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ABSTRACT

In this paper, we introduce a novel 3D-aware image generation framework that
ensures high-quality and view-consistent image generation. Our core idea is to
leverage the semantic latent space of a pre-trained 2D GAN for 3D view-consistent
image generation, eliminating need for large-scale dataset use and prior knowledge
of camera poses. To achieve this, we propose a latent refiner with multi-view
and geometry-preserving capabilities, enabled by self-calibrated depth and pose
estimation. Thanks to the advances of diffusion models, our refiner allows for
view-consistent latent manipulation in GANs and can be trained using a self-
supervised fashion. Our method optimizes the latent codes of a pre-trained 2D
GAN across a wide range of pose angles. We demonstrate the effectiveness of our
method through evaluations and comparisons with existing baselines on benchmark
datasets. Experimental results show the superiority of our method over existing
works in both the quality and view-consistency of generated images.
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Figure 1: Multi-view image generation from GANSpace (Härkönen et al., 2020) and our method.
As shown, direct manipulations on the GANSpace can cause view inconsistency. In contrast, our
method, with the proposed latent refiner, achieves seamless rendering results under different rotation
angles while maintaining the same object identity.
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1 INTRODUCTION

Automatic 3D asset generation has witnessed rapid developments in recent years. Such progress has
empowered the generation ability of neural networks in a wide range of data generation-related tasks
such as VR/AR applications and interactive games. Recently, with the advancement of generative
models and 3D representation, 3D-aware GANs (Chan et al., 2022; Skorokhodov et al., 2022; Schwarz
et al., 2022; Gu et al., 2022; Deng et al., 2022) and conditional 3D diffusion models using text and
images (Liu et al., 2024; 2023b; Long et al., 2023; Qian et al., 2024) have made significant progress
with potential applications across various industries adopting visual computing methods.

Among these generative models, we are inspired by 3D-aware GANs (Chan et al., 2022) that extends
a 2D GAN by incorporating neural implicit representations and rendering, resulting in improved
multi-view consistency. However, 3D-aware GANs require extensive training data to be able to
maintain the quality of generated images. These methods necessitate significant computational
resources, particularly during rendering and training phases, leading to longer training time and need
for high-performance GPUs. Computational constraints often mandate lower-resolution rendering,
followed by 2D upscaling, which can compromise view consistency. GMPI (Zhao et al., 2022) and
Ray-conditioning (Chen et al., 2023) suggest another approach to reduce the computational issues.
Specifically, GMPI modifies a 2D GAN to generate multi-plane images, ensuring view consistency
and 3D awareness with minimal structural changes. Ray-conditioning (Chen et al., 2023) enhances
photo-realism over photo-consistency, conditioning 2D GANs with light-field priors to produce
high-resolution images without using comprehensive 3D models. However, they still require pose
distribution and large-scale data sources. Additionally, their ability to maintain 3D consistency may
diminish at wider viewing angles.

In this paper, we opt to investigate pre-trained 2D GANs and adapt them for 3D-aware image synthesis.
Our motivation for this choice is to avoid any dependency on use of large-scale multi-view or 3D
data in training as these are usually difficult and expensive to be obtained. We also choose GANs
instead of diffusion models (Ho et al., 2020) as, compared with diffusion models, by design, GANs’
latent spaces are more interpretable and can be computed in much faster speed. Furthermore, latent
manipulation in a 2D GAN (Shen et al., 2020; Shen & Zhou, 2021; Härkönen et al., 2020; Wu et al.,
2021; Zhu et al., 2023; Tewari et al., 2020) has demonstrated an ability to learn 3D-aware features,
resulting in generated images with diverse object poses. Inspired by the ability to learn implicit 3D
knowledge in 2D GANs, our goal is to generate multi-view consistent images by refining the latent
space of a pre-trained 2D GAN with a tailor-designed latent refiner, enabling cross-view and identity
consistency (see Fig. 1). Note that our method neither requires 3D data nor prior knowledge on
camera pose distribution during training. Additionally, it utilizes pre-trained models available online
for 3D-aware image synthesis, thus further enhances its flexibility and practicality.

Key to our method is the integration of image inverse warping loss and consistency regularization
strategies, which is shown to enhance the quality of generated images via latent refinement. We
address the challenge of maintaining multi-view consistency by incorporating self-calibrated depth
and pose estimation, supplementing 3D information to training of our latent refiner. We realize our
latent refiner with a diffusion model, which is capable of maintaining high consistency through a
close form of forward-backward consistency regulation. The model is trained to learn geometric
consistency in a multi-view setting, guided by a photometric loss and pose matrices. Such a training
process ensures the fidelity of generated data across a wide range of views without relying on
extensive datasets and heavy computational burden.

We evaluate our method on the FFHQ dataset (Karras et al., 2019) and SDIP Elephants
dataset (Mokady et al., 2022). Experimental results show that our method outperforms state-of-the-art
3D-aware GANs in wide-angle conditions in terms of both multi-view consistency and image quality.

2 RELATED WORK

GAN-based image manipulation. Several studies (Shen et al., 2020; Shen & Zhou, 2021; Härkönen
et al., 2020; Wu et al., 2021; Collins et al., 2020; Ling et al., 2021; Deng et al., 2020; Tewari et al.,
2020; Zhu et al., 2023) have found that the latent space of the StyleGAN (Karras et al., 2019; 2020b;a;
2021) includes remarkably disentangling attributes and rich semantic information, showcasing the
capability to alter images produced by pre-trained GANs via arithmetic manipulations of their latent
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vectors. These alterations keep generated images within their original distribution while infusing
them with new attributes. By applying pose disentanglement arithmetic manipulations to pre-trained
models, one can obtain a variety of multi-view face generators. This inspires us to explore the
conversion of a 2D GAN into a 3D-aware GAN. However, manipulations of high-dimensional vectors
in pose generation make other face attributions (e.g., geometry) inconsistent across viewpoints. Also,
latent semantic information is sensitive, and thus different samples may lead to different generation
results. Several works (Tewari et al., 2020) require additional labeling, pre-trained attributes classifier,
or 3D reconstruction to obtain accurate 3D parameters. DragGAN (Pan et al., 2023) learned latent
codes through a loss function that enforces the movement of user-selected image locations towards
target ones. Unlike previous methods, our method learns view-consistent latent codes using pose
information through self-calibrated learning.

3D-aware GANs. The success of neural radiance fields (NeRF) (Mildenhall et al., 2021) in multi-view
rendering has opened a new research direction in 3D-aware GANs (Chan et al., 2022; Skorokhodov
et al., 2022; Schwarz et al., 2022; Gu et al., 2022; Deng et al., 2022; Zhao et al., 2022). In particular,
EG3D (Chan et al., 2022) learned a tri-plane representation with upsampling layers. GRAM (Deng
et al., 2022) learned a surface manifold representation with implicit isosurfaces, like the multi-plane
representation used in GMPI (Zhao et al., 2022). EpiGRAF (Skorokhodov et al., 2022) conditioned
a discriminator with camera pose data to reduce the complexity of its architecture, improving the
training time. Compared with methods that manipulate the latent space, 3D-aware GANs achieve
better view consistency. However, existing 3D-aware GANs require large-scale datasets to maintain
the generation quality (e.g., high resolutions). Moreover, it is hard to reuse pre-trained models to build
3D-aware GANs. Recently, Ray-conditioning (Chen et al., 2023) utilized a 2D GAN conditioned by a
light field prior for multi-view rendering. Various inversion and editing techniques can be created by
applying StyleGAN, without the use of a geometry 3D prior. However, directly use of the latent space
of the StyleGAN may not preserve the identity of objects across views. Our method can maintain
the identity of objects in multiple views due to the aid of depth and pose information, which are
learned efficiently with self-supervision. In addition to the methods we have discussed, there is an
ongoing research trend adapting these methods for handling large-scale, complex data (Sargent et al.,
2023; Skorokhodov et al., 2023; Shi et al., 2022), as well as exploring their integration with diffusion
models (Xiang et al., 2023; Yang et al., 2023; Tseng et al., 2023) and text-based techniques (Seo et al.,
2023; Rombach et al., 2022; Qian et al., 2024; Liu et al., 2023b; 2024; Long et al., 2023). However,
such an exploration is beyond the scope of our work.

3 PROPOSED METHOD

3.1 OVERVIEW

We aim to design a method that can generate high-quality and multi-view consistent images of a given
subject, e.g., a human face. This objective could be achieved by using image-to-image translation
techniques (Isola et al., 2017; Zhu et al., 2017). However, training of a conditional image-to-image
translation model is known to be computationally expensive while generation results are limited in
both image resolution and viewpoints. In this paper, instead of working directly on the image domain,
we propose to manipulate the latent space of a GAN model. Specifically, we adopt a pre-trained
2D GAN (e.g., StyleGAN2 (Karras et al., 2020b)), denoted as G, to generate images of a subject
defined by a latent code w in different viewpoints. To do so, a straightforward approach is to generate
latent vectors ŵ by sampling the latent space W (e.g., the GANSpace (Härkönen et al., 2020)), i.e.,
ŵ ∼ pw, w ∈ W . However, we observed that such an approach may result in view-inconsistent
images (see Fig. 1). To address this issue, we develop a latent refiner that revises sampled codes
ŵ into view-consistent latent codes ŵ+ by taking into account the geometric information (depth
and pose) of the input subject across views. We realize our latent refiner by a guided diffusion
model (Dhariwal & Nichol, 2021). We learn the depth and pose information in a self-supervised
learning fashion. The pipeline of our method is illustrated in fig. 2, where each step is described in a
respective subsection below.

3.2 PSEUDO LATENT-IMAGE GENERATION

We adopt GANSpace (Härkönen et al., 2020) to construct the latent space W on which latent codes w
are sampled. We consider the sampled latent codes w and their corresponding images G(w) generated

3
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Figure 2: Pipeline of our method. Our method consists of three steps: 1) pseudo image-latent
generation, 2) depth and pose estimation, and 3) latent refining. At each step, a corresponding
multi-view dataset is constructed and utilized to train respective models.

by a pre-trained GAN G as pseudo latent-image ground truth and use them to train other modules
such as depth estimator, pose estimator, and latent refiner. GANSpace is selected due to its support
in navigating the latent space in an unsupervised manner. Specifically, given a latent code w, we
repeatedly rotate it to produce a sequence of ŵ covering a range of viewpoints of the same subject as,

ŵ = w +Vx

= {ŵ1, ŵ2, ŵ3, · · · , w, · · · , ŵn−2, ŵn−1, ŵn}, (1)

where V is a matrix of principal directions identified through a PCA procedure in the latent space
and x is the extent of movement.

It should be emphasized that the preliminary set of multi-view images G(ŵ) exhibits significant
inconsistencies. For example, as shown in the 1st and 3rd rows in Fig. 1, we observed artefacts
and distortions in the generated images. Despite such imperfection, this initial set of sampled latent
codes and their corresponding images provides a reasonable starting point for further processing steps
(depth estimator, pose estimator, and latent refiner).

3.3 PSEUDO DEPTH AND POSE ESTIMATION

Given the sampled latent codes w and ŵ, and their corresponding images G(w) and G(ŵ), we train
a depth and a pose estimator. Specifically, we train from scratch an unsupervised depth estimation
model based on Monodepth2 (Godard et al., 2019) on our generated data, i.e., G(w) and G(ŵ).
The depth estimation model receives inputs as an image G(w) and its subsequent image G(ŵ), and
estimates a pseudo depth map dw for the subject captured by the image pair (G(w), G(ŵ)). Fig. 3
illustrates several pseudo depth estimation results. We noticed disruptive effects at the subject’s
boundaries. This is because the depth estimator is trained with pseudo data. However, the pseudo
depth maps are sufficient to carry out the overall 3D information for further processing in the pipeline.

Similarly, we customize Monodepth2 (Godard et al., 2019) to make it our pose estimator. We train the
pose estimator to predict a pose transformation Tw→ŵ (a 3× 3 matrix) that transforms the pose from
G(w) to that in G(ŵ). Note that, as shown in Fig. 3, the training data for both the depth estimator and
pose estimator is created at uniform intervals from the pseudo-multi-view images G(w) and G(ŵ).

3.4 LATENT REFINEMENT

Let Dθ, with learnable parameters θ, be our latent refiner. We build Dθ upon the guided diffusion
model in (Dhariwal & Nichol, 2021). In particular, Dθ takes as inputs a latent code w, its rotated
version ŵ achieved by some latent manipulation (Härkönen et al., 2020) with some added noise, a
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Figure 3: Pseudo depth estimation. Note that the estimated depth has some artifacts, but it still
maintains a certain level of consistency from a multi-view perspective.

pose transformation Tw→ŵ estimated by the pose estimator, and a time-step variable t (used in the
diffusion process). Dθ aims to rectify ŵ (in the latent space) and returns ŵ+, a refined version of ŵ,
with better view-consistency:

ŵ+ = Dθ(w, ŵt, Tw→ŵ, t). (2)

Subsequently, the refined latent representation ŵ+ is used to create an image G(ŵ+) by leveraging
the generation ability of the pre-trained GAN G. Compared with G(ŵ), G(ŵ+) shows better quality
in terms of photo-realism and subject identity. However, we still found misalignment between G(ŵ+)
and G(w). To alleviate this issue, we adopt the warping method presented in (Godard et al., 2019),
to warp G(ŵ+) using both the estimated depth map dw and pose transformation Tw→ŵ towards the
camera view of G(w). This step results in view-consistent images Warp(G(ŵ+), dw, Tw→ŵ),

Warp(G(ŵ+), dw, Tw→ŵ) ∼ KTw→ŵdwK
−1G(w), (3)

where K is an intrinsic calibration matrix.

3.5 TRAINING

We train our entire pipeline (see Fig. 2) using self-supervised approach. Due to the absence of real
ground truth ŵ, we are unable to employ a standard denoising diffusion loss as in (Dhariwal &
Nichol, 2021). Therefore, we introduce an inverse warping loss that utilizes pseudo depth and pose
information to constrain the image generation process and “x0-formulation” (Salimans & Ho, 2022;
Karnewar et al., 2023), i.e., training of the diffusion model at 0-th time-step. Specifically, our inverse
warping loss is defined as:

Lwarp = ∥Warp(G(ŵ+), dw, Tw→ŵ)−G(w)∥2, (4)

where Warp(G(ŵ+), dw, Tŵ) is the warping result of G(ŵ+) using both pseudo depth map dw and
pseudo pose transformation Tw→ŵ, defined in Eq. (3).

We further design a regularization loss Lreg to constrain the deviation of the refined latent code ŵ+

from its original code w, and the consistency between corresponding visual attributes encoded in
these latent codes as follows:

Lreg = Llatent + λfeatLfeat, (5)

Llatent = ∥ŵ+ − w∥2, (6)

Lfeat = ∥FG(ŵ+)− FG(w)∥2, (7)
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where FG represents an intermediate layer in the generator of G, and we set λfeat = 1.

The total loss to train our entire pipeline is defined as

L = Lwarp + λregLreg, (8)

where we set λreg = 1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluated our method and related works on the Flickr-Faces-HQ (FFHQ) (Karras et al., 2019) and
SDIP Elephants (Mokady et al., 2022) datasets. For the related works, we evaluated existing 3D-aware
GANs, including GMPI (Zhao et al., 2022), Ray-conditioning (Chen et al., 2023), EpiGRAF (Sko-
rokhodov et al., 2022), and 2D latent manipulation methods, including GANSpace (Härkönen et al.,
2020), DragGAN (Pan et al., 2023). We also compared our work with state-of-the-art diffusion
models for image-to-3D generation using SyncDreamer (Liu et al., 2024). Although this model is
trained in a multi-view setting, which differs from our setup that generates 3D-aware images from 2D
inputs, we included it for quality comparison.

We adopted the pre-trained StylegGAN2 (512×512 resolution) in (Karras et al., 2020b) to implement
2D latent manipulation methods and ours. We used a truncated range of 0.8 to generate a test set
(including 6,000 images) for all experimented methods.

We utilized the GANspace (Härkönen et al., 2020) with a manipulation range of [−3, 3] to initialize our
latent space. We generated 800 and 600 samples and created 30 pairs of multi-view images for each
face and elephant subject to train our latent refiner. We used 200 pair sets to train Monodepth2 (Godard
et al., 2019) for both depth estimation and pose estimation. All experiments were carried out on an
NVIDIA GeForce RTX 3090 with 24GB memory. To obtain the animal pose for 3D aware GAN
models in evaluation, we used the pose estimator model (Ye et al., 2022).

4.2 MULTI-VIEW GENERATION

For quantitative evaluation, we employed the Frechet Inception Distance (FID) (Heusel et al., 2017)
and Kernel Inception Distance (KID) (Bińkowski et al., 2018) as performance metrics. These metrics
are widely used for assessment of the perceptual quality of generated images against real images
(i.e., photo realism). However, unlike previous research, we first evaluated our method for multi-view
consistent image generation by using a pose estimator model to obtain the overall distribution of
poses. We divided this distribution into several zones and compared real and generated samples within
each zone. We then generated and selected samples from each zone, resulting in a total of 6,000
images for evaluation. By comparing images of the same instances from multiple viewpoints within
these zones, we assessed the multi-view consistency and image quality of generated images. This
experimental design, grounded in the dataset’s angle distribution, enables a precise and substantial
evaluation of our method’s ability to produce high-quality and view-consistent images.

We also compared our method with existing ones using the Identity Consistency (IC) metric (Tov
et al., 2021; Deng et al., 2019) and Structural Similarity Index (SSIM) (Wang et al., 2004). IC
and SSIM reflect the consistency of a generated image against its original input. Specifically, we
measured IC by utilizing face recognition features (Tov et al., 2021; Deng et al., 2019) for faces and
CLIP features (Radford et al., 2021) for elephants.

Quantitative results. We report the performance of our method and existing methods in Table 1, 2.
Experimental results indicate that our method not only produces images of high fidelity from multiple
viewpoints but also maintains the identity and structure of the original subject across viewpoints.
As shown in Table 1, our method achieves the best performance in terms of the photo-realism of
generation results using both the FID and KID scores. For consistency assessment, our method
ranks first on the SSIM score and second on the IC score. Compared with EpiGRAF (Skorokhodov
et al., 2022) (the first-ranked method in terms of the IC score), our method achieves a comparable IC
score but a significantly better SSIM score. Table 2 also confirms the superiority of our method over
existing ones, proven by our achieved lowest FID, KID and IC scores. We also report the training
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Table 1: Quantitative evaluations on FFHQ. Photo-realism is measured using the FID and KID
metrics (lower scores mean better performances). Consistency is measured using the IC and SSIM
metrics (higher scores mean better performances). Training efficiency is measured as the training
time required to generate a 512x512-pixel image. Best performances are highlighted.

FFHQ FID KID ICFace SSIM Training time

GANspace 48.98 1.145× 10−2 0.958 0.484 0.5 hour
DragGAN 68.45 2.231× 10−2 0.895 0.497 -

GMPI 54.95 2.199× 10−2 0.971 0.509 40 hours
Ray Cond 49.41 1.547× 10−2 0.960 0.433 27 hours
EpiGRAF 57.78 1.953× 10−2 0.975 0.454 24 days

SyncDreamer 72.68 7.102× 10−2 0.890 0.555 18 days

Ours 48.25 1.137 × 10−2 0.972 0.581 18 hours

Table 2: Quantitative evaluations on SDIP Elephants. Like Table 1, the same performance metrics are
used here.

SDIP Elephants FID KID ICClip SSIM Training time

GANspace 67.32 2.380× 10−2 0.915 0.459 0.5 hour
DragGAN 70.38 2.573× 10−2 0.850 0.481 -

GMPI 78.12 4.632× 10−2 0.764 0.317 30 hour
Ray Cond 69.32 2.475× 10−2 0.877 0.503 1 day
EpiGRAF 75.32 5.632× 10−2 0.792 0.326 10 days

SyncDreamer 69.89 6.473× 10−2 0.8113 0.602 18 days

Ours 65.78 2.294 × 10−2 0.932 0.571 12 hours

time of all the experimented methods in Table 1, 2. Our training duration is expedient compared with
other 3D-aware methods, and while it may be slower than 2D latent space techniques, it effectively
balances the image quality and consistency of generated images over an extensive range of angles.

We conducted a detailed evaluation of our method and existing ones by assessing their generation
quality on various finer angular ranges including [-20°,20°], [-40°,40°], and full range. We report the
results of this experiment in Table 3, 4. As shown in Table 3, our method achieves superior overall
performance over the experimented baselines, across all examined rotation angle ranges (column
“Full range”). In more detail, within the angular range [−20◦, 20◦], our model performs on par with
GANspace (Härkönen et al., 2020) (the leading baseline in this range), but surpasses all the baselines
in the intermediate range [−40◦, 40◦] on both the FID and KID metrics. Also, Table 4 shows higher
IC and SSIM scores achieved by our method in a wide range of angles, demonstrating improved
multi-view consistency at wider angles.

Qualitative results. We showcase the qualitative results of our method and other methods in
Fig. 4. Here, we visually assess the quality of face and elephant images generated by the meth-
ods. As observed, our method maintains identity consistency and high-quality generation results.
GANspace (Härkönen et al., 2020) exhibits noticeable distortions in facial representation as the angle
increases. DragGAN (Pan et al., 2023) shows different semantic attributes or identity changing,
revealing the limitations of latent feature matching. Ray-conditioning (Chen et al., 2023) alters
attributes, such as the degree of smiling, as the face rotates, and the elephant ears. In EpiGRAF (Sko-
rokhodov et al., 2022) and GMPI (Zhao et al., 2022), attributes like ears and hair become blurry or
appear flat with rotation, while only the central facial region retains a three-dimensional appearance.
In addition, when trained on SDIP Elephants, significant breakdown in the structure and substantial
distortions beyond a certain angle. SyncDreamer (Liu et al., 2024) despite being trained on 3D data,
still exhibits incorrect geometry transformations. We also provide a comparison to diffusion-based
view synthesis in the supplementary material.
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Table 3: Quantitative evaluations for view-consistency using FID and KID metrics. For each method
and each experimental setting (i.e., angular range), we report the FID (left) and KID (right) scores.

FID/KID -20° to 20° -40° to 40° Full Range

GANspace 47.56 — 1.193 × 10−2 46.92 — 1.085× 10−2 48.98 — 1.145× 10−2

DragGAN 60.21 — 1.823× 10−2 59.73 — 1.797× 10−2 68.45 — 2.231× 10−2

GMPI 49.26 — 1.654× 10−2 52.31 — 1.931× 10−2 54.95 — 2.199× 10−2

Ray Cond 51.05 — 1.886× 10−2 48.28 — 1.534× 10−2 49.41 — 1.547× 10−2

EpiGRAF 52.59 — 1.768× 10−2 53.93 — 1.665× 10−2 57.78 — 1.953× 10−2

Ours 47.87 — 1.195× 10−2 46.28 — 1.079 × 10−2 48.25 — 1.137 × 10−2

Table 4: Quantitative evaluations for view-consistency using IC and SSIM metrics. For each method
and each experimental setting (i.e., angular range), we report the IC (left) and SSIM (right) scores.
Higher scores mean better performances. Best performances are highlighted.

Method -20° to 20° -40° to 40° Full Range

GANspace 0.984 — 0.583 0.958 — 0.484 0.958 — 0.484
DragGAN 0.945 — 0.697 0.925 — 0.587 0.895 — 0.497

GMPI 0.988 — 0.522 0.980 — 0.516 0.971 — 0.509
Ray Cond 0.985 — 0.495 0.972 — 0.451 0.960 — 0.433
EpiGRAF 0.991 — 0.494 0.982 — 0.463 0.975 — 0.454

Ours 0.992 — 0.73 0.972 — 0.59 0.972 — 0.581

4.3 OTHER PRE-TRAINED 2D GANS

Our method can work with different pre-trained GANs. In particular, we can synthesize multi-view
images using pre-trained 2D GANs trained on different public datasets including SD-LSUN-Elephant,
Giraffe, Parrot (Mokady et al., 2022) and Metfaces (Karras et al., 2020a). Our method therefore
eliminates need for specialized and large-scale datasets, and costly generative model training. We
can also generate a multi-view dataset using pre-trained 2D GAN models that are readily accessible
online. We prove this ability in Fig. 5.

4.4 3D RECONSTRUCTION

We visually compare our method and other ones in the application of 3D reconstruction in Fig. 6, 7.
The meshes from GMPI (Zhao et al., 2022) and EpiGRAF (Skorokhodov et al., 2022) are created by
a marching cubes algorithm. For other 3D reconstruction methods, we use COLMAP (Schönberger
& Frahm, 2016) to generate dense 3D point clouds from 30 synthesized images.

As shown in Fig. 6, 7, compared with other point cloud reconstruction methods, e.g., Ray condi-
tioning (Chen et al., 2023), DragGAN (Pan et al., 2023), GANspace (Härkönen et al., 2020), our
method shows more accurate facial reconstructions. Compared with mesh generation methods, e.g.,
GMPI (Zhao et al., 2022), EpiGRAF (Skorokhodov et al., 2022), although there are some noisy points
in our results, it is evident that our method can capture more details, such as the ears and the side
profile of the faces. Especially, the results show that while GANspace-generated images appear with
relatively smooth multi-view consistency, the reconstructions often focus only on the nose area. Even
when multi-view images created by GANspace result in successful reconstructions, our method’s
generated multi-view images showcase more detailed reconstructions, particularly capturing finer
details like the pupils more precisely. Conversely, our method results in more comprehensive recon-
structions, capturing the overall facial structure with greater fidelity. This distinction underscores the
effectiveness of our method in maintaining geometric consistency across multiple viewpoints.
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Figure 4: Comparison of our method with existing works. Our approach ensures photo-realistic image
quality and the preservation of multi-view consistency including identity, geometry, and appearance
characteristics, irrespective of viewing angles.

Figure 5: Generation results with Metfaces, SD-LSUN-Elephant, Giraffe, Parrot pre-trained GANs.
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Ray Cond.

EpiGRAFGMPI GANSpace

DragGAN Ours

Figure 6: Comparison of our method and existing ones in 3D reconstruction.

Figure 7: Qualitative evaluation of 3D reconstruction by GANspace (Härkönen et al., 2020) vs. ours.
The first row of multi-view images is generated through GANspace, while the samples below are
from our method. In the 3D reconstructions, the upper rows are created using GANspace, and the
bottoms are produced from our samples.

4.5 LIMITATIONS

Our method is not without limitations. In particular, the performance of our method relies on the
initial set of multi-view latent codes used to construct the latent space for subsequent processing.
Our method thus requires the latent manipulations to be able to generate reasonable results. Hence,
it is challenging to construct a meaningful latent space if pose disentanglement is poorly executed,
preventing the creation of initial multi-view images with reasonable quality.

5 CONCLUSION

We propose a novel method for multi-view image generation. Our method first generates pseudo
latent-image samples from a latent space using a pre-trained 2D GAN with latent manipulation ability.
The generated pseudo latent-image samples are used to train a depth estimator and a pose estimator,
which are then employed to condition a latent refinement process governed by a diffusion model. By
introducing new warping and regularization losses, our method can be trained using self-supervised
approach. We demonstrated the robustness of our method via extensive experiments on benchmark
datasets. Experimental results show that our method achieves the best geometric and semantic feature
consistency in a wide rotation margin.

The creation of multi-view representations used to initialize a latent space in our method relies on the
effectiveness of a 2D latent manipulation method, such as the one offered by GANspace Härkönen
et al. (2020). This means the necessity for further advancements to improve the capacity of latent
manipulation. Extending the proposed method to incorporate other generative models, such as
diffusion models, would also be a potential research direction.
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Table 5: Evaluation of the loss functions
Loss function FID KID IC SSIM

w/o Llatent 54.25 1.713 ×10−2 0.843 0.482
w/o Lfeature 48.73 1.094 ×10−2 0.754 0.454
w/o Lwarping 101.37 4.137 ×10−1 0.232 0.143

Full loss 48.25 1.137 ×10−2 0.972 0.581

A APPENDIX

In this supplementary document, we conduct additional quantitative and qualitative studies. In
particular, we verify the effect of loss functions in Section A.1 and provide a comparison to diffusion-
based novel view synthesis in Section A.2. We showcase another ability of our method in enabling
multi-view consistent image editing in Section A.3. We present additional results of multi-view
image synthesis.

A.1 LOSS FUNCTIONS STUDY

In this section, we study the effect of the loss functions used in our method. In particular, we remove
the warping loss and some parts of the regularization losses, including the feature loss and the latent
loss, and re-train the corresponding models for comparison. We use the Frechet inception distance
(FID) (Heusel et al., 2017), Kernel inception distance (KID) (Bińkowski et al., 2018), IC, and SSIM
as performance metrics for the quality and consistency of multi-view image synthesis.

We report the results of these experiments in Table 5. The results clearly illustrate the significant
influence of the warping loss, particularly regarding the image quality and view-consistency of
generated images. The integration of feature and latent losses plays a pivotal role in refining latent
codes, making them aligned with near-source view latent codes. We visualize several generation
results by the loss functions in Fig. 8. As shown, without feature and latent regularizations, although
still appearing similar to the source view, there are differences in the fine details of the generation
results such as the extent to which the hair covers the ears or smile strength.

A.2 COMPARISON TO DIFFUSION-BASED NOVEL VIEW SYNTHESIS

We included a comparison of our method with diffusion-based methods in 9. In this comparison,
we used the center images from one of our samples as the input for image-to-3D conversion. Some
existing methods predict multi-view images at specific angles, so we could not match the angles
exactly. However, this does not affect image quality and multi-view consistency comparison. The
results show that although diffusion-based methods can cover broader angles and a variety of objects,
they often fall short in photorealism and identity consistency with the input image and across different
views. In contrast, our method was preserved well. This demonstrates that our approach is useful for
efficiently obtaining 3D-aware images, even for specific datasets that are difficult to generalize.

Our method operates without the need for 3D data or camera pose information, whereas diffusion-
based methods require abundant 3D data for fine-tuning. Despite this significant difference, our
method performs comparably by utilizing a self-calibration mechanism that estimates and adjusts
conditions based on limited initial information. Additionally, our approach employs a lightweight
training strategy, as it does not require fine-tuning of a GAN. Despite these fundamental differences,
our method demonstrates strong performance in generating high-quality and consistent multi-view
images, as seen in our comparisons with diffusion-based novel view synthesis.

A.3 MULTI-VIEW CONSISTENT IMAGE EDITING

In this section, we showcase another application of our method when integrated with image editing
techniques. In particular, we adopt InterfaceGAN (Shen et al., 2020) as an image editing technique to
edit attributes of faces generated by our method. We illustrate several results of this application in
Fig. 10.
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Source view Ours w/o feature w/o latent w/o warping

Figure 8: Visualization of the effects of the loss functions to generation results.

The results show that our method, with the ability to generate view-consistent images, can provide high
quality inputs to InterfaceGAN, enabling multi-view consistent image editing. This also shows the
potential of our method in facilitating the exploration of a diverse range of image editing techniques.
In Fig 10, the last row is edited results with inputs generated by GANspace (Härkönen et al., 2020).
Compared with our method, it can be observed that the hairstyle and the person’s identity generated
by GANspace is less view-consistent.

A.4 MULTI-VIEW IMAGE SYNTHESIS

In this section, we provide additional qualitative results showcasing the ability of our method to
generate facial images under various viewpoints (see Fig 11, 12). These results show that our method
can maintain the view consistency in generated faces across a wide range of angles and expressions.
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Figure 9: Comparison of our method with latest novel view synthesis Liu et al. (2024; 2023a); Long
et al. (2023); Wang & Shi (2023); Shi et al. (2023). While our approach covers a limited range
of angles, it ensures photo-realistic image quality and the preservation of multi-view consistency,
including identity, geometry, and appearance characteristics. Although the latest novel view synthesis-
based 3D generation models can cover a broader range of angles, they often fall short in realism and
exhibit discrepancies in identity when compared to the input images.
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Figure 10: Illustration of multi-view consistent image editing. The first row includes source images,
following rows show edited results for different attributes, e.g., age, expression. The last row
showcases the results of GANSpace multiview image editing, emphasizing less view consistency,
particularly noticeable in aspects like the missing hair, when compared with our method.
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Figure 11: Multi-view facial images generated by our method on the FFHQ dataset (Karras et al.,
2019) - part 1.
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Figure 12: Multi-view facial images generated by our method on the FFHQ dataset (Karras et al.,
2019) - part 2.
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