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Abstract

We introduce MESSY estimation, a Maximum-Entropy based Stochastic and Symbolic
densitY estimation method. The proposed approach recovers probability density functions
symbolically from samples using moments of a Gradient flow in which the ansatz serves as the
driving force. In particular, we construct a gradient-based drift-diffusion process that con-
nects samples of the unknown distribution function to a guess symbolic expression. We then
show that when the guess distribution has the maximum entropy form, the parameters of
this distribution can be found efficiently by solving a linear system of equations constructed
using the moments of the provided samples. Furthermore, we use Symbolic regression to
explore the space of smooth functions and find optimal basis functions for the exponent of
the maximum entropy functional leading to good conditioning. The cost of the proposed
method for each set of selected basis functions is linear with the number of samples and
quadratic with the number of basis functions. However, the underlying acceptance/rejection
procedure in finding optimal and well-conditioned bases adds to the computational cost. We
validate the proposed MESSY estimation method against other benchmark methods for the
case of a bi-modal and a discontinuous density, as well as a density at the limit of physical
realizability. We find that the addition of a symbolic search for basis functions improves the
accuracy of the estimation at a reasonable additional computational cost. Our results sug-
gest that the proposed method outperforms existing density recovery methods in the limit
of a small to moderate number of samples by providing a low-bias and tractable symbolic
description of the unknown density at a reasonable computational cost.

1 Introduction

Recovering probability density functions from samples is one of the fundamental problems in statistics with
many applications. For example, the traditional task of discovering the underlying dynamics governing the
corresponding distribution function is strongly dependent on the quality of the density estimator (Rudy et al.,
2017). Applications include particle physics (Patrignani et al., 2016), boundary conditions for multi-scale
kinetic problems (Frezzotti et al., 2005; Kon et al., 2014), and machine learning (Song et al., 2020).

Broadly speaking, two categories of methods have been developed for this task: parametric and non-
parametric estimators. While parametric methods assume a restrictive ansatz for the underlying distribution
function, non-parametric methods provide a more flexible density estimate by performing a kernel integra-
tion locally using nearby samples. Although non-parametric methods do not need any prior knowledge of
the underlying distribution, they suffer from the unclear choice of kernel and its support leading to bias and
lack of moment conservation. Examples of non-parametric density estimators include histogram and Kernel
Density Estimation (KDE) (Rosenblatt, 1956; Jones et al., 1996; Sheather, 2004).

On the other hand, parametric density estimators may allow conservation of moments while introducing
modeling error, since a guess for the distribution is required. Parametric distributions include Gaussian,
orthogonal expansion with respect to Gaussian using Hermite polynomials (also known as Grad’s ansatz
in kinetic theory) (Hermite, 1864; Grad, 1949; Cai et al., 2015), wavelet density estimation Donoho et al.
(1996), and Maximum Entropy Distribution (MED) (Kapur, 1989; Tagliani, 1999; Khinchin, 2013; Hauck
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et al., 2008) function among others. Given only the mean and variance, information theory provides us
with the Gaussian distribution function as the least biased density, which has been used intensively in the
literature as it appears in many applications. However, including higher order moments in a similar way, i.e.
moment problem, raises further complications. For example in the context of kinetic theory, Grad proposed
a closure that incorporates higher-order moments by considering a deviation from Gaussian using Hermite
polynomials. Even though the information from higher moments is incorporated as the parameters of the
polynomial expansion in Grad’s ansatz, such a formulation suffers from not guaranteeing positivity of the
estimated density along with the introduction of bias.

Among parametric density estimators, the Maximum Entropy Distribution (MED) function has been pro-
posed in information theory as the least biased density estimate given a number of moments of the unknown
distribution (Kapur, 1989). While MED provides the least biased density estimate, it suffers from two lim-
itations. First, the distribution parameters (Lagrange multipliers) can only be found by solving a convex
optimization problem with ill-conditioned Hessian (Dreyer, 1987; Levermore, 1996). The condition number
increases either by increasing the order of the matching moments or approaching the limit of physical re-
alizability which motivated the use of adaptive basis functions (Abramov, 2007; 2009). Second, MED only
exists and is unique in bounded domains. While existence/uniqueness is guaranteed for recovering the dis-
tribution in the subspace occupied by the samples, the computational complexity associated with the direct
computation of Lagrange multipliers has prevented researchers from deploying MED in practice.

Related methods. The problem of recovering a distribution function from samples has been investigated
and studied before. We briefly review some of the work most relevant to our paper:

Data-driven maximum entropy distribution function: Several attempts have been made in the literature to
speed up the computation of Lagrange multipliers for MED using Neural Networks (Sadr et al., 2021; Porteous
et al., 2021; Schotthöfer et al., 2022) and Gaussian process regression (Sadr et al., 2020). Unfortunately,
these approaches are data-dependent with support only on the trained subspace of distributions. Similar to
the standard MED and other related closures, the data-driven MED can only handle polynomial moments
as input, even though the data may be better represented with moments of other basis functions.

Learning an invertible map: The idea is to train an invertible neural network that maps the samples to
a known distribution function. Then the unknown distribution function is found by inverting the trained
map with the known distribution as the input. This procedure is called the normalizing flow technique
(Rezende & Mohamed, 2015; Dinh et al., 2016; Kingma & Dhariwal, 2018; Durkan et al., 2019; Tzen &
Raginsky, 2019; Kobyzev et al., 2020; Wang & Marzouk, 2022). This method has been used for re-sampling
unknown distributions, e.g. Boltzmann generators (Noé et al., 2019), as well as density recovery such as
AI-Feynmann (Udrescu & Tegmark, 2020; Udrescu et al., 2020). We note that AI-Feynman does not obtain
the density from the samples directly; instead it first fits a density to the samples using the normalizing flow
technique, constructs an input/output data set, then finds a simpler expression using symbolic regression.
While invertible maps can be used to accurately predict densities, they can become expensive since for each
problem one has to learn the parameters of the considered map via optimization.

Diffusion map: Instead of training for an invertible map, the diffusion map (Coifman et al., 2005; Coifman
& Lafon, 2006) constructs coordinates using eigenfunctions of Markov matrices. Using pairwise distances
between samples, in this method a kernel matrix is constructed as a generator of the underlying Langevin
diffusion process. As shown by Li & Marzouk (2023), one can generate samples of the target distribution
using Laplacian-adjusted Wasserstein gradient descent (Chewi et al., 2020). Unfortunately, this approach
can become computationally expensive since it requires singular value decomposition of matrices of size equal
to the number of samples.

Gradient flow: The gradient flow method has gained attention in recent years (Villani, 2009; Song et al.,
2020; Song & Ermon, 2020). In particular, a class of sampling methods has been devised for drawing samples
from a given distribution function using Langevin dynamics with the gradient of log-density as the driving
force (Liu, 2017; Garbuno-Inigo et al., 2020a;b). Yet, this approach does not provide the density of the
samples by itself. In our paper, we benefit from this formulation to recover the parameters of a density
ansatz.
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KDE via diffusion: In this method, the bandwidth of the kernel density estimation is computed using the
minimum of mean integrated squared error and the fact that the KDE is the fundamental solution to a
heat (more precisely Fokker-Planck) equation (Botev, 2007; Botev et al., 2010). While improvement has
been achieved in this direction, we note that the KDE-diffusion method suffers from smoothing effects which
introduce bias. Moreover moments of the unknown distribution are not necessarily matched.

Symbolic regression: Symbolic regression (SR) is a challenging task in machine learning that aims to identify
analytical expressions that best describe the relationship between inputs and outputs of a given dataset. SR
does not require any prior knowledge about the model structure. Traditional regression methods such as
least squares (Wild & Seber, 1989), likelihood-based (Edwards, 1984; Pawitan, 2001), and Bayesian regression
techniques (Lee, 1997; Leonard & Hsu, 2001; Tohme et al., 2020) use fixed parametric model structure and
only optimize for model parameters. SR optimizes for model structure and parameters simultaneously and
hence is thought to be NP-hard, i.e. Non-deterministic Polynomial-time hard, (Udrescu & Tegmark, 2020;
Petersen et al., 2021; Virgolin & Pissis, 2022). The SR problem has gained significant attention over recent
years (Orzechowski et al., 2018; La Cava et al., 2021), and several approaches have been suggested in the
literature. Most methods adopt genetic algorithms (Koza & Koza, 1992; Schmidt & Lipson, 2009; Tohme
et al., 2023). Lately, researchers proposed using machine learning algorithms (e.g. Bayesian optimization,
nonlinear least squares, neural networks, transformers, etc.) to solve the SR problem (Sahoo et al., 2018; Jin
et al., 2019; Udrescu et al., 2020; Cranmer et al., 2020; Kommenda et al., 2020; Burlacu et al., 2020; Biggio
et al., 2021; Mundhenk et al., 2021; Petersen et al., 2021; Valipour et al., 2021; Zhang et al., 2022; Kamienny
et al., 2022). While most SR methods are concerned with finding a map from the input to the output, very
few have addressed the problem of discovering probability density functions from samples (Udrescu et al.,
2020).

Our Contributions. Our work improves the efficiency in determining the maximum entropy result for
the unknown distribution. We specifically develop a new method for determining the unknown parameters
(Lagrange multipliers) of this distribution without solving the optimization problem associated with this
approach. This is achieved by relating the samples to the MED using Gradient flow, with the grad-log of
the MED guess distribution serving as the drift. This results in a linear inverse problem for the Lagrange
multipliers that is significantly easier to solve compared to the aforementioned optimization problem. We
also propose a Monte Carlo search in the space of smooth functions for finding an optimal basis function
for describing (the exponent of) the maximum entropy ansatz. As a selection criterion, we rate randomly
created basis functions according to the condition number associated with the coefficient (Hessian) matrix of
the inverse problem for the Lagrange multipliers. This helps to maintain good conditioning, which allows us
to incorporate more degrees of freedom and recover the unknown density accurately. Discontinuous density
functions are treated by considering only the domain supported by data and using a multi-level solution
process.

The paper is organized as follows. In Section 2 we review the concept of Gradient flow with grad-log of
a known density as the drift. In Section 3, we show how parameters of a guess MED may be found by
computing the relaxation rates of the corresponding Gradient flow. Using the maximum entropy ansatz, in
Section 4 we derive a linear inverse problem for finding the Lagrange multipliers without the need for solving
an optimization problem. In Section 5, we propose a symbolic regression method for finding basis functions
that can be used to increase degrees of freedom while maintaining good conditioning of the problem by
construction. In Section 6, we propose a generalization of the maximum entropy ansatz that allows including
further degrees of freedom in a multi-level fashion. Section 7 presents the complete MESSY algorithm. In
Section 8, we validate MESSY by comparing its predictions to those of benchmark density estimators in
recovering distributions featuring discontinuities and bi-modality, as well as distributions close to the limit
of realizability. Finally, in Section 9, we offer our conclusions and outlook.
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2 Gradient flow and theoretical motivation

Consider a set of samples of a random variable X from an unknown density distribution function f(x). Let
our guess for this distribution function, the “ansatz”, be denoted by f̂(x).

Instead of constructing a non-parametric approximation of the target density numerically from sam-
ples of X (like histogram or KDE) and then calculating its difference from the guess density f̂ , in this work
we suggest measuring the distance using transport. In particular, we use the fact that the steady-state
distribution of X(t) which follows the stochastic differential equation (SDE)

dX = ∇x

[
log
(
f̂
)]
dt+

√
2dWt (1)

is the distribution f̂ . Here, Wt is the standard Wiener process of dimension dim(x). We note that Eq. 1
is known as the gradient flow (or score-based generative model) with grad-log of density as the force (Liu,
2017; Song et al., 2020).

The distance of f from f̂ may be measured by the time required for the SDE with X(t = 0) ∼ f
to reach steady state. Alternatively, one may compare the moments computed from the solution to X(t)
against the input samples to measure this distance. Both these approaches are subject to numerical and
statistical noise associated with the numerical scheme deployed in integrating Eq. 1. In the next section, we
derive an efficient way of computing the parameters of our approximation f̂ based on these ideas. We also
show that the transition from f to f̂ is monotonic.

3 Ansatz as the target density of Gradient flow

According to Ito’s lemma (Platen & Bruti-Liberati, 2010) the transition of f to f̂ is governed by the Fokker-
Planck equation

∂f

∂t
= ∇x

[
f̂ ∇x

[
f/f̂

]]
(2)

= −∇x ·
[
∇x

[
log
(
f̂
)]
f
]

+∇2
x

[
f
]
. (3)

Proposition 3.1. The distribution function f(t) governed by the Fokker-Planck Eq. 2 converges to f̂ as
t → ∞. Furthermore, the cross entropy distance between f and f̂ monotonically decreases during this
transition.

Proof. Let us multiply both sides of Eq. 2 by log(f/f̂) and take the integral with respect to x in order to
obtain the evolution of the cross-entropy S =

∫
f log(f/f̂)dx. It follows that

dS

dt
=
∫

log(f/f̂)∇x

[
f̂ ∇x[f/f̂ ]

]
dx

=
∫
∇x

[
f̂ log(f/f̂)∇x[f/f̂ ]

]
dx−

∫
f̂ ∇x[log(f/f̂)] · ∇x[f/f̂ ]dx

=
∫
∇x

[
f̂ log(f/f̂) f

f̂
∇x[log(f/f̂)]

]
dx︸ ︷︷ ︸

= 0

−
∫
f̂ ∇x[log(f/f̂)] · f

f̂
∇x[log(f/f̂)]dx

= −
dim(x)∑

i=1

∫
f
(
∇xi

[log(f/f̂)]
)2
dx ≤ 0 . (4)

Here, we use the regularity condition that f log(f/f̂)∇x log(f/f̂) → 0 as x → ∞. Therefore, given any
initial condition for f at t = 0, the cross-entropy distance between f and f̂ following the Fokker-Planck in
Eq. 2 monotonically decreases until it reaches the steady-state with the trivial fixed point f → f̂ as t→∞.
For details, see (Liu, 2017).
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With applications to high-dimensional problems in mind, instead of looking for solutions of Eq. 2 we choose
to work with appropriate empirical moments of this equation, which can be evaluated from the available
samples. As will be seen below, this approach lends itself to a very effective method for determining f̂ .

Let us denote a vector of basis functions in Rdim(x) by H(x). By multiplying both sides of Eq. 3
by H(x) and integrating with respect to x, we obtain the evolution equation for the moments, also known
as the relaxation rates,

d

dt

[ ∫
Hfdx

]
= −

∫
H∇x ·

[
∇x[log(f̂)]f

]
dx +

∫
H∇2

x

[
f
]
dx . (5)

Assuming that the underlying density f is integrable in Rdim(x) and fH → 0 as x → ∞, which is implied
by the existence of moments, we use integration by parts to obtain

d

dt

[ ∫
Hfdx

]
=
∫
∇x[H] · ∇x[log(f̂)]fdx +

∫
∇2

x[H]fdx . (6)

Given samples of f , one can compute the relaxation rates of moments represented by Eq. 6 as a measure
of the difference between f̂ and f . These relaxation rates can be used as the gradient in the search for
parameters of a given ansatz, i.e.

g(t) = d

dt

〈
H(X(t))

〉
=
〈
∇x[H(X(t))] · ∇x[log(f̂(X(t)))]

〉
+
〈
∇2

x[H(X(t))]
〉
. (7)

In the above, ⟨ϕ(X)⟩ denotes the unbiased empirical measure for the expectation of ϕ(X) which is computed
using samples of Xi, for i = 1, ..., N via ⟨ϕ(X)⟩ = 1

N

∑N
i=1 ϕ(Xi).

Here we note that the Hessian for this optimization can be obtained (Liu, 2017) using the samples of the
unknown distribution by taking the derivative of this gradient with respect to the parameters θ of the ansatz
f̂ , namely

L(t) = ∇θ[g] =
〈
∇x[H(X(t))] · ∇θ

[
∇x[log(f̂(X(t)))]

]〉
. (8)

In what follows we develop an approach that uses this observation to bring computational benefits to the
solution of the maximum entropy problem.

4 Maximum Entropy Distribution as an ansatz for the gradient flow

In this work, we use the maximum entropy distribution function as our parameterized ansatz for f̂ , i.e.

f̂(x) = Z−1 exp
(
λ ·H(x)

)
(9)

where Z =
∫

exp(λ ·H(x))dx is the normalization constant. The motivation for choosing this family of
distributions is the fact that this is the least-biased distribution for the moment problem, provided the given
moments are matched.
Definition 4.1. Moment problem
The problem of finding a distribution function f(x) given its moments

∫
H(x)f(x)dx = µ for the vector of

basis functions H(x) will be referred to as the moment problem.

In particular, the density in Eq. (9) is the extremum of the loss functional that minimizes the Shannon
entropy with constraints on moments µ using the method of Lagrange multipliers, i.e.

f̂(x) = arg min
F∈K

C[F(x)] (10)

where C[F(x)] :=
∫
F(x) log(F(x))dx +

Nb∑
i=1

λi

(∫
Hi(x)F(x)dx− µi(x)

)
. (11)
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Here K denotes the space of probability density functions with measurable moments; see (Kapur, 1989)
and Appendix A for more details. In this paper, we denote the number of considered basis functions by
Nb, while Nm denotes the highest order of these basis functions. For instance, in the case of traditional
one-dimensional random variable where polynomial basis functions are deployed, i.e. H =

[
x, x2, ..., xNm

]
,

we have Nm = Nb. Here, we use the following definition for the growth rate of a basis function.
Definition 4.2. Growth rate of n-th order
A function ψ(x) has the growth-rate of n-th order if |ψ(x)| ≤ Cxn for all x ≥ x0 where C ∈ R+ and x0 ∈ R.
This is often denoted by ψ(x) = O(xn).

Substituting Eq. 9 for f̂ in Eq. 7 results in the relaxation rate

g(t) =
dim(x)∑

i=1

〈
∇xi

[
H
(
X(t)

)]
⊗∇xi

[
H
(
X(t)

)]〉
λ +

dim(x)∑
i=1

〈
∇2

xi

[
H
(
X(t)

)]〉
, (12)

where ⊗ indicates the outer product. Let us define the matrix LME as

LME(t) :=
dim(x)∑

i=1

〈
∇xi

[
H
(
X(t)

)]
⊗∇xi

[
H
(
X(t)

)]〉
. (13)

We note that the matrix LME is the Hessian of the optimization problem with gradient given by Eq. 12
which is positive definite, making the underlying optimization problem convex.
Proposition 4.3. The Hessian matrix LME is symmetric positive definite. As a result, the optimization
problem with gradient given by Eq. (12) and Hessian matrix given by Eq. 13 is strictly convex.

Proof. Clearly, the Hessian matrix defined by Eq. 13 is symmetric, i.e. LME
i,j = LME

j,i ∀i, j = 1, ..., Nb. We
further note that this matrix is positive definite, i.e. for any non-zero vector w ∈ RNb we can write

wT LME(t)w =
dim(x)∑

i=1

〈
wT∇xi

[
H
(
X(t)

)]
∇xi

[
H
(
X(t)

)]T
w
〉

(14)

=
dim(x)∑

i=1

〈(
wT∇xi

[
H
(
X(t)

)])2〉
> 0 . (15)

Given the Hessian is symmetric positive definite, we conclude that the underlying optimization problem is
convex (Chong & Zak, 2013).

When the matrix LME is well-conditioned, we can directly compute the Lagrange multipliers using samples
without the need for solving an optimization problem. This can be achieved by solving Eq. 12 for the
Lagrange multipliers

LME(t)λ = g(t)−
dim(x)∑

i=1

〈
∇2

xi

[
H
(
X(t)

)]〉
(16)

for a given relaxation rate g.

We proceed by noting that a convenient way for determining the parameters of f̂ is to set f̂ = f(t = 0) in
the above formulation, or in other words, require that the given samples are also samples of f̂ as given. This
corresponds to the steady solution of Eq. 12 , namely g → 0, which implies the remarkably simple result

λ =− (LME)−1

dim(x)∑
i=1

〈
∇2

xi

[
H
(
X(t = 0)

)]〉 , (17)

which implies a closed-form solution for the Lagrange multipliers through the above linear problem.
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While Eq. 17 analytically recovers the Lagrange multipliers λ directly from samples of X, it still requires
inverting the matrix LME which may be ill-conditioned (Abramov, 2010; Alldredge et al., 2014). This means
that the resulting Lagrange multipliers may become sensitive to noise in the samples and the choice of the
basis functions. In order to cope with this issue, we propose computing λ as outlined below.

Orthonormalizing the basis functions. We construct an orthonormal basis function with respect to
X ∼ f using the modified Gram-Schmidt algorithm as described in Algorithm 1. We deploy the orthonor-
mal basis functions from the Gram-Schmidt procedure to construct ∇x[H]⊥, i.e. ∇x[H] is the input to
Algorithm 1, and by integration we obtain H⊥. This leads to a well-conditioned matrix LME, since the
resulting matrix should be close to identity LME ≈ I with condition number cond

(
LME) ≈ 1 subject to

round-off error. We note that the cost of this algorithm is quadratic with the number of basis functions and
linear with the number of samples.

Algorithm 1: Modified Gram-Schmidt: Given a vector of basis functions ϕ, this algorithm constructs
an orthonormal basis functions ϕ⊥ with respect to f such that ⟨ϕ⊥(X)⊗ϕ⊥(X)⟩ ≈ I using the modified
Gram-Schmidt procedure (Giraud et al., 2002; Abramov, 2010).
Input: ϕ
Initialize ϕ⊥ ← ϕ;
for i = 1, ...,dim(ϕ) do

ϕ⊥
i = ϕ⊥

i /
√
⟨(ϕ⊥

i (X))2⟩;
for j = i+ 1, ...,dim(ϕ) do

ϕ⊥
j ← ϕ⊥

j − ⟨ϕ⊥
i (X)ϕ⊥

j (X)⟩ϕ⊥
i ;

end
end
Return ϕ⊥

4.1 Comparing the proposed formulation to standard Maximum Entropy Distribution

Here we point out several advantages of using the proposed loss function compared to the standard maximum
entropy closure.

• A closed-form solution: By setting the relaxation rate of the moments to zero, the Lagrange
multipliers can be computed directly from samples X ∼ f without the need for the line-search
associated with the Newton method.

• Avoiding the curse of dimensionality: The proposed method takes full advantage of having ac-
cess to the samples of the unknown distribution function. In particular, we compute the orthonormal
basis function, gradient, and Hessian using the samples of X. This use of the Monte Carlo integra-
tion method avoids the curse of high dimensionality, as the cost scales linearly with the number of
dimensions. This is a considerable advantage compared to the standard MED where the integrals
need to be computed accurately, e.g. using the quadrature rule.

• Relaxed existence requirements: The search for the Lagrange multiplier through the SDE
process does not place existence requirements on intermediate iterates of the distribution function.
In other words, there is no need for the intermediate iterates of the Lagrange multipliers to be
realizable. This is a significant advantage compared to the standard MED, where the line search
may fail as the distribution associated with the intermediate λ may not exist (not integrable).

• Reducing the condition number: For the case where H is a vector of polynomial basis functions,
we expect a smaller condition number compared to the standard moment problem. This is because of
the order reduction in the moments of the Hessian where moments of ∇x[Hi]∇x[Hj ]T are computed
rather than HiHj .
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5 Symbolic-Based Maximum Entropy Distribution

In the standard moment problem it is common to consider polynomials for the moment functions in H,
i.e. H =

[
x, x2, . . .

]
, even though other basis functions may better represent the unknown distribution.

Additionally, such polynomial basis functions are notorious for resulting in ill-conditioned solution processes.
For these reasons, we introduce a symbolic regression approach to introduce some diversity and ultimately
optimize over our use of basis functions. As we will see in the next section, adding the symbolic search to
our MED description improves the accuracy, convergence, and robustness of the density recovery problem.

Before diving into the proposed method, we first briefly review the general task of symbolic regression.
Definition 5.1. Symbolic Regression (SR) problem
Given a metric L and a dataset D = {xi, yi}N

i=1 consisting of N independent identically distributed (i.i.d.)
paired samples, where xi ∈ Rdim(x) and yi ∈ R, the SR problem searches in the space of functions S for a
function ψ∗(x) which minimizes

∑N
i=1 L

(
yi, ψ(xi)

)
where ψ ∈ S.

In order to deploy the SR method for the density recovery, we need to restrict the space of functions S to
those which satisfy non-negativity, normalization and existence of moments with respect to the vector of
linearly independent (polynomial) basis functions R. The space of such distributions can be defined as

Sf |R :=
{
f(x) ∈ S

∣∣∣∣ f(x) ≥ 0 ∀x ∈ Rdim(x),

∫
Rdim(x)

f(x) dx = 1,
∫
Rdim(x)

R(x)f(x) dx < +∞
}
. (18)

In order to ensure non-negativity, motivated by the MED formulation, we consider f̂ to be exponential, i.e.

f̂(x) ∝ exp
(
G(x)

)
⇐⇒ log

(
f̂(x)

)
∝ G(x) , (19)

where G(x) is an analytical (or symbolic) function of x =
[
x1, x2, . . . , xdim(x)

]
. While the non-negativity is

guaranteed, existence of moments needs to be verified when a test function for G(x) is considered. As our
focus in this paper is on the maximum entropy distribution function given by Eq. 9, we consider G(x) to
have the form

G(x) = λ ·H(x) =
Nb∑
i=1

λiHi(x) . (20)

Now we proceed to provide a modified formulation for SR tailored to our MED problem.
Definition 5.2. Symbolic Regression for the Maximum Entropy Distribution (SR-MED) problem
Given a measure of difference between distributions L (e.g. KL Divergence) and a dataset D = {Xi}N

i=1
consisting of N i.i.d. samples, where Xi ∈ Rdim(x), the SR-MED problem searches in the space SNb for Nb

basis functions subject to f̂ ∈ Sf |R which minimizes L.

Figure 1: Expression
tree for x2 × cos(x).

Here, we deploy continuous functions consisting of binary operators (e.g. +, −, ×,
÷) or unary functions (e.g. cos, sin, exp, log) to fill the space SNb . As in most
of the SR methods, we encode mathematical expressions using symbolic expression
trees, a type of binary tree, where internal nodes contain operators or functions
and terminal nodes (or leaves) contain input variables of constants. For instance,
the expression tree in Figure 1 represents x2 cos(x). In this paper, we perform
a Monte Carlo symbolic search in the space of smooth functions (by generating
random expression trees) to find a vector of basis functions H that guarantees
acceptable cond(LME), by rejecting candidates that do not satisfy this condition.
In our search, we do not consider test basis functions with odd growth rates which
lead to non-realizable distributions.
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6 Multi-level density recovery

We further improve our proposed method by introducing a multi-level process that improves our prediction
as the distribution becomes more detailed. The goal is to obtain a more generalized MED estimate with the
form

f̂(x) =
NL∑
l=1

m[l] f̂ [l](x) (21)

where f̂ [l](x) = 1
Z [l] exp

(
λ[l] ·H [l](x)

)
, (22)

(.)[l] denotes the level index, Z [l] is the normalization factor of density at level l, NL is the number of levels
considered and m[l] indicates the portion of total mass that is covered by f̂ [l]. We note that this multi-level
approach is recursive and can be described as follows:

• Step 1: Find MED estimate f̂ [l] at level l: At level l, first we pick a basis function H [l] by solving
the SR-MED problem detailed in def. 5.2. Then, we orthonormalize the basis function with respect
to the distribution of the samples using Gram–Schmidt’s procedure as outlined in Algorithm 1.

• Step 2: Removing subset of samples covered by f̂ [l]: Here, we attempt to find and remove
a subset of samples D[l]

mask – representing a fraction of the mass, i.e. m[l] = |D[l]
mask|/|D| – that can

be estimated by our estimated f̂ [l] at this level. To this end, we deploy acceptance/rejection with
probability f̂ [l]/f̂hist to find and remove D[l]

mask from the remaining samples D[l].

• Step 3: Repeat steps 1-2 for the next level l+ 1 until almost no samples are left: Repeat
steps 1-2 with the remaining uncovered samples (which constitutes the next level) until there are
(almost) no uncovered samples. The resulting total distribution is a weighted sum of the estimates
from each level.

In Algorithm 2, we detail a pseudocode for our devised multi-level process. As we will see in the next section,
our proposed multi-level recursive mechanism improves overall performance, and elegantly describe details
of multi-mode distributions.

Algorithm 2: Multi-level, symbolic and recursive algorithm for density recovery. Here, D[l] denotes the
set of samples at level l and u is a random variable that is uniformly distributed in (0, 1), i.e. u ∼ U([0, 1]).
Input: D[1] = D = {Xi}N

i=1, N tot
L = NL

for l = 1, ..., NL do
Sample random basis functions H [l] that satisfies def. 5.2 starting from polynomials in level l = 1;
Compute f̂ [l](x) given D[l] using Algorithm 1;
D[l]

mask ← {D[l] | f̂ [l](X)/f̂hist(X) > u} where u ∼ U([0, 1]);
m[l] ← |D[l]

mask|/|D|;
if
∑l

j=1 |D
[j]
mask| ≈ |D| then

D[l]
mask ← D[l]; // Mask all available samples

m[l] ← |D[l]
mask|/|D|;

N tot
L ← l;

break; // Terminate the process

else
D[l+1] ← D[l]\D[l]

mask; // The uncovered samples are left for the next level
end

end
Return f̂(x) =

∑Ntot
L

l=1 f̂ [l](x) |D[l]
mask|/|D|; // Ntot

L is the total number of recursive calls

9
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7 Algorithm for MESSY estimation

The complete MESSY estimation algorithm is summarized in algorithm 3. Within the iteration loop, fol-
lowing each application of the multi-level, symbolic, and recursive density recovery summarized in algorithm
2, we introduce a maximum-cross entropy distribution (MxED) correction step (see Appendix B for details)
to reduce any bias in our prediction for f̂ from the former.

Finally, after completing the desired number of iterations, the algorithm returns the candidate density with
the smallest KL Divergence given by

KL
(
f || f̂

)
=
∫
f(x) log

(
f(x)
f̂(x)

)
dx (23)

= −
∫
f(x) log

(
f̂(x)

)
dx +

∫
f(x) log

(
f(x)

)
dx (24)

≈ −
〈

log
(
f̂(X)

)〉
+
∫
f(x) log

(
f(x)

)
dx︸ ︷︷ ︸

constant with respect to f̂

. (25)

In other words, we use −
〈

log
(
f̂(X)

)〉
as our selection criterion.

Algorithm 3: Pseudocode of the proposed MESSY estimation method. Here, R is the vector of linearly
independent (polynomial) basis functions used in the moment matching procedure of MxED. Here, for
MESSY-S the number of basis functions Nb is sampled uniformly from the sample space ΩNb

, e.g. here
we use ΩNb

= {2, ..., 8} unless mentioned otherwise.
Input: D = {Xi}N

i=1, ΩNb
, Nm, Niters

Initialize f̂ (i) = 0 for i = 1, ..., Niters;
for i = 1 to Niters do

if i > 1 then
Sample Nb ∼ U(ΩNb

);
end
Find f̂ using multi-level, symbolic and recursive Algorithm 2 for density recovery;
Generate samples of Y ∼ f̂ ;
Apply boundary condition (bounded/unbounded) to f̂ ;
Correct f̂ using MxED (Algorithm 5) given samples Y as prior and E[R(X)] as target moments;
f̂ (i) ← f̂ ;

end
f̂MESSY−P = f̂ (1);
f̂MESSY−S = argmin

f̂∈{f̂(i)}Niters
i=1

(
KL(f || f̂)

)
;

Return f̂MESSY−P and f̂MESSY−S.

The MESSY algorithm comes in two flavors: MESSY-P, which considers only polynomial basis functions
for H, and MESSY-S which includes optimization over basis functions using the SR algorithms outlined
above. In fact, by convention, the SR algorithm in MESSY-S starts its first iteration using polynomial basis
functions up to order Nm as the sample space of smooth functions. In other words, MESSY-P is a special
case of MESSY-S with Niter = 1. In the remaining iterations of MESSY-S, we perform the symbolic search
in the space of smooth functions of order Nm to find Nb bases that provide manageable cond(LME), as
discussed in Section 6.

In addition, we provide the option to enforce boundedness of f̂ on the support that is specified by the user,
i.e. letting f̂(x) = 0 for all x outside the domain of interest. This allows us to recover distributions with
discontinuity at the boundary which may have application in image processing.

10
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We also provide an option to further reduce the bias by minimizing the cross-entropy given samples of
bounded/unbounded multi-level estimate as prior and moments of input samples as the target moments (see
Appendix B for more details on the cross-entropy calculation). For this optional step, we generate samples
of f̂ and match the moments of polynomial basis functions up to order Nm. Since the solution at each level
of f̂ is close to the exact MED solution, the optimization problem associated with the moment matching
procedure of the cross-entropy algorithm converges very quickly, i.e. in a few iterations, providing us with
a correction that minimizes bias along with the weighted samples of our estimate as the by-product. We
note that in general the order of the randomly created basis function during the MESSY-S procedure may
be different from the one used in the cross-entropy moment matching procedure.

8 Results

In this section we demonstrate the effectiveness of the proposed MESSY estimation method in recovering
distributions given samples, using a number of numerical experiments, involving a range of distributions
ranging from multi-mode to discontinuous. For validation, we provide comparisons with the standard KDE
using the Silverman rule for the bandwidth h (Silverman, 1986), i.e.,

h =
(

4σ̂5

3N

)1/5

(26)

where σ̂ denotes the standard deviation computed from the samples and cross-entropy closure with Gaussian
as the prior (MxED) using Newton’s method. We note that while the standard maximum entropy distribution
function differs from MxED as the latter incorporates a prior, we intentionally use MxED as a benchmark
instead because the standard approach can be extremely expensive.

Unless mentioned otherwise, we report error, time, and KL Divergence by ensemble averaging over 25 for
different sets of samples. Furthermore, in the case of MESSY-S we perform Niters = 10 iterations. Here we
report the execution time using a single-core CPU for each method. Typical symbolic expressions of density
functions recovered by MESSY for the test cases considered here can be found in Appendix C.

8.1 Bi-modal distribution function

For our first test case, we consider a one-dimensional bi-modal distribution function constructed by mixing
two Normal distribution functions N (x |µ, σ), i.e.

f(x) = αN (x |µ1, σ1) + (1− α)N (x |µ2, σ2), (27)

with α = 0.5, means µ1 = −0.6 and µ2 = 0.7, and standard deviations σ1 = 0.3 and σ2 = 0.5.

Figure 2 compares results from MESSY, KDE and MxED for three different sample sizes, namely
100, 1000, and 10, 000 samples of f . For MxED and MESSY-P, we use Nb = Nm = 4. In the case
of MESSY-S, we randomly create Nb basis functions which are O(x4) (where Nb is sampled uniformly
within {2, . . . , 8}). Both MESSY results are subject to a cross-entropy correction step with Nb = 4
polynomial moments. Clearly, the MxED and MESSY methods provide a better estimate compared to
KDE when a small number of samples is available; KDE suffers from bias introduced by the smoothing kernel.

In order to analyze the error further, Fig 3 presents the relative error in low and high order mo-
ments, KL Divergence, and single-core CPU time as the measure of computational cost for considered
methods. The KDE error can only be reduced by increasing the number of samples. However, maximum
entropy based estimators such as MxED and MESSY provide more robust estimate when less samples are
available. We point out that the convergence of the cases where only moments of polynomial basis functions
are considered, i.e. MxED and MESSY-P, relies on the degree of the polynomials and not the number of
samples. On the other hand, the additional search associated with MESSY-S returns more appropriate
basis functions for a given upper bound on the order of the basis functions.
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Figure 2: Density estimation using KDE, MxED, MESSY-P, and MESSY-S given (a) 100, (b) 1,000, and (c)
10,000 samples.
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Figure 3: Comparing the relative error in (a) the first four moments, (b) two higher order moments (i.e.
fifth and sixth moments), (c) KL Divergence, and (d) the execution time for KDE, MxED, MESSY-P,
and MESSY-S in recovering distribution function for different sample sizes. Here, the error bar (in black)
corresponds to the standard error of the empirical measurements.

Next, we perform a convergence study on 10,000 samples and show that the parametric description converges
to the solution when its degrees of freedom are increased. In Fig. 4, we show that both MESSY-P and
MESSY-S converge to the true solution by increasing either the order of polynomial basis function, or the
number of basis functions, respectively. In the case of MESSY-S, we generated symbolic expressions that
are O(x2). The improved agreement compared to the MESSY-P case highlights the benefit derived from
non-traditional basis functions that may better represent the data.
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As shown in Fig. 5, the MESSY-S procedure results in better-conditioned LME matrices than the
MESSY-P for the same degrees of freedom. However, the search for a good basis function increases the
computational cost. In each iteration of the search for basis functions, the MESSY-S algorithm may reject
symbolic basis candidates based on the condition number of the matrix LME. In other words, the improved
performance associated with MESSY-S comes at some increased computational cost.

3 2 1 0 1 2 3
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

f
(x

)

True PDF

Nb = 2

Nb = 4

Nb = 6

Nb = 8

Nb = 10

3 2 1 0 1 2 3
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

f
(x

)

True PDF

Nb = 2

Nb = 4

Nb = 6

Nb = 8

Nb = 10

(a) MESSY-P (b) MESSY-S

Figure 4: Convergence of MESSY estimation to target distribution function by (a) increasing the order of
polynomial basis functions for MESSY-P or (b) increasing the number of randomly selected symbolic basis
functions with Nm = 2 for MESSY-S.
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Figure 5: KL Divergence, execution time, and condition number against the degrees of freedom, i.e. the
order of polynomial basis functions for MESSY-P or the number of symbolic basis functions with Nm = 2
for the MESSY-S estimate.
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8.2 Limit of realizability

One of the challenging moment problems for maximum entropy methods is the one involving distributions
near the border of physical realizability. In the one-dimensional case with moments of the first four monomials
[x, x2, x3, x4] as the input, the moment problem is physically realizable when∫

x4f(x)dx ≥
(∫

x3f(x)dx
)2

+ 1. (28)

The moment problem with moments approaching the equality in Eq. 28 is called limit of realizablity
(McDonald & Torrilhon, 2013; Akhiezer & Kemmer, 1965). We consider samples from a distribution in this
limit as our test case here, since the standard MED cannot be solved due to an ill-conditioned Hessian (see
Abramov (2007); Alldredge et al. (2014)).

In Fig. 6, we depict the estimated density of a bi-modal distribution in this limit given its samples
with moments ⟨X⟩ = 0, ⟨X2⟩ = 1, ⟨X3⟩ = −2.10 and ⟨X4⟩ = 5.42. Here, we compare the density obtained
using KDE, MxED, MESSY-P, and MESSY-S to the histogram of samples. In this example, we obtained
the MESSY-S estimate by searching in the space of smooth functions with Nb ∈ {2, ..., 8} basis functions
and compare polynomial and symbolic basis functions of order 2 and 4.

In Fig. 7, we compare the KL Divergence, the execution time, and the condition number for each method.
While KDE suffers from over-smoothing and MxED/MESSY-P require at least Nb = 4 (and consequently
Nm = 4, resulting in a stiff problem with large condition number), MESSY-S can obtain accurate density
estimates by using unconventional basis functions with Nm = 2, thus maintaining a manageable condition
number.
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Figure 6: Estimating density for a case of distribution near the limit of realizability using KDE, MxED,
MESSY-P, and MESSY-S. The solutions of MxED, MESSY-P, and MESSY-S are obtained using basis
functions of second (left) and fourth (right) order.
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Figure 7: Comparing KL Divergence, execution time, and condition number of KDE, MxED, MESSY-P, and
MESSY-S for an unknown distribution near the limit of the realizability. Here, we consider polynomial basis
functions of second and fourth order for MxED and MESSY-P denoted by MxED (2), MxED (4), MESSY-P
(2) and MESSY-P (4), respectively. In MESSY-S, we consider symbolic basis functions of second order only
which we denote by MESSY-S (2).

8.3 Discontinuous distributions

We now highlight the benefits of using MESSY estimation with piecewise continuous capability for recov-
ering distributions with a discontinuity at the boundary. As an example, let us consider the exponential
distribution with a probability density function given by

f(x) =
{
ae−ax if x ≥ 0
0 otherwise

(29)

with a = 1.

Given 10, 000 samples of this distribution, in Fig. 8 we compare KDE, MxED, and the proposed
MESSY-P and MESSY-S methodologies. In the case of MxED and MESSY-P we consider second-order
polynomial basis functions, and for MESSY-S we search the space of smooth functions for Nb ∈ {2, ..., 8}
symbolic basis functions of order O(x2). For MESSY-P and MESSY-S, we apply the boundary condition

f̂(x) = 0 ∀x < min(X). (30)

By providing information about the boundedness of the expected distribution, we enable MESSY to accu-
rately predict densities with discontinuity near the boundary. As it can be seen clearly from Fig. 8, in contrast
to KDE and MxED, both MESSY-P and MESSY-S provide accurate predictions by taking advantage of the
information about the boundedness of the target density.

The KL Divergence score and execution time for each method is shown in Fig. 9. These figures show that
MESSY-P and MESSY-S provide a more accurate description compared to the KDE estimate, albeit at a
higher computational cost.
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Figure 8: Estimating density of exponential distribution function from its samples using KDE, MxED,
MESSY-P, and MESSY-S. For MxED, MESSY-P and MESSY-S, with Nm = 2.
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Figure 9: KL Divergence and execution time for KDE, MxED, MESSY-P, and MESSY-S estimation of
exponential distribution function given 10,000 samples.

9 Conclusion and Outlook

We present a new method for symbolically recovering the underlying probability density function of a given
finite number of its samples. The proposed method uses the maximum entropy distribution as an ansatz
thus guaranteeing positivity and least bias. We devise a method for finding parameters of this ansatz by
considering a Gradient flow in which the ansatz serves as the driving force. One main takeaway from this
work is that the parameters of the MED ansatz can be computed efficiently by solving a linear problem
involving moments calculated from the given samples.

The second main takeaway from this work is that accurate density recovery does not necessarily require
the use of high-order moments. In fact, increasing the number of complex but low-order basis functions
leads to superior expressiveness and better assimilation of the data. For this reason, the proposed method
is equipped with a Monte Carlo search in the space of smooth functions for finding basis functions to
describe the exponent of the MED ansatz, using KL Divergence, calculated from the unknown-distribution
samples, as an optimality criterion. Discontinuous densities are treated by considering piece-wise continuous
functions with support on the space covered by samples.

We validate and test the proposed MESSY estimation approach against benchmark non-parametric
(KDE) and parametric (MxED) density estimation methods. In our experiments, we consider three canoni-
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cal test cases; a bi-modal distribution, a distribution close to the limit of realizability, and a discontinuous
distribution function. Our results suggest that MESSY estimation exhibits several positive attributes
compared to existing methods. Specifically, while retaining some of the most desirable features associated
with MED, namely non-negativity, least bias, and matching the moments of the unknown distribution, it
outperforms standard maximum-entropy-based approaches for two reasons. First, it uses samples of the
target distribution in the evaluation of the Hessian, which has a linear cost with respect to the dimension
of the random variable. Second, the resulting linear problem for finding the Lagrange multipliers from
moments is significantly more efficient than the Newton line search used by the classical MED approach.
Moreover, our multi-level algorithm allows for recovery of more complex distributions compared to the
standard MED approach. Combining the efficient approach of finding maximum entropy density via a linear
system with the symbolic exploration for the optimal basis functions paves the way for achieving low bias,
consistent, and expressive density recovery from samples.

Possible directions for future work include: (i) application of the proposed methodology to high-dimensional
distribution functions, including applications to recovering governing dynamical laws from samples; and (ii)
applications to variance reduction.
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A Maximum entropy distribution function

The maximum entropy distribution (MED) function finds the least-biased closure for the moment problem.
Given Nb realizable moments µ ∈ RNb associated with polynomial basis functions H of the unknown
distribution function, MED is obtained by minimizing the Shannon entropy with constraint moments using
the method of Lagrange multipliers as

C[F(x)] :=
∫
F(x) log

(
F(x)

)
dx +

Nb∑
i=1

λi

(∫
Hi(x)F(x)dx− µi(x)

)
. (A.1)

By taking the variational derivative of functional A.1, the extremum is found as

F(x) = 1
Z

exp
(

Nb∑
i=1

λiHi(x)
)
, where Z =

∫
exp

(
Nb∑
i=1

λiHi(x)
)
dx, (A.2)

which is referred to as the maximum entropy distribution function. The Lagrange multipliers λ appearing in
Eq. A.2 can be found using the Newton-Raphson approach. As formulated in (Debrabant et al., 2017), the un-
constrained dual formulation D(λ) provides us with the gradient g = ∇D(λ) and Hessian L(λ) = ∇2D(λ) as

gi = µi −
1
Z

∫
Hi exp

(
Nb∑

k=1
λkHk

)
dx for i = 1, ..., Nb (A.3)

and Li,j = − 1
Z

∫
HiHj exp

(
Nb∑

k=1
λkHk

)
dx for i, j = 1, ..., Nb . (A.4)

Once the gradient and Hessian are computed, the Lagrange multipliers λ can be updated via

λ← λ−L−1(λ)g(λ) (A.5)

as detailed in Algorithm 4.

Algorithm 4: Newton’s method for finding Lagrange multipliers of MED given moments µ for a given
tolerance ϵ.
Input: µ, λ0
Initialize λ← λ0;
Compute gradient g and Hessian L, i.e. Eq. A.3-A.4;
while ||g|| > ϵ do

Update λ← λ−L−1g;
Update gradient g and Hessian L with the new λ via numerical integration of Eq. A.3-A.4;

end
Return λ;
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B Maximum cross-entropy distribution function

The maximum cross-entropy distribution function (MxED) finds the least-biased closure for the moment
problem given Nb realizable moments µ ∈ RNb associated with polynomial basis functions H of the unknown
distribution function along with the prior FPrior as the input. In other words, in addition to the moments
of the target distribution, in the MxED method we also have access to a prior distribution FPrior as well
as N samples of the former, i.e. {Xprior

j }N
j=1 ∼ FPrior. MxED is obtained by minimizing the Shannon

cross-entropy from the prior with constraint on moments using the method of Lagrange multipliers via the
functional

C[F(x)] :=
∫
F(x) log

(
F(x)
FPrior(x)

)
dx +

Nb∑
i=1

λi

(∫
Hi(x)F(x)dx− µi(x)

)
. (B.1)

By taking the variational derivative of functional B.1, the extremum is found to be

F(x) = 1
Z
FPrior(x) exp

(
Nb∑
i=1

λiHi(x)
)
, where Z =

∫
FPrior(x) exp

(
Nb∑
i=1

λiHi(x)
)
dx. (B.2)

Similar to the maximum entropy distribution function, the Lagrange multipliers λ appearing in Eq. B.2 can
be found by following the Newton-Raphson approach. As formulated in (Debrabant et al., 2017), the uncon-
strained dual formulation D(λ) provides us with the gradient g = ∇D(λ) and Hessian L(λ) = ∇2D(λ) as

gi = µi −
1
Z

∫
FPriorHi exp

(
Nb∑

k=1
λkHk

)
dx for i = 1, ..., Nb (B.3)

and Li,j = − 1
Z

∫
FPriorHiHj exp

(
Nb∑

k=1
λkHk

)
dx for i, j = 1, ..., Nb . (B.4)

Once the gradient and Hessian are computed, the Lagrange multipliers λ can be updated via

λ← λ−L−1(λ)g(λ) . (B.5)

Since we have access to the samples of XPrior ∼ FPrior, we use the given samples to compute the gradient
and Hessian, i.e.

gi ≈ µi −
〈
Hi

(
XPrior) 〉

W
for i = 1, ..., Nb (B.6)

Li,j ≈ −
〈
Hi

(
XPrior)Hj

(
XPrior) 〉

W
for i, j = 1, ..., Nb , (B.7)

where W (XPrior) = exp
(∑Nb

k=1 λkHk

(
XPrior)) denotes weights for calculating moments using importance

sampling, i.e. ⟨ϕ(X)⟩W :=
∑N

j=1 ϕ(Xj)W (Xj)/
∑N

j=1 W (Xj). More details can be found below (Algorithm
5).

Algorithm 5: Newton’s method for finding Lagrange multipliers of MxED given moments µ and samples
of prior XPrior ∼ FPrior for a given tolerance ϵ.
Input: µ, XPrior ∼ FPrior

Initialize λ← 0;
Compute gradient g and Hessian L, i.e. Eq. B.6-B.7;
while ||g|| > ϵ do

Update λ← λ−L−1g;
Update gradient g and Hessian L with the new λ using samples, i.e. Eq. B.6-B.7;

end
Return λ;
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C Solution found by MESSY for the considered test cases

Table 1: Density expressions recovered by our MESSY estimation method for several distributions.

Example Expression

Bimodal MESSY-P f̂(x) = 0.288e−0.017x10+0.106x9−0.084x8−0.659x7+1.209x6+1.179x5−3.722x4+0.075x3+2.693x2−0.612x

MESSY-S f̂(x) = 0.993e−1.85x2−1.162x cos (1.5x)+0.232x−0.652 cos (x)−0.424 cos (2x)−0.591 cos (3.5x)+0.47 cos (cos (3.5x))

Limit of MESSY-P f̂(x) = 1.591 · 10−6e−12.876x4−56.46x3−38.072x2+62.617x + 5.282 · 10−27e−7.969x4−28.862x3−4.342x2+20.938x

Realizability MESSY-S f̂(x) = 4.134 · 1081e−21.893x2 sin (x)+0.025x2+117.267x cos (x)+0.861x+395.584 sin2 (x)−57.393 sin (x)+200.421 cos (x)−744.874 cos (cos (x))

Discontinuous MESSY-P f̂(x) =
{

1.096 e0.086x2−1.298x if x ≥ 0
0 otherwise

MESSY-S f̂(x) =
{

0.293 e−0.145x2+0.018x+0.251 cos (x) cos (1.5x)+0.713 cos (x)+0.09 cos (1.5x) cos (3x)+0.076 cos (3.5x) if x ≥ 0
0 otherwise
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