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ABSTRACT

Probabilistic logical models are a core component of neurosymbolic AI and are
important models in their own right for tasks that require high explainability. Un-
like neural networks, logical models are often handcrafted using domain expertise,
making their development costly and prone to errors. While there are algorithms
that learn logical models from data, they are generally prohibitively expensive,
limiting their applicability in real-world settings. In this work, we introduce pre-
cision and recall for logical rules and define their composition as rule utility – a
cost-effective measure to evaluate the predictive power of logical models. Further,
we introduce SPECTRUM, a scalable framework for learning logical models from
relational data. Its scalability derives from a linear-time algorithm that mines re-
current structures in the data along with a second algorithm that, using the cheap
utility measure, efficiently ranks rules built from these structures. Moreover, we
derive theoretical guarantees on the utility of the learnt logical model. As a result,
we demonstrate across various tasks that SPECTRUM scales to larger datasets,
often learning more accurate logical models orders of magnitude faster than pre-
vious methods without requiring specialised GPU hardware.

1 INTRODUCTION

Motivation. Neurosymbolic AI combines neural networks with (probabilistic) logical models, to
harness the strengths of both approaches (d’Avila Garcez et al., 2019; d’Avila Garcez et al., 2022).
Neurosymbolic frameworks outperform neural networks in several areas (Manhaeve et al., 2018; Gu
et al., 2019; Mao et al., 2019), particularly in interpretability (Mao et al., 2019) and in reducing the
need for data (Feldstein et al., 2023a). Unlike neural networks, which are trained from data, logical
models are typically handcrafted. Thus, developing logical models requires domain expertise, in
both the data and the inference task. This process is costly and prone to errors. As a result, there has
been increased attention on learning logical models from data – a task known as structure learning.

Limitations of state-of-the-art. Examples of probabilistic logical models include Markov logic
networks (MLNs) (Richardson & Domingos, 2006), probabilistic soft logic (PSL) (Bach et al., 2017)
and probabilistic logical programs (PLPs) (Poole, 1993; Sato, 1995; De Raedt et al., 2007). Numer-
ous structure learning techniques for MLNs (Mihalkova & Mooney, 2007; Kok & Domingos, 2010;
Khot et al., 2015; Feldstein et al., 2023b) and especially PLPs (Quinlan, 1990; Muggleton, 1995;
Evans & Grefenstette, 2018; Schüller & Benz, 2018; Qu et al., 2021b; Cheng et al., 2023) have been
proposed. However, an overarching limitation of structure learning remains the limited scalability
to large datasets. The underlying difficulty is the exponential nature of the problem with respect
to the length of possible rules and the number of relations in the data. State-of-the-art structure
learning algorithms aim to reduce the complexity of the problem by splitting the task into two steps:
1) Pattern mining - which identifies frequently occurring substructures in the data. 2) Optimisation
- an iterative process during which the best logical formulae are chosen from a set of candidates
identified within the patterns. Any structure learning algorithm must make approximations to tackle
scalability. Existing methods proceed by finding approximate patterns but perform exact inference.

Contributions. Our key idea is to flip the aforementioned paradigm: find exact patterns but per-
form approximate ranking of candidate formulae to create the final logical model. By eliminating
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a combinatorial explosion of inference steps, this strategy effectively improves scalability by orders
of magnitude. Specifically, we present three contributions to tackle scalability:

1. Cheap utility measure: We introduce utility, a criteria for measuring the predictive power
of individual rules and logical theories. The utility relates to the degree to which a rule or
logical model is satisfied in the data (precision) as well as how often the rules predict data
points (recall). This measure can be computed cheaply, without requiring exact inference.

2. Linear-time pattern mining: We present a linear-time algorithm (in the size of the dataset)
that finds the number of occurrences of different patterns in the data. The algorithm is
approximate, yet we provide theoretical guarantees on the computational cost required for
a certain error bound on the utility estimates. These guarantees are dataset-independent.

3. Quadratic-time optimisation: We present a quadratic-time greedy optimisation algorithm
(in the number of rules of the final model). The algorithm finds the best rules and sorts
them by their utility. Since the utility measure is cheap to evaluate, compared to prior art
this optimisation step is no longer a bottleneck for scalability.

Empirical results. In addition to the theoretical contributions, we present SPECTRUM, a paral-
lelised C++ implementation of our structure learning framework. We show on various relational
datasets that SPECTRUM improves scalability by orders of magnitude, consistently reducing run-
times to < 1% compared to the previous state-of-the-art. Also, despite minor restrictions on mined
logical formulae, we find logical models that in most cases improve accuracy compared to prior art.

Restrictions. SPECTRUM is restricted to datasets with unary and binary relations, however, many
real-world datasets fit within this restriction. In addition, our utility measure is only well defined for
Datalog theories (Abiteboul et al., 1995), a language used extensively in data management (Barceló
& Pichler, 2012; Moustafa et al., 2016) and neurosymbolic learning (Huang et al., 2021).

2 PRELIMINARIES

First-order logic. In first-order logic, constants represent objects in the domain (e.g. alice, bob).
Variables range over the objects (e.g. X , Y , Z). A term is a constant or a variable. A predicate
P represents a relation between objects (e.g. FRIENDS). The arity of P is the number of related
objects. An atom has the form P(t1, . . . , tn), where P is an n-ary predicate, and t1, . . . , tn are terms.
A fact is an atom for which each term ti is a constant (e.g. FRIENDS(alice,bob)). A relational
database D is a set of facts. A Datalog rule ρ, or simply rule, is a first-order logic formula of the
form ∀X.

∧n
i=1 Pi(Xi) → P(Y), where

∧n
i=1 Pi(Xi) is a conjunction of atoms,→ denotes logical

implication, X, Xi, and Y are tuples of variables, Y ⊆
⋃n

i=1 Xi, where Xi ⊆ X. Quantifiers
are commonly omitted. The left-hand and the right-hand side of a rule are its body and head,
respectively, and are denoted by body(ρ) and head(ρ). The length of a conjunction is the number
of its conjuncts. The length of a rule L(ρ) is the length of its body plus the length of its head. A
grounding of an atom is the atom that results after replacing each occurrence of a variable with a
constant. Groundings of conjunctions and rules are defined analogously. A theory ρ is a set of rules.
In probabilistic logic models, the rules are associated with a weight, where the weight represents the
likelihood of the rule being satisfied (Richardson & Domingos, 2006; Bach et al., 2017).

Hypergraphs. A hypergraph G is a pair of the form (V,E), where V is a set of nodes and E is
a set of edges with each element of E being a set of nodes {v1, . . . , vn} from V . A hypergraph G
is labelled if each edge e in G is labelled with a categorical value denoted by label(e). A path in
a hypergraph is an alternating sequence of nodes and edges, (v1, e1, . . . , el, vl+1), where each edge
ei contains vi and vi+1. The length of a path is the number of edges in the path. A hypergraph
is connected if there exists a path between any two nodes. The distance between two nodes is the
length of the shortest path that connects them. A relational database D can be represented by a
hypergraph GD = (V,E) where, for each constant ci occurring in D, V includes a node, and, for
each fact P(c1, . . . , ck) in D, E includes an edge e ={c1, . . . , ck} with label P. Two graphs G1 and
G2 are isomorphic if there exists a one-to-one mapping I from the nodes of G1 to the nodes of G2 so
that for each edge e ={v1, . . . , vk} in G1, e′ ={I(v1), . . . , I(vk)} is an edge in G2, and vice versa.
For brevity, from now on, we refer to hypergraphs simply as graphs.
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3 PATTERNS

We introduce the concept of patterns - commonly recurring substructures within a database graph.
From now on, we assume that D is fixed and clear from context. As stated in the introduction, we
restrict our discussions to graphs with only unary and binary edges. We use uG(v) and bG(v) to
denote the set of unary and binary edges in the graph G that are incident to v. Further, we use α to
denote the set of atoms that have a grounding in D and α ∈ α to denote a particular atom. We use
α to denote the set of all possible groundings of α inD and α ∈ α to denote a particular grounding.

Similarly to how we can view relational databases as graphs, we can also view conjunctions of atoms
as graphs. For a conjunction of atoms φ :=

∧n
i=1 Pi(ti), the pattern of φ, denoted as Gφ = (V,E),

is the graph where, for each term ti occurring in φ, V includes a node ti, and, for each atom
P(t1, . . . , tn) occurring in φ, E includes an edge {t1, . . . , tn} with label P. The length of a pattern
Gφ is the number of atoms in φ. Given a rule ρ, the patterns corresponding to its head and body are
denoted by Ghead(ρ) and Gbody(ρ), respectively. We call Gbody(ρ)∧head(ρ) the rule pattern of ρ. Rule ρ
is connected if Gbody(ρ)∧head(ρ) is connected; it is body-connected if Gbody(ρ) is connected.

A ground pattern of a conjunction φ is the graph corresponding to a grounding of φ that is satisfied
in D. We denote by Gbody(ρ)∧head(ρ) the set of all ground patterns of body(ρ) ∧ head(ρ) in D.

For a fact α that is a grounding of α = head(ρ), we use Ghead(ρ)=α

body(ρ)∧head(ρ) to denote the subset of
Gbody(ρ)∧head(ρ) which contains only groundings of patterns of the form Gbody(ρ)∧α.

4 RULE UTILITY

In this section, we introduce a measure, that we call utility, for assessing the “usefulness” of a theory
without requiring inference. The utility itself depends on various criteria, which we present below.
The following definitions hold for connected rules that are also body connected.

Definition 1 (Precision). The precision of rule ρ is defined as P(ρ) := |Gbody(ρ)∧head(ρ)|
|Gbody(ρ)|

.

Intuitively, P(ρ) is thus the fraction of times that the head and body of a rule are both true in the data
when the body is true in the data1. If one considers cases where the body and head are both true as
true positives (TP, i.e. the rule is satisfied), and cases where the body is true and the head is false
as false positives (FP, i.e. the rule is not satisfied), then the definition of precision is analogous to
the definition of precision in classification tasks, i.e. P(ρ) = TP/(TP + FP ). Useful rules should
make claims that are often true, and thus have high precision.

One issue with precision, as defined above, is that it underestimates how often a rule is satisfied if
there are symmetries in the rule. We fix this issue, which we illustrate graphically in Appendix B,
by multiplying the precision by a symmetry factor:
Definition 2 (Symmetry factor). The symmetry factor of rule ρ, denoted by S(ρ), is defined as the
number of subgraphs in Gbody(ρ)∧head(ρ) that are isomorphic to Gbody(ρ).

The second issue with precision, as defined above, is that, if the facts in D are unbalanced (i.e.
facts of different predicates occur with different frequencies), then certain rules can still have high
precision even if the facts are uncorrelated. We illustrate this issue with an example in Appendix B.
We fix this issue by dividing the precision by a Bayesian prior:

Definition 3 (Bayesian Prior). The Bayesian prior of rule ρ is defined as B(ρ) := |Ghead(ρ)|∑
α∈A |Gα| , where

A is the set of all atoms constructable over all predicates inD of the same tuple of terms as head(ρ).

The symmetry and prior-corrected precision is the product P(ρ)·S(ρ)
B(ρ) . A useful rule should have a

symmetry-corrected precision, P(ρ)·S(ρ), that is better than random chance, B(ρ), i.e. P(ρ)·S(ρ)
B(ρ) > 1.

In addition to being precise, useful rules should account for many diverse observations in the data.
Below, we introduce a metric to count how often a rule pattern recalls facts in the data.

1Definition 1 is equivalent to the definition of precision in Gao et al. (2024) and the definition of confidence
in Lajus et al. (2020). However, note that both these works neglect to account for symmetry and priors.
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Definition 4 (Recall). The recall of rule ρ is defined as R(ρ) :=
∑

α∈α ln(1 + |Ghead(ρ)=α

body(ρ)∧head(ρ)|),
where α is the set of all groundings of α := head(ρ) in D.

Intuitively, |Ghead(ρ)=α

body(ρ)∧head(ρ)| says how many different groundings of ρ entail α, and the logarithm
reflects the diminishing returns of information when recalling the same fact. Importantly, recalling
the same fact increases recall logarithmically, while recalling different facts increases recall linearly.

Longer rules are biased to have more groundings in the data than shorter rules, due to a combinatorial
explosion. Therefore, an issue with recall, as defined above, is that it biases towards longer rules.
Longer rules increase computational costs, forcing logical solvers to make more approximations
during inference, which reduces accuracy. To address this, we introduce a complexity factor that
penalises longer rules:
Definition 5 (Complexity factor). The complexity factor of ρ of length L(ρ) is defined as
C(ρ) := e−L(ρ).

The complexity-corrected recall, R(ρ) · C(ρ), discourages using longer rules if they do not have a
correspondingly larger recall, thus favouring the simplest explanation for the data (Occam’s razor).

Useful rules should exhibit both high precision (corrected for symmetry and prior probabilities)
and high recall (corrected for rule complexity). This leads to a natural metric for quantifying the
“usefulness” of a rule:
Definition 6 (Rule utility). The utility of rule ρ is defined as U(ρ) := P(ρ)S(ρ)

B(ρ) · R(ρ)C(ρ).

Finally, we extend the notion of utility to a theory ρ. Different rules can recall the same fact. The
recall for a set of rules should be analogous to Definition 4 but include contributions from all rules:
Definition 7 (Complexity-corrected rule-set recall). For a set of rules ρα having the same head α,
the complexity-corrected rule-set recall is defined as the product R(ρα) · C(ρα), where

R(ρα) :=
∑
α∈α

ln

(
1 +

∑
ρ∈ρα

|Ghead(ρ)=α

body(ρ)∧head(ρ)|

)
and C(ρα) :=

( ∏
ρ∈ρα

C(ρ)

) 1
|ρ|

.

Intuitively,
∑

ρ∈ρα
|Ghead(ρ)=α

body(ρ)∧head(ρ)| counts the number of different instantiations of all rules in
the set ρα that entail a particular fact α, whereas C(ρα) is simply the geometric average of the
complexity factor for all rules in set ρα. We are now ready to introduce the notion of theory utility:
Definition 8 (Theory utility). The utility of theory ρ is defined as
U(ρ) :=

∑
α∈α

(∑
ρ∈ρα

P(ρ)S(ρ)
B(ρ)

)
· R(ρα)C(ρα), where α = {head(ρ) | ρ ∈ ρ} and

ρα = {ρ ∈ ρ | head(ρ) = α}.

The outer sum in Definition 8 runs over the different atoms occurring in the heads of the rules in ρ,
while the inner sum runs over the different rules with the same head atom. Computing rule utility
requires enumerating all ground patterns of a rule, its body, and its head in the data. In the next
section, we outline how we find these groundings efficiently.

5 PATTERN MINING

In this section, we present our technique for mining rule patterns from relational data, i.e. finding
subgraphs in a relational database graph. Since finding all subgraphs is generally a hard problem
with no known polynomial algorithm (Bomze et al., 1999), we adopt an approach similar to PRISM
(Feldstein et al., 2023b). In particular, we present a non-exhaustive algorithm that has only linear-
time complexity in the dataset size but that allows us to compute estimates of utility that are close,
in a precise sense, to their true values.

5.1 ALGORITHM

The steps of our technique are outlined in Algorithm 1. The algorithm mines ground patterns by
calling a recursive function (NEXTSTEP) from each node v0 in GD (lines 1-3). Intuitively, the
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algorithm searches for ground patterns by rolling out paths in parallel from a starting node. The
recursion stops at a user-defined maximum depth D, rolling out up to a maximum number of paths N .

Algorithm 1: MINEPATTERNS(GD, D,N)

Input: GD – Graph representation of D
Output: Gglobal – global variable storing all mined ground patterns
Parameters: D – maximum recursion depth

N – maximum number of paths
1 for each v0 in GD do
2 Gglobal ← Gglobal ∪ DOUBLEUNARYPATTERNS(v0)

3 NEXTSTEP(GD, v0, D, N , d = 0, Gprevious = {∅}, Eprevious = ∅)
4 return Gglobal

Function NEXTSTEP(GD, v, D, n, d, Gprevious, Eprevious):
/* datagraph GD, current node v, maximum recursion depth D,

maximum number of remaining paths n, current recursion
depth d, previously found patterns Gprevious, previously
visited edges Eprevious */

5 Gnew ← ∅
6 for each G in Gprevious do
7 for each e in uGD

(v) do
8 Gnew ← Gnew ∪ {G ◦ e} // Graft unary edges of v

9 Gglobal ← Gglobal ∪ Gnew
10 if d < D then
11 E ′ ← bGD

(v) \ Eprevious

12 if n < |E ′| then
13 E ′ ← SELECT n DIFFERENT RANDOM ELEMENTS(E ′, n)
14 n′ ← 1
15 else
16 n′ ← ⌈n/|E ′|⌉
17 for each e := {v, v′} in E ′ do
18 Gfinal ← ∅
19 for each G in Gnew do
20 Gfinal ← Gfinal ∪ {G ◦ e} // Graft binary edges of v

21 Gglobal ← Gglobal ∪ Gfinal

22 NEXTSTEP(GD, v′, D, n′, d+ 1,Gfinal, Eprevious ∪ {e})

In each call of NEXTSTEP, the algorithm visits a node v ∈ V of GD. At node v, unary relations
uGD

(v) are grafted onto previously found ground patterns Gprevious (lines 6-8). We use G ◦ e to
denote the graph that results after adding edge e and the nodes of e to graph G. The resulting
ground patterns are stored in Gnew (line 9). If the maximum recursion depth has not been reached
(line 10), a subset of the binary edges of node v is then selected (lines 11-16). The algorithm
avoids mining patterns corresponding to tautologies by excluding previously visited binary edges
(line 11). To keep the complexity linear, we enforce N to be the maximum number of paths by
setting the maximum number of selected binary edges n to be N divided by the number of binary
edges selected at each previous stage (lines 13, 16). We graft each chosen binary edge onto the
ground patterns in Gnew (lines 17-20), store the new ground patterns in Gfinal (line 21), and pass
Gfinal on to the subsequent call (line 22). Gfinal is passed to the next recursive call to continuously
extend previously mined patterns. In the next recursive call, the recursion depth d is increased by
1, thereby expanding the search of grounds patterns to include nodes up to a distance d away from
v0. At each depth d ∈ {0, . . . , D − 1} the algorithm grafts up to one unary and one binary onto
the patterns previously discovered along that path. At depth d = D, the algorithm only grafts up to
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one unary onto the patterns, since it terminates before grafting binaries (line 10). Thus, the patterns
found by Algorithm 1 are of maximum length 2D + 1.

As a special case, the algorithm also mines patterns that consist of two unary edges on a single node
in line 2, to allow constructing rules of the form P1(X)→ P2(X). DOUBLEUNARYPATTERNS
creates all possible patterns that consist of all pairings of distinct unary edges from the set uGD

(v0).

Remark 1. For simplicity, in Algorithm 1, we presented Gglobal as a set of ground patterns. However,
in a later stage of our structure-learning algorithm, we will also need knowledge of the correspond-
ing non-ground patterns to compute rule utility (Section 4). In our implementation, Gglobal is thus in
fact a map from patterns to every corresponding ground pattern that was found in GD. This map is
generated on the fly, where everytime a new ground pattern is mined, we obtain its corresponding
pattern by variabilising its constants (up to isomorphism) and then adding it to the map.

5.2 THEORETICAL PROPERTIES

This section presents the complexity of Algorithm 1 and provide completeness guarantees, as well as
guarantees on the uncertainty of the mined patterns. Proofs of all theorems are given in Appendix A.
Theorem 1 (Completeness). Let v and v′ be two nodes in GD that are distance l apart, for some
l ≥ 0. We say that v′ is N -close to v if, for each path (vi0 , ei0 , . . . , eil−1

, vil) of length l between v

and v′ in GD, where vi0 = v and vil = v′, the following holds: |bGD
(vi0)|

l−1∏
j=1

(|bGD
(vij )|−1) ≤ N.

Then, for each N ≥ 0, each D ≥ 0, and each v ∈ GD, Algorithm 1 mines all ground patterns
involving v and nodes that are N -close to v and a distance ≤ D from v; all remaining ground
patterns involving v and nodes within distance D are found with a probability larger than when
running N random walks from v.

When mining patterns, Algorithm 1 runs at most N paths from |V | nodes up to a maximum recursion
depth D. Below, we provide a tighter bound on the complexity.
Theorem 2 (Complexity). The maximum number of recursions in Algorithm 1 is given by

∑
v∈GD

min

|bGD
(v)|+

D−1∑
i=1

∑
v′∈Ni(v)

(|bGD
(v′)| − 1)

 , ND

 ,

whereNi(v) is the set of nodes reached within i steps of recursion from v. The runtime complexity is
thus, worst case, O(|V |ND), but can be significantly lower for graphs GD with low binary degree.

For any conjunction, Algorithm 1, in general, finds only a subset of its ground patterns in GD. Thus,
the utility measures computed based on the mined patterns will be estimates of the actual values.
We quantify these utility estimates by means of ε-uncertainty, in line with Feldstein et al. (2023b).
Definition 9 (ε-uncertainty). An estimate ŝ of a scalar s is ε-uncertain, ε ∈ [0, 1), if |ŝ− s|/s < ε.
Definition 10 (Pattern occurrence distribution). The pattern occurrence distribution PD, subject to
D, is the function that maps each connected pattern to the number of its groundings in D.

Theorem 3 provides a bound on the maximum number of paths N needed by Algorithm 1 to guar-
antee ε-uncertainty utility estimates. This quantifies the trade-off between accuracy and runtime.
Theorem 3 (Optimality). Let ρ be a set of rules whose patterns are of length ≤ 2D + 1, where
for each ρ ∈ ρ, patterns Gbody(ρ), Ghead(ρ), and Gbody(ρ)∧head(ρ) are among the M patterns with the
highest number of groundings in GD. If PD is Zipfian, then to ensure that U(ρ) is ε-uncertain, the
upper bound on N in Algorithm 1 scales as N ∝ O

(
MD
ε2

)
.

Comparison to random walks. Prior work mined motifs, objects similar to ground patterns, using
random walks (Kok & Domingos, 2010; Feldstein et al., 2023b). Intuitively, Algorithm 1 can be seen
as running random walks in parallel, while avoiding repeating the same walk twice and thereby wast-
ing computational effort. Running N random walks of length D from |V | nodes requires |V |ND
steps, which is the same as the worst-case computational cost of Algorithm 1 (Theorem 2). Another
advantage of Algorithm 1 over random walks is that it results in more accurate utility estimates:
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1. Random walks might backtrack, therefore, finding ground patterns of tautologies. Algo-
rithm 1 avoids this issue by neglecting any previously encountered edge.

2. Random walks may revisit paths that have already been walked before. In contrast, in each
call to NEXTSTEP, Algorithm 1 either visits a previously unvisited edge in the graph or it
terminates. Therefore each new computation provides new information.

3. Random walks can miss ground patterns since they randomly sample a subset. In contrast,
Algorithm 1 is guaranteed to mine all ground patterns involving nodes that are N -close to
the source node v0, while ground patterns that involve nodes that are not N -close are mined
with a higher probability than with random walks (Theorem 1).

6 UTILITY-BASED STRUCTURE LEARNING

We now introduce our structure learning pipeline, which we call SPECTRUM (Structural Pattern
Extraction and Cheap Tuning of Rules based on Utility Measure), presented in Algorithm 2. In
summary, SPECTRUM begins by mining patterns, then checks each mined pattern whether it is a
pattern of a “useful” rule, and finally sorts the useful rules in a greedy fashion.

6.1 RESTRICTIONS ON THE MINED RULES

As we stated in the introduction, SPECTRUM focuses on learning Datalog rules (as opposed to
general first-order logic formulae). In addition, the algorithms restrict the shape of the mined rules:

(1) Algorithm 1 only mines patterns (and by extension rules) where each term occurs in at most
two binary predicates and one unary predicate, except for the special case P1(X)→ P2(X)
(line 2 in Algorithm 1).

(2) Algorithm 2 restricts to rules that are body-connected and term-constrained. A rule is
term-constrained if every term occurs in at least two atoms of the rule.

For example, the rule FRIENDS(U1, U2) → LIKES(U2, I) is not term-constrained, since neither U1

nor I appear twice, but LIKES(U1, I) ∧ FRIENDS(U1, U2)→ LIKES(U2, I) is term-constrained.

Restriction (1) helps to restrict the complexity of the framework. Additionally, we recommend
setting the terminal depth D in Algorithm 1 to a small number, as N scales with a factor of D
(Theorem 3), and thus Algorithm 1 has complexity O(D2). In our experiments (Section 7), we set
D = 3 (i.e. a maximum of three binary predicates per rule). This is not a severe limitation, as we
show empirically that many useful rules can be expressed within this restriction.

Restriction (2) ensures useful rules: term-constrainedness ensures each term is in at least one known
atom, aiding link prediction, while body-connectedness is required for computing utility (Section 4).

6.2 ALGORITHM

SPECTRUM requires three parameters M , ε, and D: M is the maximum number of rules of the
final theory; D sets a limit to the length of the mined rules as the pattern length is limited to 2D+1;
ε balances the trade-off between accuracy in the utility measures and computational effort. Given
these parameters, SPECTRUM computes an optimal N for pattern mining (Theorem 3), and, using
Algorithm 1, mines patterns which are stored in a map Gglobal of patterns to their groundings in GD.

Each pattern Gφ in the keys of the map Gglobal is considered in turn. Each rule that could have
resulted in this pattern, i.e. a rule from the set R := {ρ | Gbody(ρ)∧head(ρ) = Gφ}, is considered. If
a rule ρ ∈ R is term constrained and satisfies P(ρ)S(ρ)

B(ρ) > 1, i.e. the rule is a better predictor than a
random guess (Section 4), then ρ is added to the set of candidate rules ρcandidates.

From the set of candidate rules, a subset of M rules with the highest individual utility is chosen
(Definition 6). The utility of each rule ρ is directly calculated from Gglobal; since this is a map from
patterns Gφ of a conjunction φ to its groundings in GD, i.e. Gφ. The quantity |Gφ| can be looked up
in the map. The conjunction φ can be body(ρ), head(ρ), or body(ρ)∧head(ρ). The complexity and
symmetry factor can be computed for each ρ directly from its length, rule pattern and body pattern.
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Algorithm 2: SPECTRUM
Input: D – relational database
Output: ρ – set of rules ordered by utility
Parameters: M – the number of top patterns to consider as rules

ε – target uncertainty of the utility estimates
D – maximum depth of pattern mining

1 N ← COMPUTE OPTIMAL N(M, ε,D) // Thm. 3

2 Gglobal ← PATTERNMINING(GD, N , D) // Alg. 1
3 ρcandidates ← ∅
4 for each Gφ in Gglobal do
5 for each ρ inR := {ρ | Gbody(ρ)∧head(ρ) = Gφ} do
6 if ρ is body-connected and term-constrained and P(ρ)·S(ρ)

B(ρ) > 1 then
7 ρcandidates ← ρcandidates ∪ {ρ}

8 ρcandidates ← CHOOSETOP M(ρcandidates,M) // Ranked by individual utility
9 ρfinal ← [ ] // Initialise an empty vector

10 while ρcandidates is not empty do // Order rules by contributed utility
11 ρbest ← ∅
12 for each ρ in ρcandidates do
13 if U({ρ} ∪ ρfinal) > U({ρbest} ∪ ρfinal) then
14 ρbest ← ρ

15 ρcandidates ← ρcandidates \ {ρbest}
16 append ρbest to ρfinal

17 return ρfinal

SPECTRUM then orders the remaining M rules in order of their contribution to the theory utility
(Definition 8). The algorithm starts by finding the rule with the highest utility and stores it in a vector
ρfinal. Then, in each iteration of the while-loop, SPECTRUM finds the rule out of the remaining ones
that provides the highest increase in theory utility when added to the current rules in ρfinal.

After SPECTRUM, the rules ρfinal can be passed to any probabilistic logical framework (e.g. PSL
or MLN) to learn the weights of the rules (i.e. the likelihood of the rule being satisfied) for a given
dataset D. We recommend adding one rule at a time to the logical model (in the order they were
added to the vector ρfinal) when learning the weights. One can then validate the different theories by
checking when the accuracy drops, as more rules may not imply a better theory.

7 EXPERIMENTS

We conduct three experiments. First, we compare SPECTRUM to state-of-the-art MLN structure
learners, achieving a 16% accuracy improvement and reducing runtime to under 1%. However, as
current MLN implementations struggle with large datasets—and our primary objective is to show-
case SPECTRUM’s scalability—we defer the discussion of these experiments and additional details
to Appendix D. Second, we demonstrate the scalability of SPECTRUM for learning PSL models on
datasets used by neuro-symbolic frameworks (Section 7.1). Third, we benchmark SPECTRUM on
knowledge graph completion against leading neural network approaches (Section 7.2).

7.1 SCALABLE LEARNING OF PROBABILISTIC LOGICAL MODELS

Task. For each dataset, our goal is to learn PSL rules that are the same (or better) than the hand-
engineered ones. For Citeseer, Cora and Yelp, hand-engineered rules are provided by Bach et al.
(2017). For CAD, they are provided by London et al. (2013). Note that the baselines used to
evaluate SPECTRUM on MLNs do not scale to datasets of the size considered here, which is why
we compare against the hand-engineered logical theories.
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Results. For Citeseer, Cora and CAD, SPECTRUM recovers all hand-crafted rules. For Yelp,
SPECTRUM recovers all hand-crafted rules that are of a form learnable by SPECTRUM (2 rules
are not, because they are not term-constrained). See Appendix D for full details of the learnt rules
for each dataset. We report the structure learning times for each dataset in Table 1. As expected,
the runtime increases roughly linearly with the dataset size. Note that for the CAD experiments,
we used M = 60 instead of M = 30 because of the proportionally larger number of different
predicates in that dataset. Importantly, SPECTRUM can process ∼ 106 facts in the same time
that PRISM and LSM can process only ∼ 103 facts (Table 4), demonstrating how SPECTRUM
successfully overcomes the scalability issues of prior art.

Table 1: Comparison of runtimes and fraction of rules recovered across datasets of varying size.
Citeseer Cora CAD Yelp

Dataset Size 6.8× 103 6.9× 103 2.5× 105 2.2× 106

Training Time / s 2.08 ± 0.02 2.44 ± 0.02 84 ± 0.5 348 ± 2
Rules recovered 7/7 6/6 21/21 24/26

7.2 KNOWLEDGE GRAPH COMPLETION

Task. Knowledge completion is a task commonly used by neural network approaches to structure
learning to assess the quality of the learnt rules e.g. as in NeuralLP (Yang et al., 2017) and DRUM
(Sadeghian et al., 2019). In contrast to the previous experiments, where the goal is to predict entire
facts (i.e. P(X,Y )), here, the goal is only to infer missing entities (i.e. given P(alice, X) predict X).

Results. For evaluation, we used the NCRL script (Cheng et al., 2023) and report three evaluation
metrics, namely Mean Reciprocal Rank (MRR), Hit at 1 and Hit at 10. Since NCRL does not
provide a method for learning rule weights, we used our precision metric instead when evaluating
SPECTRUM. Predicted entities are ranked by summing up the confidence values of every rule that
is satisfied with that entity in its grounding. We compare SPECTRUM against three SOTA methods
– AMIE3 (Lajus et al., 2020), RNNlogic (Qu et al., 2021a), and NCRL (Cheng et al., 2023) – on
five widely used benchmark datasets: Family (Hinton, 1986), UMLS (Kok & Domingos, 2007),
Kinship (Kok & Domingos, 2007), WN18RR (Dettmers et al., 2018) and FB15K-237 (Toutanova &
Chen, 2015). Evaluation results are shown in Table 2 and dataset statistics are shown in Appendix
D. RNNLogic and NCRL experiments ran on V100 GPUs. SPECTRUM ran on a 12-core 2.60GHz
i7-10750H CPU.

Table 2: Comparison of runtime (s) and evaluation metrics for RNNLogic, NCRL, and SPECTRUM.
Dashed lines indicate a timeout (> 10h), and slashes denote failure due to insufficient memory.

AMIE3 RNNLogic NCRL SPECTRUM

Time MRR Hit10 Time MRR Hit10 Time MRR Hit10 Time MRR Hit10

Family 4.8 0.430 0.766 1200 0.278 0.494 88 0.873 0.993 1.5 0.920 1.00
UMLS 204 0.064 0.161 1200 0.689 0.824 420 0.659 0.853 2.9 0.759 0.935
Kinship 884 0.168 0.454 1300 0.535 0.919 480 0.592 0.897 3.9 0.500 0.892
WN18RR 3.9 0.079 0.087 − − − 2700 0.506 0.687 36 0.530 0.900
FB15K-237 171 0.136 0.239 − − − / / / 260 0.304 0.462

Discussion. With a few exceptions (notably the Kinship dataset), SPECTRUM outperforms neu-
ral network methods in MRR, Hit1, and Hit10, while consistently offering a significantly faster
runtime (∼ 100x improvement) and more efficient memory usage. Note that the results in Table
2 were obtained using neural network experiments on a server with a V100 GPU (30Gb mem-
ory, 40 CPUs), while initial attempts on a 6Gb GPU failed. In contrast, the results reported for
SPECTRUM were obtained on a laptop with 12 CPUs. The runtime for NCRL excludes the addi-
tional cost of hyperparameter tuning (6 hyperparameters need tuning), while SPECTRUM was run
with fixed hyperparameters (fixed M = 20 × [number of relations] and fixed ε = 0.01). The poor
memory scaling of NCRL meant that it ran out of memory even on a relatively small dataset (the
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FB15K-237 dataset with∼ 104 facts). This implies that NCRL would not scale to the CAD (∼ 105)
or Yelp (∼ 106) dataset in Section 7.1. Finally, SPECTRUM offers a key advantage when it comes
to explainability – it orders these rules by their contribution to the theory utility.

8 RELATED WORK

Markov logic networks. State-of-the-art structure learning approaches proceed in two steps -
identification of patterns and optimisation. The different structure learning techniques for MLNs
can be split into two groups: (1) methods for which patterns are user-defined and (2) methods
for which patterns are identified automatically in the data. The current state-of-the-art that does
not require user-defined patterns is LSM (Kok & Domingos, 2010). LSM identifies patterns by
running random walks over a hypergraph representation of the data. A major limitation of LSM is
that it lacks guarantees on the quality of the mined patterns. PRISM is an efficient pattern-mining
technique with theoretical guarantees on the quality of mined patterns, solving the above limitation
(Feldstein et al., 2023b). Our empirical results show that SPECTRUM scales significantly better
than any of the techniques mentioned above, without requiring any domain expertise as patterns
are mined automatically. In addition, inspired by Feldstein et al. (2023b), we provide ε-uncertainty
guarantees, which, in contrast to PRISM, are guarantees on the utility of the output theory rather
than just the patterns.

Inductive logic programming. A popular family of techniques for learning Datalog theories is
inductive logic programming (ILP), e.g. FOIL (Quinlan, 1990), MDIE (Muggleton, 1995) and In-
spire (Schüller & Benz, 2018). Given a database D, a set of positive facts E+ and a set of negative
facts E−, ILP-based techniques work by computing a theory that along with D entails all facts in
E+ and no fact in E−. MetaAbd (Dai & Muggleton, 2021) mixes logical abduction (i.e., backward
reasoning) (Kakas, 2017) with ILP to simultaneously learn a logical theory and train a neural clas-
sifier. A recent line of research proposed formulations of ILP in which part of the computation can
be differentiated and, hence, (part of) the learning is done through backpropagation. For example,
Evans & Grefenstette (2018) introduced δILP which employs the semantics of fuzzy logic for inter-
preting rules. Sen et al. (2022) proposed a similar ILP technique based on logical neural networks
(Riegel et al., 2020). All ILP-based techniques require users to provide the patterns of the formulae
to be mined. The above requirement, along with issues regarding scalability (Evans & Grefenstette,
2018), limits the applicability of ILP techniques in large and complex datasets.

Differentiable rule learning. Other techniques for learning logical rules in a differentiable fashion
are NeuralLP (Yang et al., 2017), DRUM (Sadeghian et al., 2019), neural logic machines (NLMs)
(Dong et al., 2019), RNNLogic (Qu et al., 2021b), and NCRL (Cheng et al., 2023). All these tech-
niques are limited by the shape of the rules that they learn. NeuralLP, DRUM, RNNLogic and NCRL
can only learn rules of the form P1(X,Z1) ∧ · · · ∧ Pn−1(Zn−1, Y )→ Pn(X,Y ), while NLMs are
restricted to learning rules where all head and body atoms contain the same variables. While SPEC-
TRUM has some limitation on the shapes of the rules it learns, they are less restrictive.

9 CONCLUSIONS

A major point of criticism against neurosymbolic techniques and logical models is the need for do-
main expertise (Feldstein et al., 2023a; Huang et al., 2021; Li et al., 2023). This work tackles the
scalability issue of learning logical models from data, mining accurate logical theories in minutes
for datasets with millions of instances, thus making the development of a logical model a simple
and fast process. Therefore, we see our work as having the potential to increase the adoption of neu-
rosymbolic frameworks. In addition, learning logical models improves explainability by extracting
knowledge from data that is interpretable by a domain expert.

There are several directions for future research. First, the pattern mining algorithm could be gen-
eralised to relations with higher arity. Second, the pattern mining algorithm could be extended to
require fewer restrictions on the shape of the rules. Finally, since the rules we learn are model ag-
nostic, we plan to apply our technique to other logical frameworks, in addition to MLNs and PSL,
such as Problog (De Raedt et al., 2007).
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A PROOF OF THEORETICAL PROPERTIES OF PATTERN MINING

In this section, we prove Theorems 1, 2, and 3 and justify Remark 2. We start with some preliminary
definitions before proceeding with the proof.

Definitions and notation. The D-neighbourhood of a node vi is the set of all nodes that are a
distance less than or equal to D from vi. The D-neighbourhood length l patterns of a node vi,
denoted PD,l(vi), is the set of all connected patterns of length l that have a grounding that includes
vi, and whose remaining nodes in the grounding also occur within the D-neighbourhood of vi.
The D-neighbourhood length l pattern distribution of vi is the function that maps from PD,l(vi)
to the number of groundings of that pattern within the D-neighbourhood of vi that include vi. The
D-neighbourhood length l pattern probability distribution of vi, denoted P

(l)
i , is the probability

distribution obtained by normalising this distribution.
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A.1 PROOF OF THEOREM 1

Proof. We prove this theorem by proving the two statements individually:

S1: Algorithm 1 finds all patterns of length l ≤ D that only involve the source node and other
N -close nodes.

S2: For patterns involving nodes that are not N -close, Algorithm 1 finds them with a probability
larger than when running random walks.

Statement 1: Consider a node v′ that is a distance l ≤ D away from a source node v0 = vi0 and
consider a generic path of length l from vi0 to v′ = vil , (vi0 , ei0 , . . . , eil−1

, vil). First, notice that if
N ≥ |E ′| = |bGD

(vi0)|, then the edge ei0 will certainly be discovered by Algorithm 1 (selection step,
lines 11-16). Similarly, for the second edge ei1 to be found, we need the value of n upon reaching
node vi1 to satisfy n ≥ |E ′| (selection step, lines 11-16). Note also that |E ′| ≤ |bGD

(vi1)| − 1,
since the previous incident edge to vi1 is excluded from the set E ′ (line 11). Therefore, a sufficient
condition for the edge ei1 to be included is N ≥ |bGD

(vi0)|(|bGD
(vi1)|−1). Reasoning inductively,

a sufficient condition for every edge in the path to be found by Algorithm 1 is

N ≥ |bGD
(vi0)|

l−1∏
j=1

(|bGD
(vij )| − 1). (1)

If this holds for all possible length l paths between vi0 and vil , then all of those paths will be
discovered. This is equivalent to the statement that vil is N -close to vi0 . Therefore, for any node
that is N -close to vi0 (and is a distance l from vi0 ), all possible length l paths leading to that node
will be found. Since any connected patterns is a subsets of a path, all possible patterns of length
l ∈ {1, 2, . . . , D} have been found by Algorithm 1, thus completing the proof.

Statement 2: First, notice that if a node is not N -close, then there is still a chance that it could be
found due to random selection. This is because the smallest value of n is 1 and if n < |E ′| then we
proceed by choosing the next edge in the path uniform randomly (line 13). Worst-case, bGD

(vi0)| ≥
N , in which case the algorithm runs N different paths where each edge is chosen at random. This is
almost equivalent to running N random walks, with the difference that Algorithm 1 does not allow
backtracking or visiting previously encountered nodes, which increases the probability of finding
novel nodes compared to independent random walks. Thus, the probability that a node is found
using Algorithm 1 is strictly larger than when running N independent random walks from v0.

A.2 PROOF OF THEOREM 2

Proof. We prove this by partitioning the possibilities into three cases and proving that the upper
bound formula is true in all cases.

Case 1 – every node in the D-neighbourhood of v0 is N -close to v0: In this case, the number of
calls to NEXTSTEP is given by the total number of selections of binary edges (i.e. the cumulative
sum of |E ′| every time it is computed). Recall, from the discussion in the proof of Theorem 1, that
for node v0, |E ′| ≤ |bGD

(v0)|, and for all other nodes vi, |E ′| ≤ |bGD
(vi)| − 1. Therefore, the sum

of |E ′| is upper bounded by the sum of the RHSs of these inequalities. Summing over all nodes
gives the quantity in the left-hand argument of the minimum function in Theorem 22. Note that, in
this case, the quantity in the right-hand argument, ND, is strictly larger since this is the maximum
computation when running N paths of length D without avoiding previously encountered edges.
The minimum therefore gives a valid upper bound.

Case 2 – no node (other than the source node) exists in the D-neighbourhood of v0 that is
N -close to v0: In this case, N recursions are called in the first step, and each following recursion
will call one recursion until the final depth D is reached, totalling ND recursions, which is the
right-hand argument of the minimum function in Theorem 2. In this case the LHS is actually larger

2In practice, the true number of recursions is likely to be considerably less than this, due to the avoidance
of previously explored edges when passing binaries onto the next step (line 11).
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than the RHS, since the branching factor of paths is strictly larger at the first step. The minimum
therefore gives a valid upper bound.

Case 3 – some nodes are N -close and other nodes are not: In this case, the number of recursions
is strictly less than the left-hand argument of the minimum function in Theorem 2, for if it wasn’t,
then by definition every node would be N -close (contradiction). Likewise, it is also strictly less than
ND, since this is the maximum computation when running N paths of length D without avoiding
previously encountered edges. The minimum of the two is therefore also a valid upper bound.

Therefore, in all possible cases, the minimum of these two quantities gives a valid upper bound for
the number of recursions, and thus the computational complexity, of Algorithm 1.

A.3 PROOF OF THEOREM 3

Proof. We will prove the theorem in three stages:

S1: We derive an upper bound, N(ε′), on the number of purely random walks required to
achieve ε′-uncertainty of the top M pattern probabilities;

S2: We derive the corresponding N(ε) required to achieve ε-uncertainty in the utility of an
arbitrary set of rules whose head pattern, body pattern and rule patterns belong to these top
M patterns, under purely random walks;

S3: We prove that running Algorithm 1 with N = N(ε) leads to a strictly lower ε-uncertainty
for this rule utility than when using purely random walks, thus N(ε) satisfies the theorem
claim.

Stage 1 of the proof is an adaptation of a similar proof for ε-uncertainty of path probabilities of
random walks on hypergraphs by Feldstein et al. Feldstein et al. (2023b).

Stage 1 Throughout this proof, we will consider pattern probabilities within the D-neighbourhood
of nodes, where D is fixed by Algorithm 1.

Given a node vi ∈ DG, let P (l)
i (Gk) denote the pattern probability of the kth most common pattern

in the D-neighbourhood length l patterns of vi (note that the constraints we make on rule patterns
in Section 6.1 means that we can bound l ≤ 2D + 1, where l can exceed D due to the presence of
unary predicates in the rule pattern). The Ziphian assumption implies that

P
(l)
i (Gk) =

1

kZ
, (2)

where Z =
∑|PD,l(vi)|

k=1
1
k is the normalisation constant.

Consider running N random walks from vi without backtracking, and up to a maximum depth of D
(c.f. Algorithm 1). Since the walks are uniform random, a partial walk up to step l ≤ 2D+1 yields
a random sample from the D-neighbourhood length l pattern probability distribution of vi. Denote
by Ĉ

(l)
i,N (Gk) the number of times that the kth most probable pattern, Gk, was sampled after running

all N random walks. By independence of the random walks, the quantity Ĉ
(l)
i,N (Gk) is a binomially

distributed random variable with

E
[
Ĉ

(l)
i,N (Gk)

]
= NP

(l)
i (Gk); Var

[
Ĉ

(l)
i,N (Gk)

]
= NP

(l)
i (Gk)(1− P

(l)
i (Gk)).

It follows that the pattern probability estimate P̂N
i (G(l)k ) := Ĉ

(l)
i,N (Gk)/N has fractional uncertainty

ϵ(Gk) given by
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ϵ (Gk) : =

√
Var
[
P̂N
i (G(l)k )

]
E
[
P̂N
i (G(l)k )

] =

√√√√1− P
(l)
i (Gk)

NP
(l)
i (Gk)

=

√√√√k
(∑|PD,l(vi)|

m=1
1
m

)
− 1

N
,

(3)

where in the second line we used the Ziphian assumption equation 2. Suppose further that we
require that all pattern probabilities P (l)

i (Gk) up to the M th highest probability for that length have
ε′-uncertainty, i.e.

ε′ = max
k∈{1,2,...,M}

ϵ(Gk) = ϵ(GM ),

where GM is the M th most probable pattern, and so, upon rearranging,

N(ε′) =
M
(∑|PD,l(vi)|

m=1
1
m

)
− 1

ε′2
. (4)

We have

N(ε′) ≈ M (γ + ln(|PD,l(vi)|))
ε′2

, (5)

where we used the log-integral approximation for the sum of harmonic numbers
∑|PD,l(vi)|

m=1
1
m =

γ + ln(|PD,l(vi)|) +O
(

1
|PD,l(vi)|

)
, where γ ≈ 0.577 is the Euler-Mascheroni constant. Equation

equation 5 gives an upper bound on the number of random walks required to achieve ε′-uncertainty
of the top M most common pattern probabilities of length l that occur in the 3-neighbourhood of
node vi. Note that the exact value of |PD,l(vi)| depends on the specifics of the dataset, however,
in general, it would grow exponentially with the length l due to a combinatorial explosion in the
number of patterns Feldstein et al. (2023b). This means that N(ε′) scales as

N(ε′) ∼ O
(
Ml

ε′2

)
.

If we want to ensure ε′ uncertainty for patterns of all lengths l ∈ {1, 2, . . . , 2D + 1} then we
conclude that N(ε′) should scale as

N(ε′) ∼ O
(
MD

ε′2

)
.

This concludes stage 1.

Stage 2 Assuming that the top M most common pattern probabilities of length l are ε′-uncertain, for
all l ∈ {1, 2, . . . , 2D + 1}, we now derive an upper bound for the level of uncertainty of the utility
of an arbitrary set of rules whose head patterns, body patterns and rule patterns belong to these top
M patterns.

Recall that the precision of a rule ρ can be expressed as the ratio of the number of groundings of
head(ρ) ∧ body(ρ), to the number of groundings of body(ρ) in the data i.e.

P(ρ) =
|Gbody(ρ)∧head(ρ)|
|Gbody(ρ)|

.

Computing precision exactly would require exhaustively sampling the entire dataset. However, we
can still obtain an unbiased estimate of precision, P̂(ρ), using the ratio of counts of these ground
patterns from running random walks. Assuming that Gbody(ρ)∧head(ρ) is a length l pattern:

P̂(ρ) =

∑
vi∈GD

Ĉ
(l)
i,N

(
Gbody(ρ)∧head(ρ)

)∑
vi∈GD

Ĉ
(l)
i,N

(
Gbody(ρ)

) ,
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is an unbiased estimator for P(ρ). Assuming the rule’s head, body and rule patterns belong to the top
M patterns, then we know that the numerator and denominator both individually have ε′-uncertainty
so we have, in the worst case, that P̂(ρ) has ε-uncertainty where ε = 2ε′.

Next, we consider the estimate of the quantity |Ghead(ρ)=α

body(ρ)∧head(ρ)|, where α is a grounding of the head
of the rule in the data. For brevity, we call the size of this set the recall degree of α given a rule,
and denote it as Dρ(α) := |G

head(ρ)=α

body(ρ)∧head(ρ)|. Consider an arbitrary fact α in the data that is in the
D-neighbourhood of node vi, and is the head predicate of a rule whose pattern Gbody(ρ)∧head(ρ) can
be traversed, without backtracking, starting from vi. The probability, q, that α is not discovered as
part of that rule after N(ε′) random walks is given by

q = (1− p′)N(ε′),

where in the above, p′ is shorthand for P (l)
i (Gbody(ρ)∧head(ρ)). We have

ln(q) = N(ε′) ln(1− p′) < −N(ε′)p′

and hence
q < e−N(ε′)p′

.

But since, by the Ziphian assumption, p′ > 1
Z·M ≈ 1

M(γ+lnP ) , we have that p′N(ε′) > 1
ε′2 and

hence
q < e−

1
ε′2 .

The above inequality holds for arbitrary vi, hence the expectation of the estimated recall degree
satisfies

Dρ(α) > E[D̂ρ(α)] > Dρ(α)(1− e−
1

ε′2 ),

where Dρ(α) is the true recall degree of α. Since ε′ > e−
1

ε′2 for all 0 < ε′ < 1, we con-
clude that D̂ρ(α) has ε′-uncertainty. Therefore, by the Taylor expansion, the estimated log-
recall, ln(1 + D̂ρ(α)) also has ε′ uncertainty, as does the estimated rule-set log-recall R(ρα) =

ln
(
1 +

∑
ρ∈ρα

D̂ρ(α)
)

.

Note that the symmetry factor S(ρ) is known exactly for every rule, as it is a topological property of
the rule rather than a property of the data. For the same reason, the complexity factor C(ρ) is also
known exactly. Finally, the Bayesian prior B(ρ) is also known exactly, since computing it requires
summing over the data once, which we do once at the beginning of SPECTRUM, and this only takes
linear time.

Using the above results, we conclude that the rule-set utility

U(ρ) =
∑
α∈α

(∑
ρ∈ρα

P(ρ)S(ρ)

B(ρ)

)
· R(ρα)C(ρα),

has, by error propagation, worst case ε-uncertainty with ε = 3ε′.

Substituting ε′ = ε/3 into equation 5, we conclude that an upper bound on the number of random
walks required to guarantee ε-uncertainty of the rule-set utility, U(ρ) (where all rules’ head patterns,
body patterns and rule patterns belong to the M most common patterns of their respective length)
under random walks is given by

N(ε) =
9M (γ + ln(|PD,l(vi)|))

ε2
. (6)

Considering all patterns of length l ∈ {1, 2, . . . , 2D + 1} we see that this scales as

N(ε) ∼ O
(
MD

ε2

)
.

This concludes stage 2.

Stage 3 We consider now the Algorithm 1. Let vi denote the source node of a fragment mining run.
Set N = N(ε). Partition the D-neighbourhood of vi into two sets, N close

i and N far
i - nodes that are
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N(ε)-close and not N(ε)-close to vi respectively (Theorem 1). By the definition of N -close, setting
N = N(ε′) in Algorithm 1 guarantees that all patterns containing nodes exclusively withN close

i are
counted exactly, whereas patterns that contain nodes within N far

i are, in the worst case not counted
with a probability given by

q = (1− p′)N(ε′),

with p′ = P
(l)
i (Gbody(ρ)∧head(ρ)), assuming that ρ is a length l rule.

Partitioning Ĉ
(l)
i,N

(
Gbody(ρ)∧head(ρ)

)
into close and far contributions, we can write

Ĉ
(l)
i,N

(
Gbody(ρ)∧head(ρ)

)
= Ĉ

(l)
i,close,N

(
Gbody(ρ)∧head(ρ)

)
+ Ĉ

(l)
i,far,N

(
Gbody(ρ)∧head(ρ)

)
.

In the above, by Ĉ
(l)
i,close,N

(
Gbody(ρ)∧head(ρ)

)
we mean the number of times the pattern

Gbody(ρ)∧head(ρ) was counted with nodes that are exclusively in the set N close
i . Similarly,

Ĉ
(l)
i,far,N

(
Gbody(ρ)∧head(ρ)

)
is the number of times that Gbody(ρ)∧head(ρ) was counted with nodes that

are in a mixture of N close
i and N far

i . Note that Ĉ(l)
i,close,N

(
Gbody(ρ)∧head(ρ)

)
is an exact count and has

no uncertainty due to the exhaustive property of Algorithm 1 for N -close nodes.

Using the result from stage 2 of the proof, we know that q < ε′ and hence Ĉ(l)
i,far,N

(
Gbody(ρ)∧head(ρ)

)
has, worst case, ε′-uncertainty and so Ĉ

(l)
i,N

(
Gbody(ρ)∧head(ρ)

)
has strictly lower than ε′-uncertainty.

We conclude that pattern counts obtained from Algorithm 1 have a strictly lower uncertainty than
pattern counts obtained from random walks for the same N(ε′). Hence, by the result of stage 2,
we can guarantee ε-uncertainty for the rule-set utility using Algorithm 1 with N = N(ε) given by
equation equation 6. The scaling law is, therefore, worst case,

N(ε) ∼ O
(
MD

ε2

)
,

and Algorithm 1 does strictly better than random walks. This concludes stage 3 and concludes the
proof.

Remark 2. Theorem 3 is a worst-case upper bound. For instance, for homogeneous data, the upper
bound scaling is N ∝ O

(
MD
|V |ε2

)
. In our experiments (Section 7), we find that setting N = MD

|V |ε2

performs well when all nodes in the data have roughly the same binary degree.

A.4 JUSTIFICATION OF REMARK 2

In the above proof of Theorem 3 we considered the worst-case scenario, where we required ε-
uncertainty of top-M pattern fragments found locally around each node vi (c.f. stage 1 of the proof).
In reality, in many datasets, rule fragments that appear in the D-neighourbood of one node, will also
appear within the D-neighbourhoods of many other nodes in the data graph GD. The limiting case
is the case of homogeneous data, where the pattern probabilities in the D-neighbourhood of every
node in DG are the same. In this scenario, it is the sum of pattern counts from running random
walks from all nodes that needs to be connected to the notion of ε-uncertainty. For a dataset with
|V | nodes, this means that the number of random walks required to run from each individual node is
smaller by a factor of |V |, i.e. N(ε) ∼ O(MD/ε2|V |), as stated in Remark 2.

B UTILITY EXAMPLE

Example 1. Let us consider recommender systems, where the goal is to predict whether a user will
like an item based on user and item characteristics and previous user ratings for other items. Let us
assume the following background knowledge in first-order logic:

ρ1 : FRIENDS(U1, U2) ∧ LIKES(U1, I)→ LIKES(U2, I),

which states that if two users U1 and U2 are friends and one user liked an item I , then the other user
will also like the same item.
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Symmetry factor calculation. Assume that the training data D includes the facts:
LIKES(alice, starwars), FRIENDS(alice, bob), LIKES(bob, starwars). Then, there are
two ground patterns of LIKES(U1, I) ∧ FRIENDS(U1, U2), and one ground pattern of
LIKES(U1, I) ∧ FRIENDS(U1, U2) ∧ LIKES(U2, I) in D. Hence, for rule ρ1, we obtain P(ρ1) =

1
2

despite that the rule correctly predicts that alice likes starwars given that bob likes starwars
as well as vice versa. However, this rule has a symmetry factor of 2, (as illustrated by Figure 1)
and once the precision is corrected, we get P(ρ1) · S(ρ1) = 1, as expected since the rule is always
satisfied.

I

U1 U2

Gbody(ρ1)∧head(ρ1)

LIK
ESLI

K
ES

FRIENDS

s

a b

GD

LIK
ESLI

K
ES

FRIENDS

I

U1 U2

Gbody(ρ1)

LI
K

ES

FRIENDS

Figure 1: Datagraph GD for a dataset D = { LIKES(alice, starwars), FRIENDS(alice, bob),
LIKES(bob, starwars)}. Constants alice, bob, and starwars are abbreviated as a, b, and s. For
this data, rule ρ1 has a single grounding. However, the number of isomorphisms of Gbody(ρ1) into
Gbody(ρ1)∧head(ρ1) is 2, hence S(ρ1) = 2.

Bayes factor calculation. Consider, in addition to rule ρ1, rule ρ2:

ρ2 : LIKES(U1, I) ∧ FRIENDS(U1, U2)→ DISLIKES(U2, I).

Assume also that the facts D abide by the following statistics: (i) if a user U1 likes an item I , then
a friend of theirs U2 likes I with probability 50% and dislikes I with probability 50%, and (ii) the
number of DISLIKES-facts is ten times larger than the number of LIKES-facts. From assumption
(i) and Definition 1, it follows that P(ρ1) = P(ρ2) = 1

2 since for each grounding of the body
LIKES(u1, i) ∧ FRIENDS(u1, u2) in D, there is either a fact LIKES(u2, i) or a fact DISLIKES(u2, i)
in D and each fact has a probability of 50%. If there were no correlations in the facts (i.e. assump-
tion (i) does not hold), then we would expect, from assumption (ii), that the head is ten times more
likely to be DISLIKES than LIKES. Therefore, the result P(ρ1) = P(ρ2) =

1
2 is misleading, since ρ1

is correct over five times more often than random chance (1/2 vs 1/11) and ρ2 is correct less often
than random chance (1/2 vs 10/11).

We now compute the Bayesian priors for these rules. In both cases, the head predicate contains a
user and an item term, thus, A = {LIKES(U, I), DISLIKES(U, I)} for both rules (Definition 3). The
Bayesian priors are thus:

B(ρ1) =
|GLIKES(U,I)|

|GLIKES(U,I)|+ |GDISLIKES(U,I)|
=

1

10 + 1
, B(ρ2) =

|GDISLIKES(U,I)|
|GLIKES(U,I)|+ |GDISLIKES(U,I)|

=
10

10 + 1
.

Notice that these are exactly the probabilities of ρ1 and ρ2 being true if the facts in D were un-
correlated. Precision of the rules, corrected for this uniform prior, would then be P(ρ1)

B(ρ1)
= 11

2 and
P(ρ2)
B(ρ2)

= 11
20 . Since the first ratio is larger than one, rule ρ1 successfully predicts a correlation. In

contrast, for rule ρ2, since this ratio is smaller than one, the rule makes a prediction that is worse
than a random guess. Hence, by this metric, rule ρ1 is correctly identified as more useful than ρ2.

C PATTERN MINING EXAMPLE

Example 2. We illustrate how Algorithm 1 mines patterns from the graph GD shown in Figure 2. We
follow a recursive call from node v0 with parameters N = 4 and D = 2. To ease the presentation,
we denote ground patterns as sets of edges.

Since e0 is the only unary edge of v0, Algorithm 1 stores the pattern {e0} in Gglobal. Algorithm 1
then finds two binary edges e1 and e2 and, since 2 ≤ N , it considers both edges in turn. Algorithm 1
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then grafts these two edges onto the previous pattern which by default contains the empty pattern ∅.
In particular, for e1, we graft ∅ ◦ e1 = {e1} and {e0} ◦ e1 = {e0, e1}. The resulting patterns along
with Eprevious = {e1} are passed as

Gfinal =

{
{e1}
{e0, e1}

}
to the next recursive call and are stored in Gglobal. Algorithm 1 then proceeds analogously along e2.
After visiting node v2, Gglobal has as follows:

Gglobal =


{e0}
{e1}
{e2}

{e0,e1}
{e0,e2}

 .

Both new recursions are started with updated n = 4/2 and d = 1. At v1, since n = 2 and since
there are two, previously unvisited, edges e4 and e5, the algorithm continues the recursion along
e4 and e5 with updated n = 2/2 and d = 2. In contrast, at v2, since n = 2 but there being
three, previously unvisited, edges e7, e8, and e9, the algorithm will choose at random two out of the
three edges and continue the recursion with n = 2/2. Since, d = 2 in the next recursive calls, the
algorithm terminates. Notice that if N was set to six, then Algorithm 1 would have found all ground
patterns GD.

v0v1 v2

v5

v4

v8

v7

v6

e0

e1 e2

e3
e5

e4

e6

e9

e7

e10

e8

e11
P1

P2

P3

Figure 2: Graph GD from Example 2. The graph contains three types of labelled edges: red unary
edges P1, dashed black binary edges P2, and solid black binary edges P3.

D EXPERIMENTAL DETAILS

D.1 LEARNING MARKOV LOGIC NETWORKS

Datasets. We consider two benchmark datasets for learning MLNs (Richardson & Domingos,
2006): the IMDB dataset, which describes relationships among movies, actors and directors, and
the WEBKB dataset, consisting of web pages and hyperlinks collected from four computer science
departments. Each dataset has five splits.

Table 3: Data statistics of benchmark MLN datasets.
Dataset Ground Atoms Relations

IMDB 980 10
WEBKB 1, 550 6

Problem. The task is to infer truth values for missing data based on partial observations. For
example, in the IMDB dataset, we might not have complete information about which actors
starred in certain movies. In this case, our objective would be to estimate, for each actor, the
probability that they appeared in a particular film by performing inference over the observed
data with a learnt MLN model. The missing data covers all predicates in the database, such as
STARRINGIN(movie, person), ACTOR(person), GENRE(movie) etc. This problem can thus
be framed as predicting missing links in a (hyper)graph.
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Experimental setup. For all SPECTRUM experiments, we set N = MD
|V |ε2 (see Remark 2), M =

30, ε = 0.1, and D = 3, running them on a 12-core i7-10750H CPU.

Results. We compared against LSM (Kok & Domingos, 2010), BOOSTR (Khot et al., 2015),
and PRISM (Feldstein et al., 2023b), using the parameters as suggested by the respective authors.
Since PRISM only mines motifs, we used LSM for the remaining steps of the pipeline, in line
with Feldstein et al. (2023b). We used ALCHEMY (Kok et al., 2005) – an implementation of an
MLN framework – to calculate the averaged conditional loglikelihood on each entity (ground atom)
in the test split. We perform leave-one-out cross-validation and report the average balanced accu-
racy (ACC) and runtimes in Table 4 . SPECTRUM improves on all fronts: the runtime is < 1%
compared with the most accurate prior art, while also improving accuracy by over 16% on both
datasets.

Table 4: Balanced accuracy (ACC) and runtime comparisons of PRISM, LSM, BOOSTR, and
SPECTRUM on MLN experiments.

Algorithm ACC RUNTIME (s)

IMDB

LSM 0.55 ± 0.01 430 ± 20
BOOSTR 0.50 ± 0.01 165.7 ± 129
PRISM 0.58 ± 0.01 320 ± 40
SPECTRUM 0.74 ± 0.02 0.8 ± 0.05

WEBKB

LSM 0.65 ± 0.005 220 ± 10
BOOSTR 0.12 ± 0.09 9.3 ± 0.4
PRISM 0.65 ± 0.005 102 ± 5
SPECTRUM 0.81 ± 0.01 0.5 ± 0.02

D.2 SCALABLE LEARNING OF LOGICAL MODELS

Datasets.

1. Citeseer: This dataset consists of research papers, categories the papers fall under, and links
between papers. Citeseer has the relations HASCAT(P, C) (describing whether a paper P is
of a specific category C) and LINK(P1, P2) (describing whether two papers are linked). The
dataset has six paper categories.

2. Cora: Cora is also a citation network of papers, equivalent to Citeseer except having seven
categories.

3. CAD: The collective activity detection dataset (CAD) contains relations about people and
the actions (waiting, queuing, walking, talking, etc.) they perform in a sequence of frames.
FRAME(B, F) states whether a box B (drawn around an actor in a frame) is in a specific frame
F; FLABEL(F, A) states whether most actors in a frame perform action A; DOING(B, A) states
whether an actor in a box B performs action A; CLOSE(B1, B2) states whether two boxes in
a frame are close to each other; SAME(B1, B2) states whether two bounding boxes across
different frames depict the same actor.

4. Yelp: The Yelp 2020 dataset contains user ratings on local businesses, information
about business categories and friendships between users. We used the pre-processing
script proposed by Kouki et al. (2015) to create a dataset consisting of SIMILARITEMS,
SIMILARUSERS, FRIENDS, AVERAGEITEMRATING, AVERAGEUSERRATING, and RATING,
describing relations between users and items.

Experimental setup. For all experiments, we set N = MD
|V |ε2 , M = 30, ε = 0.1, and D = 3,

running them on a 12-core i7-10750H CPU, except for the CAD experiment where we sat M = 60
due to the large number of different predicates.

Recovering hand-crafted PSL rules.
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Table 5: Data statistics of training sets for PSL scalability experiments.
Dataset Ground Atoms Relations

Citeseer 6, 800 2
Cora 6, 900 2
CAD 250, 000 19
Yelp 2, 200, 000 5

Citeseer and Cora: For each category, we introduce the following relation HASCATX(P), where X
refers to the category. This allows us to find different rules for different categories. For each dataset,
SPECTRUM finds the following rules:

HASCAT(P1, c) ∧ LINK(P1, P2)→ HASCAT(P2, c),

for every c ∈ {1, . . . , 6} for Citesser and c ∈ {1, . . . , 7} for Cora. Importantly, the engineer-
ing back to constants for the categories, e.g. HASCAT1(P) to HASCAT(P1, 1), is implemented in
SPECTRUM, and can be applied for any categorical value. This automatic translation is very useful
in classification tasks.

CAD: We perform pre-processing akin to Citeseer and Cora and introduce DOINGX(B) re-
lations for each action X. SPECTRUM then finds the same 21 rules as hand-engineered
by London et al. (2013). Namely, we get the following three rules for every action a ∈
{crossing, waiting, queuing, walking, talking, dancing, jogging}:

FRAME(B, F) ∧ FLABEL(F, a)→ DOING(B, a)

DOING(B1, a) ∧ CLOSE(B1, B2)→ DOING(B2, a)

DOING(B1, a) ∧ SAME(B1, B2)→ DOING(B2, a)

Yelp: We split the RATING relations into RATINGHIGH and RATINGLOW to see whether
SPECTRUM identifies differences between how high and low ratings are connected. We find the
following six rules:

RATINGX(U1, I) ∧ SIMILARUSERS(U1, U2)→ RATINGX(U2, I)

RATINGX(U, I1) ∧ SIMILARITEMS(I1, U2)→ RATINGX(U, I2)

RATINGX(U1, I) ∧ FRIENDS(U1, U2)→ RATINGX(U2, I),

where X ∈ {high, low}. The only rules hand-engineered by Kouki et al. (2015) that SPECTRUM
cannot find are

AVERAGEITEMRATING(I)↔ RATING(U, I)

AVERAGEUSERRATING(U)↔ RATING(U, I) ,

since these rules are not term-constrained.

D.3 KNOWLEDGE GRAPH COMPLETION

Experimental setup. For all SPECTRUM experiments, we set N = MD
|V |ε2 , M = 20 ×

[number of relations], ε = 0.01, and D = 3, running them on a 12-core i7-10750H CPU. All NCRL
and RNNLogic experiments were run on a V100 GPU with 30Gb of memory. For these models, we
used the same hyperparameters as suggested by the authors in the original papers.

Dataset statistics for knowledge graph completion.
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Table 6: Data statistics of training sets for benchmark knowledge graph datasets.
Dataset Ground Atoms Relations

Family 5,868 12
UMLS 1,302 46
Kinship 2,350 25
WN18RR 18,600 11
FB15K-237 68,028 237
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