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Abstract

Deep learning models have shown high accuracy in classifying electrocardiograms1

(ECGs), but their black box nature hinders clinical adoption due to a lack of2

trust and interpretability. To address this, we propose a novel three-stage training3

paradigm that transfers knowledge from multimodal clinical data (laboratory exams,4

vitals, biometrics) into a powerful, yet unimodal, ECG encoder. We employ a self-5

supervised, joint-embedding pre-training stage to create an ECG representation6

that is enriched with contextual clinical information, while only requiring the ECG7

signal at inference time. Furthermore, we leverage this enriched representation to8

provide clinically relevant explanations by training the model to predict associated9

laboratory abnormalities directly from the ECG embedding. Evaluated on the10

MIMIC-IV-ECG dataset, our model outperforms a standard signal-only baseline in11

multi-label diagnosis classification and successfully bridges a substantial portion of12

the performance gap to a fully multimodal model that requires all data at inference.13

Our work demonstrates a practical and effective method for creating more accurate14

and trustworthy ECG classification models. By converting abstract predictions15

into physiologically grounded explanations, our approach offers a promising path16

toward the safer integration of AI into clinical workflows.17

1 Introduction18

Electrocardiogram (ECG) exams are a fundamental diagnostic tool in medical practice, recording19

the heart’s electrical activity to detect a wide range of cardiovascular conditions [Braunwald et al.,20

2015]. Their importance is substantial, especially considering that cardiovascular diseases remain the21

leading cause of global mortality [Roth et al., 2020]. With the advancement of artificial intelligence,22

the automatic classification of ECG exams using deep learning techniques has shown remarkable23

potential [Liu et al., 2021, Petmezas et al., 2022], offering high precision in identifying abnormalities24

and extracting complex information that can aid in diagnosis.25

Despite the promising performance and significant accuracy achieved by deep learning models in26

healthcare, their adoption and trust among healthcare professionals remain a challenge [Reyes et al.,27

2020, Adeniran et al., 2024]. The main barrier to integrating these models into clinical practice28

lies in their black box nature—the lack of explainability and transparency about how decisions are29

made [Rosenbacke et al., 2024]. Physicians, accustomed to clinical reasoning based on evidence30

and causality, hesitate to trust systems whose internal processes are opaque, leading to mistrust and31

uncertainty regarding the safety and justification of the predictions [Koçak et al., 2025].32

Frequently, explanations are presented as saliency maps, which often fail to bridge the trust gap due33

to a lack of robustness and misalignment with clinical concepts [Borys et al., 2023, Zhang et al.,34
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2023]. To address this, we propose a novel multimodal training architecture that enriches an ECG35

model with knowledge from associated tabular clinical data. Instead of requiring all data modalities at36

inference, our approach uses a self-supervised, joint-embedding objective to transfer the rich context37

from laboratory values and vitals into a powerful, unimodal ECG encoder. This enriched encoder is38

not only more accurate but also inherently more interpretable. By training it to perform a secondary39

task of predicting lab abnormalities from the ECG signal alone, we create a system that can explain40

its diagnostic reasoning in terms of concrete, clinically relevant concepts.41

In summary, we make the following contribution:42

• We propose a joint-embedding pre-training framework to transfer knowledge from multi-43

modal tabular data into a unimodal ECG encoder for the task of diagnosis classification;44

• We introduce the prediction of laboratory abnormalities from the ECG embedding as a novel,45

clinically-grounded method for explaining the model’s diagnostic outputs.46

Related Work Our work integrates insights from three key areas. While deep learning for ECG47

classification is well-established, models often lack the trust of clinicians due to their "black box"48

nature [Reyes et al., 2020]. Current eXplainable AI (XAI) methods often rely on saliency maps, which49

can be misaligned with clinical reasoning [Borys et al., 2023]. Concurrently, self-supervised learning50

(SSL) has enabled the creation of powerful representations without labeled data [Zbontar et al.,51

2021], and multimodal learning seeks to create holistic models by fusing data sources [Kline et al.,52

2022]. However, most multimodal approaches require all data at inference time, hindering practicality53

[Alcaraz et al., 2025]. We are the first to unify these areas, using a multimodal SSL objective to54

distill knowledge into a practical, unimodal-at-inference model with a novel, clinically-grounded55

explanation mechanism. A detailed literature review is provided in the Appendix.56

2 Method57

Our approach is a three-stage training paradigm designed to create a powerful and interpretable58

ECG representation. We first pre-train a waveform encoder using a self-supervised, cross-modal59

objective to transfer knowledge from tabular clinical data. Subsequently, we fine-tune this encoder60

for two downstream relevant clinical tasks: a primary task of multi-label diagnosis classification61

Strodthoff et al. [2024]; and, a secondary task of laboratory values abnormality prediction Alcaraz62

and Strodthoff [2024].63

2.1 Joint-embedding Pre-training64

The primary goal of our pre-training stage is to learn a signal encoder, Φx, whose representations65

are enriched with the contextual information present in associated tabular clinical data. To achieve66

this, we frame the task as a self-supervised, joint-embedding problem where the model learns to align67

representations from these two distinct modalities.68

For a given patient encounter, we have a raw ECG signal segment x ∈ RC×L, where C is the number69

of leads and L is the sequence length, and a corresponding vector of tabular clinical data m ∈ RD,70

which includes demographics, vitals, and biometrics. The signal and tabular data are processed by71

their respective encoders, a powerful S4-based sequence model Φx and a MLP Φm. These backbones72

produce feature representations hx = Φx(x) and hm = Φm(m). Following the standard practice in73

self-supervised learning, these feature representations are then mapped into another embedding space74

using dedicated projector networks, Θx and Θm, zx = Θx(hx) and zm = Θm(hm), zx, zm ∈ RE ,75

where E is the embedding dimension.76

To align these embeddings without risking representational collapse, we employ the Barlow Twins77

loss function, LBT . This objective function does not rely on negative sampling and instead encourages78

the cross-correlation matrix computed between the embeddings Zx and Zm over a batch of N samples79

to be close to the identity matrix. The loss is composed of two terms: an invariance term that pulls80

the embeddings from the same patient together; and, a redundancy reduction term that decorrelates81

the different dimensions of the embedding vectors. The total pre-training objective is thus defined as82

in Equation 1.83
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Lje = LBT (Zx, Zm) =
∑
i

(1− Cii)
2 + λ

∑
i

∑
j ̸=i

C2
ij (1)

where C is the cross-correlation matrix computed between the batch-normalized embeddings Zx and84

Zm, and λ is a hyperparameter balancing the two terms. By minimizing this loss, the signal encoder85

Φx is trained to produce representations hx that are not only descriptive of the ECG signal itself but86

are also highly predictive of the rich, contextual information contained in the clinical data m. This87

process effectively transfers the clinical knowledge into the parameters of the waveform encoder.88

2.2 Diagnosis Classification89

Following the self-supervised pre-training stage, we leverage the learned, context-aware signal90

encoder Φx for the primary downstream task of clinical diagnosis prediction. To accomplish this, we91

adopt a standard fine-tuning protocol.92

The pre-trained encoder Φx is partially frozen to prevent catastrophic forgetting of the transferred93

clinical knowledge. A new, task-specific classification head, Ψy, is then initialized and attached to94

the encoder. This head is a lightweight MLP that takes the feature representation hx = Φx(x) and95

maps it to a logit for each of the K possible diagnoses.96

The model is then trained on the subset of the data containing ground-truth diagnosis labels Y . The97

optimization objective is the standard Binary Cross-Entropy (BCE) loss, summed over all possible98

labels, as is common for multi-label classification problems. The classification loss is defined as in99

Equation 2.100

Lc = LBCE(Y, Ŷ ) = −K−1
K∑
k

[Yk log(Ŷk) + (1− Yk) log(1− Ŷk)] (2)

where Y ∈ {0, 1}K is the one-hot encoded vector of true labels and Ŷ is the vector of predicted101

logits from the model. This fine-tuning stage adapts the powerful, general-purpose representation102

learned during pre-training to the specific patterns required for the diagnostic task.103

2.3 Reconstruction Finetuning104

A primary motivation for our three-stage approach is to produce a waveform representation that is105

not only predictive but also interpretable. We train the signal encoder Φx to perform a reconstruction106

task of laboratory abnormalities that are related to the context seem in the pre-training.107

For this purpose, we introduce a second, independent head Ψm, which is attached to the same108

pre-trained encoder Φx. This head is trained to predict a multi-label vector M∗ ∈ {0, 1}P , where P109

is the number of distinct laboratory abnormalities defined in our dataset (e.g., "Hemoglobin_high",110

"Urea Nitrogen_low"). Each element m∗
p ∈ M∗ is a binary indicator of a specific lab abnormality.111

Similar to the classification phase, the reconstruction head Ψm is a lightweight MLP that takes the112

signal representation hx and outputs a vector of logits M̂∗ = Ψm(Φx(x)), one for each of the P113

lab abnormalities. The model is trained by minimizing the BCE loss, as defined in Equation 2, now114

applied to the lab abnormality targets m∗ as in Equation 3.115

Lr = LBCE(M
∗, M̂∗) (3)

The ability of the model to successfully perform this pseudo-reconstruction task, using only the ECG116

signal as input, serves to provide a mechanism for model explainability. For any given diagnosis117

prediction, we can now also output the concurrent lab abnormalities predicted from the same ECG118

embedding, offering clinicians a direct, data-driven insight into the potential physiological drivers119

behind the model’s primary prediction. Essentially we offer something like: "The model predicts120

diagnosis Y , and it’s doing so as it also is predicting a associated lab abnormality M∗
p (e.g., high121

creatinine)."122

3



Table 1: Main results comparing our joint-embedding (JE) and reconstruction approach to established
baselines. Filled circles (•) indicate a data requirement, while empty circles (◦) indicate it is not
required.

Evaluation Inference Requirement Training Requirement
Model Diagnoses Lab Routine Lab Diagnoses Routine Lab Diagnoses
Supervised Signal-Only 0.768 - ◦ ◦ ◦ ◦ ◦ •
Multimodal Lab Prediction - 0.762 • ◦ ◦ • • ◦
Multimodal Classification 0.826 - • • ◦ • • •
JE + Reconstruction 0.795 0.701 ◦ ◦ ◦ • • •

3 Experimental Setup and Results123

We evaluate our paradigm on the MIMIC-IV-ECG dataset [Johnson et al., 2023], focusing on the124

emergency department subset per the protocol in Alcaraz et al. [2025], which also defines our125

data splits and backbone architecture, we detail the experiment setup in the Appendix. We report126

macro-averaged AUROC and compare against three key baselines: a Supervised Signal-Only model127

[Strodthoff et al., 2024]; a Multimodal Lab Prediction model serving as an upper bound for the128

reconstruction task [Alcaraz and Strodthoff, 2024]; and a fully Multimodal Classification model129

serving as a practical upper bound for diagnosis [Alcaraz et al., 2025].130

As shown in Table 1, the results suggest the effectiveness of our approach. Our final model, which131

operates using only the ECG signal at inference time, achieves a classification performance improve-132

ment over the signal-only baseline indicating the presence of tabular data knowledge transfer. While133

it does not reach the performance of the multimodal upper bound which requires full access to all data134

at test time, our method successfully bridges a significant portion of this performance gap without135

sacrificing the practicality of unimodal deployment.136

Furthermore, we also assess the explanations by evaluating its performance on the laboratory abnor-137

mality prediction task. Our approach achieves similar performance to its correspondence baseline,138

again we treat them as an upper bound because of the data requirement at inference.139

4 Conclusion140

In this work, we introduced a novel training paradigm that creates a powerful, practical, and in-141

terpretable ECG-based diagnostic model. Our primary contribution is demonstrating that a self-142

supervised, joint-embedding objective can effectively transfer knowledge from multimodal clinical143

data into a unimodal encoder, retaining the practical advantage of requiring only the ECG at inference144

time. Furthermore, we established a new mechanism for model interpretability by predicting associ-145

ated laboratory abnormalities from the same latent representation, offering a more intuitive alternative146

to input-space heatmaps. A key limitation is the risk of catastrophic forgetting in our sequential147

training, which we mitigated by freezing early layers; future work could explore advanced continual148

learning techniques, a detailed discussion is provided in the Appendix. We also plan to expand149

our framework to include unstructured text. By converting abstract predictions into physiologically150

grounded explanations, our approach offers a promising path toward the safer integration of AI into151

clinical workflows.152
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Appendix241

A Related Work242

Our work is primarily related to prior work on eXplainable Artificial Intelligence (XAI), self-243

supervised learning, and multimodal training in healthcare. To the best of our knowledge, our work is244

the first attempt to unify insights from these areas for automatic ECG classification.245

eXplainable Artificial Intelligence in Healthcare The growing adoption of deep learning models246

in medical applications, such as the automatic classification of electrocardiograms (ECG), has247

demonstrated impressive performance in identifying various cardiac abnormalities [Liu et al., 2021,248

Petmezas et al., 2022]. However, the black box nature of many of these deep learning algorithms249

limits their widespread acceptance by healthcare professionals [Reyes et al., 2020, Adeniran et al.,250

2024, Rosenbacke et al., 2024, Koçak et al., 2025]. The lack of transparency in the decision-making251

processes of these models generates reluctance, especially in high-risk environments. Traditional XAI252

methods, such as activation maps in the input space, are often employed to visualize the regions of the253

input that most influence a model’s prediction [Chaddad et al., 2023]. However, in the medical context,254

these visual explanations are often insufficient. Cardiologists interpret ECGs based on established255

clinical concepts, such as P-wave morphology or ST-segment elevation, not on raw signal intensity.256

Explanations that do not resonate with this established clinical lexicon are difficult to interpret and,257

therefore, less useful for diagnostic validation or learning [Borys et al., 2023, Zhang et al., 2023]. In258

response to these limitations, there is a growing demand for more intuitive and clinically relevant259

XAI approaches that can bridge the gap between abstract AI predictions and human understanding,260

thereby fostering greater trust and facilitating the integration of AI into clinical decision support261

systems [Hulsen, 2023, Gupta and Seeja, 2024].262

Self-Supervised Learning Self-supervised learning (SSL) has emerged as a powerful paradigm for263

learning meaningful representations from unlabeled data. Methodologies can be broadly categorized264

into two families. The first, joint-embedding methods, learn by enforcing consistency between the265

embeddings of two or more augmented views of the same data point. These approaches, such as266

SimCLR [Chen et al., 2020], DINO [Caron et al., 2021], Barlow Twins [Zbontar et al., 2021], and267

VICReg [Bardes et al., 2021], primarily use a discriminative objective to pull representations of the268

same instance together while preventing representational collapse. The second family consists of269

reconstruction-based methods, which learn by reconstructing the original input from a corrupted or270

masked version. This generative approach includes classic models like Variational Autoencoders271

(VAEs) [Kingma and Welling, 2013] and Generative Adversarial Networks (GANs) [Goodfellow272

et al., 2020], as well as modern powerhouses like Denoising Diffusion models [Ho et al., 2020] and273

Masked Language Models like BERT [Devlin et al., 2019]. Our pre-training stage falls into the274

joint-embedding category, leveraging its strength in learning abstract, transferable features.275

Multimodal Training in Healthcare Clinical reality is inherently multimodal; a patient’s status276

is defined by a combination of physiological signals, lab values, imaging data, and clinical notes.277

Multimodal machine learning aims to integrate these heterogeneous data sources to build more robust278

and accurate models for a holistic understanding of patient health [Kline et al., 2022, Lin et al.,279

2024]. A common strategy is feature fusion, where representations from different modalities are280

combined at an early, intermediate, or late stage to make a final prediction [Xiao et al., 2023]. For281

instance, a late-fusion model might combine the outputs of separate encoders for ECGs and tabular282

data, as is done in our multimodal baseline [Alcaraz et al., 2025]. While powerful, these fusion-based283

approaches typically require all data modalities to be present at inference time, which can be a284

significant practical barrier in clinical workflows. Our work presents an alternative: using multimodal285

data during training via a knowledge transfer objective to enrich a unimodal encoder, thereby gaining286

the benefits of multimodal context without the constraint of multimodal input during deployment.287

Automatic ECG Classification Deep learning has become the state-of-the-art approach for the288

automatic interpretation of ECGs, capable of identifying a wide range of cardiac and even non-cardiac289

conditions with high accuracy. Our work builds directly upon recent advancements in this area. We290

situate our contribution relative to three distinct but related lines of research: (i) supervised, unimodal291

models that classify diagnoses from the ECG signal alone [Strodthoff et al., 2024]; (ii) multimodal292
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models designed to predict laboratory abnormalities from ECG and routine clinical data [Alcaraz and293

Strodthoff, 2024]; and (iii) state-of-the-art multimodal fusion models that achieve high performance294

but require all data sources at inference time, serving as a practical upper bound for the classification295

task [Alcaraz et al., 2025].296

B Three-stage algorithm297

We organised the approach into a fluxogram, as despicted in Figure 1.298

Figure 1: Schematic of the proposed multimodal training architecture. Our method begins with a (i)
joint-embedding pre-training stage, where an ECG encoder Φx learns to produce representations Hx

that are aligned with embeddings from tabular clinical data M . Subsequently, this single, enriched
encoder is finetuned for two downstream tasks: (ii) a primary multi-label diagnosis classification task
Lc; and, (iii) a secondary laboratory abnormality reconstruction-like task Lr, which provides the
mechanism for model interpretability. Crucially, only the ECG signal X is required at inference time.

C Detailed Experiments299

We evaluate our proposed joint-embedding and reconstruction learning paradigm on two distinct300

downstream tasks: multi-label diagnosis classification; and, laboratory abnormality prediction. To301

conduct this evaluation, our study utilizes the MIMIC-IV-ECG dataset, a large, publicly available302

resource uniquely suited for our multimodal research. It contains over 200,000 12-lead electrocardio-303

grams from patients admitted to the Beth Israel Deaconess Medical Center, with a critical linkage304

to the rich clinical data within the main MIMIC-IV database [Johnson et al., 2023]. This linkage305

provides access to a comprehensive set of corresponding tabular data for each ECG, including: (i)306

laboratory test results; (ii) vital signs and biometrics; and, (iii) ICD-coded discharge diagnoses. The307

availability of synchronously recorded signals and comprehensive clinical context is fundamental308

to our approach, as it enables the self-supervised pre-training and provides the ground-truth labels309

for our downstream tasks. Following established prior work, our experiments focus on the subset310

of data originating from the emergency department to reflect a challenging and practical clinical311

screening scenario [Strodthoff et al., 2024]. Our experimental setup, including data splits, backbone312

architecture, and evaluation algorithms, rigorously follows the protocol established in Alcaraz et al.313

[2025] to ensure a fair comparison with all baselines. For the purpose of the lab prediction task, we314

discriminate the tabular data into two types: the valuable laboratory exam values; and the remaining315

tabular features, which we term routine clinical data (biometrics and vital signs). All results are316

reported as the macro-averaged Area Under the Receiver Operating Curve (AUROC) on the held-out317

test set.318
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D Limitations319

Sequential Training Paradigm A primary limitation of our work lies in the three-stage sequential320

training paradigm. This approach introduces the risk of catastrophic forgetting [McCloskey and321

Cohen, 1989], where the model may lose some of the rich, transferred knowledge from the pre-training322

stage during subsequent finetuning. While a joint, multi-task learning approach was considered, we323

found the simultaneous optimization of the three distinct loss functions to be highly challenging324

and unstable. To mitigate this, we partially froze the early layers of the signal encoder, preserving325

the foundational representations learned during pre-training. Future work could explore more326

advanced techniques, such as using the transferred representations as a regularization target during327

the classification phase, to more explicitly retain the pre-trained knowledge. Or training a standard328

multimodal all-modes required model and later train another similar signal encoder to replicate the329

representation of the former, given that it encodes knowledge from the other modes.330

Evaluation of Explanations Our evaluation of the model’s interpretability is indirect. We use331

performance on the laboratory abnormality prediction task as a proxy for the quality of the explanation,332

demonstrating that the ECG embedding contains physiologically relevant information. However,333

this assessment does not establish a causal relationship between the predicted abnormalities and the334

final diagnoses, nor does it explicitly highlight which specific abnormalities are most salient for a335

given diagnostic prediction from the clinician’s perspective. The model learns strong correlations,336

but further investigation, potentially involving causal inference methods or direct clinician feedback337

studies, would be required to untangle these into clinically actionable insights.338

Expanding Multimodal Learning to Text Our choice of a joint-embedding framework was339

deliberate, with future extensions in mind—in particular, the generalization of a n > 2 multimodal340

training with the integration of unstructured text data, such as clinical notes, which are available in341

MIMIC-IV dataset. This rich textual information could further improve classification performance342

and enable the generation of more natural, text-based explanations for the model’s predictions. We343

plan to generalize the joint-embedding objective to align representations from all three modalities344

(ECG, tabular, text). Crucially, we propose using the ECG’s latent space as a central anchor, aligning345

the other modalities to it. This anchor-based approach, inspired by the teacher-student approach in346

some SSL methods, is hypothesized to scale more effectively than the naive alternative of optimizing347

all pairwise combinations of modalities.348
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