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Abstract

Engineering protein variants that retain function-
ality in non-native environments remains a sig-
nificant challenge due to the intricate topology
of sequence-fitness landscapes. Experimental
strategies often require extensive labor and do-
main expertise. While recent advances in pro-
tein generative modeling offer a promising in
silico alternative, many of these methods rely
on differentiable fitness predictors, which lim-
its their applicability. To this end, we intro-
duce Protein Variant ADAptation (ProVADA), an
ensemble-guided, test-time steering framework
that integrates implicit generative priors with fit-
ness oracles via a unified composite objective.
ProVADA leverages Mixture-Adaptation Directed
Annealing (MADA), a novel sampler integrating
population-annealing, adaptive mixture propos-
als, and directed local mutations. Furthermore,
ProVADA requires no gradients or explicit like-
lihoods, yet efficiently concentrates sampling on
high-fitness, low-divergence variants. We demon-
strate its effectiveness by redesigning human renin
for cytosolic functionality. Our results achieve
significant gains in predicted localization fitness
while preserving structural integrity.
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1. Introduction
Protein engineering—the search for sequence variants that
exhibit desired functional properties—is a foundational tech-
nology in biological engineering. However, purely exper-
imental approaches remain challenging mostly due to the
combinatorial 20L (where L: sequence length) sequence
space to be explored. The challenge is further compounded
by the complexity of the underlying fitness landscape, a sub-
set of the sequence space where the protein exerts desired
functionality. Consequently, experimental approaches often
require extensive domain expertise and large-scale, iterative
rounds of mutagenesis and screening, both of which are
labor-intensive and costly.

One particularly challenging instance is engineering protein
variants to function in radically different environments, e.g.
from extracellular to cytoplasm. This problem is pressing
for two reasons. First, protein activity is highly context-
dependent: subcellular compartments differ markedly in pH,
redox potential, ionic strength, and other physicochemical
parameters, all of which can compromise fold stability and
catalytic function in a non-native environment (4). Second,
many biotechnological and therapeutic applications demand
proteins to operate reliably outside their endogenous envi-
ronment, yet such repurposing frequently leads to impaired
functionalities (5).

Recent advances in machine learning demonstrate great po-
tential in overcoming those bottlenecks. Protein language
models trained on millions of sequences capture evolution-
ary constraints and can propose viable mutations (24; 25).
On the other hand, diffusion-based generative models pro-
vide an alternative paradigm for efficiently sampling plau-
sible variants. Finally, state-of-the-art, accurate structure
prediction methods and downstream inverse-folding net-
works enable conditional sequence design that preserves
a target fold (23; 1; 10). By proposing promising candi-
dates, these in silico and hybrid approaches dramatically
reduce the search space and, in turn, accelerate experimental
protein engineering campaigns (18; 20; 28).

While pretrained priors capture certain fitness attributes
like stability, they offer limited guidance for more com-
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plex, higher-order fitness objectives—such as environment-
or localization-specific functionality—resulting in ineffi-
cient optimization. To this end, we present Protein Variant
ADAptation (ProVADA), an ensemble-guided, test-time
steering framework for engineering functional proteins tar-
geted to specific subcellular locations. ProVADA employs a
novel Mixture-adaptation-directed Annealing sampling al-
gorithm to efficiently explore the vast sequence space under
multiple expert guidance.

1.1. Contributions

We summarize our key contributions and the advantages of
ProVADA from four perspectives:

• Likelihood-free generative priors. ProVADA is com-
patible with any base generative model, including au-
toregressive (e.g., ProteinMPNN), transformer-based
(e.g., ESM2), or diffusion models, without requiring
explicit density or likelihood evaluation.

• Test-time, ensemble-guided sampling. By optimizing
a composite functional objective, ProVADA effectively
leverages an “ensemble of expert models” to direct
sequence generation in a fully gradient-free manner.

• Mixture-Adaptation Directed Annealing (MADA).
We develop a novel sampling framework that integrates
population annealing and directed local mutations to
efficiently explore complex fitness landscapes.

• Application to the in silico redesign of cytosolic
renin. We apply ProVADA to the difficult task of engi-
neering the catalytic domain of human renin for cytoso-
lic functionality. Our results demonstrate significant
improvements in predicted localization fitness while
preserving structural integrity compared to rejection-
sampling baselines.

1.2. Related literature

Classifier-guided and plug-and-play methods steer sequence
generation by backpropagating through a differentiable
surrogate objective (13; 9; 2). By applying gradients of
this proxy reward during generation, these methods bias
a pretrained generative model towards desired properties.
However, these approaches rely on differentiable surrogate
models and thus cannot accommodate non-differentiable
or black-box scoring functions. On the other hand, fine-
tuning and preference-learning methods, such as classifier-
free guidance (19) and reinforcement-learning-based fine-
tuning, adapt model parameters to optimize downstream
reward objectives. While effective, these methods typi-
cally require substantial computational resources and large
amounts of labeled datasets. Additionally, they can suffer
from catastrophic forgetting, where the model loses previ-
ously acquired knowledge from pertaining.

Sampling-based test-time steering methods instead generate
candidate sequences from a base model and evaluate them
with external scoring functions. Simple strategies merely fil-
ter top-scoring samples, whereas more informed approaches
use ProteinMPNN to fill masked positions before apply-
ing a selection step (28). Though easy to implement, these
methods often struggle when exploring high-dimensional
sequence spaces with complex fitness landscapes, especially
when the base model’s distribution poorly aligns with re-
gions of high fitness.

2. ProVADA: Test-Time Steering
Ensemble-Guided Protein Variant
Adaptation

Problem setup and notation Let the protein sequence
length be L, and define the discrete sequence space X =
{1, . . . , 20}L whose elements encode all possible amino-
acid strings of length L. We start from a given wild-type
reference sequence x0 ∈ X . To generate candidate variants,
we assume access to a generative model (e.g. ProteinMPNN)
that induces an implicit prior pϕ(x) over X from which we
can efficiently draw samples, even if it may lack an explicit,
tractable density form. Additionally, let F : X → R be
a potentially black-box, gradient-free fitness oracle, where
larger values correspond to superior fitness. Our objective is
to discover variants x of x0 that both conform to this prior
and yield high scores under the fitness function.

At a high level, ProVADA consists of two key components.
First, we train a classifier that predicts the target localization
on a dataset with labeled sequence-fitness pairs. Second,
given a reliable fitness function F (x) and an initial wild-
type sequence x0, we wish to efficiently generate protein
variants of x0 from our generative prior that also achieve
high fitness. Specifically, we construct a target sampling dis-
tribution proportional to the generative prior exponentially
tilted by the tempered fitness score:

Hλ(x) = [F (x)− λD(x0, x)]︸ ︷︷ ︸
adjusted fitness

,

πϕ,τ,λ(x) =
pϕ(x) exp

(
Hλ(x)

/
τ)∫

pϕ(x′) exp
(
Hλ(x′)

/
τ) dx′ ,

where D(·, ·) measures sequence-level divergence (e.g.
Hamming distance), λ > 0 is a tunable penalty coefficient,
and τ is a temperature parameter that governs how sharply
sampling concentrates on high-fitness subspace. As τ de-
creases, the sampler becomes more concentrated on the
top-scoring sequences, whereas higher τ yields broader ex-
ploration.

By optimizing a composite functional objective, ProVADA
effectively leverages the strength of an ensemble of ex-
pert models. The implicit generative prior pϕ captures
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broad, low-level constraints—structural integrity, foldabil-
ity, solubility—while each supervised fitness predictor F (x)
specializes in a particular design objective (e.g., localiza-
tion, enzymatic activity, binding affinity). By annealing our
sampling distribution over the product of the prior and a
tempered, aggregated fitness term, ProVADA concentrates
on variants that satisfy the foundational constraints and si-
multaneously score highly under each expert’s guidance.
This ensemble strategy yields high-confidence, multifunc-
tional candidates that are robust to the idiosyncrasies of any
single model, affording practitioners the flexibility to tailor
and combine arbitrarily many design objectives.

In the sections that follow, we first describe how to construct
the fitness function F (x) for subcellular localization via a
classifier that outputs the probability of a sequence residing
in the target compartment, and then demonstrate how to
adaptively sample from πϕ,τ,λ(x) to generate high-fitness
variants under our novel sampling procedure.

2.1. Constructing the subcellular fitness score

We formulate subcellular localization as a supervised classi-
fication task. Let the training set be D = {(x(i), y(i))}ni=1,
where x(i) ∈ X is a protein sequence and y(i) ∈ {0, 1} indi-
cates its corresponding presence in the target compartment.
We learn a classifier model Fθ(x) ∈ [0, 1] that outputs the
estimated probability of localization. The model parame-
ters θ are optimized by minimizing the empirical binary
cross-entropy loss

θ∗ = argmin
θ
− 1

n

n∑
i=1

[
y(i) logFθ(x

(i))

+ (1− y(i)) log(1− Fθ(x
(i)))

]
+ γ∥θ∥22︸ ︷︷ ︸

regularization

,

where γ > 0 controls the strength of the ℓ2 regularization.
Once training converges, Fθ∗(x) yields the predicted proba-
bility of correct localization, which we treat as a black-box
score to guide our sampling. For notational brevity, we
henceforth omit the explicit dependence on θ and denote
our trained predictor simply as F (x).

2.2. Specifying the notion divergence

To discourage excessive deviation from the wild-type scaf-
fold, we introduce a mismatch penalty term based on the
Hamming distance. For any candidate sequence x ∈ X and
reference x0, the Hamming distance, defined as

dHam(x0, x) =

L∑
ℓ=1

1{xℓ ̸= x0,ℓ},

counts the number of positions at which x and x0 differ.
Thus, our target distribution becomes

Hλ(x) = F (x)− λdHam(x0, x),

πϕ,τ,λ(x) ∝ pϕ(x) exp
(
Hλ(x)/τ

)
.

By increasing λ, we amplify the Hamming-distance penalty
within the annealed score, so that each additional residue
mismatch is penalized more heavily. Consequently, se-
quences that diverge further from the reference incur expo-
nentially larger penalties in their weights, thereby guiding
the sampler toward high-fitness variants that remain close
to the reference wild-type.

2.3. Mixture-Adaptation Directed Annealing

We now introduce Mixture-Adaptation Directed Annealing
(MADA), a novel sampling framework that efficiently ex-
plores high-dimensional, complex composite functional
landscapes by integrating mixture-based adaptive propos-
als, directed local mutation kernels, population-annealed
sequential importance sampling, and controlled resampling.

MADA comprises three main components: selection, muta-
tion, and stabilization. At each iteration, MADA maintains
a small mixture of promising particle prototypes that gener-
ate N offspring through importance resampling with partial
rejection control. This population-based approach simul-
taneously preserves diversity through parallel exploration
while effectively concentrating computational effort on the
highest-potential regions. Each offspring is then refined
by a single Metropolis-Hastings step via fitness-guided lo-
cal mutation kernels and a gradually decaying temperature
schedule to transition smoothly from exploration to exploita-
tion.

These components are integrated into a unified algorithmic
procedure to enable sequential and iterative refinement of
the entire population. The following subsections provide
a detailed description of each sampling step; the complete
algorithmic procedure for MADA is provided in Algorithm
1.

Figure 1. Mixture-Adaptation Directed Annealing (MADA) al-
gorithm overview.
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2.3.1. INITIALIZATION

Let pS be the masking probability. We first sample the
number of mutated sites

M ∼ Binomial(L, pS), (1)

and then choose M distinct positions S = {i1, . . . , iM} ⊆
{1, . . . , L} uniformly at random, i.e.,

P(S = {i1, . . . , iM}) =
(
L

M

)−1

. (2)

By construction, this guarantees that every proposed vari-
ant lies within an M -Hamming neighborhood of the ref-
erence wild-type x0. Next, we generate an initial popula-
tion of N particles by masking x0 at positions given by
S and repeatedly sampling candidates from the implicit
generative prior pϕ. Concretely, for each i = 1, . . . , N ,
we draw x

(0)
i ∼ pϕ(· | x0,Sc), so that its marginal

law, conditioned on the masking locations, factorizes as
pϕ(x

(0)
i ) = pϕ(x

(0)
i | x0,Sc) · pϕ(x0,Sc). Finally, we ini-

tialize the temperature to τ0 = ∞, so that 1/τ0 = 0 and
hence w(0)

i ∝ exp
(
Hλ(x

(0)
i )/τ0

)
= exp(0) = 1 reduces to

uniform weights at t = 0, and thus provides a natural warm
start with πϕ,τ0,λ = pϕ.

2.3.2. SELECTION

Having drawn samples from πϕ,τt,λ, we transition to the
next tempered distribution πϕ,τt+1,λ via importance resam-
pling. To do so, we first compute the annealed importance
weights for each particle x

(t)
i :

w
(t+1)
i ∝ exp

(
Hλ(x

(t)
i )

(
1

τt+1
− 1

τt

))
.

where Hλ(x) = F (x)− λD(x0, x) is the adjusted fitness
score. We then perform a two-stage resampling to elimi-
nate particles with low importance weights, inspired by the
bootstrap filter and partial rejection control (11):

• Prototype selection: Draw a small set of K proto-
type particles {ζj}Kj=1 by sampling with replacement

from {x(t)
i }Ni=1 according to the normalized annealed

weights {w(t+1)
i }.

• Population reconstruction: Regenerate a full popu-
lation of N particles {x̄(t+1)

i } by sampling uniformly
with replacement from the retained K prototypes.

This completes one round of selection and yields
{x̄(t+1)

i }Ni=1, which contains at most K distinct proposals
for the subsequent mutation stage. As to be shown in Theo-
rem B.1, this two-stage resampling procedure preserves the

statistical unbiasedness of ordinary importance sampling.
The down-sample–up-sample procedure above offers two
advantages: it concentrates computational effort on the most
promising regions and, by reusing a limited set of prototypes,
amortizes costly invocations of the generative prior. In the
ProteinMPNN setting, reusing the same mask and sequence
context across multiple generations substantially reduces ex-
pensive model calls and reduces runtime by approximately
75% (see Figure 7).

Greedy selection As an alternative to stochastic resam-
pling, one can use a greedy selection strategy: After com-
puting the annealed weights w(t+1)

i , deterministically retain
only the top K particles with the largest weights. Then
rebuild the full population of size N by sampling with re-
placement from the K elites according to their normalized
weights. Although this top-K selection procedure intro-
duces a bit of bias through the permanent elimination of
lower-weight particles, we observe that it often results in
accelerated convergence to high-fitness regions in practice.

2.3.3. MUTATION

In the mutation stage, each resampled particle x̄(t+1)
i under-

goes local perturbation under the tempered target. Specif-
ically, we draw a mask size M and select a subset S ⊆
{1, . . . , L} exactly as in (1)-(2). We then fill the masked po-
sitions by sampling x′

i ∼ pϕ(· | x̄(t+1)
i,Sc ), conditioned on the

unmasked residues of x̄(t+1)
i . We denote this local-move

proposal kernel by x′ ∼ qS(· | x). This mask-then-fill
procedure implements a systematic-scan Gibbs mutation
kernel. Because some local moves may reduce fitness, each
proposed x′

i is forwarded to the stabilization stage, where it
is accepted or rejected according to the Metropolis-Hastings
criterion.

2.3.4. STABILIZATION

After generating each mutated proposal {x′
i}Ni=1, we apply

a Metropolis-Hastings (MH) accept-reject step to stabilize
and direct the local exploration according to fitness. Let
x̄
(t+1)
i denote the pre-mutation particle. We compute the

change in adjusted fitness

∆Hλ = [F (x′
i)− λD(x0, x

′
i)]− [F (x̄

(t+1)
i )− λD(x0, x̄

(t+1)
i )],

which biases acceptance toward moves that increase the fit-
ness score or incur a lower divergence penalty. We then draw
U ∼ Unif[0, 1] and accept the proposal x′

i with probability

min

{
1, exp

(
∆Hλ

τt+1

)}
.

If accepted, set x(t+1)
i ← x′

i; otherwise retain x
(t+1)
i ←

x̄
(t+1)
i .
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Algorithm 1 Mixture-Adaptation Directed Annealing
Require: Reference sequence x0, fitness F (x), divergence

penalty λ,
temperature schedule {τ1, . . . , τT }, population size N ,
subsample size K

1: return Proposal sequences {x(T )
i }Ni=1 ∼ πϕ,τT ,λ(x)

2: Initialization:
3: Sample mask S according to Eq. (2)
4: Draw N replicas {x(0)

i }Ni=1 ∼ pϕ(· | x0,Sc)
5: Set τ0 ←∞
6: for t = 0 to T − 1 do
7: /* Annealed importance Weighting

*/
8: for i = 1 to N do
9: H(x

(t)
i )← F (x

(t)
i )− λD(x0, x

(t)
i )

10: log w̃
(t+1)
i ← H(x

(t)
i )
(

1
τt+1
− 1

τ t

)
11: end for
12: Compute normalized weights:

w
(t+1)
i ←

exp
(
log w̃

(t+1)
i

)∑N
j=1 exp

(
log w̃

(t+1)
j

) .
13: /* Selection */
14: Draw K particles with replacement:

{ζj}Kj=1 ∼ Categorical(w(t+1))

15: Form {x̄(t+1)
i }Ni=1 by uniform resample from {ζj}

16: /* Rejuvenation-Mutation */

17: for i = 1 to N do
18: Sample mask S according to Eq. (2)
19: Propose x′

S ∼ pϕ(· | x̄(t+1)
i,Sc )

20: Set x′
Sc ← x̄

(t+1)
i,Sc {Keep unmasked positions un-

changed}
21: H(x′)← F (x′)− λD(x0, x

′)

22: H(x̄
(t+1)
i )← F (x̄

(t+1)
i )− λD(x0, x̄

(t+1)
i )

23: /* Stabilization */

24: Draw U ∼ Unif[0, 1]
25: Compute acceptance ratio:

a← min

{
1, exp

(
H(x′)−H(x̄

(t+1)
i )

τt+1

)}

26: if U ≤ a then
27: x

(t+1)
i ← x′

28: else
29: x

(t+1)
i ← x̄

(t+1)
i

30: end if
31: end for
32: end for
33: return {x(T )

i }Ni=1

This MH correction step stabilizes the sampler on the an-
nealed target πϕ,τt+1,λ. Theorem B.2 shows that the pro-
posed procedure satisfies detailed balance.

2.3.5. ANNEALING SCHEDULE

We employ a power-law cooling (8) schedule to gradually
reduce both the masking fraction and the temperature τt.
At step t of T total iterations, define the normalized time
s = t

T−1 . We then update

τt = τmax (1− s)α + τmin (3)
pS,t = pS,min + (pS,max − pS,min) (1− s)α, (4)

where α > 0 controls the annealing rate, τmax and pS,max

denote the initial temperature and masking fraction, respec-
tively, and τmin and pS,min their terminal values. This
power-law decay smoothly transitions the sampler from
broad exploration (high-temperature, heavy masking) to
focused exploitation (low-temperature, light masking). Em-
pirically, we observe that this approach accelerates con-
vergence while improving the final solution quality (see
Appendix 8 for decay curves under different α).

3. Application of ProVADA to In Silico
Engineering of Cytosolic Renin Variants

3.1. Motivations for a practical example

In this section, we conduct an in silico experiment with our
pipeline to address a practical design challenge: engineer-
ing a cytosolic variant of human peptidase renin. Renin is a
secreted protease with high specificity to cleave a defined
peptide sequence on its natural substrate angiotensinogen
(26). Owing to this high specificity, there is considerable
interest in repurposing renin as a general protease tool for
precise control of protein activity via targeted cleavage (15).
However, because renin normally functions in the extra-
cellular environment, our internal data suggest that cytoso-
lic expression leads to misfolded and non-functional renin,
which impedes its development as a generalized tool. The
described renin engineering campaign is an appropriate test
case for our pipeline because i) there are no close homologs
of renin that functions in the cytoplasm, i.e., we have little
or no evolutionary information to leverage; ii) we start from
a zero-activity scaffold, making hybrid directed evolution
approaches inefficient; iii) assays for cytosolic renin activity
must be performed in live mammalian cells, which limit the
throughput and are unaffordable to carry out at large scale,
thus favoring test-time steering methodologies.

We begin by constructing a reliable fitness oracle for cy-
tosolic functionality. Motivated by the well-established
links between subcellular localization and certain sequence
characteristics, such as N-linked glycosylation sites and
disulfide bonds (17; 4), we train a binary classifier on pro-
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Figure 2. Subcellular classifier: construction and performance.
(A) Workflow for training and inference. (B) Heatmap of cytoso-
lic log-likelihood ratio (LLR) for all single-point mutations in
wild-type renin, shown for residues 40–90 and 250–300. Identi-
fied hotspots—positions where non-WT substitutions markedly
increase cytosolic probability—correspond to known secretory fea-
tures: disulfide bonds C51–C58, C259–C296, and the N75–T77
N-glycosylation motif. (C) Mapping of per-position cytosolic LLR
onto the ESMFold-predicted renin catalytic domain. (D) Compari-
son of classifier and ESM LLR landscapes.

tein language model embeddings to predict the probability
of cytosolic localization. To ensure our model focuses on
those intrinsic protein properties that determine localization-
dependent viability, we curate our dataset by removing low-
complexity signals, including signal peptides and transmem-
brane domains. We apply MADA with our trained classifier
as the fitness oracle to the human renin catalytic domain; this
approach respects structural and evolutionary constraints via
our generative prior while driving the search toward variants
with high predicted cytosolic compatibility and preserved
enzymatic fold.

3.2. Classifier construction, training and evaluation

Classifier construction We assemble a curated set of ver-
tebrate cytosolic and extracellular proteins from UniProt
Swiss-Prot, remove low-complexity sequences (signal pep-
tides and transmembrane domains), and reduce redundancy
by clustering at 30 % sequence identity with MMSeqs2. We
then extracted mean-pooled ESM2-650M embeddings and
trained a logistic regression classifier. See Appendix A for
full details.

Benchmark against existing subcellular location predic-
tors Several existing subcellular localization predictors
leverage protein language model representations. To high-

light the difference, we compare our classifier to three estab-
lished subcellular localization predictors: DeepLoc2.0-fast
(ESM-1b), LocPro (ESM2 ensemble), and MULocDeep
(bidirectional LSTM) (29; 33; 21). We evaluate perfor-
mance on two benchmark datasets: (1) curated Swiss-Prot
sequences and (2) extracellular proteins from the Human
Protein Atlas Secretome (30). Table 1 summarizes the
results. For curated Swiss-Prot, we report the weighted
average AUROC for cytosolic versus extracellular predic-
tions. A detailed breakdown by label and metric appears in
Table 2. Since the HPA-Secretome dataset includes only
extracellular proteins, we measure performance by extra-
cellular classification accuracy. As shown in Table 1, our
classifier outperforms existing predictors on the curated
Swiss-Prot dataset, as expected given that those methods
focus primarily on signal sequences (29). Table 2 further
demonstrates that the greatest improvement of our classifier
performance comes from the high cytosolic label precision
and extracellular label recall. Finally, our classifier also sur-
passes existing models on the orthogonal HPA-Secretome
dataset of intact secreted proteins, indicating that it captures
intrinsic sequence determinants of native localization rather
than depending on low-complexity signal peptides.

Classifier probabilities identify sequence features that
align with domain knowledge We assess whether the
probabilities output by the classifier reflect a sequence’s
propensity to localize to the target compartment. To this
end, we perform an in silico deep mutation scan (DMS)
on the 340-residue catalytic domain of human renin. We
then compare each mutant’s predicted probability to that of
the wild-type sequence. Analysis of these probability shifts
reveals “hot-spot” positions where substitutions of the wild-
type sequence are strongly favored. Many of these positions
coincide with known extracellular signatures, including the
documented two NXT N-glycosylation sites and three disul-
fide bonds. Figure 2B exemplifies three such examples by
the heatmap of the cytosolic probability shifts to WT renin.
The full DMS heatmap can be found in Figure 6. By further
mapping these “hot-spots” to renin structure via summing
those probability shifts by position, Figure 2C shows that
the distribution of these “hot-spots” is dispersed throughout
the structure and is not enriched in any specific regions or
surface areas. Moreover, the KDE plot in Figure 2D reveals
a very weak correlation between classifier probability shifts
and ESM2 logit likelihoods across all single-point muta-
tions. This suggests that, despite being trained on ESM2
embeddings, the classifier’s localization landscape is largely
orthogonal to ESM2’s intrinsic fitness landscape. These
observations underscore the difficulty of classifier-guided
renin design and motivate our MADA algorithm, which in-
corporates both structural information and supports broad,
global sequence exploration.
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Table 1. Performance comparison of our localization classifier against three baselines on two datasets. Boldface indicates the best result.

DATA SET OURS DEEPLOC2.0 LOCPRO MULOCDEEP

CURATED SWISS-PROT (AUROC ↑) 97.18 85.70 90.83 51.01
HPA-SECRETOME (ACC ↑) 82.31 74.28 51.20 47.55

3.3. Empirical Evaluations of MADA for Cytosolic
Renin Engineering

In this subsection, we present in silico results obtained from
using MADA to design cytosolic variants of the human
renin catalytic domain. The wild-type sequence exhibits
a low predicted cytosolic localization probability of 0.035.
We compare ProVADA against two rejection-sampling base-
lines, and a generative baseline from the built-in guided gen-
eration approach in ESM3 (16). The naı̈ve rejection sampler
randomly masks up to 50% of positions and replaces each
with a uniformly sampled amino acid. The ProteinMPNN-
based rejection sampler uses the same masking scheme
(up to 100% of sites) but refills masked positions using
ProteinMPNN’s generative prior. All ProteinMPNN-based
masked generations in this manuscript are generated with
the temperature set at 0.5 with cysteine- and non-canonical
residue-free designs. For ESM3-guided generation, we use
the ESM3-open model (14), fix its predicted structural and
functional tokens for the renin catalytic domain, and steer
decoding with cytosolic probabilities from our classifier.

3.3.1. RUNTIME COST VS. NUMBER OF PROTEINMPNN
FILL CALLS

We measure wall-clock time under two regimes to illustrate
the efficiency gains of our down-sample–up-sample strategy:
i) invoking ProteinMPNN separately for each of 10 masked
sequences (10 calls), and ii) a single invocation that returns
10 filled sequences in one batch. We repeat each experiment
10 times and report the average runtimes in Figure 7, where
the results show that our down-sample–up-sample strategy
improved runtime efficiency by approximately 4-fold.

3.3.2. COMPARISON OF FITNESS SCORES FOR
GENERATED VARIANTS

We benchmark MADA against the three baselines. We
collect 1500 sequences from the final iteration of 50 inde-
pendent MADA runs (30 iterations each, greedily retaining
the top 20% per round). The initial temperature is set to
τ1 = 2.0, and we employ a power-law cooling schedule with
α = 3.0 (see Figure 8). Both the naı̈ve and ProteinMPNN
rejection samplers yield 1,500 sequences each, while the
ESM3 generative baseline is limited to 200 sequences for
computational traceability.

In Figure 3A, we compare cytosolic probability distribu-
tions across methods. The fitness distribution of MADA
variants exhibits a clear mode around 0.7, with most variants

exceeding the 0.5 label-flipping threshold, while both rejec-
tion baselines’ outputs remain near the wild-type probability.
MADA achieves a 9.5-fold increase in predicted fitness over
these baselines. On the other hand, ESM3-generated vari-
ants center near 0.4, with only a few surpassing the thresh-
old. Figure 3B shows that MADA variants carry on average
47% mutations, whereas ESM3 variants exceed 50% yet re-
tain higher cosine similarity to wild-type embeddings. The
MADA mutation profile thus occupies a viable yet diverged
range from the wild-type renin; such distinction is appro-
priate and necessary given the absence of cytosolic renin
homologs.

To assess convergence within a single MADA run, we ex-
ecute 100 iterations with a population of 30 sequences per
round, greedily retaining the top 20% at each step. Starting
from a masking fraction of 0.2, temperature τ1 = 2.0, and
Hamming-penalty λ = 0.1, we track the best fitness score
and mutation fraction over sampling (Figure 3C). Cytosolic
probability plateaus by iteration 40, while mutation fraction
peaks at 0.5 by iteration 20 before declining under the diver-
gence penalty. With our annealing schedule, 30 iterations
strike a practical balance, reaching near convergence with
manageable computation.

We further characterize the top variants from 50 independent
MADA runs (30 iterations each). As shown in Figure 3D,
counting extracellular signatures in the highest-fitness se-
quence at each iteration reveals a rapid drop to near zero
within 5 iterations. We also track the sequence logo at the
N75–T77 N-glycosylation site, which demonstrates pro-
gressive loss of the motif pattern over successive iterations.
In Figure 3E, sequence logos for four extracellular mo-
tifs in the final MADA variants illustrate their complete
elimination—most notably, both NXT glycosylation motifs
are efficiently removed. Finally, Figure 3F shows conver-
gence across 50 runs for i) cytosolic probability, ii) adjusted
fitness, iii) MPNN score, and iv) mutation fraction.

3.3.3. SEQUENCE ANALYSIS OF MADA SAMPLED
VARIANTS

We analyze the 50 highest-fitness MADA variants’ sequence
features, including keyword annotations, homology relation-
ships, and per-position mutation frequencies.

First, we run InterProScan on the 50 MADA variants along-
side 50 ESM3-generated sequences (22). Figure 4A shows
that both sets preserve the superfamily and domain-level
keywords found in WT renin; all ESM3 sequences and 48
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Figure 3. MADA sampling performance. (A) Cytosolic prob-
ability distributions from MADA (1500 samples), ESM3 (200),
naı̈ve rejection (1500), and ProteinMPNN prior (1500); red line
= WT, dotted = 0.5 threshold. (B) Mutation fraction and ESM2-
embedding cosine similarity to WT renin. (C) Example MADA
trajectory (100 iterations, 30 chains): cytosolic probability and
mutation fraction. (D) Decline of extracellular signatures over
iterations; inset Logos of N75–T77 motif at iterations 1, 5, 15. (E)
LogoPlots of four extracellular signatures in final top variants. (F)
Trajectories of cytosolic probability, adjusted fitness, MPNN score,
and mutation fraction across 50 runs; right: KDE of final values
(bold = mean).

of the 50 MADA variants retain the conserved aspartyl pro-
tease active site. Neither group preserves the renin-family
annotation, which is unsurprising given the approximately
50% mutation rate. Both also introduce novel keywords
absent from the wild-type sequence. These findings indi-
cate that MADA produces variants that retain domain-level
functionality related to aspartic proteases.

Next, we assess MADA output diversity via pairwise Ham-
ming distances and cosine similarities in the ESM2 em-
bedding space. Figure 4B shows that the generated vari-
ants exhibit an average pairwise Hamming distance of ap-
proximately 120 (30% mutations), which is significantly
lower than their Hamming distances to WT renin (Ham-
ming distance around 170, 45% mutations). In Figure
4C, the distributions of pairwise cosine similarity in ESM2
embedding space from MADA variants and natural renin
homologs (from BlastP) overlap closely, indicating compa-
rable sequence-space diversity. Figure 9 in the Appendix
confirms that MADA variants and homologs form separate

Figure 4. Sequence analysis of MADA-sampled renin variants.
(A) InterProScan keyword heatmap for 50 MADA vs. ESM3 vari-
ants (WT keywords boxed). (B) Pairwise Hamming distance dis-
tributions: MADA–MADA (orange) and MADA–WT (purple).
(C) ESM2 embedding cosine similarity: MADA–MADA (orange)
vs. natural renin homologs (green). (D) Per-position mutation
frequency across 50 MADA variants.

clusters. These results indicate that MADA produces a set
of distant yet plausible variants, introducing sufficient diver-
sity to enable cytosolic localization without compromising
core structural and functional integrity.

Lastly, Figure 4D shows per-position mutation frequen-
cies for the MADA renin variants. Both catalytic Aspartic
residues (D38 and D226) remain fully conserved, as do their
flanking motifs. In contrast, the active-site flap (T80–G90)
is highly variable, with key substrate-binding residues such
as Y83 and S84 nearly completely mutated (32). The re-
sults above suggest that MADA variants preserve Aspartic
protease activity but will likely lose renin-specific substrate
selectivity. To maintain realistic renin specificity, it will be
necessary to hard fix substrate-contacting residues.

3.3.4. STRUCTURAL ANALYSIS OF MADA SAMPLED
VARIANTS

We evaluate the structural viability of the sampled variants
by predicting folded structures with ESMFold and com-
paring their alignment to the native renin catalytic domain.
We analyze the same 50 MADA and 50 ESM3 sequences
shown in Figure 4. For each rejection-sampling baseline,
we select the top 50 variants by fitness from 1500 generated
sequences.

8
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Figure 5. Structural analysis of MADA-sampled renin variants.
(A) ESMFold-predicted pLDDT, RMSD to WT, and ESM2 pseudo-
perplexity for the top 50 variants (red dashed = WT perplexity). (B)
Representative alignments of MADA, ESM3, and naı̈ve variants
to the WT structure. (C) Close-up of catalytic Asp side-chain
conformations (WT in yellow).

Figure 5A (left and middle) presents the overall structural
confidence (pLDDT) and structural deviation from the WT
renin (RMSD), while the right panel reports ESM2 pseudo-
perplexity. ProteinMPNN-conditioned variants preserve
both structural integrity and evolutionary plausibility, in
contrast to random mutations that disrupt both. ESM3-
generated variants also maintain fold quality but exhibit
lower ESM2 perplexity, reflecting a preference for evolution-
ary likelihood that can be unnecessary and even undesirable
when targeting fitness objectives unrelated to evolutionary
constraints.

To highlight the structural differences, Figure 5B displays
representative alignments to the WT renin fold of vari-
ants from (i) MADA, (ii) ESM3, and (iii) naı̈ve rejection.
Both MADA- and ESM3-generated variants align closely,
whereas the naı̈ve rejection sampler produced a fully mis-
folded subdomain at the bottom of the structure. Figure
5C zooms in on the catalytic dyad side chains: MADA
and ESM3 variants reproduce the WT conformation, while
the rejection variant loses the expected geometry. These
results demonstrate that MADA efficiently enhances fitness
without compromising structural integrity or evolutionary
plausibility.

4. Conclusion
In this work, we present ProVADA, a test-time steer-
ing, ensemble-guided framework powered by our novel
Mixture-Adaptation Directed Annealing (MADA) sampler.
ProVADA efficiently generates protein variants tailored to
desired fitness objectives while maintaining structural and

evolutionary integrity. Leveraging our high-accuracy sub-
cellular localization classifier, we demonstrate ProVADA’s
effectiveness through in silico engineering of cytosolic renin
variants. Notably, MADA achieves a remarkable 9.5-fold
increase in sampling efficiency compared to conventional
masked-fill rejection sampling. Our experiments demon-
strate that ProVADA delivers diverse renin variants with sub-
stantially improved predicted cytosolic localization while
preserving both structural stability and evolutionary plausi-
bility.

Beyond engineering subcellular variants, ProVADA demon-
strates broad applicability across diverse protein design chal-
lenges. By training predictors for specific compartments
such as endosomes or mitochondria, ProVADA can opti-
mize protein stability for intracellular therapeutics requiring
endosomal escape (7) or enhance the efficiency of mitochon-
drial base editors (12). Furthermore, with recent advances in
immunogenicity prediction (6), ProVADA could enable the
guided generation of de-immunized variants for therapeutic
protein humanization (31). Collectively, ProVADA provides
a versatile, structure-aware framework for directing protein
design across varied functional landscapes, offering signifi-
cant potential for protein variant engineering applications.

Several directions warrant consideration for future work.
While our approach omits explicit substrate-interaction guid-
ance, potentially compromising substrate specificity, this
can be readily addressed by fixing critical contact residues
or imposing additional structural constraints. Furthermore,
despite ProVADA’s strong in silico performance, experimen-
tal validation remains essential to confirm the real-world
effectiveness of engineered variants. These directions rep-
resent important avenues for future work to fully realize
ProVADA’s therapeutic potential.
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A. Data preprocessing and classifier construction
Dataset acquisition We query the UniProt Swiss-Prot database to curate a dataset of cytosolic and extracellular proteins
from all vertebrate species (3). To ensure data reliability, we include only entries with experimental evidence and exclude
proteins localized to organelles including lysosome, endosome, peroxisome, and mitochondria.

Sequence truncation and filtering In order to isolate intrinsic sequence features that govern fitness in different subcellular
compartments, we remove low-complexity localization signals (signal peptides and transmembrane domains) that are
strongly correlated with localization but unrelated to fitness (29). We retain only mature peptide regions and discard any
annotated signal sequences and propeptide regions. In cases of multiple annotated domains, only shorter, individual domains
(50–1000 residues) are retained. For transmembrane proteins, we extract only annotated extracellular domains within the
same size range. To ensure balanced representation of protein families, we cluster all resulting sequences using MMSeqs2
with a 30% sequence similarity threshold (27). We retain one representative per cluster, resulting in a reduced dataset ( 40%
of the original size). Finally, the dataset is stratified and split into training, validation, and test sets in a 70:20:10 ratio.

Embedding generation and training We select the ESM2-650M-UR50D model for protein sequence embedding due
to its strong performance in various downstream tasks and its balanced trade-off between accuracy and computational
efficiency (24). If not specifically stated, all ESM2 models in this article refer to this specific model mentioned above. We
embed each protein sequence with the model, extracting per-residue representations from the final (33rd) transformer layer.
We train a logistic regression classifier on the 1280-dimensional mean-pooled sequence embeddings across the sequence
length. A graphical summary of classifier construction can be found in Figure 2A.

B. Theoretical Analysis
Theorem B.1. Let {xi}Ni=1 be a given collection of particles with corresponding normalized importance weights {wi}Ni=1,
where

∑N
i=1 wi = 1 and wi ≥ 0. Consider the two-stage resampling procedure described in Section 2.3.2, which produces

samples {x̄ℓ}Nℓ=1. For each ℓ ∈ {1, . . . , N}, it holds that P(x̄ℓ = xi) = wi, and consequently, for any bounded measurable
function h, the estimator 1

N

∑N
ℓ=1 h

(
x̄ℓ

)
is unbiased for the weighted expectation

∑N
i=1 wi h(xi).

Theorem B.2. Consider the Markov kernel K defined as:

K(x→ x′) =

{∑
S P (S)qS(x

′ | x)a(x, x′) if x ̸= x′

1−
∑

x′′ ̸=x K(x→ x′′) if x = x′

where qS(x
′ | x) = 1{x′

Sc=xSc}pϕ(x
′
S | xSc) and a(x, x′) = min

{
1,

πϕ,τt,λ(x
′)qS(x|x′)

πϕ,τt,λ(x)qS(x′|x)

}
. This kernel satisfies detailed

balance with respect to πϕ,τt,λ, i.e., πϕ,τt,λ(x)K(x → x′) = πϕ,τt,λ(x
′)K(x′ → x) for all x, x′. Moreover, when

πϕ,τt,λ(x) ∝ pϕ(x) exp(Hλ(x)/τt), the acceptance ratio simplifies to a(x, x′) = min
{
1, exp(Hλ(x

′)/τt)
exp(Hλ(x)/τt)

}
.

B.1. Proof of Theorem B.1

Proof. Let’s denote by Z = {ζ1, ζ2, . . . , ζK} the set of selected prototypes. For any ℓ ∈ {1, 2, . . . , N}, we have

P(x̄ℓ = xi) =
∑
Z

P(x̄ℓ = xi | Z)P(Z).

Since x̄ℓ is sampled uniformly from Z , we have

P(x̄ℓ = xi | Z) =
ni(Z)
K

,

where ni(Z) ∼ Binomial(K,wi) is the number of times xi appears in Z .

Now, since each ζj is drawn independently with replacement according to weights {wi}, the expected number of times xi

appears in Z is K · wi. Therefore,

E[ni(Z)] = K · wi.
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Combining these results, we have

P(x̄ℓ = xi) = EZ [P(x̄ℓ = xi | Z)]

= EZ

[
ni(Z)
K

]
=

1

K
EZ [ni(Z)]

=
1

K
·K · wi

= wi.

Hence, E[h(x̄ℓ)] =
∑

i wih(xi), and averaging over ℓ yields the unbiasedness of the overall estimator.

B.2. Proof of Theorem B.2

Proof. We verify that the kernel K satisfies detailed balance with respect to πϕ,τt,λ. That is, we need to show that the
following expression holds

πϕ,τt,λ(x)K(x→ x′) = πϕ,τt,λ(x
′)K(x′ → x).

If x = x′, this holds automatically.

For x ̸= x′, we have

πϕ,τt,λ(x)K(x→ x′) = πϕ,τt,λ(x)
∑
S

P (S)qS(x
′ | x)a(x, x′),

=
∑
S

P (S)πϕ,τt,λ(x)qS(x
′ | x)a(x, x′).

Now fix a subset S. By definition of a(x, x′):

πϕ,τt,λ(x)qS(x
′ | x)a(x, x′) = πϕ,τt,λ(x)qS(x

′ | x)min

{
1,

πϕ,τt,λ(x
′)qS(x | x′)

πϕ,τt,λ(x)qS(x
′ | x)

}
,

= min {πϕ,τt,λ(x)qS(x
′ | x), πϕ,τt,λ(x

′)qS(x | x′)} .

Similarly, for the reverse transition:

πϕ,τt,λ(x
′)qS(x | x′)a(x′, x) = πϕ,τt,λ(x

′)qS(x | x′)min

{
1,

πϕ,τt,λ(x)qS(x
′ | x)

πϕ,τt,λ(x
′)qS(x | x′)

}
,

= min {πϕ,τt,λ(x
′)qS(x | x′), πϕ,τt,λ(x)qS(x

′ | x)} .

Hence, these expressions are equal. As this holds for every subset S, we thus have

πϕ,τt,λ(x)K(x→ x′) = πϕ,τt,λ(x
′)K(x′ → x).

For the simplification of the acceptance ratio, assume πϕ,τt,λ(x) ∝ pϕ(x) exp(Hλ(x)/τt). We have

πϕ,τt,λ(x
′)qS(x | x′)

πϕ,τt,λ(x)qS(x
′ | x)

=
pϕ(x

′) exp(Hλ(x
′)/τt) · 1{xSc=x′

Sc}pϕ(xS | x′
Sc)

pϕ(x) exp(Hλ(x)/τt) · 1{x′
Sc=xSc}pϕ(x

′
S | xSc)

.

Since x′
Sc = xSc (by definition of qS), the indicators are both 1. We decompose pϕ(x) = pϕ(xS | xSc)pϕ(xSc) and

similarly for x′. This gives

πϕ,τt,λ(x
′)qS(x | x′)

πϕ,τt,λ(x)qS(x
′ | x)

=
pϕ(x

′
S | xSc)pϕ(xSc) exp(Hλ(x

′)/τt) · pϕ(xS | xSc)

pϕ(xS | xSc)pϕ(xSc) exp(Hλ(x)/τt) · pϕ(x′
S | xSc)

,

=
exp(Hλ(x

′)/τt)

exp(Hλ(x)/τt)
.

13
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Therefore,

a(x, x′) = min

{
1,

exp(Hλ(x
′)/τt)

exp(Hλ(x)/τt)

}
.

This completes the proof.
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C. Supplementary Figures

Figure 6. Full heatmap of cytosolic classifier probability LLR for every single point mutation on the renin catalytic domain to the WT
sequence.
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Figure 7. Average runtime for filling 10 sequences over 10 repeats via ProteinMPNN. Multiple separate calls (orange) versus one batched
call (green). One batched call achieves approximately a 4x speedup.

Figure 8. Comparison of power-law cooling schedules for temperature τt and masking fraction pS,t under different decay exponents α.
Higher α yields a sharper initial drop and slower tail.
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Figure 9. Circular dendrogram of MADA renin variants with renin homologs and human Cathepsin D by their cosine similarity in
embedding space of ESM2. Orange: MADA cytosolic renin variants. Blue: Renin homologs retrieved by BlastP search as mentioned in
Figure 4, highlighted node represents human renin. Red: Human Cathepsin D.
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D. Supplementary Tables

Table 2. Full performance comparison of our localization classifier against three baselines on the curated Swiss-Prot dataset. Boldface
indicates the best result for each metric.

Classifier Metric Cytosolic Extracellular Weighted Avg

Our Classifier

precision 94.88 98.92 97.43
recall 97.10 96.42 96.67
AUROC 97.00 97.28 97.18
F1 score 95.98 97.65 97.03

DeepLoc2.0

precision 69.07 99.72 88.41
recall 97.65 71.58 81.20
AUROC 85.85 85.62 85.70
F1 score 80.91 83.34 82.44

LocPro

precision 89.71 99.41 95.83
recall 96.49 77.63 84.59
AUROC 94.96 88.42 90.83
F1 score 92.98 87.18 89.32

MuLocDeep

precision 37.60 97.60 75.46
recall 97.62 2.43 37.55
AUROC 50.75 51.16 51.01
F1 score 54.29 4.74 23.02
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