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Abstract

Deep learning models have shown high accuracy in classifying electrocardiograms
(ECGs), but their black box nature hinders clinical adoption due to a lack of
trust and interpretability. To address this, we propose a novel three-stage training
paradigm that transfers knowledge from multimodal clinical data (laboratory exams,
vitals, biometrics) into a powerful, yet unimodal, ECG encoder. We employ a self-
supervised, joint-embedding pre-training stage to create an ECG representation
that is enriched with contextual clinical information, while only requiring the ECG
signal at inference time. Furthermore, we leverage this enriched representation to
provide clinically relevant explanations by training the model to predict associated
laboratory abnormalities directly from the ECG embedding. Evaluated on the
MIMIC-IV-ECG dataset, our model outperforms a standard signal-only baseline in
multi-label diagnosis classification and successfully bridges a substantial portion of
the performance gap to a fully multimodal model that requires all data at inference.
Our work demonstrates a practical and effective method for creating more accurate
and trustworthy ECG classification models. By converting abstract predictions
into physiologically grounded explanations, our approach offers a promising path
toward the safer integration of Al into clinical workflows.

1 Introduction

Electrocardiogram (ECG) exams are a fundamental diagnostic tool in medical practice, recording
the heart’s electrical activity to detect a wide range of cardiovascular conditions [[Braunwald et al.|
20135]|. Their importance is substantial, especially considering that cardiovascular diseases remain the
leading cause of global mortality [Roth et al.| |2020]. With the advancement of artificial intelligence,
the automatic classification of ECG exams using deep learning techniques has shown remarkable
potential [Liu et al., 2021} [Petmezas et al.| 2022], offering high precision in identifying abnormalities
and extracting complex information that can aid in diagnosis.

Despite the promising performance and significant accuracy achieved by deep learning models in
healthcare, their adoption and trust among healthcare professionals remain a challenge [Reyes et al.|
2020, |Adeniran et al.| [2024f]. The main barrier to integrating these models into clinical practice
lies in their black box nature—the lack of explainability and transparency about how decisions are
made [Rosenbacke et al.| 2024]. Physicians, accustomed to clinical reasoning based on evidence
and causality, hesitate to trust systems whose internal processes are opaque, leading to mistrust and
uncertainty regarding the safety and justification of the predictions [Kocak et al.,[2025].

Frequently, explanations are presented as saliency maps, which often fail to bridge the trust gap due
to a lack of robustness and misalignment with clinical concepts [Borys et al., 2023| Zhang et al.|
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2023|]. To address this, we propose a novel multimodal training architecture that enriches an ECG
model with knowledge from associated tabular clinical data. Instead of requiring all data modalities at
inference, our approach uses a self-supervised, joint-embedding objective to transfer the rich context
from laboratory values and vitals into a powerful, unimodal ECG encoder. This enriched encoder is
not only more accurate but also inherently more interpretable. By training it to perform a secondary
task of predicting lab abnormalities from the ECG signal alone, we create a system that can explain
its diagnostic reasoning in terms of concrete, clinically relevant concepts.

In summary, we make the following contribution:

* We propose a joint-embedding pre-training framework to transfer knowledge from multi-
modal tabular data into a unimodal ECG encoder for the task of diagnosis classification;

* We introduce the prediction of laboratory abnormalities from the ECG embedding as a novel,
clinically-grounded method for explaining the model’s diagnostic outputs.

Related Work Our work integrates insights from three key areas. While deep learning for ECG
classification is well-established, models often lack the trust of clinicians due to their "black box"
nature [Reyes et al.,2020]. Current eXplainable AI (XAI) methods often rely on saliency maps, which
can be misaligned with clinical reasoning [Borys et al., |2023||. Concurrently, self-supervised learning
(SSL) has enabled the creation of powerful representations without labeled data [Zbontar et al.,
2021]], and multimodal learning seeks to create holistic models by fusing data sources [Kline et al.,
2022]. However, most multimodal approaches require all data at inference time, hindering practicality
[Alcaraz et al., [2025]]. We are the first to unify these areas, using a multimodal SSL objective to
distill knowledge into a practical, unimodal-at-inference model with a novel, clinically-grounded
explanation mechanism. A detailed literature review is provided in the Appendix.

2 Method

Our approach is a three-stage training paradigm designed to create a powerful and interpretable
ECG representation. We first pre-train a waveform encoder using a self-supervised, cross-modal
objective to transfer knowledge from tabular clinical data. Subsequently, we fine-tune this encoder
for two downstream relevant clinical tasks: a primary task of multi-label diagnosis classification
Strodthoff et al.| [2024]]; and, a secondary task of laboratory values abnormality prediction |Alcaraz
and Strodthoff] [2024].

2.1 Joint-embedding Pre-training

The primary goal of our pre-training stage is to learn a signal encoder, ®,,, whose representations
are enriched with the contextual information present in associated tabular clinical data. To achieve
this, we frame the task as a self-supervised, joint-embedding problem where the model learns to align
representations from these two distinct modalities.

For a given patient encounter, we have a raw ECG signal segment z € R€*, where C is the number
of leads and L is the sequence length, and a corresponding vector of tabular clinical data m € RP,
which includes demographics, vitals, and biometrics. The signal and tabular data are processed by
their respective encoders, a powerful S4-based sequence model ®,, and a MLP ®,,,. These backbones
produce feature representations h, = ®,(z) and h,, = ®,,(m). Following the standard practice in
self-supervised learning, these feature representations are then mapped into another embedding space
using dedicated projector networks, ©, and ©,,, z, = O, (h;) and z,, = O,,(hp), 2z, 2m € RE,
where E is the embedding dimension.

To align these embeddings without risking representational collapse, we employ the Barlow Twins
loss function, £ g. This objective function does not rely on negative sampling and instead encourages
the cross-correlation matrix computed between the embeddings Z, and Z,,, over a batch of N samples
to be close to the identity matrix. The loss is composed of two terms: an invariance term that pulls
the embeddings from the same patient together; and, a redundancy reduction term that decorrelates
the different dimensions of the embedding vectors. The total pre-training objective is thus defined as
in Equation
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where C'is the cross-correlation matrix computed between the batch-normalized embeddings Z,, and
Zm, and A is a hyperparameter balancing the two terms. By minimizing this loss, the signal encoder
&, is trained to produce representations h,, that are not only descriptive of the ECG signal itself but
are also highly predictive of the rich, contextual information contained in the clinical data m. This
process effectively transfers the clinical knowledge into the parameters of the waveform encoder.

2.2 Diagnosis Classification

Following the self-supervised pre-training stage, we leverage the learned, context-aware signal
encoder ¢, for the primary downstream task of clinical diagnosis prediction. To accomplish this, we
adopt a standard fine-tuning protocol.

The pre-trained encoder @, is partially frozen to prevent catastrophic forgetting of the transferred
clinical knowledge. A new, task-specific classification head, ¥, is then initialized and attached to
the encoder. This head is a lightweight MLP that takes the feature representation h,, = ®,(x) and
maps it to a logit for each of the K possible diagnoses.

The model is then trained on the subset of the data containing ground-truth diagnosis labels Y. The
optimization objective is the standard Binary Cross-Entropy (BCE) loss, summed over all possible
labels, as is common for multi-label classification problems. The classification loss is defined as in
Equation 2]

K
Le=Lpop(Y,Y)=—K " [Vilog(Vi) + (1 — Yi) log(1 — V)] 2
k

where Y € {0,1}¥ is the one-hot encoded vector of true labels and Y is the vector of predicted
logits from the model. This fine-tuning stage adapts the powerful, general-purpose representation
learned during pre-training to the specific patterns required for the diagnostic task.

2.3 Reconstruction Finetuning

A primary motivation for our three-stage approach is to produce a waveform representation that is
not only predictive but also interpretable. We train the signal encoder ®,, to perform a reconstruction
task of laboratory abnormalities that are related to the context seem in the pre-training.

For this purpose, we introduce a second, independent head ¥,,,, which is attached to the same
pre-trained encoder ®,.. This head is trained to predict a multi-label vector M* € {0,1}¥, where P
is the number of distinct laboratory abnormalities defined in our dataset (e.g., "Hemoglobin_high",
"Urea Nitrogen_low"). Each element m;;, € M™ is a binary indicator of a specific lab abnormality.

Similar to the classification phase, the reconstruction head ¥, is a lightweight MLP that takes the
signal representation h, and outputs a vector of logits M* = U, (®,(x)), one for each of the P
lab abnormalities. The model is trained by minimizing the BCE loss, as defined in Equation [2] now
applied to the lab abnormality targets m* as in Equation 3]

L, = Lpcp(M*, M) A3)

The ability of the model to successfully perform this pseudo-reconstruction task, using only the ECG
signal as input, serves to provide a mechanism for model explainability. For any given diagnosis
prediction, we can now also output the concurrent lab abnormalities predicted from the same ECG
embedding, offering clinicians a direct, data-driven insight into the potential physiological drivers
behind the model’s primary prediction. Essentially we offer something like: "The model predicts
diagnosis Y, and it’s doing so as it also is predicting a associated lab abnormality M (e.g., high
creatinine)."
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Table 1: Main results comparing our joint-embedding (JE) and reconstruction approach to established
baselines. Filled circles () indicate a data requirement, while empty circles (o) indicate it is not
required.

Evaluation Inference Requirement Training Requirement
Model Diagnoses Lab Routine Lab Diagnoses Routine Lab Diagnoses
Supervised Signal-Only 0.768 - o o o
Multimodal Lab Prediction - 0.762 . o o . . o
Multimodal Classification 0.826 - . . o ° ° °
JE + Reconstruction 0.795 0.701 o o o ° . °

3 Experimental Setup and Results

We evaluate our paradigm on the MIMIC-IV-ECG dataset [Johnson et al., [2023]], focusing on the
emergency department subset per the protocol in |Alcaraz et al.| [2025]], which also defines our
data splits and backbone architecture, we detail the experiment setup in the Appendix. We report
macro-averaged AUROC and compare against three key baselines: a Supervised Signal-Only model
[Strodthoff et al., [2024]]; a Multimodal Lab Prediction model serving as an upper bound for the
reconstruction task [[Alcaraz and Strodthoft] 2024]); and a fully Multimodal Classification model
serving as a practical upper bound for diagnosis [Alcaraz et al., [2025]).

As shown in Table[T] the results suggest the effectiveness of our approach. Our final model, which
operates using only the ECG signal at inference time, achieves a classification performance improve-
ment over the signal-only baseline indicating the presence of tabular data knowledge transfer. While
it does not reach the performance of the multimodal upper bound which requires full access to all data
at test time, our method successfully bridges a significant portion of this performance gap without
sacrificing the practicality of unimodal deployment.

Furthermore, we also assess the explanations by evaluating its performance on the laboratory abnor-
mality prediction task. Our approach achieves similar performance to its correspondence baseline,
again we treat them as an upper bound because of the data requirement at inference.

4 Conclusion

In this work, we introduced a novel training paradigm that creates a powerful, practical, and in-
terpretable ECG-based diagnostic model. Our primary contribution is demonstrating that a self-
supervised, joint-embedding objective can effectively transfer knowledge from multimodal clinical
data into a unimodal encoder, retaining the practical advantage of requiring only the ECG at inference
time. Furthermore, we established a new mechanism for model interpretability by predicting associ-
ated laboratory abnormalities from the same latent representation, offering a more intuitive alternative
to input-space heatmaps. A key limitation is the risk of catastrophic forgetting in our sequential
training, which we mitigated by freezing early layers; future work could explore advanced continual
learning techniques, a detailed discussion is provided in the Appendix. We also plan to expand
our framework to include unstructured text. By converting abstract predictions into physiologically
grounded explanations, our approach offers a promising path toward the safer integration of Al into
clinical workflows.
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Appendix

A Related Work

Our work is primarily related to prior work on eXplainable Artificial Intelligence (XAI), self-
supervised learning, and multimodal training in healthcare. To the best of our knowledge, our work is
the first attempt to unify insights from these areas for automatic ECG classification.

eXplainable Artificial Intelligence in Healthcare The growing adoption of deep learning models
in medical applications, such as the automatic classification of electrocardiograms (ECG), has
demonstrated impressive performance in identifying various cardiac abnormalities [Liu et al.,|2021]
Petmezas et al., 2022]]. However, the black box nature of many of these deep learning algorithms
limits their widespread acceptance by healthcare professionals [Reyes et al., [2020, |Adeniran et al.,
2024, Rosenbacke et al., 2024} Kocak et al.,|2025]]. The lack of transparency in the decision-making
processes of these models generates reluctance, especially in high-risk environments. Traditional XAl
methods, such as activation maps in the input space, are often employed to visualize the regions of the
input that most influence a model’s prediction [[Chaddad et al., 2023]]. However, in the medical context,
these visual explanations are often insufficient. Cardiologists interpret ECGs based on established
clinical concepts, such as P-wave morphology or ST-segment elevation, not on raw signal intensity.
Explanations that do not resonate with this established clinical lexicon are difficult to interpret and,
therefore, less useful for diagnostic validation or learning [Borys et al., [2023 |Zhang et al.| |2023]]. In
response to these limitations, there is a growing demand for more intuitive and clinically relevant
XAI approaches that can bridge the gap between abstract Al predictions and human understanding,
thereby fostering greater trust and facilitating the integration of Al into clinical decision support
systems [[Hulsen, [2023} |Gupta and Seejal, | 2024]).

Self-Supervised Learning Self-supervised learning (SSL) has emerged as a powerful paradigm for
learning meaningful representations from unlabeled data. Methodologies can be broadly categorized
into two families. The first, joint-embedding methods, learn by enforcing consistency between the
embeddings of two or more augmented views of the same data point. These approaches, such as
SimCLR [Chen et al.,|2020], DINO [Caron et al.,|2021]], Barlow Twins [Zbontar et al., |2021]], and
VICReg [Bardes et al., 2021], primarily use a discriminative objective to pull representations of the
same instance together while preventing representational collapse. The second family consists of
reconstruction-based methods, which learn by reconstructing the original input from a corrupted or
masked version. This generative approach includes classic models like Variational Autoencoders
(VAEs) [Kingma and Welling|, |2013|] and Generative Adversarial Networks (GANSs) [Goodfellow
et al.,[2020]], as well as modern powerhouses like Denoising Diffusion models [[Ho et al.}|2020] and
Masked Language Models like BERT [Devlin et al., 2019]. Our pre-training stage falls into the
joint-embedding category, leveraging its strength in learning abstract, transferable features.

Multimodal Training in Healthcare Clinical reality is inherently multimodal; a patient’s status
is defined by a combination of physiological signals, lab values, imaging data, and clinical notes.
Multimodal machine learning aims to integrate these heterogeneous data sources to build more robust
and accurate models for a holistic understanding of patient health [Kline et al.| [2022, [Lin et al.,
2024]. A common strategy is feature fusion, where representations from different modalities are
combined at an early, intermediate, or late stage to make a final prediction [Xiao et al.,2023]]. For
instance, a late-fusion model might combine the outputs of separate encoders for ECGs and tabular
data, as is done in our multimodal baseline [[Alcaraz et al.,[2025]]. While powerful, these fusion-based
approaches typically require all data modalities to be present at inference time, which can be a
significant practical barrier in clinical workflows. Our work presents an alternative: using multimodal
data during training via a knowledge transfer objective to enrich a unimodal encoder, thereby gaining
the benefits of multimodal context without the constraint of multimodal input during deployment.

Automatic ECG Classification Deep learning has become the state-of-the-art approach for the
automatic interpretation of ECGs, capable of identifying a wide range of cardiac and even non-cardiac
conditions with high accuracy. Our work builds directly upon recent advancements in this area. We
situate our contribution relative to three distinct but related lines of research: (i) supervised, unimodal
models that classify diagnoses from the ECG signal alone [Strodthoff et al., [2024]; (ii) multimodal
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models designed to predict laboratory abnormalities from ECG and routine clinical data [[Alcaraz and
Strodthoft, [2024]]; and (iii) state-of-the-art multimodal fusion models that achieve high performance
but require all data sources at inference time, serving as a practical upper bound for the classification
task [[Alcaraz et al.,|2025]).

B Three-stage algorithm
We organised the approach into a fluxogram, as despicted in Figure[]

Joint-embedding

bm — Hrm Om _’> Zn >

Classification
> vy > \hat{Y}
L(Y, \hat{Y})
Reconstruction
L Yo —> \hat{M*}

L(M*, \hat{M*})

Figure 1: Schematic of the proposed multimodal training architecture. Our method begins with a (i)
joint-embedding pre-training stage, where an ECG encoder ®,, learns to produce representations
that are aligned with embeddings from tabular clinical data M. Subsequently, this single, enriched
encoder is finetuned for two downstream tasks: (ii) a primary multi-label diagnosis classification task
L.; and, (iii) a secondary laboratory abnormality reconstruction-like task £, which provides the
mechanism for model interpretability. Crucially, only the ECG signal X is required at inference time.

C Detailed Experiments

We evaluate our proposed joint-embedding and reconstruction learning paradigm on two distinct
downstream tasks: multi-label diagnosis classification; and, laboratory abnormality prediction. To
conduct this evaluation, our study utilizes the MIMIC-IV-ECG dataset, a large, publicly available
resource uniquely suited for our multimodal research. It contains over 200,000 12-lead electrocardio-
grams from patients admitted to the Beth Israel Deaconess Medical Center, with a critical linkage
to the rich clinical data within the main MIMIC-IV database [Johnson et al., [2023]]. This linkage
provides access to a comprehensive set of corresponding tabular data for each ECG, including: (i)
laboratory test results; (ii) vital signs and biometrics; and, (iii) ICD-coded discharge diagnoses. The
availability of synchronously recorded signals and comprehensive clinical context is fundamental
to our approach, as it enables the self-supervised pre-training and provides the ground-truth labels
for our downstream tasks. Following established prior work, our experiments focus on the subset
of data originating from the emergency department to reflect a challenging and practical clinical
screening scenario [Strodthoff et al.| 2024]. Our experimental setup, including data splits, backbone
architecture, and evaluation algorithms, rigorously follows the protocol established in|Alcaraz et al.
[2025]) to ensure a fair comparison with all baselines. For the purpose of the lab prediction task, we
discriminate the tabular data into two types: the valuable laboratory exam values; and the remaining
tabular features, which we term routine clinical data (biometrics and vital signs). All results are
reported as the macro-averaged Area Under the Receiver Operating Curve (AUROC) on the held-out
test set.
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D Limitations

Sequential Training Paradigm A primary limitation of our work lies in the three-stage sequential
training paradigm. This approach introduces the risk of catastrophic forgetting [McCloskey and
Cohenl1989], where the model may lose some of the rich, transferred knowledge from the pre-training
stage during subsequent finetuning. While a joint, multi-task learning approach was considered, we
found the simultaneous optimization of the three distinct loss functions to be highly challenging
and unstable. To mitigate this, we partially froze the early layers of the signal encoder, preserving
the foundational representations learned during pre-training. Future work could explore more
advanced techniques, such as using the transferred representations as a regularization target during
the classification phase, to more explicitly retain the pre-trained knowledge. Or training a standard
multimodal all-modes required model and later train another similar signal encoder to replicate the
representation of the former, given that it encodes knowledge from the other modes.

Evaluation of Explanations Our evaluation of the model’s interpretability is indirect. We use
performance on the laboratory abnormality prediction task as a proxy for the quality of the explanation,
demonstrating that the ECG embedding contains physiologically relevant information. However,
this assessment does not establish a causal relationship between the predicted abnormalities and the
final diagnoses, nor does it explicitly highlight which specific abnormalities are most salient for a
given diagnostic prediction from the clinician’s perspective. The model learns strong correlations,
but further investigation, potentially involving causal inference methods or direct clinician feedback
studies, would be required to untangle these into clinically actionable insights.

Expanding Multimodal Learning to Text Our choice of a joint-embedding framework was
deliberate, with future extensions in mind—in particular, the generalization of a n > 2 multimodal
training with the integration of unstructured text data, such as clinical notes, which are available in
MIMIC-IV dataset. This rich textual information could further improve classification performance
and enable the generation of more natural, text-based explanations for the model’s predictions. We
plan to generalize the joint-embedding objective to align representations from all three modalities
(ECG, tabular, text). Crucially, we propose using the ECG’s latent space as a central anchor, aligning
the other modalities to it. This anchor-based approach, inspired by the teacher-student approach in
some SSL methods, is hypothesized to scale more effectively than the naive alternative of optimizing
all pairwise combinations of modalities.
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