a NeRF model at the same resolution and segment it using SA3D. Table 3
shows the photo-realistic quality of the foreground image against a black background. Gaussian
Splatting provides significant gains over NVOS and SA3D for rendering quality, providing a boost of
+4.05 dB PSNR and +1.69 dB PSNR, respectively.

Dataset from SPIn-NeRF: We compare our model on all scenes from the SPIn-NeRF dataset, which
includes four 360� inward-facing scenes and six front-facing scenes. Our model gives an overall
better performance compared to other baselines. Compared to MVSeg, on 360� scenes such as lego
and truck, GaussianCut provides an absolute IoU gain of 14.3% and 10.5%, respectively. Our model
also performs better compared to other 3DGS baselines as shown in Table 2. The 360� scenes for
ISRF were run at one-fourth resolution due to memory constraints. We show the scene-wise results
in Table 10. Feature-based 3DGS segmentation methods, such as Gaussian Grouping and LangSplat,
outperform GaussianCut on certain scenes, but their interactivity can be limited if the optimized
features do not delineate the object of interest. We show such cases in Figure 5. Moreover, we
also show in Figure 11 that segmentation masks from GaussianCut contain finer details and a better
segmentation quality than the ground-truth masks provided in SPIn-NeRF.

Dataset from Shiny: We test the segmentation performance of our model on four scenes from the
Shiny dataset: tools, pasta, seasoning, and giants. We create ground-truth masks for 4 test-view
images for each scene and compare our model against non-feature learning-based baselines: SA3D
and SAGD. We also report the performance of Coarse Splatting (no graph cut) in Table 4. Figure 10
also shows the quality of segmented images for all the scenes.

5.2 Qualitative results Table 5: Ablation of the energy function averaged
over the seven scenes from LLFF dataset.

Energy NVOS
Single 86.6
Coarse 91.2
w/o n-link spatial similarity 92.4
w/o n-link color similarity 92.3
w/o t-link cluster similarity 91.5
GaussianCut (Ours) 92.5

Similar to SA3D, we perform segmentation in
three modes: object segmentation, part segmen-
tation, and text-prompting based segmentation.
Figure 3 shows object and part segmentation.
GaussianCut can retrieve complex objects (such
as truck, lego bulldozer, mirror) precisely. It
can segment smaller part segmentation (man-
hole cover, lego wheels, and socket wrenches).
Our method can also retrieve multiple objects together (socket wrenches and metallic bowl are
extracted together).

Figure 4 demonstrates the performance of objection selection using text input. We do a qualitative
comparison of GaussianCut with ISRF, SA3D, and SAGD. Feature-based 3DGS methods run into
memory issues for this scene. Out of these, SA3D and SAGD also use a text-based prompt to segment
the plant. ISRF uses stroke for segmentation. GaussianCut retrieves finer details in the plant with a
higher perceptual quality. We also show the rendered image from different viewpoints. It can also be
seen that coarse splatting (before the Gaussian graph cut) misses finer details, such as the decorations
on the plant, which can be retrieved using GaussianCut.

5.3 Ablation and sensitivity study

Number of views: To obtain the 2D segmentation masks, we run the camera on a fixed trajectory and
get rendering from different viewpoints (spiral trajectory for front-facing and circular for 360� inward
scene). We limit the number of frames to 30 for front-facing and 40 for 360� scenes. Using more
segmentation masks can boost performance, however it might not be always preferred, especially for
scenes with a large number of training views. SAM-Track can also handle segmentation for unordered
multi-frame images. Table 6 shows the effect of varying the number of masks on two scenes from the
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Coarse Splatting GaussianCut
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Input: “the plant”

Figure 4: Qualitative comparison: 3D segmentation results of GaussianCut using text on 360-
garden [1] scene. Compared to ISRF [17], SA3D [7], SAGD [21], GaussianCut segment contain finer
details. The graph cut component of GaussianCut also retrieves fine details (like decorations on the
plant) that are missed in coarse splatting.

SPIn-NeRF dataset (images used were unordered). Since 3DGS offers fast rasterization, the overall
time cost for segmentation does not grow linearly with the number of masks as the time taken for
segmentation dominates. We also show the qualitative performance with a single mask (no video
segmentation model) and just scribbles (no image segmentation model) in Figure 13.

Sensitivity of each term in the graph cut energy function: In order to understand the contribution
of each term in the energy function, Table 5 shows the average IoU on the NVOS dataset with each
term removed from Equation 4 and 5. Each term contributes to the overall performance and the
cluster similarity, in particular, gives a significant boost.

Sensitivity of graph cut hyper-parameters: We test the sensitivity of our Gaussian graph cut
algorithm on the number of neighbors (number of edges for each node) and the number of high-
confidence clusters. As the number of neighbors increases, the number of edges in the graph also
increases (so does the time taken for graph cut). As seen in Table 7, adding more edges can help in
modeling more long-distance correlations. However, after a limit, the effects of adding more edges
diminish. Adding a large number of clusters for the high-confidence nodes, in Table 8, does not
affect the performance drastically and the optimal number can vary depending on the scene. We show
sensitivity to other hyper-parameters in appendix section E.

6 Discussion

Our results demonstrate that 3DGS allows for direct segmentation using a pretrained model. Devel-
opments in 2D segmentation and tracking have played a crucial role in 3D segmentation. We observe
that GaussianCut not only generates 3D consistent masks but also improves the segmentation quality
of 2D masks by capturing more details (Figure 12). This is more prominent for 360� scenes, where
the tracker can partially or fully miss the object of interest (Figure 8).

Table 6: Performance of GaussianCut with varying the number of views passed to the video segmen-
tation models. The number in parenthesis is the percentage of total views for the scene.

Number of views 5 (10%) 9(20%) 21 (50%) 43 (100 %)

Coarse Splatting on Fortress 96.1 96.3 96.5 96.8
GaussianCut on Fortress 97.7 97.8 97.8 97.9
Time Cost (s) 51 55 59 71

Number of views 11 (10%) 21(20%) 51 (50%) 102 (100 %)

Coarse Splatting on Lego 85.5 88.0 88.4 88.9
GaussianCut on Lego 87.3 89.1 89.2 89.2
Time Cost (s) 58 62 72 90
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Table 7: Ablation on the number of neighbors.

#Neighbors 1 10 50 100
Horns 91.9 93.6 93.8 94.3
Time (s) 18 57 209 410
Truck 93.3 95.7 95.3 95.2
Time (s) 32 96 393 738

Table 8: Ablation on the number of clusters
for high-confidence nodes.

#Clusters 1 5 10 20
Fortress 97.3 97.8 97.6 97.5
Horns 93.8 93.9 94.0 94.0
Truck 95.6 95.7 95.6 95.5

Time requirement: Since we use pretrained 3DGS models, the optimization time for the Gaussians
remains the same as [22] (it took under 15 minutes for every scene we use). For inference, masked
rasterization of Gaussians is fast and the time taken for graph cut grows roughly linearly with the
number of Gaussians. Table 9 shows a detailed breakdown of time taken in each step: preprocessing
(obtaining the features from 2D image/video segmentation models), fitting time (3DGS optimization
time), and segmentation time (time taken to obtain the segmented output). Compared to feature-based
methods, like Gaussian Grouping, LangSplat, and SAGA, our method does not require any alteration
to the fitting process and, therefore, has a shorter fitting time. While the segmentation time is higher
for GaussianCut, it still has a much shorter overall time. All reported times are on NVIDIA RTX
4090 GPU.

Table 9: Comparison of segmentation time (in seconds) on the NVOS benchmark.

Method Preprocessing time Fitting time Segmentation time Performance (IoU)

SAGA [6] 71.17 ± 22.74 1448.50 ± 205.07 0.35 ± 0.05 90.9
Gaussian Grouping [54] 13.72 ± 4.63 2096.07 ± 251.96 0.55 ± 0.09 90.6
LangSplat [43] 2000.34 ± 1222.19 1346.92 ± 247.00 0.82 ± 0.02 74.0
Coarse Splatting (Ours) 6.11 ± 0.38 510.97 ± 106.42 19.48 ± 4.31 91.2
GaussianCut (Ours) 6.11 ± 0.38 510.97 ± 106.42 88.77 ± 33.68 92.5

Memory requirement: While 3DGS has a higher footprint than NeRF-based models, several recent
works reduce the memory footprint with limited loss of quality [11, 37–39]. Our method only stores
one additional parameter wg for every Gaussian and is less memory-intensive than methods requiring
learning a feature field [6, 13].

Limitations: GaussianCut can address some inaccuracies in 2D video segmentation models, but
it may still lead to partial recovery when the initial mask or tracking results are significantly off
(Figure 7). While GaussianCut does not require additional training time, our method can still take
up to a few minutes for the graph cut component, which makes the segmentation not real-time. The
implementation could be improved by applying graph cut on a subset of Gaussians. We leave this as
a future work. Additionally, extending our energy function to include a feature similarity term (in
equation 3) is another potential improvement. We also discuss some failure cases in section B.

7 Conclusion

In this paper, we introduce GaussianCut, a novel approach that taps into the underlying explicit
representation of 3D Gaussian Splatting to accurately delineate 3D objects. Our approach takes in an
optimized 3DGS model along with sparse user inputs on any viewpoint from the scene. We use video
segmentation models to propagate the mask along different views and then track the Gaussians that
splat to these masks. In order to enhance the precision of partitioning the Gaussians, we model them
as nodes in an undirected graph and devise an energy function that can be minimized using graph cut.
Our approach shows the utility of explicit representation provided by 3DGS and can also be extended
for downstream use cases of 3D editing and scene understanding.
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A Implementation details

We run our segmentation algorithm on 3D Gaussian Splatting representations, following the code
provided by Kerbl et al. [22]. All scenes are optimized for 30,000 steps using the default parameters.
We use SAM-Track [8] as the video segmentation model.

For the datatset used in NVOS [44], we use the provided reference image with the user scribbles for
a fair comparison. For the SPIn-NeRF dataset [36], we use the first image in the directory as the
reference image for the user input. The scenes reported throughout the paper are selected from the
following datasets:

• NVOS (LLFF [33] subset): flower, fortress, fern, horns, orchids, trex, leaves
• SPIn-NeRF (collection from some widely used datasets [15, 25, 33, 34, 55]): orchids, leaves,

fortress, horns, truck, lego bulldozer
• Shiny [53]: giants, tools, seasoning, pasta
• Mip-NeRF [1]: cycle, garden, bonsai
• LERF [23]: figurines
• 3D-OVS [28]: lawn, sofa, bed, bench, room

Mask evaluation: The Gaussians optimized for 3DGS can have ambiguous structures as they are
not geometrically constrained. When partitioning the Gaussians as foreground or background, the
boundary Gaussians can appear as having shard-like artifacts (or “spiky” Gaussians). Since the goal
of this work is to effectively characterize a Gaussian as foreground or background, we render the
foreground mask by overriding the colors of background Gaussians. To generate object assets, our
algorithm can be combined with Gaussian decomposition based approached [21].

A.1 Baseline implementation details

A.1.1 Gaussian Grouping

Gaussian Grouping [54] learns an additional feature per Gaussian that can be used to group Gaussians
belonging to the same object. We use SAM-Track to get all the 2D segmentation masks. While the
default implementation of Gaussian Grouping uses DEVA [8] masks, we chose SAM-Track for both
GaussianCut and Gaussian Grouping to maintain consistency in mask quality across the methods.
Similar to GaussianCut, we use clicks to segment objects in NVOS and SPIn-NeRF benchmarks.
However, Gaussian Grouping uses a mask for segmenting everything and can, therefore, sometimes

Figure 5: Limitation of LangSplat on Trex and Leaves scenes from NVOS benchmark. Parts of the
trex can not be extracted in the top row. In the bottom row, background leaves are also selected along
with front leaf.
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produce over-segmented object segments. To handle such cases and obtain the final segmentation, we
aggregate all the segments that constitute the object. We also use the same number of 2D segmented
masks as the number of training views. In contrast, for GaussianCut, we limit the number of masks
to 30 for front-facing scenes and 40 for 360� inward-facing scenes. To prevent memory issues in
Gaussian Grouping, we restrict the total number of Gaussians across all scenes to 2M.

A.1.2 LangSplat

We obtained all 2D features at feature level “part” for LangSplat [43]. Since we could not use clicks
and scribbles to obtain the segment, we have used text queries. We tried multiple text queries for
each scene and reported the results on the best performing query. For certain scenes, text queries can
constrain the selection of an object. For instance, in Figure 5, multiple instances of the leaves get a
high relevancy score when segmenting the front leaf.

B Limitations

Figure 6: Trex scene from the LLFF [33] dataset. Left: reference image with scribbles provided by
NVOS [44]. Center: segmentation mask provided by SAM [24]. The obtained mask misses finer
details and also groups multiple intricate features together. Right: segmented using GaussianCut.
While it adds finer details (like near the ribs), the tail still contains some background elements.

The performance of our method depends on the robustness of image and video segmentation models.
For all the scenes tested, we do not tune SAM-Track and use the default settings. SAM-Track (built
on SAM) can provide coarse segments, even on the reference image, especially for irregular scenes,
as shown in Figure 6. GaussianCut improves the segmentation details of SAM but there still remains
scope for improving the segmentation performance further for the more intricate patterns.

Similar to image-segmentation models, video-segmentation models can also have inaccurate segmen-
tation masks. This issue is more pronounced in complex 360� scenes, where an object can entirely

Figure 7: SAM-Track fails to capture major sections of the bicycle when its orientation significantly
deviates from the initial position. Even in the reference image, the segmentation mask omits finer
details such as the bicycle wheel rims, pedals, and bottle holder. GaussianCut improves segmentation
by eliminating substantial portions of the bench to isolate the bicycle, and it partially restores the
visibility of the wheel rims. Despite these improvements, the segmentation remains imprecise.
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Figure 8: GaussianCut precisely retrieves fine details, such as the mirrors on the front of the truck,
even in instances where video-segmentation model struggles to maintain consistency across different
views in the scene.

change its orientation, which can lead the trackers to fail in segmenting all views effectively. We
illustrate two instances in Figure 7 and 8, where GaussianCut corrects the inaccuracies of SAM-Track
with varying levels of effectiveness.
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Figure 9: Visualization of selected objects on the Mip-NeRF and LERF dataset. Initial object
selection, based on point clicks, and the reference image is shown on the left.

C More visualization results

We present additional segmentation visualizations for 360� inward scenes taken from Mip-NeRF [1]
and LERF datasets [23] in Figure 9. GaussianCut segments complex and irregular features, including
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the leaves and wire in the bonsai lego, the detailed decorations of the plant and table in the garden
scene, as well as the cord, viewfinder, and flashbulb of the vintage camera.

D Additional results

D.1 Shiny dataset

Reference Image SA3D Ours

Figure 10: Qualitative results on the Shiny dataset, compared against SA3D [7]. The points used as
user inputs are highlighted in the reference image.

Scenes in Shiny [53] dataset have complex shapes of objects (pasta), are placed in more cluttered
environments (tools), or possess a subtler distinction between the foreground and background colors
(giants). We test four scenes from the Shiny dataset and label four images from each scene as
ground-truth. Table 4 shows the improvement of GaussianCut against coarse splitting and SA3D [7]
with an overall +0.7% and +1.7% absolute gain in foreground mIoU, respectively. Qualitative results
from the dataset are shown in Figure 10. GaussianCut can retrieve fine details (like the strands of the
pasta) more accurately.

17



D.2 SPIn-NeRF

Table 10 shows the performance of GaussianCut on each scene of the SPIn-NeRF dataset. Further-
more, we show in Figure 11 that the quality of the mask produced by GaussianCut contains finer
details than the ground-truth labels from SPIn-NeRF.
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Figure 11: Qualitative comparison of segmentation masks obtained from GaussianCut and the ground-
truth used in SPIn-NeRF dataset.
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Table 10: Quantitative results on each scene in the SPIn-NeRF dataset.
Scenes MVSeg [36] ISRF [17] SA3D [6] SAGD [21] Gaussian Grouping [54] LangSplat [43] GaussianCut)

Orchids 92.7 84.2 83.6 85.4 89.4 88.2 87.8
Leaves 94.9 87.2 97.2 87.9 96.7 46.5 96.3
Fern 94.3 83.1 97.1 92.0 97.3 97.3 96.1
Room 95.6 67.6 88.2 86.5 96.2 64.5 95.2
Horns 92.8 84.3 94.5 91.1 92.5 87.1 93.6
Fortress 97.7 92.6 98.3 96.6 97.8 95.8 97.7

Fork 87.9 19.9 89.4 83.4 90.0 70.1 85.4
Pinecone 93.4 60.0 92.9 92.0 92.2 54.4 91.9
Truck 85.2 79.2 90.8 93.0 95.9 53.8 95.7
Lego 74.9 57.3 92.2 88.4 36.0 36.3 89.2

mean 90.9 71.5 92.4 89.7 88.4 69.5 92.9

D.3 3D-OVS

To test the performance of our method using text queries, we test on the 3D-OVS [28] dataset and
compare it against Gaussian Grouping [54], LangSplat [43], and Contrastive Gaussian Clustering [46]
in Table 11. We use the grounding-DINO integration in SAM-Track to obtain the initial segments.
The baseline numbers reported in Table 11 are taken from [46]. We use a different text query for
some objects than [46]. This was done to ensure that we have a decent initial mask from SAM-Track
as the goal of our work is not to improve language understanding in 3D models.

D.4 Qualitative comparison with 2D segmentation model

The objects segmented by GaussianCut exhibit fine details, as depicted in the masks presented
in Figure 12. Although our method uses SAM predictions as an initial mask, the segregation of
Gaussians provides information with greater precision compared to SAM alone.

E Additional sensitivity analysis and ablations

E.1 Binary weights for coarse splatting

As mentioned in Section 3.3, the likelihood term wg for each Gaussian g is obtained by taking a
weighted ratio of g’s contribution on the masked pixels compared to the total number of pixels it
affects. Instead of using weighted assignment, we can also have a hard binary assignment where a g
either contributes to a foreground pixel or it doesn’t. For the n viewpoints, I := {Ij}nj=1 that have
corresponding masks M := {Mj}nj=1,

wg =

P
j

P
p2Mj I(T j

g > 0)
P

j

P
p2Ij I(T

j
g > 0)

, (6)

which reflects the ratio of the number of pixels that g has contributed to in Mj and Ij . As shown in
Table 12, since soft assignment has marginally better performance, it is our default implementation.

E.2 Sensitivity of hyperparameters

We share a default setting in section 4 which performs reasonably well on all our datasets. The
sensitivity of each parameter can be very scene-dependent. For instance, in a scene where parts of
an object have different colors, a very high weight on the color similarity can affect adversely. We
show the effect of � (controls the pull of neighboring vs terminal edges) and � (decay constant of the
similarity function) on two scenes in Table 13 and Table 14, respectively. The reported metric is IoU.

E.3 Threshold of coarse splatting

For the four 360-degree inward scenes in the SPIn-NeRF benchmark, we show a sweep of the
threshold ⌧ (default is 0.3 in our implementation) used for Coarse Splatting. GaussianCut outperforms
all the thresholds considered for coarse splatting as shown in Table 15.
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Figure 12: Visualization of segmentation masks from SAM and GaussianCut.
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Table 11: Quantitative evaluation on 3D-OVS [28] dataset. CGC refers to Contrastive Gaussian
Clustering method.

Item Gaussian Grouping [54] LangSplat [43] CGC [46] GaussianCut (Ours)

B
ed

Banana 96.9 17.8 95.9 97.2
Leather Shoe 97.6 71.4 97.9 96.4

Camera 95.3 3.3 85.0 95.3
Hand 96.8 6.9 95.5 94.0

Red Bag 98.5 81.2 98.1 98.8
White Sheet 99.0 25.5 99.0 98.9

Average 97.3 34.3 95.2 96.8

B
en

ch

Wall 98.7 42.6 98.7 97.7
Wood 97.8 88.0 98.0 96.2

Egg Tart 95.4 87.4 97.2 93.2
Orange Cat 94.5 96.4 97.3 97.6
Green grape 0.0 93.7 95.5 94.6
Offroad car 93.7 93.7 93.6 95.2

Doll 36.0 92.1 92.2 93.2
Average 73.7 84.8 96.1 95.4

R
oo

m

Wall 99.4 24.3 43.6 99.1
Chicken 0.0 94.7 91.4 91.2
Basket 87.9 98.3 97.4 96.3
Rabbit 96.3 45.3 97.0 93.8

Dinosaur 92.7 6.8 94.9 93.1
Baseball 97.5 68.4 97.4 95.6

Average 79.0 56.3 86.9 94.9

So
fa

Pikachu 48.8 89.6 0.0 94.3
UNO cards 95.8 79.6 95.4 95.5

Nintendo switch 90.9 89.8 92.6 93.7
Gundam 16.1 79.5 76.9 91.0

Xbox controller 59.9 67.8 96.1 97.7
Sofa 97.4 0.0 44.0 98.0

Average 68.1 67.7 67.5 95.0

La
w

n

Apple 96.3 94.0 93.8 88.8
Cap 98.4 98.4 97.9 92.0

Stapler 94.7 96.2 95.6 88.1
Headphone 94.5 91.7 70.2 84.2
Hand soap 96.0 95.2 93.7 91.3

Lawn 99.2 99.5 99.3 94.1

Average 96.5 95.8 91.8 89.8

Table 12: Comparison of soft and hard weight assignment of wg .

Scene Soft assignment Hard assignment

Fern (NVOS) 83.06 82.56
Fortress (NVOS) 97.97 98.12
Leaves (NVOS) 95.95 95.60
Lego (SPIn-NeRF) 89.18 88.95
Pinecone (SPIn-NeRF) 91.89 91.99

E.4 How important are the 2D segmentation masks?

In order to understand the extent to which the performance of our model depends on the initial 2D
segmentation mask, we do the masked rasterization with just scribbles, a single mask, and multi-
view masks. Figure 13 shows the segmentation result of Coarse Splatting and GaussianCut. The
effectiveness of GaussianCut is heightened further when the initial segmentation mask is sparse.
Table 16 also shows the performance improvement when running GaussianCut directly on user
scribbles.
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Table 13: Performance comparison for differ-
ent � values.

Scene � = 0.5 � = 1 � = 2 � = 4

Fortress 97.67 97.99 97.95 97.80
Lego 89.15 89.18 89.18 88.49

Table 14: Performance comparison for differ-
ent � values.

Scene � = 0.5 � = 1 � = 2 � = 4

Fortress 96.12 97.95 97.56 96.04
Lego 89.20 89.18 89.18 89.19

Table 15: Coarse splatting baseline with different thresholds.

Threshold IoU Acc

Coarse@0.1 88.47± 4.85 98.96± 0.53
Coarse@0.3 89.67± 3.18 98.94± 0.72
Coarse@0.5 87.76± 3.06 98.45± 1.50
Coarse@0.7 83.30± 6.04 97.58± 2.84
Coarse@0.9 72.13± 11.26 96.08± 4.69
GaussianCut 90.55± 3.76 99.18± 0.41

Figure 13: We compare coarse splatting (w/o graph cut) and GaussianCut. Scribbles refer to using
direct input, single mask refers to taking the mask from one viewpoint, and multi-view masks refer
to using video segmentation. The effectiveness of GaussianCut becomes more prominent when the
inputs are sparse.

Table 16: Segmentation performance with just user scribbles for NVOS scenes.

Scene Scribbles Scribbles (with graphcut) GaussianCut

Fern 8.17 47.97 83.06
Flower 7.48 85.30 95.37
Fortress 15.12 95.67 97.95
Trex 6.74 50.44 83.43
Orchids 6.17 85.25 95.80
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The introduction clearly lists the contribution of this work.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have written about the limitations in the main paper. We have also included
a few failure cases in the appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

23



Justification: Our method does not have any theoretical result.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, we mention all the hyperparameters and the off-the-shelf models we
have used. When building on another codebase, we use their default settings (or mention
explicitly if something is changed).
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code is available at: https://github.com/umangi-jain/gaussiancut
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, we list it in the implementation details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Factors for stochasticity are less.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Provided in the discussion section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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