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ABSTRACT

In the field of quantum information, classical optimizers play an important role.
From experimentalists optimizing their physical devices to theorists exploring
variational quantum algorithms, many aspects of quantum information require the
use of a classical optimizer. For this reason, there are many papers that bench-
mark the effectiveness of different optimizers for specific quantum learning tasks
and choices of parameterized algorithms. However, for researchers exploring new
algorithms or physical devices, the insights from these studies don’t necessarily
translate. To address this concern, we compare the performance of classical op-
timizers across a series of partially-randomized tasks to more broadly sample the
space of quantum learning problems. We focus on local zeroth-order optimiz-
ers due to their generally favorable performance and query-efficiency on quantum
systems. We discuss insights from these experiments that can help motivate future
works to improve these optimizers for use on quantum systems.

1 INTRODUCTION

Quantum computing has over time gathered more and more attention from researchers for the
promise of significant computational speedups relative to classical computers. This has spurred
many developments across all fronts in the field, from algorithms to building real quantum comput-
ers. However, many of these works still rely on the use of classical optimizers. For instance, vari-
ational quantum algorithms are a class of algorithms that have parameters that are then optimized
by a classical optimizer (Cerezo et al., 2021). These algorithms exist both as a way to do machine
learning in a quantum system and to realize practically useful algorithms in noisy near-term devices.

And beyond the scope of algorithm design, classical optimizers also play a part in assisting ex-
perimentalists working in quantum information. Beyond simply being used in practice to realize
theorized algorithms on real devices (Ebadi et al., 2022), optimizers can tune the control of physi-
cal actions (such as laser pulses, injections of electrical current, etc.) that all need to be controlled
precisely to produce desired quantum operation (Coopmans et al., 2021; Leng et al., 2023).

Furthermore, there are unique constraints imposed on optimizers of quantum systems that make this
a unique problem. For instance, obtaining gradient information is in general much harder than in
classical systems. Due to measurement collapse in quantum systems, in general it is impossible
to achieve the same computational complexity as classical backpropagation. And it is only known
how to achieve the same complexity if you have O(polylog(M)) copies of your input state, where
M is the number of parameters (Abbas et al., 2023). While there is still active work in this area,
the difficulty of this problem makes zeroth-order methods that only sample and do not depend on
gradients more appealing than they normally are in classical learning problems.

For these reasons, understanding how classical optimizers interact with quantum objects is both
difficult and highly important for designing the best quantum devices / algorithms. As a result, there
are many studies on exactly that. Some of these studies are general benchmarks that compare a wide
variety of optimizers (Pellow-Jarman et al., 2021; Anand et al., 2021; Singh et al., 2023); others
are works that propose new optimizers for quantum circuits and show experimental evidence for the
advantages of their optimizer (Sung et al., 2020; Gacon et al., 2021; Leng et al., 2023). However,
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most of these works benchmark for a fixed set of problems using a specific form of parameterized
quantum ansatzes / models intended for each problem.

While these works are important for understanding specific use cases, it’s not necessarily clear how
much the insight from these works translates to new scenarios. For instance, if a researcher is
developing a new variational quantum algorithm, how will they know which optimizer is likely to
perform well? Even if the algorithm is familiar to one with existing optimizer benchmarks, how can
they be certain that their changes didn’t cause a significant distribution shift? And in the case of
physics experimentalists, similar concerns arise. Experimenalitsts can have varying devices where
the type of control they have over their system are constrained in different ways. And there may
be noise or aspects of their system that shift over time (Proctor et al., 2020; Blume-Kohout et al.,
2020). So unless they constantly re-evaluate many optimizers on their own, what sort of confidence
can they have in their choice of optimizer being wise?

These are the questions we take a shot at addressing in this work. We do this by benchmarking
on tasks that are randomized. So in addition to the random parameter initialization common in
other benchmarks, we also randomize the parameterized circuit / ansatz that is used, and in some
cases randomize parts of the objective we are trying to minimize. While this is certainly not the
most perfect way to answer the questions we posed before, as we have no way of knowing if our
choice of randomization truly accurately represents the likely search space of quantum information
research, we hope that by adding more variety via randomness in our benchmark we can begin to
identify features of optimization algorithms that work more generically on many types of variational
quantum learning problems.

However, when doing a study like this, you run into the risk of benchmarking something so generic
that it’s difficult to get any concrete insights from results. For this reason, we narrow our focus onto
understanding how to improve a specific class of optimizers. First, we only consider zeroth-order
methods. As mentioned previously, this is because methods that only sample and don’t require
gradients currently tend to be more easily realizable on quantum systems. Second, we use only
local optimizers. This means that our optimizers sample the objective centered around a specific
”canidate” point. Last, we only consider sample-efficient methods. This means that our optimizers
make optimization decisions based on sampling as few points as possible per step. These choices
mostly centered around us deciding to focus on studying the SPSA algorithm (Spall, 1998) and op-
timizers like it, for a handful of reasons. First, in general SPSA tends to perform competitively with
most other optimizers in most existing benchmarks. Second, SPSA and methods like it are efficient
to run on quantum systems and do not have runtime dependencies on the number of parameters
you are optimizing. Third, while many zeroth-order methods have a hyperparameter for the number
of sampled candidate parameters (and in the case of quantum, number of circuit evaluations) per
optimization step, we desired to isolate this consideration for study in future works. We instead try
to understand how we can push the limits of optimizers that aggressively take steps with minimal
information-gain cost per step. (But we acknowledge that more deeply studying this aspect is highly
important for future works.)

In this study, we benchmark randomized experiments for a variety of Hamiltonain minimzation
and generative modeling tasks. We side-by-side compare the performance of 7 optimizers: SPSA,
AdamSPSA, 2-SPSA, QNSPSA, GES, xNES, and sNES. We produce plots illustrating both the
average rate of convergence and statistics on the end-result performance of each optimizer, and
discuss our thoughts on insights to be gained from these results. But in short, we believe there
are two main take-aways. First, more sophisticated optimizers are not generally better. In our
benchmarks SPSA tends to perform best overall, followed by the other simpler heuristic methods
like AdamSPSA and GES. There is more nuance to this statement and it certainly isn’t true in
all circumstances, but under our randomized tasks methods simpler methods tended to be more
reliably effective. Second, there is a need for more robust or adaptive optimization heuristics.
While there are heurstics that can assist these optimizers in optimizing quickly in certain parts of the
optimization process, at other points these heuristics can begin to hurt the optimizer’s performance.
As such, we argue that it would be beneficial to make these heuristics more robust to distribution
shifts. But more broadly, we hope that this work helps stimulate thought into how to more broadly
compare and study optimizers of quantum systems.
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2 PRIOR WORK

There are a number of works that explicitly benchmark a variety of optimizers. Pellow-Jarman et al.
(2021) compares a variety of both gradient and gradient-free optimizers on variational quantum
linear solver problems, both in the presence and absense of noise. They show that while there’s
no clear best otpimizer, SPSA tends to perform favorably in realistic noise scenarios. Anand et al.
(2021) benchmarks natural evolutionary strategies (NES) on variational quantum eigensolver (VQE)
and state preparation problems. They also empirically investigate and provide some justification for
how NES could be used in a hybrid algorithm to assist gradient-based optimizers in barren plateau
regimes. Singh et al. (2023) benchmarks optimizers for a variety of quantum chemistry tasks. Like
other studies, there’s no clear best algorithm, but SPSA tends to perform well in noisy conditions.

Additionally, while not explicitly a benchmark, a number of works compare optimizers against a
variety of tasks. (Sung et al., 2020) introduces methods that use quadratic fitting of sampled points
to evaluate the gradient and perform gradient descent and policy gradient descent. They additionally
benchmark these methods against a variety of optimizers for three unique Hamiltonian-minimization
problems with specific ansatzes. They also include some more practical considerations, such as the
cost of evaluating different Hamiltonian measurments, the possibility of parallelizing multiple quan-
tum circuit evaluations, and doing more robust hyperparameter tuning. In their results their method
performs best, but SPSA can come close and often out-performs other methods in success rates.
(Gacon et al., 2021), which proposes the QNSPSA algorithm we use in this study, also compares
its performance to original SPSA on a variety of tasks and compares robustness to parameter ini-
tialization. (Leng et al., 2023) does the same for their proposed AdamSPSA to SPSA and similar
finite-difference methods, but they instead compare on the task of tuning the performance of a qubit
operation on quantum computer.

3 BENCHMARKS

In this section we outline each of the benchmarks we perform in this paper, motivate the reasoning
behind each experiment choice, and provide the finer details of each. While we overall strive to
include some aspect of randomness / broadness, we make a few distinct choice of fixing specific ele-
ments between different benchmarks. Some of these choices are just so we can help distinguish any
differences between types of learning problems, and others are so we try to understand differences
between different levels of difficulty within a type of learning problem.

To ensure fairness, for all experimental runs, all randomness (initialization parameters + random
circuits / Hamiltonians / distributions) are controlled by the random key. So although each run is
randomly sampled, because we use the same random keys across all optimizers, they all run the
same variations of each problem. The statistics of each run only vary as a result of the differences
between each optimizer.

We also want to ensure that our results aren’t biased by a poor choice of hyperparameters. However,
especially because we are doing highly randomized tasks, it’s difficult to identify what’s a ”good”
choice of hyperparameter means. And even if they could be identified, it’s not always reasonable
to assume the user of said optimizer would be able to properly find them. Our compromise is to
do hyperparameter tuning only on a small subset of the possible problem space. We select the
hyperparameters according to a random search run on 3 random keys. This means that as we try
random hyperparmeter combinations, they will be tried on 3 different random configurations of the
learning problem. So while this is not as exhaustive as the 100 we test on, the tuning isn’t heavily
biased to a single random problem sample. When there is a range of hyperparameters that all perform
optimally, we bias our choice towards the default values typically used by the algorithm’s authors or
commonly selected in the literature. Once we have the tuned hyperparmeters, we benchmark each
optimizer on each problem using 100 runs. All models in all experiments have their parameters
initialized from a normal distribution of mean 0 and standard deviation π.

3.1 HAMILTONIAN MINIMIZATION EXPERIMENTS

First we run experiments on Hamiltonain minimization problems. This means that we choose a
Hamiltonian as an observable, and the expected value of measuring this Hamiltonian becomes the

3



Under review as a conference paper at ICLR 2024

”loss” with which we are aiming to produce a quantum state that minimizes this loss. These bench-
marks are meant to encapsulate use-cases such as variational quantum eigensolvers and quantum
optimization problems that map some problem to a specific Hamiltonian. We produce our candidate
states by parameterizing a quantum circuit and optimizing it to map a simple state (usually |0⟩) to
the state we measure with the Hamiltonian observable.

It is also important to note that we are simulating the noise-free version of this problem, as we
assume we have access to the exact expected value of the Hamiltonian to minimize. While this is
certainly not a realistic assumption, we wanted to first focus on how the aspects of each optimizer
affect performance on quantum systems first before considering varying levels of noise as a factor.

All of the experiments we run here use random circuits as their quantum circuit / ansatz. Specifi-
cally we use the RandomLayers circuit by Pennylane (Bergholm et al., 2022), which are layers of
randomly placed parameterized single qubit X, Y, or Z rotation gates mixed with randomly placed
CNOT gates.

1D Ising Model: The first set of experiments we run use the 1D Ising model as our Hamiltonian
observable. Specifically, we use

H = −
N∑
i=1

Zi ⊗ Zi+1 −
1

2

N∑
i=1

Xi.

As the 1D ising model is known to be an easily solvable problem, the intention of these experi-
ments is to provide a simple baseline to understand how our optimizers perform on easier quantum
optimization problems. These experiments are run on systems of 3 qubits, with circuits of 30 param-
eterized single qubit gates and 10 2-qubit gates. This is relatively simpler and over-parameterized
compared to the other experiments in this section. Each run is executed for 500 update steps of the
optimizer.

2D Heisenburg Model: Next we benchmark our optimizers on the 2D Heisenburg model. This
serves as our harder problem, as not only do we include additional interaction terms w.r.t. the 1D
Ising model, but now we also increase the dimensionality of the connectivity of our observable to a
2D lattice. We specifically use

H = −1

2

N∑
i=1

N∑
j=1

∑
M∈{X,Y,Z}

Mi,j ⊗Mi+1,j +Mi,j ⊗Mi,j+1 −
1

4

N∑
i=1

N∑
j=1

Zi,j .

In contrast to our 1D Ising experiments, these experiments are intended to gain insight into how our
optimizers perform on a much more difficult problem. We use 9 qubit systems in these experiments,
with quantum circuits containing 162 parameterized single qubit gates and 49 2-qubit gates. Each
run is executed for 2000 update steps of the optimizer. One other import distinction is that these
runs were hyper-parameter tuned for 1000 update steps, but we increased the experiments to 2000
steps because a few runs seemed to not be fully converging. We believe this lead to some interesting
side-effects which we discuss in section 5.1.

Randomized Hamiltonians: Lastly, we run experiments on randomized Hamiltonians. Specifi-
cally, we generate each Hamiltonian by combining single qubit measurment terms (randomly sam-
pled Pauli X, Y, or Z gates on random qubits) with 2-qubit measurment terms (tensor products of
randomly sampled Pauli X, Y, or Z gates on random qubits). We define the Hamiltonian as

H =

Nd∑
i=1

ci(Ai ⊗Bi) +

Ns∑
i=1

siSi

ci, si ∼ N (0, π) Ai, Bi, Si ∼ U(
⋃

i∈[N ]

{Xi, Yi, Zi}).

This benchmark exists for two purposes. First, it is intended to be a problem that is of ”medium
hardness” that is in-between the 1D Ising and the 2D Heisenburg experiments. Second, by adding
randomness not only to the quantum circuit but also the objective, we hope to gain some additional
coverage of many possible hamiltonian minimization problems than we did through the prior exper-
iments to see if the insights from them have some evidence of generalization. These experiments
are run on systems of 10 qubits. For each run we randmomly sample 10 single qubit terms and
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20 2-qubit terms to construct every Hamiltonian. Note that this means, unlike the prior two set of
experiments, the energy objective for each optimization procedure differs between run to run. For
the random circuit ansatz, we use 30 parameterized single qubit gates and 10 2-qubit gates. Each
run is performed for 500 update steps.

3.2 QUANTUM GENERATIVE MODELLING EXPERIMENTS

To study a larger variety of quantum learning problems, we also investigate quantum generative
modeling. In this setting, instead of trying to produce a state that minimizes and observable, we
desire to produce a state that when measured in the full computational basis, matches a provided
target distribution. Like with Hamiltonian minimization, we produce our candidate states by using
a parameterized circuit. For the same reasons mentioned in section 3.1, we focus on the noise-less
setting where we assume we have direct access to the true loss function. In this case we use the
negative log-likelihood (NLL) loss.

Cardinality Constrained Distribution + QCBM: Our first generative experiment is using the
Quantum circuit Born machine (Benedetti et al., 2019) to learn a cardinality-constrained distribu-
tion. (So the only randomness in this benchmark is initalization parameters.) The purpose of this
experiment is to serve as our baseline for quantum generative results. Because there aren’t many op-
timizer benchmarks for quantum generative modelling, these results on a more standard test model
and problem can help us interpret future more heavily randomized results. Specifically we run on a
10 qubit system, with 10 layers of 1 and 2 qubit gates of the QCBM ansatz (illustrated as L = 20 in
figure 1 of Gili et al. (2023).) The cardinality we constrain to for our distribution is 5, meaning that
our target distribution is the uniform distribution over any measurment of all 10 qubits that has 5 1’s
in the measurment result. Each run is executed for 5000 optimizer steps.

Randomized Distribution + Random Circuits: Our next generative experiment is a fully random-
ized problem. We use the same random layers ansatz used in section 3.1, and our target distribution
is fully random. Specifically we use the absolute value of a normal distribution with mean 0 and
standard deviation π, and then divide by the sum to normalize it to a valid probability distribution.
In contrast to the other generative modelling experiment, this experiment exists to try to broadly
sample many possible generative models and target distributions. For these experiments we run on 5
qubit systems, with 100 parameterized single qubit gates and 30 2-qubit gates in the random layers
ansatz. Each run is executed for 5000 optimizer steps.

4 OPTIMIZERS

In this section we briefly outline all of the optimizers we benchmarked. While this is certainly not
a fully exhaustive comparison of all local zeroth-order optimizers, we chose this selection because
they cover most methods and heuristics used in SPSA-like methods. Additionally, most of these
optimizers have a history of being used for parameterized quantum circuit tasks. Table 1 in the
appendix shows the detailed update rules of these optimizers.

Simultaneous Pertubation Stochastic Approximation (SPSA) (Spall, 1992) is a commonly used
method, both inside and outside the context of optimizing quantum circuits. In a nutshell, SPSA
is approximated gradient descent where we randomly sample directions in parameter space. Per
step it samples a small random vector from a Rademacher distribution in parameter space, estimates
the gradient along that vector with finite difference approximation, and then takes a step along said
vector according to the sampled gradient to minimize loss. SPSA is also often used with learning
rate and finite difference step size decay, which we also use here.

AdamSPSA (Leng et al., 2023) is the application of the Adam optimizer heuristic (Kingma & Ba,
2017) on the SPSA algorithm. Specifically, it estimates via a running sum and updates according to
momentum and variance normalization terms.

2-SPSA (Spall, 1997) is essentially an approximation of Newton’s method, which is gradient descent
where the gradient is multiplied by the inverse of the Hessian. To approximate the Hessian, it
samples two random vectors (with a Rademacher distribution like in regular SPSA) and evaluates
the 2nd order derivative along those two vectors. It then uses a weighted averaging of these samples
to provide the Hessian used during optimization. Additionally, because the Hessian estimate can
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lead to more unstable updates, 2-SPSA also often blocks updates which increase the loss over a
certain threshold from the prior value per step.

Quantum Natural SPSA (QNSPSA) (Gacon et al., 2021) is a variation of SPSA that utilizes the
quantum natural gradient. Similar to classical natural information, using this metric can has a few
theoretical advantages to help accelerate and stabilize learning. In practice, this method functions
near-identically to 2-SPSA, except that when they sample the metric matrix, they compute the Hes-
sian of the Fubini-Study metric instead of the Hessian of the loss function.

Guided evolutionary strategies (GES) (Maheswaranathan et al., 2019) is an evolutionary method
with heuristic guiding. However, despite the different name, it is fundamentally very similar to
SPSA with only two major differences. First, GES instead samples its random parameter-space
vectors with a Gaussian instead of a Rademacher distribution. Second, GES biases the covariance
of the sampling Gaussian along the subspace of the recent prior gradients. The intuition behind this
choice is that, similar to momentum, that future gradients are more likely that not to be biased in
the direction of the most recent prior gradients. However, instead of just increasing the update size
in these directions, GES biases the sampling in this direction to increase information gain in this
biased direction-of-travel.

Exponential Natural Evolutionary Strategies (xNES) (Wierstra et al., 2011) is an extension of
evolutionary strategies to improve trainability. In this algorithm, it is assumed we have a multi-
variate Gaussian in our space of model parameters, and our goal is to optimize this Gaussian to, in
expectation, sample parameters that produce the lowest loss on the underlying problem. This is done
by performing stochastic gradient descent on the parameters of the multi-variate Gaussian. xNES
then augments this by instead using natural gradient descent to improve convergence guarantees,
and utilizes an exponential matrix mapping to make the algorithm more computationally efficient.

Seperable Natural Evolutionary Strategies (sNES) (Wierstra et al., 2011) is simply xNES that
assumes independence between parameters in order to be even more computationally efficient. It
is functionally equivalent to xNES except where the covariance matrix only allows terms along the
diagonal.

5 RESULTS

Figure 1: Hamiltonian minimization experiment convergence plots w.r.t. number of optimizer steps.
Plots mean value of all runs with the 95% confidence interval. Experiment details can be found in
section 3.

We produce two types of plots for all experiments in section 3: convergence plots and box plots. The
convergence plots show the average loss of the optimization during each stage of the process, where
the colored error area is the 95% confidence interval of the mean. Note that while not every optimizer
has the same amount of quantum computer query cost per step, how efficient each can be depends
on specifics of the device and problem. So for the sake of this study we constrain each optimizer to
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Figure 2: Hamiltonian minimization experiment box plots. Plots the statistics of the final loss value
from each run. Experiment details can be found in section 3.

Figure 3: Generative modelling experiments convergence plots w.r.t. number of optimizer steps.
Plots mean value of all runs with the 95% confidence interval. Experiment details can be found in
section 3.

sample as little as possible per step and assume this will result in only a small multiplicative factor
difference in cost at each step.

The box plots illustrate the statistics of the end-result of each optimization run. In these plots, the
center line of the colored region is the median loss value. The box region is the interquartile range
(the range centered around the median that contains 50% of the samples). The plot whiskers contain
all points that are within 1.5 times the size of the interquartile range from the median. All other
points are considered outliers and are plotted individually.

The convergence plots are figures 1 and 3 for the Hamiltonian minimization and the generative
modelling experiments respectively. The box plots are figures 2 and 4, likewise for the hamiltonian
minimization and the generative modelling experiments respectively.

5.1 INSIGHTS

There are a few main take-aways from these results that we believe these results illustrate. While
we don’t claim these results are concrete truths, we believe each of them warrant further study.
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Figure 4: Generative modelling experiments box plots. Plots the statistics of the final loss value
from each run. Experiment details can be found in section 3.

1) Hyperparameter tuning for optimizer generalization is extremely important. Generally this
is illustrated by our results showing that most optimizer variants don’t show clear benefits compared
to their original versions when some hyperparameter tuning is done, which often contrasts the results
shown in the original papers. However, this is more specifically illustrated in the convergence plot
results of the 2D Heisenburg model shown in figure 1. For this experiment, we hyperparameter
tuned to optimizers taking 1000 steps but ran our experimental results out to 2000 steps. If you cut
this plot off at 1000 steps, it would look very close to the random Hamiltonian experiments where
SPSA, GES, and AdamSPSA perform similarly aside from the latter two converging more quickly.
However, by choosing to optimize for longer SPSA is suddenly able to do significantly better than
all optimizers. While this does raise the question of what a truly realistic hyperparameter tuning
scenario is in quantum systems, we think it’s likely more fruitful to sidestep this concern altogether
and work to design optimizers that are adaptive or more robust to hyperparameter choice.

2) More elaborate optimization strategies aren’t generally better. In all of these benchmarks, no
optimizer clearly out-performs SPSA at the end of the optimization procedure. And the ones that
do are often ones like AdamSPSA and GES that rely on relatively simple and cheap heuristics. So
while there is certainly something to be said about the theoretical benefits of using a method like
QNSPSA, these results indicate that it may be possible to practically achieve better performance for
cheaper by using simpler methods like step size decay and guiding heuristics.

3) When it comes to the convergence speed in the initial phase, you may benefit from accelera-
tion strategies. It varies depending on the benchmark you look at, but often a few methods are able
to converge to lower loss early on in the optimization procedure before being met or overtaken by
SPSA. So while it may not be clearly better to use one of these methods as-is, these results indicate
it might be possible to develop new adaptive methods to improve the convergence speed of methods
like SPSA while not sacrificing overall performance.

6 OUTLOOK

6.1 FUTURE WORKS

Beyond the straightforward expansions on this work (larger studies, more optimizers, more relevant
randomization, etc.) and works related to the insights in section 5.1, we feel the following would be
particularly fruitful follow up studies:
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1) Noise - This benchmark only compared the noiseless setting, but in practice noise is almost always
involved with a quantum computer. Although there are papers that look at shot noise and how to
select the right amount of circuit evaluations to still optimize efficiently (Gu et al., 2021), we would
like to see a study similar to the one we’ve done here that adds noise as an additional dimension to
study where the transitions of an optimizer performing well v.s. poorly occurs.

2) Sampling Amount - For this study, we restricted ourselves to considering only sampling from
a minimal number of parameter-difference vectors to get the information needed to take an update
step. However, it’s possible we could do better by relaxing this constraint. (It’s especially surprising
methods like GES worked as well as they did in this study, as they were intended to be used with
multiple samples per step.) And on the other side of this, can we re-design some aspects of methods
that typically benefit from additional samples per step to instead work well in a small-sample setting
by aggregating information between steps? Both considerations would be critical for understanding
the truly best strategies in this class of optimizer.

3) Sampling Distribution - The optimizers we study here use either a Gaussian or a Rademacher
distribution to sample parameter vectors. While they both seem to be able to produce effective
optimizers, studying in a more principled way the effects of different choices of probability distri-
butions would be interesting. This could especially become more relevant if we look at optimizing
parameters that add discrete constraints, as would be the case in some experimental setups, error-
corrected quantum computation, coordinate descent parameter-shift rule based optimizers (Schuld
et al., 2019), or other more exotic forms of parameterization.

4) Adaptive Methods - Along the lines of what was mentioned in section 5.1, studying methods
that adaptively change during the optimization process could be fruitful for a number of reasons.
First, it could help combine the benefits of multiple strategies. Beyond the optimizers we covered
here, there are works that find other ways to accelerate learning. (For instance, Luo et al. (2022) use
machine learning to predict optimization trajectories, and Fontana et al. (2023) classically models
the loss landscape of certain parameterized circuits.) When it’s possible to combine the information
from quantum computer queries into multiple methods, having a strategy that can learn to rely
either more or less on a specific strategy during parts of the optimization process could allow us
to have desirable properties of multiple methods (speed of convergence, ability to optimize well
in difficult landscapes, flexibility of a method to work without prior assumptions, robustness to
distribution shift, etc.) with a minimal cost-regret overhead. Second, such a method could provide
insights into the limits of each of the above methods. By studying in which parts of an optimization
process one method begins to be unable to optimize as well as another, it could provide insight to
researchers looking to mathematically understand and characterize optimizers and loss landscapes.
Lastly, such methods would make future benchmarking studies much simpler. Instead of having
to be concerned about what reasonable hyperparameter tuning is and expending the resources to
perform it, benchmarks could just compare adaptive versions of the methods in question. (And if
said method has a regret bound, they can have precise confidence in the robustness of their results.)

6.2 CONCLUSION

In this work, we benchmark SPSA-like optimizers on a variety of parameterized quantum learning
tasks with randomized quantum circuits and randomized objectives. These results provide evidence
to suggest that certain heuristics can help accelerate optimization, they often do not perform better
than the simpler methods overall. However, we believe that in a broader sense this study helps
illustrate the need not only for methods that are adaptive / more robust to hyperparameter choice,
but also for broader thought on how we can effectively compare optimizers in quantum systems that
aligns with the realistic scenarios they will be used in. While the take-aways from this work are
intuitions and ultimately only serve to inform directions of future study, our hope is that this work
will inspire more thought into how to best categorize and compare optimizers in quantum learning
problems as a whole.
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Borun Shi, Shuli Shu, Sukin Sim, Arshpreet Singh, Ingrid Strandberg, Jay Soni, Antal Száva,
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APPENDIX

AdamSPSA

∆i ∼ U({−1, 1}d)
ϵi = ϵ0/i

γ , ηi = η0/(c+ i)α, βi = β0/i
λ

∇estf(θi) =
f(θi + ϵi∆i)− f(θi − ϵi∆i)

2ϵi(
m1 = ∇estf(θ1), v1 = (∇estf(θ1))

2
)

mi = βimi−1 + (1− βi)∇estf(θi)

vi = γvi−1 + (1− γ)(∇estf(θi))
2

θi+1 = θi −
ηi√
vi + δ

mi

2-SPSA

∆i,∆
′
i ∼ U({−1, 1}d)

∇estf(θi) =
f(θi + ϵi∆i)− f(θi − ϵi∆i)

2ϵi
δf = f(θi + ϵ∆i + ϵ∆′

i)− f(θi + ϵ∆i)

− f(θi − ϵ∆i + ϵ∆′
i) + f(θi − ϵ∆i)

Ĥi =
δf

2ϵ2
∆i(∆

′
i)

T +∆′
i(∆i)

T

2

Hi =
i

i+ 1
Hi−1 +

1

i+ 1
Ĥi

θi+1 = θi − ηH−1
i ∇estf(θi)

QNSPSA

∆i,∆
′
i ∼ U({−1, 1}d)

F (θ, θ′) = | ⟨ψ(θ)|ψ(θ′)⟩ |2

∇estf(θi) =
f(θi + ϵi∆i)− f(θi − ϵi∆i)

2ϵi
δF = F (θi, θi + ϵ∆i + ϵ∆′

i)

− F (θi, θi + ϵ∆i)

− F (θi, θi − ϵ∆i + ϵ∆′
i)

+ F (θi, θi − ϵ∆i)

Ĥi =
−δF
4ϵ2

∆i(∆
′
i)

T +∆′
i(∆i)

T

2

Hi =
i

i+ 1
Hi−1 +

1

i+ 1
Ĥi

θi+1 = θi − ηH−1
i ∇estf(θi)

SPSA

∆i ∼ U({−1, 1}d)
ϵi = ϵ0/i

γ , ηi = η0/(c+ i)α

∇estf(θi) =
f(θi + ϵi∆i)− f(θi − ϵi∆i)

2ϵi
θi+1 = θi − ηi∇estf(θi)

GES

Ui = orthonormal basis of span of
{∇estf(θi−k), . . . ,∇estf(θi)}

Σi =
α

n
I +

1− α

k
UUT ,Σ0,...,k =

1

n
I

∆i ∼ N (0, σ2Σi)

∇estf(θi) = β
f(θi +∆i)− f(θi −∆i)

2σ2

θi+1 = θi − η∇estf(θi)

xNES

∆i,∆
′
i ∼ N (0, I), B1 = I

z = θi + σiB
T
i ∆i, z

′ = θi + σiB
T
i ∆

′
i

u = 0.5 if f(z) < f(z′) else − 0.5

u′ = 0.5 if f(z′) < f(z) else − 0.5

∇µJ = us+ u′s′

∇MJ = u(ssT − I) + u′(s′s′T − I)

∇σJ = tr(∇MJ)/d

∇BJ = ∇MJ −∇σJ · I
σi+1 = σi exp(ησ/2 · ∇σJ)

Bi+1 = Bi exp(ηB/2 · ∇BJ)

θi+1 = θi + ηµσiBi∇µJ

sNES

∆i,∆
′
i ∼ N (0, I)

z = θi + σi∆i, z
′ = θi + σi∆

′
i

u = 0.5 if f(z) < f(z′) else − 0.5

u′ = 0.5 if f(z′) < f(z) else − 0.5

∇µJ = us+ u′s′

∇σJ = u(s2 − 1) + u′(s′2 − 1)

σi+1 = σi exp(ησ/2 · ∇σJ)

θi+1 = θi + ηµσiBi∇µJ

Table 1: Optimizer algorithms. Illustrates a step of each optimizer in equation form. Note that these
algorithms may slightly differ from the original works due to simplifying choices / constraints we
made in this study. f is the loss function and θ are the parameters per step. ψ is the parameterized
quantum circuit model used by f . U is the uniform distribution and N is the Gaussian distribution.
(·)2,

√
(·) are element-wise on vectors. All other un-defined variables are hyperparameters.
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