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Abstract

Spontaneous cooperation –— the ability to assist others without explicit instruction1
or coordination –— is a hallmark of intelligent social behavior observed in humans2
and other animals. However, most Multi-Agent Reinforcement Learning (MARL) ap-3
proaches lack mechanisms for intuitive, goal-directed helping due to limited modeling4
of other agents’ internal states. In this paper, we explore a Theory of Mind (ToM)-5
inspired approach to address this gap, enabling artificial agents to infer and support the6
hidden goals of their teammates. Building on the Hidden Goal Markov Decision Pro-7
cess (HGMDP) framework, we introduce a baseline evaluation in a simplified collabo-8
rative domain in which an assistant agent must infer whether a leader agent is hungry9
or thirsty and deliver the appropriate item without direct communication. This prelim-10
inary system demonstrates how basic goal inference can enable spontaneous, context-11
sensitive cooperation. These findings lay the groundwork for future development of12
MARL agents capable of adaptive, intuitive assistance in more complex environments.13

1 Introduction14

Despite the obvious interdependencies that exist between agents, existing work in Multi-Agent Rein-15
forcement Learning (MARL) typically assumes that each agent operates with limited or no explicit16
representation of other agents’ internal states, goals, or learning processes (Albrecht and Stone,17
2018). In contrast, multi-agent systems grounded in the beliefs-desires-intentions (BDI) paradigm18
emphasize the importance of modeling intentions as a means to support coherent and effective col-19
laboration (Rao et al., 1995; Grosz and Kraus, 1996). The disconnect between these two perspectives20
leaves a gap in our ability to develop MARL agents that can engage in fluid, human-like teamwork.21

To bridge this gap, we propose a theory of mind (ToM)-inspired approach that enables reinforce-22
ment learning agents to explicitly infer the goals or mental states of their teammates to improve23
coordination and collaborative performance (Georgeff et al., 1999; Langley et al., 2022). Our focus24
is on reducing the cognitive and computational overhead needed for an agent to act helpfully, par-25
ticularly in environments where spontaneous cooperation is essential. This line of work is grounded26
in observations from cognitive science, where even toddlers and chimpanzees can display forms of27
intuitive, goal-directed helping behavior—such as assisting someone in opening a cabinet—without28
prior training or explicit communication (Warneken and Tomasello, 2006).29

To begin tackling the challenge of such spontaneous cooperation in artificial agents, we build upon30
the Hidden Goal Markov Decision Process (HG-MDP) framework (Fern et al., 2014), which pro-31
vides a natural formalism for modeling goal ambiguity in interactive settings. Specifically, we32
introduce a simple yet illustrative collaborative environment inspired by the popular Overcooked33
domain—a benchmark used extensively in MARL research due to its structured tasks, flexible agent34
roles, and rich coordination challenges. Within this domain, we implement a hungry-thirsty setting,35
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where a leader agent may be either hungry or thirsty, and an assistant agent must infer and support36
the leader’s latent goal by delivering the correct item (e.g., sushi or water). This setting is particu-37
larly challenging for non-adaptive agents, as effective assistance requires dynamic goal recognition38
and context-sensitive action selection.39

We present a baseline system in which the assistant agent attempts to infer the leader’s hidden40
goal and act supportively, without relying on explicit communication or complex mental simula-41
tion. Rather than introducing a new recognition or cooperation algorithm, this work offers a simple42
baseline and a controlled, clean environment to evaluate goal recognition and cooperative behavior43
both independently and in combination. Through this setup, we evaluate how simple forms of goal44
inference can enhance cooperative behavior, even in cases where the assisting agent lacks access45
to the leader’s internal policy or reward function. This paper reports on our preliminary findings,46
highlights the potential of cognitively inspired goal recognition in MARL, and outlines key avenues47
for enhancing the reasoning and interaction capabilities of assisting agents in future work.48

2 Background49

2.1 Multi-Agent Reinforcement Learning (MARL)50

A single-agent sequential decision process is modeled as a Markov Decision Process (MDP), defined51
by the tuple ⟨S,A, T,R, γ⟩. At each time step t, the agent observes a state st ∈ S and selects an52
action at ∈ A according to its policy π(a|s). The environment provides a reward rt and transitions53
to a new state st+1 based on the transition function T (st+1|st, at). The agent aims to learn a policy54
that maximizes the expected return G =

∑∞
k=0 γ

krt+k, where γ ∈ [0, 1) is the discount factor.55

In Multi-Agent Reinforcement Learning (MARL), the environment is typically modeled as a56
multi-agent MDP (also known as a Markov game) for n agents, represented by the tuple57
⟨S,A1, . . . , An, T,R, γ⟩. Here, S denotes the set of joint environment states; A1, . . . , An repre-58
sent the action sets available to each agent; T is the state transition function based on the joint state59
and the agents’ actions, T (st+1|st, a1,t, . . . , an,t); and γ is the discount factor. In a fully coopera-60
tive setting, R : S × A1 × · · · × An → R is the team’s shared reward function. This formulation61
also assumes that agents have full observability and thus each has the same state. However, the62
full transition and reward functions may not be available to the agents. We consider two classes of63
MARL algorithms or settings: those without Theory of Mind (ToM) and those incorporating ToM.64

MARL Without Theory of Mind In settings without ToM, agents typically do not model the65
internal states or intentions of other agents. A common approach is independent Q-learning (Tan,66
1993), where each agent treats other agents as part of the environment and selects actions based67
solely on its own observations. Learned information is not shared between agents. Centralized68
Training with Decentralized Execution (CTDE) frameworks, such as QMIX (Rashid et al., 2020)69
and MADDPG (Lowe et al., 2017), allow agents to act independently during execution but share70
information during training. This setup enables agents to pool knowledge and learn more efficiently,71
often resulting in identical policies across agents. Model-based RL approaches, like R-max (Braf-72
man and Tennenholtz, 2003), can be advantageous when the transition and reward functions are73
known or can be learned. Agents can compute joint policies through planning methods like dy-74
namic programming, even without explicit communication. For discrete state and action spaces,75
tabular learning methods may suffice, while continuous or complex tasks often necessitate function76
approximation techniques.77

MARL With Theory of Mind Incorporating ToM into MARL involves agents modeling the be-78
liefs, intentions, or learning processes of other agents. Ad-hoc teamwork is a related problem where79
one can control only a single agent, while teammates may have different capabilities and learning80
abilities (Mirsky et al., 2022). For example, Ribeiro et al. (2022) present a Bayesian online pre-81
diction algorithm for ad hoc teamwork under partial observability (ATPO), enabling agents to col-82
laborate with unknown teammates on unknown tasks without prior coordination, observable team-83
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mate actions, or environmental rewards. Learning with Opponent-Learning Awareness (LOLA) is84
a method where an agent anticipates and influences the learning updates of other agents by explic-85
itly modeling their learning processes (Foerster et al., 2018; Zhao et al., 2022; Willi et al., 2022).86
While LOLA focuses on opponent shaping, it does not explicitly address collaborative aspects of87
multi-agent settings. Social influence approaches encourage coordination and communication by88
rewarding agents for having causal influence over others’ actions (Jaques et al., 2019). Although89
these methods identify where an agent influences others, they do not involve explicit models of other90
agents’ understanding or policies.91

In all these approaches, the primary goal is to learn the assistant agent’s policy, with other agents’92
policies represented implicitly. Typically, agents learn policies based on observable states and pos-93
sibly the actions of others, without explicitly modeling the hidden goals of teammates. Interactive94
Partially Observable Markov Decision Process (I-POMDP) is a model that extends the standard95
POMDP framework to multi-agent settings by modeling other agents as part of the environment,96
explicitly representing their beliefs, intentions, and decision-making processes (Gmytrasiewicz and97
Doshi, 2005). This recursive reasoning enables agents to plan while accounting for the presence and98
potential strategies of others. However, while I-POMDPs provide a principled approach to modeling99
interactions, they can be computationally intractable and do not specifically target collaborative dy-100
namics or goal alignment in fully cooperative scenarios. AssistanceZero is another recent work that101
explicitly formulates assistance as a two-player game and extends AlphaZero with a neural network102
that predicts human actions and rewards, enabling deep planning under uncertainty in environments103
with vast goal spaces (Laidlaw et al., 2025). In contrast to these, our work emphasizes lightweight,104
cognitively inspired goal inference: we aim to reach similar reasoning processes as a toddler know-105
ing to assist an adult, even if they have never been in a similar situation before, due to inherent106
altruistic motives Warneken and Tomasello (2006). This approach is based on observable behav-107
ior, avoiding the need for complex predictive models or retraining. This makes it more suitable for108
realistic, dynamic settings, such as human-robot collaboration, where goals may change over time109
and agents must adapt quickly with limited computation (Masters and Sardina, 2019; Shamir et al.,110
2024; Shamir and Mirsky, 2025).111

In this work, we focus on fully cooperative multi-agent settings, where all agents share a common112
goal (which may not be directly accessible to all teammates) and they work together to achieve it113
(Grosz and Kraus, 1999). Currently, we do not assume the existence of any explicit communication114
protocol between the agents; instead, coordination emerges implicitly through shared objectives and115
observed behavior. However, we recognize the potential benefits of incorporating communication116
and prefer representations that will allow us to enhance coordination and adaptability using commu-117
nication in the future. To comply with this desiderata, we refer to the BDI literature and specifically,118
to Hidden Goal Markov Decision Processes (Fern et al., 2014):119

Hidden Goal Markov Decision Processes (HGMDPs) HGMDPs are specialized MDP-based120
models designed to formalize the problem of assistive agents aiding goal-directed users whose ob-121
jectives are not directly observable.122

Fern et al. (2014) defined a Hidden Goal Markov Decision Process (HGMDP) as a tuple M =123
(S,A,A′, G, T,R, I,G0, π), where S is the set of world states, A is the set of actions available to the124
leading agent (e.g., the user), and A′ is the set of actions available to the assistant agent. G is a finite125
set of possible goals for the leading agent, where each goal g ∈ G represents a set of desired world126
states such that g ⊆ S. The transition function T : S×(A∪A′)×S → [0, 1] defines the probability of127
transitioning between states given an action, and the reward function R : S× (A∪A′) → R assigns128
a real-valued cost to each action in a given state. I : S → [0, 1] is the initial state distribution, and129
G0 : G → [0, 1] represents the prior distribution over the agent’s goals. Finally, π : S×G → ∆(A)130
denotes the (unknown) policy of the leading agent, specifying a distribution over actions conditioned131
on the current state and goal.132

Hidden Goal Markov Decision Processes (HGMDPs) introduce a belief state—a probability distri-133
bution over possible goals—that serves as a sufficient statistic for planning under uncertainty (Fern134
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et al., 2014). In this framework, the assistant observes the world state and the actions of the leading135
agent but does not have direct access to the agent’s goal g ∈ G. The assistant’s objective is to select136
actions from A′ that assist the leading agent in achieving its goal, thereby minimizing the expected137
cumulative cost over an episode. The assistant must infer the agent’s goal based on observed behav-138
iors and select assistive actions accordingly. Note that in this setting, the leader is assumed to be139
non-learning. However, it may follow a stochastic policy or one that depends on the actions of the140
assistant. These assumptions are consistent with the ad hoc teamwork literature, which emphasizes141
spontaneous cooperation, an aspect closely aligned with the focus of our work (Mirsky et al., 2022).142

Figure 1: An illustration of HGMDP in
the hungry-thirsty environment.

Figure 1 provides a running example of HGMDP using143
the hungry-thirsty environment (Singh et al., 2009). The144
leader (depicted with a moustache) is either hungry or145
thirsty, and the assistant must help by fetching the ap-146
propriate item—sushi for hunger or water for thirst. A147
denotes the leader’s actions, A’ represents the assistant’s148
actions, and G0 is the assistant’s initial belief about the149
leader’s goal. A full description of this environment is150
provided in Section 4.151

2.2 Goal Recognition with MDPs152

The prior section discussed HGMDPs, where a critical153
challenge for the assistant agent is to understand the lead-154
ing agent’s goals. Several frameworks have been pro-155
posed to address goal recognition and observer-aware156
planning in the context of MDPs. Some of these repre-157
sentations are a single agent point-of-view where the observer is outside of the modeled world,158
while others are fully multi-agent in the sense that they model both the leader and the assistant.159

• Goal Recognition over POMDPs: This approach involves inferring a probability distribution160
over possible goals of an agent whose behavior results from a POMDP model. The observer161
shares the POMDP model with the agent as common knowledge, except for the agent’s true goal.162
The task is to compute the posterior goal distribution based on observed actions (Ramırez and163
Geffner, 2011).164

• Bayesian Delegation: In this multi-agent settings, Bayesian Delegation enables agents to rapidly165
infer the hidden intentions of others by inverse planning, all share a similar model of the world.166
Agents coordinate their high-level plans and low-level actions without prior experience, demon-167
strating effective ad-hoc collaboration (Wu et al., 2021).168

• Goal Recognition as Reinforcement Learning: Amado et al. (2022) introduced a framework that169
combines model-free reinforcement learning and goal recognition. The approach involves offline170
learning of policies or utility functions for each potential goal and online inference to determine171
the most likely goal based on observations. This method alleviates the need for manual domain172
modeling and enables goal recognition in complex environments.173

• Observer-Aware MDPs (OAMDPs): OAMDPs provide a framework for producing observer-174
aware behaviors, where an agent considers the beliefs of an observer when planning its ac-175
tions (Miura and Zilberstein, 2021). This framework aims to improve the interpretability of agent176
behaviors and is less complex than I-POMDPs (Gmytrasiewicz and Doshi, 2005).177

• Partially Observable Markov Chain of Plans (POMCoP): POMCoP is a system designed for178
planning in collaborative domains, where an AI sidekick assists a human player (Macindoe et al.,179
2012). It operates by reasoning about how its actions will affect its understanding of humans’180
intentions, effectively maintaining a belief over possible human goals.181

While all these frameworks address aspects of goal recognition and observer-aware planning with182
MDPs, which are MARL-compatible representations, we focus on HGMDPs rather than these other183

4



HGMDP for MARL

approaches as they offer a more comprehensive model by integrating goal inference and assistive184
action selection within a unified framework. HGMDPs are particularly well-suited for MARL sce-185
narios where agents must cooperate without access to the leader’s goal or knowledge of the world,186
as they allow for planning under uncertainty over different goals using belief states.187

3 Translating a MARL Scenario into HGMDP188

The HGMDP formalism provides a principled framework for modeling goal uncertainty in multi-189
agent settings where agents must collaborate without access to each other’s internal states. By190
maintaining a belief state—a probabilistic estimate over the possible goals of the leading agent—191
the assistant (or follower) can plan and act under uncertainty, rather than committing to a single,192
fixed hypothesis of the leading agent’s goal. This representation enables flexible and goal-aware193
decision-making that adapts to ambiguity and evolving evidence over time. For instance, consider a194
case where the assistant assigns equal probability (50% − 50%) to two goals that require opposing195
responses. If goals are treated as part of the observable state rather than as latent variables, the agent196
can at best learn a policy aligned with one goal, effectively ignoring the other. In contrast, reason-197
ing over a belief distribution allows the agent to optimize its behavior over the whole spectrum of198
possible goal distributions, taking into consideration that the learned behavior only suits 50% of199
the agent’s belief, thus enabling more robust and anticipatory assistance. In this way, the belief up-200
date mechanism serves as a critical bridge between low-level observations and high-level inference,201
supporting more adaptive and intelligent cooperative behavior.202

To illustrate this framework in a practical setting, we consider a simplified leader-assistant scenario203
inspired by the Hungry-Thirsty domain (Singh et al., 2009). In this two-agent system, the leader204
has one of two latent goals—either reaching a food cell (if hungry) or a water cell (if thirsty). The205
assistant’s task is to assist the leader in reaching that goal as efficiently as possible. The assistant206
does not receive explicit communication of the leader’s internal state or goal. Instead, it must infer207
the leader’s goal solely on observed behavior and environmental state.208

Case Study: Incorporating Goal Recognition using HGMDP in Hungry-Thirsty209

In this domain, the state space includes the positions of both agents and the locations of food and210
water, while the goal space G consists of two elements: hungry and thirsty. The leader’s211
policy is conditioned on its goal, which is hidden from the assistant. We model the leader’s goal as212
hidden, transforming the problem into an HGMDP. The assistant maintains a belief over the leader’s213
goal, denoted bt(g) = P (g | ht), where ht is the interaction history up to time t.214

This belief is then used as an input to the assistant’s policy, π′ : (st, bt) → A′, enabling it to adapt215
its actions based on the inferred goal. For instance, if the leader appears to be heading toward the216
food location, the assistant may infer that the leader is hungry and either assist in retrieving the food217
or allocate effort elsewhere if the leader is already near the target. In this way, the assistant exhibits218
rudimentary theory of mind—reasoning about not only what the leader is doing but also why.219

This formulation offers several advantages:220

• Modularity: The belief update and policy learning processes can be decoupled, allowing for221
independent improvements and more interpretable agent behavior.222

• Efficiency: By focusing on likely goals, the assistant avoids learning to assist in irrelevant or223
low-probability scenarios.224

• Interpretability: Goal inference provides a transparent rationale for assistive behavior and facil-225
itates debugging and trust.226

We propose that this structure of combining MARL, HGMDPs, and goal recognition serves as a227
promising baseline for future work, including leveraging various RL algorithms for training, as well228
as tackling more complex cooperative domains such as OVERCOOKED with longer, more complex229
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recipes. While the Hungry-Thirsty domain is minimal, it captures the core challenge of latent-goal230
inference and provides a foundation for extending to richer scenarios.231

Modeling Assumptions and Design Choices232

To simplify implementation while maintaining generality, we make the following assumptions:233

• The leader’s policy is goal-directed and stochastic but does not explicitly model the assistant.234

• The assistant observes the environment and the leader’s actions, but not the leader’s internal state.235

• The goal prior distribution G0 is known or can be estimated from offline data.236

• The environment dynamics are either deterministic or known, enabling tractable belief updates.237

4 Experimental Setup238

Environment and Agents We evaluate the assistant agent in the “Hungry-Thirsty” environment, a239
grid-based simulation where agents navigate walkable tiles while avoiding static obstacles (coun-240
ters). Experiments were conducted on three distinct layouts (Figure 2), with fixed starting positions241
for the leader and assistant agents.242

Figure 2: The Hungry-Thirsty environments used in
experiments

Trial Configuration For each layout, we243
ran 50 trials. In each, 2–4 food items244
(sushi, water, egg, bread) were randomly245
placed on counters, and a target item246
for the leader was selected from among247
them. This setup models a leader-assistant248
scenario where the assistant observes the249
leader and attempts to assist.250

Agent Behavior The leader begins each251
trial in “independent” mode, following an252
optimal, deterministic path to its goal. The assistant observes the leader’s movements to infer its253
goal by tracking changes in shortest path distances from the leader’s starting position to each food254
item. A greater decrease to a specific item suggests the leader is targeting it. Upon inference, the as-255
sistant fetches and delivers the item, then returns to its start location. This reflects a one-task model;256
future work will consider sequential tasks. Once the assistant acts, the leader switches to Bayesian257
Delegation (Wu et al., 2021) to coordinate. Trials end when the leader reaches the delivery station258
with the target item.259

Trial Selection Criteria Only trials where the assistant can unambiguously infer the leader’s goal260
(before item pickup) are included. This ensures 100% goal recognition accuracy, allowing analysis261
to focus on:262

1. Timesteps required for goal recognition263

2. Assistant’s success in fetching and delivering the item (not always 100%)264

Baseline Approach The setup does not introduce new algorithms. The leader follows optimal265
pathfinding and later uses Bayesian Delegation; the assistant uses deterministic inference and opti-266
mal navigation. This baseline measures idealized agent performance to inform future research on267
more complex, adaptive behaviors.268

Research Questions In this work, we explore:269

• Does more goal ambiguity (more items) increase recognition time?270

• Does goal ambiguity reduce delivery success rate?271

• Is earlier goal recognition correlated with successful delivery?272
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• Just how useful is the assistant to the leader? How much time does the assistant save the leader,273
on average, during task completion?274

This design evaluates a baseline assistant using simple inference and navigation in a human-robot275
coordination task, providing a foundation for future work on adaptive, learning-based agents.276

Metrics and Evaluation As we focus this preliminary investigation on setting up a clear baseline277
for evaluation of a cooperation between a leader and an assistant agent, we track:278

• Steps to Goal Recognition: Average timesteps until correct inference279

• Success Rate (Delivery): Whether the assistant delivered the correct item280

• Steps to Goal Recognition (Success Only): Same as above, but only for successful deliveries281

• Average Contribution of the Assistant: The average reduction in steps taken/required (not sure282
which of these two words I should use here) by the leader when the assistant is present. We283
assume the leader stops pursuing its goal as soon as the assistant makes their first movement. The284
assistant’s first movement indicates that they have recognized the goal and begun fetching it, so285
the leader no longer needs to take action.286

• Average Contribution of the Assistant (Success Only): Same as above, but only for successful287
deliveries.288

5 Preliminary Results289

Our experiments revealed several key trends in how the assistant agent’s performance varied as the290
number of potential goals (food items) increased, illustrating the strengths and limitations of simple291
goal inference within our controlled evaluation setting.292

Time to Goal Recognition Increases with More Goals The timesteps needed for the assistant293
agent to recognize the leader’s goal increased when there were more food items in the environment.294
As shown in Table 1, the average number of timesteps until recognition increased across all three295
environments as the number of potential goals increased from two to four. In Environment 1, the296
average number of timesteps until recognition increased from 1.88 timesteps with two goals to 4.46297
timesteps with four goals. Similar trends were observed in Environment 2 (2.77 to 6.30 timesteps)298
and Environment 3 (2.10 to 4.31 timesteps). This pattern suggests that when more food items (po-299
tential goals) are present in the environment, the assistant agent must observe more movement from300
the leader before it can disambiguate and confidently determine the target item.301

Env. 2 Goals 3 Goals 4 Goals
1 1.88 2.70 4.46
2 2.77 4.22 6.30
3 2.10 2.86 4.31

Table 1: Timesteps to Goal
Recognition

Env. 2 Goals 3 Goals 4 Goals
1 88% 45% 38%
2 50% 44% 30%
3 40% 29% 25%

Table 2: Success Rate (Deliv-
ery)

Env. 2 Goals 3 Goals 4 Goals
1 1.87 2.22 2.40
2 1.36 1.88 2.67
3 1.38 1.25 1.75

Table 3: Timesteps to Suc-
cessful Delivery

Success Rate (Delivery) Decreases with More Goals As a consequence of the increased time re-302
quired for goal recognition when there are more potential goals, the assistant agent’s overall success303
in fetching and delivering the target food item declined with more goals. The data for successful304
fetch and delivery in Table 2 illustrates this. Environment 1 saw a decrease from 88% success with305
two goals to 38% with four goals. Similar trends were observed in Environment 2 (50% to 30%) and306
Environment 3 (40% to 25%). These results highlight that not being able to recognize the leader’s307
goal early on makes it highly difficult for the assistant to fetch and deliver the item before the leader308
reaches the item on their own.309

Earlier Recognition Correlates with Successful Delivery When the assistant agent was able to310
successfully complete the fetch and delivery, it tended to recognize the goal earlier in the trial. This311
is supported by Table 3, which shows the average time until recognition when there is a successful312
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fetch and delivery. Comparing Table 3 to Table 1, we can see that for each environment and number313
of goals, the average time to recognition when there is a successful fetch and delivery is always314
less than the overall average time until recognition shown in Table 1. This indicates that faster315
identification of the target item is associated with a higher likelihood of a successful delivery.316

Assistant Can Significantly Reduce Leader Steps, But Contribution Diminishes with More Po-317
tential Goals The assistant saves the leader significant time, even when trials with un-successful de-318
livery are factored in. Table 4 shows that across all environments and numbers of potential goals, the319
assistant reduces the number of steps taken by the leader by at least 14%. For trials with three goals320
or fewer, this number jumps to 20%. As expected, the assistant’s positive contribution decreases as321
the number of potential goals increases. This is because, as shown in Table 2, the assistant’s success322
rate drops with more potential goals, leading to more trials where the leader has to retrieve the item323
independently. In these specific trials, the leader experiences no step reduction.324

Env. 2 Goals 3 Goals 4 Goals
1 59.9% 27.8% 24.7%
2 37.5% 28.9% 19.6%
3 26.6% 20.9% 14.5%

Table 4: Average Contribution of the Assistant

Env. 2 Goals 3 Goals 4 Goals
1 67.9% 61.8% 64.2%
2 75.0% 65.1% 65.4%
3 66.6% 73.0% 58.0%

Table 5: Average Contribution (Success Only)

Major Step Reduction in Trials With Successful Delivery Based on Table 5, when the assistant325
successfully fetches and delivers the target item, it consistently leads to a significant step reduction326
for the leader, averaging approximately 65% across all environments and numbers of potential goals.327

6 Conclusion328

In this preliminary work, we explored a Theory of Mind (ToM)-inspired approach to enhance spon-329
taneous cooperation in Multi-Agent Reinforcement Learning (MARL) settings. We drew inspiration330
from the Hidden Goal Markov Decision Process (HGMDP) framework to model the interaction be-331
tween a goal-driven agent and an assisting agent, in order to reduce the cognitive and computational332
complexity required for effective assistance (Amado et al., 2022; Fern et al., 2014). Our investi-333
gation focused on enabling one agent to recognize and assist the goal of another without extensive334
reasoning or internal simulation (Masters and Sardina, 2019; Shamir et al., 2024).335

We translated a MARL scenario into an HGMDP framework using a simplified leader-assistant336
“Hungry-Thirsty” domain (Wu et al., 2021). In this setup, the assistant agent observed the leader’s337
movements to infer its goal based on changes in the shortest walkable path to potential target items.338
This deterministic approach to goal recognition and optimal pathfinding for navigation served as a339
baseline to evaluate idealized agent performance.340

Our preliminary results indicated several key trends. Firstly, the time required for the assistant agent341
to recognize the leader’s goal increased as the number of potential goals (food items) in the envi-342
ronment grew. Consequently, the overall success rate of the assistant in fetching and delivering the343
target item declined with a higher number of potential goals, as delayed recognition made it more344
difficult for the assistant to intervene effectively before the leader reached the item independently.345
Furthermore, our findings showed a correlation between earlier goal recognition and a higher likeli-346
hood of successful fetch and delivery by the assistant agent.347

This study represents an initial step, and the presented system has limitations, including the use of348
a simplified environment and a deterministic, non-learning assistant. However, the framework of349
combining MARL with HGMDPs for goal recognition offers a promising foundation for develop-350
ing more sophisticated assisting agents. Future work will focus on enhancing the reasoning and351
execution capabilities of assisting agents, potentially by leveraging various reinforcement learning352
algorithms for training. We also plan to extend this approach to more complex cooperative domains353
that involve longer and more intricate tasks. Ultimately, this line of research aims to create agents354
that can intuitively and effectively collaborate in dynamic multi-agent systems.355
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