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ABSTRACT

A decision-making agent, such as a robot, must observe and react to any new
task-relevant information that becomes available from its environment. We seek to
study a fundamental scientific question: what value does sensory information hold
to an agent at various moments in time during the execution of a task? Towards this,
we empirically study agents of varying architectures, generated with varying policy
synthesis approaches (imitation, RL, model-based control), on diverse robotics
tasks. For each robotic agent, we characterize its regret in terms of performance
degradation when state observations are withheld from it at various task states for
varying lengths of time. We find that sensory information is surprisingly rarely
task-critical in many commonly studied task setups. Task characteristics such as
stochastic dynamics largely dictate the value of sensory information for a well-
trained robot; policy architectures such as planning vs. reactive control generate
more nuanced second-order effects. Further, sensing efficiency is curiously cor-
related with task proficiency: in particular, fully trained high-performing agents
are more robust to sensor loss than novice agents early in their training. Overall,
our findings characterize the tradeoffs between sensory information and task per-
formance in practical sequential decision making tasks, and pave the way towards
the design of more resource-efficient decision-making agents. Appendices, videos,
and more at https://sites.google.com/view/vosi-robotics/

1 INTRODUCTION

Over time, as a robot moves, information emerges in its environment (e.g. an occlusion is removed
and a new object becomes visible, or a pair of dice settles on an outcome), some of it is captured
by the robot’s sensors, and the robot then acts on this information. Any information not acquired
at sensing is lost to all downstream decision-making computations, and perhaps for this reason,
it is often taken for granted during the design of a robot that more sensing always improves task
performance. However, sensing is not always an asset (Mason, 1993; Erdmann & Mason, 1988).
Sensing and the processing of sensed information entail the use of several key resources in robotics:
computation latency, power, controller complexity, and by extension for learning robots, training data.
Even discounting these resource costs, over-sensing can still hurt task performance by causing fragile
robot behaviors that respond to task-irrelevant sensed details in the environment (Mason, 1993).

Understanding the relationship between the sensing setup (how much information is sensed, what is
sensed, quality, timing, latency etc.) and the performance of a downstream policy is an important
scientific problem in robotics and more broadly, all of sequential decision-making (Donald, 1995;
LaValle, 2019; Tishby & Polani, 2010; Koditschek, 2021; Xu et al., 2021; Majumdar et al., 2023).
In this paper, we first propose a novel approach to empirically study one slice of this question: at
what instances along the robot’s trajectory does environment feedback reveal valuable information?
In particular, we assume a fixed policy and a simulated perfect sensor that instantaneously reveals
the full Markov state of the environment. In this setting, our approach (Section 5) characterizes:
at what moments did access to the sensed information critically improve the robot’s actions? We
study several benchmark tasks spanning varying robot morphologies, and diverse policy synthesis
approaches, particularly focusing on state-of-the-art imitation and reinforcement learning techniques.
Our analysis yields several interesting findings, of which we highlight a select few here. In most
tasks, sensing only improves agent actions significantly at some rare moments during task execution.
Further, the reliance on environment feedback is similar for high-performing policies synthesized
through very different techniques and represented with very different architectures. Finally, and rather
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counter-intuitively, policy performance is inversely correlated with sensor dependency. Well-trained
policies respond to sensed information much less frequently. We summarize our contributions below:

1. We propose a novel approach to quantify the value of sensory information (VoSI) in complex task
setups focusing on environments with perfect sensing and deterministic dynamics.

2. With VoSI as a probing tool, we systematically analyze diverse tasks and state-of-the-art (SOTA)
lookahead policies, revealing novel insights into the role of sensing in complex settings.

3. We demonstrate VoSI is also applicable in other settings by showing proof-of-concept applications
to environments with stochastic dynamics and model / sensing noise.

4. We highlight the potential of VoSI for efficient policy execution by demonstrating a proof-of-
concept greedy strategy that achieves better performance than a baseline that senses periodically.

2 RELATED WORK

Information Parsimony through Constrained Optimization. Agents in the real world often
incur significant costs in acquiring and processing sensory information. The trade-off between
maximizing task-performance and minimizing associated sensing costs has motivated extensive work
on synthesizing efficient controllers under resource constraints. Hansen et al. (1996) ascribe a fixed
cost to any sensing action and learn to optimize when to sense along with maximizing a task objective
in discrete MDPs. Recently, Treven et al. (2024); Holt et al. (2024) associate constraints with the
number of interactions in continuous time control settings. Tishby & Polani (2010); Eysenbach
et al. (2021); Lu et al. (2023) propose associating a cost with the bits of information inferred from
observations without any direct constraints on sensing itself.

These works set up specific models for the resource costs entailed by sensing, and aim to generate
good task policies under constraints on those costs. Complementing these approaches, we instead
build a general tool to understand the sensory requirements for a fixed task performance behavior,
as represented in a frozen controller. We do this by setting up and measuring the “value of sensory
information”. Our notions of task value are pertinent for efficient execution of that behavior under
any resource cost models and constraints, when the robot looks to act efficiently. We show that our
approach reveals interesting insights into the properties of SOTA policies on challenging tasks.

Value of Information (VoI) For Sequential Decision Making Agents. Howard (1966) first
described the “value of information” (VoI) towards decision making, placing a value on the reduction
of uncertainty about various random variables relevant to a task. Inspired by this highly influential
framework, we propose to measure the “value of sensory information” for a sequential decision
making agent, to assign values to sensory measurements made at various moments in time.

We are not, however, the first to apply VoI-related ideas in control. Notably, Flaspohler et al. (2020)
build on VoI to synthesize near-optimal model-based planners for PoMDPs: they construct open loop
“macro actions” that significantly reduce the planning complexity. Their macro-actions represent a
restriction of the mixed loop policy executions that we study. Further, their experimental validation
is restricted to stylized simple environments. Majumdar et al. (2023) characterize the task-relevant
information potential of sensed information and provide fundamental bounds on the performance
achievable by any sensor-based policy. This characterization requires environments that can be
expressed in simple analytic forms or that are tractable for sampling based assessments (requiring
finite actions and short task horizon), and this is reflected in their experiments. Further, they do not
offer insights on when to sense. In this work, we propose a novel empirical analysis approach that can
be applied to much more complex environments and policy representations than these prior works.
Through it, we study SOTA robotic policy architectures, on standard benchmark tasks in the robot
learning literature, revealing insights about the value of sensory information to an agent.

3 SETUP AND NOTATION

We model the environment as a controlled Markov Process (S,A, µ,P), where S is the set of states
s, A is the set of control actions a available to a robot, µ is the distribution of start states, and
P(st+1|st, at) is the transition probability distribution specifying how the environment state st at

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: Illustration of a mixed loop (MixL) execution of a look-ahead policy π. At state s0, the
agent executes the open loop action plan a0:3 ∼ π0:3(s0) for the next h = 3 steps. Over this open
loop execution, uncertainty accrues due to stochastic dynamics and/or an imperfect environment
model, that is then resolved when the agent senses the state at t = 3.

time t evolves in response to a robot action decision at. We consider two common modes of “task
specification”. The first is imitation learning, where the agent must mimic expert actions closely. The
second is reinforcement learning, where a reward function rt = r(st, at) specifies feedback, and the
agent must maximize (undiscounted) cumulative rewards EP [

∑T
t=0 r(st, at)].

Look-Ahead Policies. For our analysis, we consider the popular class of “look-ahead” policies
π : S → An that, after observing the current state st, prescribe not just the immediate action at,
but an n-step “chunk” of future actions π(at:t+n|st). This is a common feature in recently popular
imitation learning architectures such as action-chunking transformer (Zhao et al., 2023), diffusion
policy (Chi et al., 2023), as well as popular planning-based approaches such as the model-based RL
architecture TD-MPC2 (Hansen et al., 2023).

Mixed Loop and Fixed-Rate Execution. Crucially for our analysis, such look-ahead policies
permit execution in a “mixed loop mode”. At any given state st, the agent can commit to executing
any h ≤ n steps of the action chunk at:t+h in an open loop manner. At time t+ h, the loop is closed
by sensing and reacting to st+h (see Figure 1). Fixing h = 1 corresponds to closed loop execution.
Popular look-ahead policies often reduce resource usage for on-robot execution by sensing and acting
periodically with fixed “execution period” h > 1 to reduce resource usage (Chi et al., 2023). In other
words, the agent forgoes sensory information between times t and t+ h.1 We call this “fixed-rate”
mixed loop execution. More generally, h < n need not be fixed. We denote the distribution of actions
for h timesteps conditioned on observing st as at:t+h ∼ π0:h(·|st).

4 HOW FREQUENTLY DO AGENTS NEED TO SENSE?

Our efforts to study the value of sensory information start by envisioning a robotic agent that is
provided with a look-ahead policy π : S → An, synthesized by any means of our choice e.g.,
model-based control, imitation learning, or reinforcement learning. It must then decide “how to
execute” this policy starting from some state s0, in particular, whether to “sense” or “not” at each
time instant t = 1, 2, .... As motivated in the introduction, each “sense” decision carries resource
costs to real agents. However, for most of our investigation, rather than set specific resource costs, we
instead study how much positive value in terms of task performance improvements each instant of
sensory information brings to the agent to offset any potential resource costs.

Mixed loop execution with lookahead policies enables us to empirically study the impact of forgoing
sensing at any time(s) on the performance of the policy π. In the general mixed loop setting, for
a time duration T starting at a sensed state s0, there are 2T possible executions, including fully
closed loop (sense at each moment) and fully open loop (never sense), amongst which our agent must
choose. For this first experiment, we restrict our attention to the simpler class of fixed-rate mixed
loop executions with varying execution period h, to arrive at an approximate understanding of the
relationship between the sensing budget (as reflected in the sensing rate 1/h), and task performance.

We study 7 diverse robotic tasks, depicted in Figure 2, sourced from DM-control (Tassa et al., 2018),
Robosuite (Zhu et al., 2020; Mandlekar et al., 2023), and the Push-T task (adopted from Chi et al.
(2023)). The DM-Control tasks involve dynamic behaviors with varied robots and action spaces,
like swinging up a cartpole, catching a ball in an actuated cup, and spinning a wheel at high angular

1The policy “action” is often issued to a low-level controller such as PID that uses proprioceptive feedback.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: The seven robotic tasks considered in our analyses.

velocity with an actuated 2-jointed finger. Robosuite is a popular robot learning benchmark for static
tabletop object manipulation tasks: we study square-nut: picking up and placing a square nut
around a square peg, coffee-pod: placing a coffee pod into a coffee machine slot, and threading:
a high-precision task involving threading a thin needle through a small hole on a light movable
platform. Finally, Push-T is a stylized 2D non-prehensile manipulation task that involves complex
contact dynamics between a cylindrical end-effector (projected to a circle) and a T-shaped object that
must be pushed into a target configuration.

For each task, we train state-based lookahead-policies with TD-MPC2 (Hansen et al., 2023) and
DiffusionPolicy (DP) (Chi et al., 2023), which represent the state of the art in model-based RL and
imitation respectively. TD-MPC2 failed to produce effective policies on the Robosuite manipulation
tasks, and DP failed on finger-spin and cup-catch tasks. We study the other policies, which all
performed well. More details of training setup and data-collection are provided in Appendix A.

Figure 3 plots the best mean reward with 95% confidence intervals i.e. lowest regret achieved by
fixed-rate mixed loop executions as the budget varies. “Normalized regret” is measured as a fraction
of the mean closed loop execution reward, which is always positive in our tasks. There are several
outstanding trends: most task policies in our study perform just as well as closed loop (≈ 0 normalized
regret), even when executed once every 5 steps. The three Robosuite tasks are remarkable: for all
these manipulation tasks, policy performance does not deteriorate substantially even when sensing
happens only once, at the beginning of each trajectory. We refer to such “one-time-sensing” execution
as “open loop” in this paper. This surprising effectiveness of open loop executions is in line with
observations made in recent works Dasari et al. (2022); Raffin et al. (2023); Wang et al. (2024)
for other standard robot learning benchmark tasks. Two tasks DM-control swingup and Push-T
afford comparing TD-MPC2 and DP policies. Trends are largely similar for the two: on Push-T,
TD-MPC2 appears to be slightly more robust (lower regret) to reduced sensing. Finally, cup-catch,
finger-spin and Push-T all show smoothly accelerating regret as the sensing rate decreases.

A Note On Regret Profiles and Task Complexities. Each task’s regret profile may also be
interpreted as a measure of its “sensory complexity”: low regrets indicate low sensory complexity.
By this measure, the tasks in order of difficulty are: coffee-pod ≈ square-nut ≈ threading
< swingup < cup-catch < finger-spin ≈ Push-T. There is thus also quite a clear complexity
ordering among task suites: Robosuite < DM-control < Push-T. Speculating a little, robot learning
benchmarks for manipulation as represented by these three Robosuite tasks may be outliers in terms
of how little sensing / perceptual capabilities they require.

4.1 WHICH CONDITIONS NECESSITATE SENSING?

To appropriately interpret these task regret profiles, we now analyze how task characteristics and
policy architectures drive policy performance under reduced sensing.

The Sensing Needs of Optimal Infinitely Expressive Policies. Sensing has value to an agent to the
extent that it delivers information that the agent does not already know, or more explicitly, what the
agent could not have predicted without sensing. Let us consider how a particular observation st can
be informative to an optimal policy π∗, without limitations on its expressivity or capacity. Observe
that we can construct one such optimal π∗ that operates by optimizing future actions at:T through the
true environment transition function P (s′|s, a), either learned or manually specified. Now, if an agent
operating with π∗ knows the current state st, then its uncertainty about st+1 is the entropy of the
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Figure 3: Task regret profiles on our 7 main tasks. Plots demonstrating what fraction of closed loop
policy returns are lost (“normalized regret”) when a policy is instead run in fixed-rate mixed loop
mode. We group the tasks into DM-control (left), Robosuite (middle), and Push-T (right).

Figure 4: Task regret profiles on our toy four-rooms task (left) illustrate how stochastic dynamics
(middle) and dynamics model error (right) necessitate more sensing.

transition distribution: H(st+1) = −
∑

s′ P (s′|st, at) logP (s′|st, at). In other words, sensing st+1

delivers H(st+1) bits of information. It follows that the task-relevant information value of sensing
st+1 is bounded as Htr(st+1) < H(st+1). If the dynamics P (s′|s, a) are always deterministic, then
H(st+1) = 0: there is no value to sensing st+1, or by induction, any future states. This is intuitive:
π∗ can precisely simulate st+1: and can therefore act optimally without ever needing to actually sense
the environment.

Thus, there is at least one task-optimal policy π∗ that can operate “open loop” (i.e., sensing only at
t = 0) when sensing is perfect and dynamics are deterministic. A corollary of this result is that if the
task reward includes any non-zero cost c > 0 associated with sensing, then π∗ must be open loop.

To illustrate, consider a simple 11x11 four-rooms discrete grid-world task where a robot is tasked
to reach and stay at a fixed goal location starting from anywhere (see Figure 4). The robot has one
stay-in-place action and 4 directional actions, and gets a sparse reward of 1 when it reaches the
goal. We assume perfect sensing in all environments in this work, but we now introduce stochastic
dynamics in four-rooms: an action other than the desired command a is executed at random with
probability p. We obtain a task-optimal model-based agent (π∗, P̂ ∗ = P ) for each environment, and
compute similar sensory-regret profiles for fixed-rate mixed loop executors of agents across different
levels of stochasticity (p). Observe that an optimal agent gains no additional value from sensing after
the first timestep under deterministic environment dynamics (p = 0) and that the value gain from
sensing (performance regret) is correlated with the level of stochasticity.

How Finite Expressivity Influences Sensing Needs: Complexity↔Uncertainty. Our 7 simulated
robotic tasks above have perfect sensing and deterministic dynamics, as in most robotic benchmark
tasks. Why then do agents still perform worse when they can’t sense and react to environment states?
We argue that for “finite policies” (e.g. finite in expressivity or training data), complexity plays a
similar role to stochasticity in the above analysis. Intuitively, finite policies struggle to simulate
complex dynamics, such as of a ball bouncing off a rocky forest floor, or of a swimmer swimming
through a perturbed river stream. This also applies to complexity in sensing or actuation: provided
with a perfect high-resolution 3-D map of the forest floor or a flow field of the river stream, finite
policies may not successfully process such observations into the task-relevant state. To see this in
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Figure 5: Task regret profiles on two tasks, showing how increasing policy competency affects sensing
needs, through (left) various training stages , and (right) various model capacities.

our grid-world family, consider agents on a deterministic grid, but with different levels of model
error ϵ, such that DKL(P, P̂ ) = ϵ ∀ (s, a), simulating the implications of finite expressivity (see
Appendix B for more details on how P̂ is generated). As Figure 4 shows, these model errors generate
similar regret profiles to true environment stochasticity above. On the robotic benchmark tasks
finger-spin and Push-T we explore the implications of finite training data and model-capacity by
evaluating the task regret profiles of fixed-rate mixed loop executors of TD-MPC2 agent checkpoints
at different stages of training: early (beginner), middle (novice), and latest (expert) and different
representation capacities (modulated by the size of the latent dimensions of the MLP) in Figure 5
(details of the experiment design in Appendix A.1.1). In line with the arguments above, agents with
higher model capacity or those exposed to more training data appear to degrade less at lower sensing
rates. While, the relative drop in performance is an indicative metric, it requires some interpretation
in the context of the reward function and absolute returns attained – we discuss in Appendix G.

5 WHEN SHOULD AN AGENT SENSE?

We have interpreted the regret plots of Figure 3 as coarsely profiling the importance of sensory
information in a task. However, those experiments only considered fixed-rate mixed loop policies
and studied the impact of a fixed sensing frequency on task performance. They do not support
finer-grained questions about the moments in time at which sensing is more valuable or less valuable.
For example, in the push-T task, where contact dynamics only come into play when the end-effector
is near the T, states at the beginning of an episode as the end-effector moves to the T might not require
closed loop execution (as we will show later in Figure 8). We now build on from the methodology of
Section 4 to permit such detailed analysis.

Figure 6: τMixL(s0, h) and τCL(s0)
for four-rooms.

The Value of Sensory Information (VoSI). Having sensed
the state st of the world at time t, we seek to understand how
much task-relevant value an agent loses by choosing to not
sense the state of the world for h timesteps compared to operat-
ing closed loop. To empirically characterize this state-wise re-
gret, let us first consider ηMixL(st, h) , a mixed loop “execution
strategy” that observes state st at time t, then forgoes sensing
for the next h steps, and operates closed loop forever after. This
strategy ηMixL(st, h) induces a distribution over trajectories
τMixL(st, h) of episode length T . For convenience, we denote
the distribution induced by closed loop control (h = 0) as
τCL(st) := τMixL(st, 0). Some τCL and τMixL trajectories are visualized in Figure 6 for four-rooms
with stochastic dynamics. The open loop phase of τMixL trajectories are depicted in gray, and the
closed loop phase that follows, in green.

The idea is simple: τMixL represents the best behaviors when sensing is withheld over the window
(t, t + h], and τCL in turn represents the best behaviors without any sensing restrictions. Thus,
any deterioration in task performance from τCL to τMixL may be attributed to task-relevant sensory
information lost during (t, t + h], and a measure of that deterioration also serves to quantify the
“value of sensory information” (VoSI) in that window. When a reward function is available, as in our
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tasks, an obvious choice of a task-relevant deterioration measure is the loss of rewards of the mixed
loop execution relative to a closed loop execution, until the end of the episode. Thus the VoSI is:

VoSI(s, h) := E
τCL(s)

[
T∑

t=0

rt

]
− E

τMixL(s,h)

[
T∑

t=0

rt

]
. (1)

This is closely related to the task-level regret profiles analysis of Section 4. When measured for a
fixed state s, with increasing h, VoSI(s, h = [1, 2, ...]) represents a kind of state-wise regret profile:
it measures how task performance degrades when acting open loop starting from s for increasing
durations of time. We call these VoSI profiles. Later, we will define and compare other alternative
measures of deterioration from τCL to τMixL, to plug into VoSI computation in specific settings, such
as when no reward is available.

Before moving on to further experiments using this measure of the value of sensory information, a
note: recall from the beginning of Section 4 that our study is limited to an agent considering various
“executions” of a frozen look-ahead policy π, distinguished only by the moments in time when it
is afforded access to sensory inputs st. One practical issue in this evaluation is that the standard
pre-trained look-ahead policies π (such as TD-MPC2, DiffusionPolicy) are designed for closed loop
performance, and would be operating out-of-distribution when executed in mixed loop mode. Thus
τMixL as defined above might produce erratic behaviors, and might not produce the best execution
of π subject to the constraint of not sensing within a time window. However, in our experiments,
mixed loop τMixL executions of these policies appear to hold up well enough to produce coherent and
interpretable findings, and those findings themselves align with the expectations we arrive at through
reasoning as in Section 4.1.

Implementing VoSI Profiles. We measure VoSI on all 7 tasks from Figure 2, for TD-MPC2
(DM-control, Push-T) and DP policies (Robosuite). In all cases, we first execute the policies closed
loop starting from the task’s initial state distribution, and then measure VoSI on states s from these
closed loop trajectories as follows. For each state s, we first reset the simulator to that state, and
then run mixed loop strategies ηMixL(s, h) with the open loop length h varying from 1 to 100 steps.
For each h, we generate 5 full trajectories starting at s and ending at episode termination (after T
steps). This permits a Monte Carlo estimate of the expectation over τMixL(s, h) in the second term in
Equation (1). For the expectation over τCL in the first term, we similarly use 5 trajectory rollouts to
estimate this quantity. These are expensive evaluations: for each state for which we compute VoSI,
we must generate 100x5 = 500 trajectories. For DP which is computationally expensive to run, we
restrict the analysis to interesting states, ignoring states where the arm is primarily moving in free
space (details in Appendix A.3).

The Informative Shapes Of VoSI Profiles. Figure 7 presents a few representative VoSI profiles
VoSI(s, h = [1, 2, ...]) from across all tasks, sorted into three prototypical profile “shapes”.

▶ “Flat” VoSI profiles (Figure 7-1) occur when the agent derives very little value from sensing in
(t, t+ h] even at high h. In other words, having sensed the state at t, the agent can operate without
sensing, losing nearly no task reward. In Robosuite, as suggested earlier by the task regret profiles of
Figure 3, VoSI profiles are surprisingly flat even during object interactions (see e.g. Figure 7-1g). On
DM-control and Push-T, VoSI profiles usually only become “flat” after the task goal is effectively
achieved (e.g. the T is already in place in Push-T, see Figure 7-1e), and the agent does not need to
do much other than wait for episode termination. For swingup, VoSI profiles are flat both near the
starting states where the dynamic swing action must be initiated (Figure 7-1b), and more surprisingly,
even in the upright phase (Figure 7-1c) up to about 70 steps (≈ 0.7 seconds). Figure 8-1 offers some
insight on this latter case: closed and open loop trajectories (τCL and τMixL) look remarkably alike,
because good policies barely actuate the cartpole base in the upright phase.

▶ “Gradual” VoSI profiles (Figure 7-2) involve steadily accruing VoSI as the window length h
increases, suggesting that the task-relevant value of sensing grows steadily with the delay in acquiring
new information. Sustained and repetitive contacts as in Push-T and finger-spin (Figure 7-2a-e)
often induce this VoSI prototype. This is understandable: contact is hard to model precisely, so the
true realizations of contact dynamics as represented in sensed states always resolve some ambiguity
when available. Figure 8-2 zooms into the Push-T state in (Figure 7-2e): over the course of a push,
small missteps from open loop execution cause steady drift from optimal trajectories. This requires
extra recovery time when closed loop control resumes after h steps, affecting task reward.
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Figure 7: VoSI profiles of states encountered in our experiments on 7 robotic tasks can be broadly
sorted into three prototypical profile shapes, shown here as 1) flat, 2) gradual, and 3) stepped profiles.

Figure 8: Time-aligned visualization of one closed loop trajectory τCL(st) and the open loop phase
of one mixed loop trajectory τMixL(st, h), starting from an initial state st. The VoSI profile of st is
plotted on the left, and indicates a measurement of the task-relevant deviation between τCL and τMixL.

▶ “Stepped” VoSI profiles (Figure 7-3) involve sharp increases at some values of h followed by
steady increases or flat stretches. These are indicative of phase changes in the task. For example, in
cup-catch(Figure 7-3c-e), failing to closely track the ball’s complex dynamics as it is dynamically
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Figure 10: Visualization of all the VoSI profiles overlayed for four tasks.

thrown up can can make the difference between the ball landing in the cup, or instead colliding with
its lip. Similarly, in swingup, not sensing during a short and dynamic phase can prevent the agent
from correcting for overshoot or undershoot, causing sharp reward losses.

Finally, in Figure 10 we take a step back and overlay the VoSI profiles for all states encountered in
τCL executions on each task. These plots reveal information about characteristic VoSI profiles in each
task. Further, the dark “gradual” and “stepped” curves in finger-spin and swingup correspond to
frequently repeated states in these tasks involving periodic movements.

Figure 9: VoSI profiles over a trajectory.

Observing VoSI Evolution Over Time. Our anal-
ysis above has focused on individual states sampled
from across all tasks, but we now plot the evolution of
VoSI profiles of states encountered in a closed loop
rollout of the cup-catch task in Figure 9. Each
column here corresponds to the VoSI for a specific
time-step in the following manner: the x-axis cor-
responds to the time t1 at which the VoSI profile
VoSI(st1 , h) starts, and the y-axis represents absolute
times t2 = t1 + h at which the VoSI is evaluated.
In other words, (t1, t2) in the plot corresponds to
VoSI(st1 , t2 − t1). Each row of this visualization
thus lines up the VoSI measurements for a future
time instant t′, from all past time instants t < t′.

This makes it possible to easily evaluate temporal
consistency trends. For example, all states t1 prior
to t = 20 largely “agreed” on the same VoSI values to assign all states. This consistency indicates
that no task-relevant information was sensed during 0 < t < 20. Further, the large VoSI values
assigned to futures beyond t = 20 at all times before that moment indicate a kind of event horizon.
Sure enough, VoSI estimates at timesteps after t = 20 diverge from those before: the moment the
agent had sensed at t = 20, its value for sensing at all future moments dropped to 0. Rare critical
information was observed at t = 20. We overlay visualizations of the states at t = 0, 20, 40 over the
plot: t = 20 represents a tipping point after which the ball is destined to fall into the cup, so that no
further sensing is necessary. We show further examples of such plots in Appendix E.

Reward-Free and Interaction-Free Measures of VoSI. As introduced in Equation (1), VoSI
requires task rewards, and must be computed through additional interaction with the environment
starting from each state. To make our analysis accessible outside of simulated RL benchmark
tasks where these conditions can be easily met, we study two alternative implementations of VoSI,
explained in detail in appendix C. Briefly, the state disagreement VoSI-S measures the mean state-wise
distance of mixed loop trajectories from closed loop trajectories. This requires no reward function,
but still requires the execution of the mixed-loop trajectory. When no more interaction with the
environment is possible, we propose the plan disagreement VoSI-P, which measures how much the
look-ahead policy π’s action plans formed at st differ from actions executed in the closed loop.

correlation swingup cup-catch finger-spin push-T

ρ(VoSI-R,VoSI-S) 0.78 0.88∗ 0.98 0.53∗

ρ(VoSI-R,VoSI-P) 0.54 0.18∗ 0.73 0.37∗

Table 1: Correlations between VoSI metrics.

Table 1 shows that these alternatives
generally have high rank correlation
with the reward loss-based VoSI from
Equation (1) (VoSI-R). As we show
in Appendix C.1, disagreements can
often be traced down to some degen-
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Figure 11: Visualization of task regrets profiles achieved for different scenarios on four-rooms by
the fixed-rate mixed loop execution strategy and greedy strategy utilizing the state-wise VoSI profiles.

erate phases of a task, such as after the T is already at the target position in Push-T so we discount
them from computing the correlation∗. At this time, agent actions do not matter to task rewards (as
measured in VoSI-R), but can generate potentially large action disagreements (VoSI-P).

Towards Synthesizing Efficient Execution Strategies. Our primary goals in this manuscript have
been to develop a new toolkit to study foundational scientific questions in robotics and decision
making, and get the first answers in some settings of practical interest. Answers to these questions
have many potential practical uses, and we now showcase a simple implementation that is within
reach given the extensive analyses above: synthesizing execution strategies for a look-ahead policy π
that are efficient efficient in terms of sensing and other entailed resource costs.

We present a simple greedy strategy that sets the open loop execution length h = ηgreedy(s; (B, T )),
where s is the currently observed state, B is the task regret budget (how much reward we are willing
to lose relative to closed loop), T is the remaining episode length. Starting after sensing the state s0
at time t = 0, ηgreedy sets the largest horizon h such that VoSI(s, h) < hB

T . It then decrements the
budget B and time T by VoSI(s, h) and h respectively (see Algorithm 1 for more details). Varying
the initial budget available to ηgreedy generates a family of execution profiles with varying degrees
of parsimony (measured as the average sensing rate achieved). For evaluation, recall the task regret
analysis in Figures 3 to 5, where we plotted the normalized regret vs. sensing rate of fixed rate
executions with varying fixed h. In Figure 11, we compare the ηgreedy family against fixed rate
executions on variations of the four-rooms task from Section 4.1. ηgreedy effectively exploits VoSI
to achieve better performance at most sensing rates than the naive fixed rate strategy. We compare the
proposed strategy with a baseline that is designed to reduce sensing requirements in Appendix H.

6 DISCUSSION AND CONCLUSIONS

We have presented a framework to empirically investigate sensory requirements of sequential decision-
making agents through a value of information-inspired lens. Our framework permits a first investiga-
tion of what sensory information matters and how much, to state of the art policy architectures, in
representative robotic tasks. The insights here offer a first glimpse of the value of sensory information,
and the efficiencies that understanding it can enable.

However, our empirical study is still only a small step towards understanding the sensory needs of
agents. The VoSI framework in this paper is limited to a particular kind of agent: one that is provided
with a pre-trained closed loop look-ahead policy π, and is then charged with making decisions at
test time about when to sense or not sense such that the policy performance is not overly affected by
the omitted sensory inputs. As such, while we might like to have insights on the value of sensory
information based on the best possible behavior under each sensing pattern, our findings can only
approximate this through what π can achieve. Even beyond this, we have studied when robots need
to sense their environments under the most generous assumptions on the type of task and sensing
apparatus: environments are largely deterministic except in a toy gridworld setting, and actuation and
sensing are noise-free and instantaneous. Our VoSI analysis remains applicable in more complex
settings: as proof-of-concept we analyze VoSI for an agent operating with noisy-sensing on the
swingup task in Appendix I. Future work could further study VoSI when such assumptions are
removed, to widen the scope of real-world tasks for which its findings will apply.

10
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TABLE OF CONTENTS

• Appendix A : Appendices A.1 and A.2 outline the hyperparameters of the TD-MPC2 and
DiffusionPolicy agents analyzed. Appendix A.3 provides details of the evaluation protocol
for obtaining task-regret profiles and VoSI profiles.

• Appendix B : Describes the experimental setup for the four-rooms experiments providing
a description of the procedure used to obtain inaccurate models for the analysis. The pseudo-
code for the proposed greedy strategy ηgreedy is provided in Algorithm 1.

• Appendix C : Describes the alternate reward-free and interaction-free measures of VoSI i.e.
the state-disagreement (VoSI-S) and plan disagreement (VoSI-P).

• Appendix D : Provides a comparison of the two policy architecutres (DiffusionPolicy and
TD-MPC2) on swingup and Push-T tasks.

• Appendix E : Provides more details on the the evolution of VoSI profiles over a trajectory
Figures 9 and 10 and includes more examples.

• Appendix F : Extends the related works presented in the main paper (i.e. Section 2).
• Appendix H : Offers an ”event-triggered control” based approach as a point of comparison

for the VoSI-based greedy efficient execution strategy presented at the end of Section 5.
• Appendix I : Reports results of the VoSI analysis of an agent operating with noisy sensing

on the swingup task.

A SETUP AND HYPERPARAMETERS

We additionally encourage the reader to visit the project website at https://sites.google.
com/view/vosi-robotics/ to view more task-specific details and explore visualizations that
highlight different slices of the data beyond the ones presented in the main paper. We will also release
the code used to conduct these experiments on the website.

A.1 TD-MPC2

We use a JAX implementation of the TD-MPC2 algorithm and retain the default hyperparame-
ters (listed in Table 2) associated with training the TD-MPC2 – except for the experiments with
varying model-sizes for which we alter the hidden dimensions of the neural architecture. This
reproduction closes matches and exceeds the performance of the original PyTorch implementation.
We obtain performant TD-MPC2 checkpoints for the dense-reward DM-control suite tasks considered
in 200K steps and the Push-T task was trained up to 2M steps with an additional modification of
clipping the output actions to not move than 50 pixels in the PyMunk interface of the Push-T task to
generate smooth motion profiles as the performant RL trajectories were used as seed data for training
the Diffusion Policy representations on these tasks. TD-MPC2 failed to produce meaningful behavior
on the robosuite tasks potentially due the sparse reward nature of the task. To execute the TD-MPC2
agent in mixed-open loop manner we disable warm-starting the model-based search and just rely on
the latest state observation and just rely on the policy prior to seed the action plan search.

A.1.1 CHECKPOINT SELECTION FOR MODEL-STAGE AND MODEL-SIZE EVALUATION

To test the hypothesis of how model finiteness and expressivity influence the sensing needs of a
TD-MPC2 agent. We design a two studies on the Push-T and finger-spin tasks: (1) select check-
points at different stages of training Table 3 (2) synthesize expert controllers starting from different
representational capacities (keeping all other hyperparameters the same) Table 4.

A.2 DIFFUION-POLICY (DP)

We use the code adopted from the official repository (Chi et al., 2023) for training U-Net based DP
agents and retain most of the hyperparameters and configurations from the original repository to
train policies on the state-based tasks Table 5 – the only key difference is the extended prediction
horizon lengths (close to the episode length) used for training, this was done in order to synthesize
mixed loop executions with increasingly lower sensing rates. The Robosuite tasks are obtained
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Table 2: Default hyperparameters of TD-MPC2 agent

Parameter Value

encoder.layers [256, 256]
encoder.lr 1e-4

world model.mlp-dim 512
world model.latent-dim 512
world model.value-dropout 0.01
world model.num-value-nets 5
world model.num-bins 101
world model.symlog-min -10
world model.symlog-max 10
world model.lr 3e-4
world model.max-grad-norm 20

mpc.horizon 3
mppi-iterations 6
population-size 512
num-elites 64
min-plan-std 0.05
max-plan-std 2
temperature 0.5

optim.warmstart false
optim.batch-size 256
optim.discount 0.99
optim.rho 0.5
optim.consistency-coef 20
optim.reward-coef 0.1
optim.continue-coef 1.0
optim.value-coef 0.1
optim.entropy-coef 1e-4
optim.tau 0.01

Table 3: TD-MPC2 checkpoints selected for characterizing task-regret profiles at different stages of
learning

Task Level Steps Return
finger-spin beginner 14K 44.37

novice 100K 117.39
expert 200K 133.25

Push-T beginner 200K 25.62
novice 1M 58.53
expert 2M 66.59

from MimicGen repository (Mandlekar et al., 2023) as it came with over 200 high quality demos
for each task square-nut, coffee-pod, and threading – all requiring some degree of precise
insertion. The success rates over 100 rollouts on these tasks are reported in Table 6. On the DM-
Control suite and Push-T task we train Diffusion Policy agents on the dataset of 200 trajectories from
closed loop execution of the performant TD-MPC2 policy and were able to synthesize meaningfully
performant policies on swingup and Push-T but failed on finger-spin and cup-catch tasks.
We suspect that the non-smooth nature of the control signals of RL-controllers used to supervise the
imitation learning agent as potential reason for this, however note we did not perform an extensive
hyperparameter search to try to synthesize the best policies. The issue of non-smooth target control
signals for imitation is ameliorated in swingup with an explicit control cost penalty when training

14
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Table 4: TD-MPC2 checkpoints selected for characterizing task-regret profiles at different model
capacities

Task (Steps Trained) Level enc.mlp-dim wm.mlp-dim wm.latent-dim Return
finger-spin (200K) small 64 64 32 124.33

medium 128 256 128 136.74
large 512 1024 1024 137.92

Push-T (2M) small 64 64 32 33.833
medium 128 256 128 70.063
large 512 1024 1024 73.704

expert TD-MPC2 agents and on Push-T task with the actions constrained to generate smooth motions
beneficial for imitation.

Table 5: Default hyperparameters of Diffusion Policy for a task of episode length T

Parameter Value

input embed dim 256
step embed dim 256
encoder layers (512, 512)
unet.down dims (256, 512, 1024)
kernel size 5
n groups 8
num diffusion steps 100
ema power 0.75
dim 256
num demos 200
train epochs 3000
batch size 256
lr 1e-4
weight decay 1e-5
pred horizon min(300, T )
obs horizon 1
act horizon 4

Table 6: Success Rates for DP agents on Robosuite tasks

Task Success Rate (%)
square-nut 79
coffee-pod 86
threading 80

A.3 TASK-REGRET PROFILE AND VOSI PROFILE EVALUATION PROTOCOL

We evaluate fixed-rate mixed loop execution strategy for both the lookahead policies on all values of
the fixed-rate execution horizons h = {1, · · · , T} where T represents the episode length of the task
and report the average return obtained over 100 rollouts of the mixed loop execution.

Implementing VoSI Profiles. For both TD-MPC2 agent on DM-control and Push-T tasks, we start
by collecting a buffer of states from 50 rollouts of closed loop executions of the policy. For each state
s in this buffer we seek to characterize VoSI(s, h), we do this by reseting the simulator to that state
and then run mixed loop strategies ηMixL(s, h) with the open loop length h varying from 1 to 100
steps. For each h, we generate 5 full trajectories (i.e., length of trajectory = episode length T ) from
s. Now this permits a Monte Carlo estimate of the expectations over τMixL(s, h) in the second term

15
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in Equation (1) – the variance of the values are not too high as we are starting from a performant
underlying policy. For the expectation over τCL we similarly sample 5 trajectories from closed loop
execution of π and estimate this quantity. Thereby yielding an estimate of VoSI(s, h). This is a
computationally expensive procedure especially for evaluating long-horizon policies as for each state
we generate on the order of 500 trajectories, which starts becoming prohibitively expensive to run a
DP agent for given the higher inference costs. We therefore, examine the closed loop trajectories
from the lens of the plan-disagreement metric (Appendix C) to identify states where the policy reacts
to sensory information (which happens only at regions of object interaction as observed in Figure 12)
and perform the counterfactual examination only on states preceding such states alone – effectively
filtering out states where there is extended free-space motion of the manipulator.

Figure 12: Visualization of the planning disagreement metric (VoSI-P) aligned along timesteps of
representative rollouts of the Diffusion Policy agent on robosuite tasks. These identify characteristic
object-interaction points near which expensive counterfactual return-based metrics are evaluated.
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B GRID WORLD

Setup As identified in Section 4.1 there are two scenarios that justify processing environment
feedback: (1) stochastic dynamics (2) inaccurate model of the dynamics. We perform a set of
controlled experiments on the four-rooms grid world and study the sensing needs of a model-
based controller that has a deterministic optimal closed loop policy π∗ : S → A identified for each
environment with stochasticity (p) by value-iteration and a dynamics world model P̂ that is used
to sample lookahead action sequences. To study the axis of model suboptimality we simulate a
representation error ϵ in the dynamics model of the agent by finding transition probability matrix
P̂ s.t. DKL(P (s′|s, a), P̂ (s′|s, a)) = ϵ ∀ s, a. We identify such P̂ by simply setting P̂ (s′|s, a) =

c(s, a) · U(s′|s) + (1 − c(s, a)) · P (s′|s, a), where U(s′|s) =
1[s′∈N(s)]

|N(s)|
denotes a uniform prior

over the reachable neighbors N(s) (as an effect of some action) of state s. The weighting term
c(s, a) ∈ [0, 1] is identified to satisfy the constraint on KL-divergence.

Task-Regret Profile and VoSI Profile Evaluation Protocol The task-regret profiles (Figures 4
and 11) are obtained by evaluating the performance of the execution strategies over 1000 rollouts
upto a horizon of 200.

The VoSI profiles used by the greedy execution strategy (Algorithm 1) are monte-carlo estimates of
the expected reward loss (Equation (1)) for each state s in the grid world by simulating 1000 rollouts
of τMixL(s, h) ∀h ∈ {0, · · · , 100}. Observe that τMixL(s, 0) denotes the distribution of closed loop
execution trajectories τCL. Therefore once rollouts of τMixL(s, h) are independently sampled the
value-of-sensing information VoSI(s, h) in a h time-window after observing s can be estimated.

Algorithm 1 Greedy mixed loop execution Strategy (ηgreedy)

Require:
π : a policy that can produce lookahead actions
B : a budget
VoSI(s, h) : the value of sensory information profiles
T : the episode length

▷ Strategy is to use the budget the equally distribute the cost of acquiring sensory information over
the episode and commit to a greedy strategy

t = 0
while t < T do

δ = B
T−t

h← maxh s.t VoSI(st, h) ≤ h · δ
B ← B − VoSI(st, h)
t← t+ h+ 1
Execute(π0:h(st))

end while

C DETAILS OF THE REWARD-FREE AND INTERACTION-FREE MEASURES OF
VOSI

To expand the scope of VoSI measures to leverage trajectory discrepancy characteristics beyond just
task rewards. We study a few simple alternate measures:

• State Disagreement VoSI-S(s, h) := EτMixL(s,h)

[
minτCL(s)

1
T

∑T
t=0 ||sCL

t − sMixL
t ||2

]
mea-

sures a simple time-aligned state discrepancy of measure of distribution τMixL from τCL.
One can more broadly use any optimal-transport based formulation to characterize these
state distribution disagreements as used in Luo et al. (2023); Haldar et al. (2023) to obtain a
reward signal from a distribution matching perspective.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

• Plan Disagreement VoSI-P(s, h) := EτCL(s),â0:h∼π0:h(s)

[
1
h

∑h
t=0 ||aCL

t − ât||2
]

a measure
akin to the imitation-loss which suggests the deviation of action plans from closed loop
actions sequences executed in the environment. Such a metric does not need access to the
distribution of τMixL trajectories and can therefore be applied on a dataset of τCL trajectories.

C.1 ON THE ERRONEOUS CORRELATION OF METRICS DUE TO TASK-COMPLETION

By visualizing state-aligned orderings of different alternative VoSI metrics in Figures 13 and 14,
where each row across the subplots correspond to the same state s with a few representative states
visualized in the buckets. We observe that on states that denote task-completion or states near task
completion, have a close to flat VoSI-R profile, but exhibit varying degrees of VoSI-P or VoSI-S due to
stochasticity of the policy post task-completetion which bears no consequence on the reward achieved
but can make the estimates of other trajectory disagreement metrics relying on states (VoSI-S) and
actions (VoSI-P) quite noisy and thereby does not provide much signal. We therefore discount
such states when presenting the rank-order correlation statistics in Table 1 to suggest how effective
alternative metrics can be in computing notions similar to VoSI-R.

Figure 13: Push-T

Figure 14: cup-catch

D COMPARING DIFFERENT POLICY REPRESENTATIONS

The Impact of Policy Architectures. From Figure 3 in Section 4 we observed for tasks swingup
and Push-T for which we have both TD-MPC2 and DP policies, that the planning based TD-MPC2
agent exhibited lesser degradation in task performance when constrained to operate at much lower
sensing rates in comparison to a reactive DP policy. To gain a finer grained understanding of
the sensory dependence of these policy representations we employ our method of analysis and
compute state-wise regret profiles of these different policy representations on common task states
and illustrate characteristic differences in Figure 15. In swingup, we observe that DP exhibits much
higher performance degradation in the swingup phase and critically relies on sensing to retain some
performance in comparison on TD-MPC2. For Push-T,
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Figure 15: Visualization of VoSI profiles of TD-MPC2 (planning-based) and DP (reactive-controller)
along a few common task states.

E VISUALIZATIONS OF VOSI PROFILES OVER A TRAJECTORY

In Figure 10, we visualize overlayed VoSI profiles (with alpha = 0.02) for states sampled uniformly
from closed loop rollouts of a fixed episode length. In tasks like cup-catch and Push-T the task
objective is achieved much before the episode ends i.e. the ball is in the cup or the T object is aligned
with the goal. At this point, VoSI profiles are flat because actions are trivial and the policy does not
perform further meaningful actions. This is why there is a high density of seemingly flat profiles for
these tasks in Figure 10.

For most figures in the paper we have visualized the evolution of VoSI profiles over the open loop
horizon h. In Figure 9, we additionally convey how the VoSI profiles VoSI(s, h) evolve not only over
open loop horizon h but also over the states s (starting from s0 to sT of a closed loop rollout). This
means we are mapping the scalar VoSI(st1 , h) of two arguments (time index t1 of last observed state
st−1, and open loop horizon h). We use colors to indicate the VoSI values. In Figure 9, the x-axis
represents the time-index t1 of the last observed state st1 and y-axis represents the offset open-loop
horizon t2 = t1 + h. Each vertical column of colors represent VoSI profiles for a particular state at
varied horizons. The choice of adding the last-observed time offset in the y-axis i.e. using t1 + h
rather than h helps highlight the structure in the evolution of VoSI over time. Tracking along the
horizontal row t2 we can interpret how valuable re-sensing before t2 is at prior moments in time.

We provide more illustrative visualizations of the evolution of VoSI profiles over the course of
a rollout akin to Figure 9 in Figure 16 for the swingup and finger-spin tasks. We observe
characteristic periodicity in VoSI profiles along the trajectory in the balance-phase of the swingup
task and peak-spinning phase of finger-spin i.e. any state in that window has similar VoSI profile
indicating that one could execute fixed-rate mixed loop executors in such windows to sense at the
boundaries of where there is value to gain from sensing and repeat.

Figure 16: Evolution of VoSI profiles over a trajectory for swingup (left) and finger-spin (right)
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F EXPANDED RELATED WORK

The questions studied in this work are a subset of the questions that Donald (1995) first posed
to the robotics community, asking what information is needed for a robot to perform a task, how
the robot might acquire such information, and more. Their initial steps towards answering these
questions developed the notion of “information invariants”, which describe loosely speaking, level
sets of task performance in terms of sensed or stored information and other resources such as
speed and communication bandwidth among multiple agents. These foundational questions still
persist Koditschek (2021). One prominent line of inquiry is on sensor reductions or equivalent classes
and sensor dominanceLaValle (2019), which describes a framework for computing partial orderings
amongst sensing setups for robots in a task-agnostic manner. Related, Zhang & Shell (2020) provide
a framework for searching jointly over sensor designs and plans for some task, and is demonstrated on
a simple tasks with a small number of discrete states and actions. Erdmann (1995) set up specialized
minimalistic sensors for a policy that “sense not the states but the applicable actions”, they do so by
starting from abstract idealized sensors to identify all states where a given action is guaranteed to
make some progress in a task. Once such action conditioned cover of the state space are identified
i.e. each possible action is associated with a subset of state space and the union of these form a
cover of the state space. The author proposes task-specific minimalistic ”action-based” sensor that
is designed to capture just enough information of the state to identify its membership in atleast one
of action-based subsets, in the process of the sensor design we have consequently also obtained an
applicable action for each state – the derived strategy is guaranteed to accomplish the task under
the sensor designed. More recently, McFassel & Shell (2023) have expanded the applicability of
these ideas by increasing flexibility in how notions of progress measures are obtained. While the
foundational framework laid out by Erdmann (1995) serves as a powerful tool that provides insights
into minimalistic sensor design, it is limited to systems that can be fully modeled and analyzed
analytically under restricted policy classes. Additionally, while the framework provides insights
into what to sense at every timestep for a closed loop policy it does not characterize when acquiring
this information is critical and does not generally provide insights into the degradation in maximum
performance achievable under a certain sensor design.

In control theory, the questions of devising control systems that are parsimonious with processing the
full state information are studied extensively by prior works that propose event-based sampling and
event-triggered control (Åström & Bernhardsson, 1999; Aström, 2008; Vasyutynskyy & Kabitzsch,
2010; Heemels et al., 2012). Such systems are designed to change the prescribed control plan only
when events (discrete variables that are a function of a partial state of the system) are triggered. The
event-triggered control literature, much like the works discussed in Lines 72-76 aim to generate
controllers that operate with limited sensing. Event-triggered control typically (1) assumes that a
low-cost sensor is constantly monitoring the state at each time t and (2) defines a ”trigger” event when
a manually defined function of this sensory observation crosses a threshold. For example, in Trimpe
& D’Andrea (2011) an event trigger is defined based on the deviation of the coarsely sensed state
from a model’s predictions. In contrast, in this work we have sought to characterize for an arbitrary
lookahead policy a notion of its reliance on external feedback in-terms of its task performance. The
insights from which can complement the event-triggered control literature by aiding with the design
of events and triggers for efficient execution of the policies.

Outside of robotics, in machine learning and information theory, Tishby & Polani (2010), like us,
present an information theoretical view of sequential decision making: they define the “information-
to-go” property of a policy π based on the KL divergence from a prior, of the distribution of futures
generated by π. They show that this quantity follows a Bellman-like recursion, which is useful
to optimize “informationally constrained” policies that maximize task rewards while generating
constrained information-to-go. These constraints are not directly on any information processing
capabilities on the agent, but rather on “the information processed in the joint agent-environment
system”, i.e., the surprisingness of policy-induced trajectories relative to the prior. The priors
considered are uninformative, and their information-to-go vanishes when the dynamics is fully
known. Our VoSI is affected by stochasticity even in fully known dynamics, as well as the agent’s
limited information processing capabilities (see Section 4.1 for a discussion). Finally, they don’t
deal with when / how the information should be acquired, which is central to our approach. Their
work’s influence appears in recent works Eysenbach et al. (2021); Lu et al. (2023) that apply
similar constrained optimization techniques to generate policies that must extract less of the sensed
information, but without any constraints on when sensing is available. Closer to us in this family of
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work is Van Dijk et al. (2009), who demonstrate through evolutionary optimization that temporally
extended options-style architectures are preferred when information processing is constrained. Fox
& Tishby (2015) extends Tishby & Polani (2010)’s framework to POMDPs: as their notion of
information-to-go, they measure deviation from a prior that includes an ergodic action distribution
that is loosely related to the open-loop policy executions we consider in this work. Lu et al. (2023)
motivate the study of what information an agent should sense and retain for maximizing data efficiency
during online reinforcement learning, where the data is ever-changing. They motivate an analysis of
the cost-per-bit of information (measured in entropy) sensed to benefit obtained (task return), and
conduct experiments on online learning in bandit settings to demonstrate implications of agent designs
that factor in the cost of acquiring and retaining information for learning polices that minimize the
regret accrued in trying to reach a stationary target policy.

Finally, decision making is also of interest in economics, and sure enough, our questions have
precedents that are studied in this discipline Maćkowiak et al. (2023), starting from the foundational
work of Sims (2003). “Rational inattention” posits that (human) agents cannot process all available
information but can choose which pieces of information to attend to, explaining many observed
macroeconomic phenomena.

G IMPACT OF TRAINING STAGE AND MODEL CAPACITY ON SENSING NEEDS OF
THE POLICY

Figure 5 shows a drop in performance of mixed-loop execution relative to closed-loop performance
for each policy, but closed-loop performance for beginner and novice are often poor, meaning that
there is “less to lose” when executing mixed-loop. For example, in the Push-T task, our “beginner”
policy executed closed-loop gets a return of 25.62 compared to 66.59 for the expert. Thus, even if
“beginner” deteriorates to a lower return with mixed-loop execution, this registers in the “relative
regret” performance metric as a relatively small drop in task regret.

In Figure 17, we provide a version of the plot where the regret scales are the same by computing the
task performance regret with respect to the performance of the “expert” policy checkpoint for training
stage (and “large” checkpoint for the model capacity experiment). From Figure 17, it becomes more
evident that the expert is capable of retaining higher levels of performance as sensing rate decreases.

Figure 17: Task regret profiles on two tasks with respect to the ‘expert‘ (above) and ‘large‘ (below)
policy checkpoints ensuring that scales of the regret profiles are commensurate.
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H A POINT OF COMPARISON FOR THE REDUCED SENSING APPLICATION

Figure 11 shows a proof-of-concept for a potential application of VoSI to reduce sensing needs when
executing a pre-trained policy. We use a simple greedy approach that can adapt to test-time-specified
sensing costs. To offer a point of comparison for the VoSI-based greedy efficient execution strategy
(described in Section 5) we consider an ”event-triggered control” based approach described below:

Event-triggered approach We note that ”event-triggered control” literature (see Appendix F) is
relevant here as an approach that reduces the amount of expensive state sensing. However, note that it
does not completely forgo sensing at any moment but instead chooses to sense at a coarser fidelity
until ”an event is triggered”. For the four-rooms task, we define coarse sensors that identify the
agents position in different sub-grids depicted in Figure 18 (left). We ”trigger” an event to sense the
true MDP state when (a) the coarse sensor recognizes a transition between sub-grids, or (b) no change
is detected by the coarse sensor within a specified timeout (a hyperparameter) when it is not within
the goal region (green sub-grid). As the timeout parameter is varied for this baseline, we obtain the
regret profile by measuring the task performance vs average sensing rate (which only includes the
number of times the high fidelity state observation is queried).

Figure 18: Task regret profiles achieved for four-rooms by different execution strategies. Note that
the event-triggered approach here coarsely senses the state of the environment at every step i.e. the
agent’s presence in some sub-grid depicted on the left. The proposed greedy strategy or the fixed rate
execution baseline does not have access to such additional information.

From Figure 18, we observe that the event-triggered approach achieves higher task performance (lower
regret) compared to our proposed greedy strategy when constrained to operate at lower sensing rates.
The extra knowledge, in the form of coarse sensing, proves to be a significant advantage for the event-
triggered approach in the deterministic dynamics setting (Figure 18-middle), but when dynamics is
stochastic, our naive VoSI-based greedy strategy matches this approach in performance, even without
the sub-grid sensor. The coarsely sensed ”room” based event triggers might not be very beneficial in
environments with stochastic dynamics as the action plans necessary within a sub-grid might change
widely as a result of noise in transition dynamics – this results in the event-triggered approach relying
more on the heuristic timeout to obtain high-fidelity state observations.
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I CASE STUDY: NOISY SENSING

To demonstrate the applicability of the proposed VoSI analysis in settings beyond the scenarios
primarily studied in the paper i.e. deterministic environments with perfect state sensing. We provide
a proof-of-concept application of VoSI as a probing tool to study an agent that operates under noisy
sensing on the swingup task.

We train a small CNN-based visual state estimator that has up to 5 cm and 2 degrees errors in the
predicted cart position and pole angle, which is quite significant in this task. We then obtain a TD-
MPC2 policy that operates on these state estimates (see Appendix I.1 for more details) and conduct a
similar VoSI analysis (Section 5). As such, the value of new sensory measurements increases: this
is reflected in steeper VoSI profiles overall. However, trends remain similar: for example, we see
stepped VoSI profiles during the swingup phase, and close to flat VoSI profiles even up to 70 steps
of open-loop execution during the balancing phase when the pole is already close to vertical. See
Appendix I.2 for more details.

This establishes both that our VoSI framework is applicable to many more general task setups than
reported in the main paper, and that the findings reported in the main paper already offer useful
intuitions for what results in more general/complex task setups might look like.

I.1 TRAINING THE STATE ESTIMATOR AND POLICY

To create a dataset for the state estimator, we sample 20000 configurations with cart position (in
meters) ∼ U(−2, 2), pole angle (degree) ∼ U(−180, 180). At each of these configurations we
capture a (128, 128, 3) RGB image from a front-view camera positioned 6.5m from the center of the
rail. Figure 19 shows some sample front view images and also shows the coverage of the configuration
space in the training data.

We train a CNN to predict the cart-position and pole-angle (cosine & sine of the angle) from images
by minimizing an L2 loss over the dataset. The architecture of the CNN used is as follows:

[Conv(3x3, channels=32) → GroupNorm(groups=8) → ReLU → AvgPool(2x2) →
Conv(3x3, channels=64) → GroupNorm(groups=8) → ReLU → AvgPool(2x2) →
Conv(3x3, channels=128) → GroupNorm(groups=8) → ReLU → AvgPool(2x2) →
Flatten → Linear(32768, 256) → ReLU → Linear(256, 3)].

The state estimates (predicted cart position and pole angle) obtained by the CNN have a more realistic
error profiles that are illustrated in Figure 20 over a separate test dataset of 20000 samples obtained
by an uniform sampling of the configuration space. The nature of the error varies differently in the
configuration space and can be thought of as providing a coarser sensing of the true state of the
system.

The lookahead TD-MPC2 policy now operates on the current and previous state estimates i.e. the
observation at time t is ot = (ŷt, ŷt−1). The agent predicts the force to apply on the cart to swing the
pole upright and balance it – note that the instantaneous velocity information is not provided here.

Figure 19: Sample images of the training dataset (left) and a scatter plot illustrating the coverage of
the configuration space in the training data (right).
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Figure 20: The error characteristics of the CNN based state estimator. The histogram on the left
illustrates the distribution of errors (predicted - ground truth value) over states that are sampled
uniformly from the configuration space. The plot on the right indicates the errors over the tested
configuration space.

I.2 VOSI ANALYSIS

I.2.1 TASK REGRET PROFILE ANALYSIS

Like the analysis presented in Section 4 we start the investigation by analyzing the task regret
profiles attained by fixed-rate mixed loop executions with varying execution period h and obtain an
approximate understanding of the relationship between sensing budget (as reflected in the sensing
rate 1

h ), and task performance.

The agent with noisy sensing achieves a closed loop task performance of 150.45. To contrast the
profile with ”perfect sensing”, we obtain the task-regret profile for another TD-MPC2 agent that
is provided the true cart positions and pole angles for timesteps t and t − 1. The agent under this
”perfect sensing” setup achieves a closed loop performance of 164.46. However, do note that perfect
sensing in this case does not accurately reflect the true Markov state of the system as the instantaneous
velocities are not provided to the agent. The task regret profiles for both these sensing conditions are
presented in Figure 21.

In Figure 21, we observe that with the fixed-rate mixed loop execution of the policy with noisy
sensing any deviation from operating closed loop results in a performance drop. Whereas an agent
provided with ”perfect sensing” can tolerate a 10 fold reduction in the amount of sensing. However,
bear in mind that fixed rate mixed loop execution is not necessarily the optimal sensing strategy and
is merely a useful probe to arriving at an approximate understanding of the relationship between the
sensing budget and task performance. We use VoSI profiles (introduced in Section 5) to provide a
more fine-grained analysis of the agent at the state level by following the same protocol described in
Appendix A.3 to gather data for the analysis.

CHARACTERISTIC VOSI PROFILES

In Figure 22 we visualize an overlay of VoSI profiles for states uniformly sampled from closed loop
executions of the policy with noisy sensing. And similar to the insights of swingup task in the main
paper we observe “stepped“ VoSI profiles that involve a sharp increase in regret at some values h
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Figure 21: Task regret profiles for an agent with noisy sensing and perfect sensing on swingup task.

Figure 22: VoSI profiles overlayed for agent with noisy sensing (similar to Figure 10).

followed by steady increases or flat stretches, but these sharp increases occur at earlier open loop
horizons h compared to the perfect sensing scenario examined in the main paper (Figure 10-1).

The sharp increases in task regret primarily appear during the swingup phase of the task where
not sensing during a short dynamic period of this phase can prevent the agent from correcting an
undershoot which causes a sharp loss in rewards. For example, for states encountered in the ‘swingup
phase‘ the VoSI profiles (Figure 23-a, Figure 23-b) show a steep decrease in task performance when
the agent forgoes sensing in a short window as extended execution of open loop actions based on
noisy state estimate in this dynamic phase results in an undershoot of the pole (these are similar to
insights we drawn from Figure 7-3a for an agent with perfect sensing). As the agent starts entering
the ‘balance phase‘ of the task (Figure 23-c→ Figure 23-d→ Figure 23-e) the agent starts to be
able to tolerate extended horizons of open loop action execution without losing any task performance
(similar to the insights obtained for agent with perfect sensing from Figure 7-3b,Figure 7-1d which
show close to flat profiles during the ‘balance phase‘ of the task).

Figure 23: Characteristic VoSI profiles observed on the swingup task for an agent with noisy sensing.
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