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Abstract

Stance detection, a key task in natural language001
processing, determines an author’s viewpoint002
based on textual analysis. This study examines003
the evolution of stance detection methods, transi-004
tioning from early machine learning approaches005
to the groundbreaking BERT model, and eventu-006
ally to modern Large Language Models (LLMs)007
such as ChatGPT. While ChatGPT’s closed-008
source nature and associated costs present chal-009
lenges, the open-source model LLaMa-2 offers010
an encouraging alternative. We fine-tuned both011
ChatGPT and LLaMa-2 on two publicly avail-012
able datasets: SemEval-2016 and P-Stance. Re-013
sults highlight the efficacy of fine-tuned LLMs014
in stance detection, with both models surpassing015
previous benchmarks. LLaMa-2’s performance,016
despite having fewer parameters than ChatGPT,017
underscores the efficiency of open-source018
models. This study emphasizes the potential019
of LLMs in stance detection and calls for more020
extensive research in this field. To further021
contribute to the research community, our code022
for this study will be made publicly available.023

1 Introduction024

Stance detection seeks to determine an author’s025

viewpoint—whether supportive, oppositional, or026

neutral—on a variety of subjects ranging from027

opinions on political figures to views on pressing028

environmental policies, based on textual analysis029

(Hasan and Ng, 2013; Küçük and Can, 2020; Al-030

Dayel and Magdy, 2021). Given the proliferation of031

content on social media platforms like X, formerly032

Twitter, the task of extracting and accurately parsing033

underlying stances has become paramount (Sid-034

diqua et al., 2019). Interpreting these perspectives035

not only offers a window into society’s collective036

opinions but also facilitates better insights into037

societal shifts, directly benefiting areas such as data038

extraction and policy formulation(Darwish et al.,039

2017; Glandt et al., 2021). As natural language040

processing (NLP) and social computing continue041

to grow and overlap, advancements in these fields 042

allow researchers to improve models, leading to 043

better results in extracting stances from given texts. 044

Stance detection in textual data began with 045

a heavy emphasis on rule-based and traditional 046

machine learning approaches, with support 047

vector machines (SVM) standing out as an early 048

benchmark (Anand et al., 2011; Walker et al., 2012; 049

Mohammad et al., 2016). Over time, deep learning 050

models started playing a pivotal role in stance 051

detection (Wei et al., 2016; Zarrella and Marsh, 052

2016). Despite initial challenges, these models, 053

through continuous refinement and innovative 054

strategies, began to outperform the traditional 055

rule-based and machine learning methods (Dey 056

et al., 2018; Huang et al., 2018; Zhang et al., 2019a). 057

The introduction of pretrained language models, 058

particularly BERT (Devlin et al., 2019), marked 059

a significant advancement. A significant shift in 060

stance detection came with Google’s BERT model 061

(Devlin et al., 2019). BERT showcased the potential 062

of large pre-trained language models (PLM) 063

in stance detection by employing bidirectional 064

encoders and fine-tuning on vast datasets (Li et al., 065

2021). This approach not only raised the bar for 066

many NLP tasks but also improved the precision 067

and depth of stance detection models (Allaway and 068

McKeown, 2020; Shin et al., 2020; Wei et al., 2022). 069

The capabilities of Large Language Models 070

(LLMs) have significantly advanced, enabling 071

marked improvements in NLP (Brown et al., 072

2020). Trained on large datasets, these models 073

have refined their ability to understand and mimic 074

human language patterns (Wei et al., 2023). With 075

this enhanced capability, LLMs differ from BERT 076

in their approach; while BERT often requires 077

fine-tuning on specific tasks, LLMs, through the 078

use of prompting techniques, can make predictions 079

without the need for fine-tuning. This allows them 080

to become more proficient in accurately detecting 081

stances and understanding the relationship between 082
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the target and the text in alignment with the author’s083

viewpoint. ChatGPT1 and ChatGPT Plus2 by084

OpenAI are models that have gained significant085

attention in the field (OpenAI, 2023).086

Much of the recent research on LLMs, particu-087

larly ChatGPT, frequently employs zero-shot and,088

in certain studies, few-shot prompt engineering089

techniques. Notably, studies like such as (Aiyappa090

et al., 2023; Chen et al., 2023) have underscored091

ChatGPT’s accuracy and consistency in stance092

detection. Given that ChatGPT is not open-source093

and considering the initial guidelines set by OpenAI,094

these methodologies became the primary approach095

for many researchers in the field.096

The recent introduction of fine-tuning capabil-097

ities by OpenAI3 presents a potential improvement098

for model performance in stance detection. While099

ChatGPT exhibits significant potential, its closed-100

source design poses challenges. Accessing its101

fine-tuning features necessitates the use of the102

API, incurring associated costs. For researchers103

with budgetary constraints, these financial con-104

siderations, combined with the model’s restricted105

accessibility, pose significant barriers. In light of106

these challenges, and given the notable attention107

LLaMa-24, an open-source model, has received108

since its release by Meta AI (Touvron et al., 2023),109

we incorporate it into our study alongside ChatGPT.110

In this paper, we want to determine whether fine-111

tuned LLMs, specifically ChatGPT and LLaMa-2,112

could outperform previous stance detection bench-113

marks. Additionally, we aimed to compare the114

post-fine-tuning performance of these two models115

to provide insights for ongoing and future research.116

2 Methods117

2.1 Datasets and Evaluation Metrics118

Datasets. To assess the performance of our fine-119

tuned LLMs, we employed two publicly available120

datasets. The SemEval-2016 Dataset (Mohammad121

et al., 2016) addresses several targets that include122

political figures and broader societal concerns.123

These targets are categorized into three stances:124

Favor, Against, and None. The specific targets125

in the dataset are Atheism (A), Climate Change126

is a Real Concern (CC), Donald Trump (DT),127

Feminist Movement (FM), Hillary Clinton (HC),128

1https://openai.com/blog/chatgpt
2https://openai.com/blog/chatgpt-plus
3https://openai.com/blog/gpt-3-5-turbo-fine-tuning-and-

api-updates
4https://ai.meta.com/llama/

and Legalization of Abortion (LA). The P-Stance 129

Dataset (Li et al., 2021), on the other hand, narrows 130

its focus to the political domain and classifies 131

stances as either Favor or Against. The specific 132

political figures targeted in this dataset are Bernie 133

Sanders, Donald Trump, and Joe Biden. 134

Evaluation Metrics. In line with the standards 135

set by previous studies (Mohammad et al., 2016, 136

2017), we adopt Favg as our primary evaluation 137

metric. This metric, Favg, computes the average of 138

the F1 scores for the ’favor’ and ’against’ classes. 139

2.2 Models 140

For the fine-tuning of the ChatGPT model, which 141

comprises 175 billion parameters, we followed the 142

guidelines provided on the official OpenAI website5. 143

After the fine-tuning process, the resulting model 144

is referred to as ChatGPT-ft. Notably, the only 145

adjustable hyperparameter available during the 146

fine-tuning process was the number of epochs, 147

which we set to three for our experiments. 148

For the fine-tuning of the LLaMa-2 models, 149

specifically LLaMa-2-7b representing the version 150

with 7 billion parameters and LLaMa-2-13b 151

denoting the one with 13 billion parameters, we 152

adjusted our approach based on the dataset in 153

question: three epochs for SemEval-2016 and one 154

epoch for the P-Stance dataset6. Post fine-tuning, 155

the resulting models are labeled as LLaMa-2-7b-ft 156

and LLaMa-2-13b-ft. For both the SemEval-2016 157

and P-Stance datasets, we employed the parameter- 158

efficient fine-tuning method with Low-Rank 159

Adaptation (LoRA) using the Lit-GPT7 framework. 160

The specific methodological and hyperparameter 161

details for the fine-tuning process of the LLaMa-2 162

models have been included in the Appendix A. 163

For comparative analysis against the fine-tuned 164

models, we performed zero-shot stance detection 165

using the models: ChatGPT, LLaMa-2-7b-chat, 166

and LLaMa-2-13b-chat. 167

2.3 Prompting Details 168

For the ChatGPT model, we employed specific 169

prompting methods for each dataset. For the 170

LLaMa-2 model, our prompting strategy was 171

inspired by the template samples available in 172

HuggingFace’s resources.8 Detailed specifications 173

5https://platform.openai.com/docs/guides/fine-tuning
6The adjustment to one epoch for fine-tuning P-Stance was

due to its larger training set size compared to SemEval-2016,
minimizing overfitting concerns.

7https://github.com/Lightning-AI/lit-gpt
8https://huggingface.co/blog/llama2
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of the prompts used for each dataset can be found174

in the Appendix B.175

2.4 Baselines176

We have selected various stance detection models177

as our baselines, categorizing them based on their178

foundational architectures and approaches. From179

the category of recurrent neural networks (RNN),180

our choices include the BiLSTM (Augenstein et al.,181

2016) and BiCond (Augenstein et al., 2016) models,182

both of which deploy bidirectional LSTM layers for183

processing. MemNet (Tang et al., 2016) serves as a184

representative of memory networks, with a primary185

focus on aspect-level sentiment analysis. Both186

AoA (Huang et al., 2018) and TAN (Du et al., 2017)187

employ attention mechanisms, enabling them to ef-188

fectively weigh different segments of the input text189

for stance detection purposes. ASGCN (Zhang et al.,190

2019b) integrates graph-based methodologies for191

capturing dependencies in text, while AT-JSS-Lex192

(Li and Caragea, 2019) stands out as a multi-task193

model, merging sentiment and stance detection194

while also incorporating a lexicon. On another front,195

TPDG (Liang et al., 2021) delves into target-centric196

methodologies, and StSQA (Chen et al., 2023)197

employs a novel method, teaching ChatGPT stance198

detection by using a 1-shot example.199

3 Results200

3.1 Zero-shot vs. Fine-Tuning201

In Tables 1 and 2, we present the performance scores202

of LLMs, ChatGPT and Llama, in a zero-shot setting.203

Although these models exhibit impressive zero-shot204

performance, our evaluations highlight that their205

true potential is unlocked post fine-tuning. Notably,206

the zero-shot evaluations on the SemEval-2016207

and P-Stance datasets utilized the same prompts as208

those used during the fine-tuning phase.209

Within the SemEval-2016 dataset, ChatGPT’s210

zero-shot capability stood out as superior compared211

to both Llama models. A parallel trend is observed212

in the P-Stance dataset, where ChatGPT similarly213

outperformed its counterparts in a zero-shot setting.214

A notable difference emerged in prediction215

times. Predictions using the zero-shot approach,216

specifically with LLaMa-2-7b-chat, took about 39217

minutes for the SemEval-2016 test set, while its fine-218

tuned counterpart completed in just 2 minutes. The219

extended runtime of zero-shot models stems from220

their generation of full answer sentences, in contrast221

to the fine-tuned models which are optimized to222

Models FM HC LA
BiLSTM 52.2 57.4 54.0
BiCond 61.4 59.8 54.5
MemNet 57.8 60.3 61.0
TAN 58.3 67.7 65.7
AoA 60.0 58.2 62.4
ASGCN 58.5 64.3 62.9
AT-JSS-Lex 61.5 68.3 68.4
TPDG 67.3 73.4 74.7

Zero-shot
ChatGPT 74.6 82.8 59.6
LLaMa-2-7b-chat 51.6 63.9 49.2
LLaMa-2-13b-chat 55.0 61.5 45.9

Fine-tuned
ChatGPT-ft 79.7 83.4 72.6
LLaMa-2-7b-ft 73.3 84.2 71.2
LLaMa-2-13b-ft 76.0 84.8 72.5

Table 1: SemEval-2016 Dataset performance compar-
ison (using Favg scores)

Models Bernie Biden Trump
BiLSTM 63.9 69.5 72.0
BiCond 64.6 69.4 73.0
MemNet 72.8 77.6 77.7
TAN 72.0 77.9 77.5
AoA 71.7 77.8 77.7
ASGCN 70.8 78.4 77.0
StSQA 80.8 82.6 85.7

Zero-shot
ChatGPT 75.2 82.6 73.7
LLaMa-2-7b-chat 48.3 52.9 43.6
LLaMa-2-13b-chat 49.8 53.7 45.3

Fine-tuned
ChatGPT-ft 81.8 89.7 91.9
LLaMa-2-7b-ft 79.0 87.2 89.8
LLaMa-2-13b-ft 81.0 89.0 88.9

Table 2: P-Stance Dataset performance comparison
(using Favg scores)

output just a single token indicating the stance. 223

The observed differences in performance 224

between ChatGPT and the LLaMa-2 models can be 225

partly attributed to the Reinforcement Learning 226

from Human Feedback (RLHF) employed by 227

ChatGPT9. This training strategy, which is absent in 228

the LLaMa-2 models, incorporates feedback loops 229

with human input. This could provide ChatGPT 230

with insights into the training data we’re using, 231

9https://openai.com/blog/chatgpt
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potentially leading to domain-specific contami-232

nation and explaining its stronger performance233

in a zero-shot setting. However, this advantage234

diminishes when both models are fine-tuned.235

Comparing zero-shot and fine-tuned results as236

presented in Tables 1 and 2, ChatGPT, which stood237

out in its zero-shot evaluations, exhibited even more238

impressive results after fine-tuning. Conversely, the239

LLaMa-2 models, which started with lower perfor-240

mance scores in the zero-shot setting, demonstrated241

substantial improvements with fine-tuning. This242

highlights that while task-specific tuning is bene-243

ficial for both models, ChatGPT’s initial lead might244

be influenced by its RLHF training, potentially245

exposing it to targets available in the datasets.246

This pattern of improvement across both datasets247

underscores the pivotal role of fine-tuning. While248

LLMs inherently possess strong generalization249

abilities, adapting them to specific tasks through250

fine-tuning is essential. This adaptation through251

fine-tuning not only enhances their performance252

but also ensures LLMs reach their full potential in253

specific tasks.254

3.2 Fine-Tuned Models vs. Baselines255

In the results presented in Table 1, we can observe256

the prominence of the ChatGPT-ft model across257

all targets. It becomes clear that its performance is258

above the average when compared to other models259

in the table. Moreover, the other fine-tuned LLMs,260

LLaMa-2-7b-ft and LLaMa-2-13b-ft, also261

consistently delivered good results. The difference262

in performance underscores the unique strengths of263

LLMs, especially when fine-tuned for specific tasks.264

Transitioning to Table 2, the stance prediction265

performance across different political figures is266

presented. Again, ChatGPT-ft stands out, but267

it’s closely followed by the LLaMa-2 models. The268

difference between these fine-tuned LLMs and the269

rest is evident and substantial. Such a distinction270

in scores not only emphasizes the superiority of the271

fine-tuned models but also raises questions about272

how other models could be improved.273

For a more detailed analysis of the SemEval-2016274

results, please refer to Appendix C.275

4 Discussion276

Our experiments with the SemEval-2016 and P-277

Stance 2021 datasets highlight the effectiveness of278

fine-tuned LLMs in stance detection. Specifically,279

the ChatGPT-ft model consistently outperformed280

other models in our tests, as shown in Tables 1 and 2. 281

The LLaMa-2 models also performed notably well, 282

further indicating the power of LLMs in this domain. 283

However, there were intriguing variations. 284

Despite being larger, the LLaMa-2-13b-ft 285

model didn’t consistently outperform the smaller 286

LLaMa-2-7b-ft. This suggests that model size 287

alone doesn’t determine success. Fine-tuning, 288

dataset specifics, and architecture also play crucial 289

roles. 290

Differences in performance across targets hint 291

at these models being sensitive to specific domains. 292

For instance, while ChatGPT-ft excelled in many 293

categories, it faced challenges matching the perfor- 294

mance of LLaMa-2-13b-ft in the Hillary Clinton 295

domain. This variance might also be attributed to the 296

datasets used during the initial pre-training of LLMs, 297

which can introduce biases or domain knowledge 298

that influence their subsequent fine-tuned perfor- 299

mance. This shows that a model’s general effective- 300

ness can be influenced by topic-specific factors. 301

Compared to other models we evaluated, LLMs 302

consistently stood out, highlighting their significant 303

potential in modern NLP tasks. The evident differ- 304

ences in results indicate that both the data-intensive 305

training and the size of LLMs could be crucial 306

contributors to their enhanced performance. These 307

findings open doors for further research, suggesting 308

that refining LLM techniques and architectures 309

could lead to even more advanced results. 310

In a broader context, the strong performance 311

of LLMs in our study highlights their potential 312

in real-world stance detection tasks, such as 313

identifying the stance of news articles and analyzing 314

public opinions on key societal issues. 315

5 Conclusion 316

In conclusion, our exploration of stance detection, 317

particularly using ChatGPT and LLaMa-2, pro- 318

vides clear insights into the significant potential 319

these models offer. Their superior performance, as 320

demonstrated in our results, firmly establishes them 321

as frontrunners in the domain. Understanding stance 322

detection remains a multifaceted challenge, and 323

while LLMs have made notable progress, their role 324

in guiding the future trajectory of NLP is evident. As 325

we anticipate further advancements, the evolution of 326

LLMs and their broader applications will be of great 327

interest. These developments signal a new era of re- 328

fined and accurate NLP models, bringing significant 329

benefits to the wider academic community. 330
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Limitations331

In conducting this research, several limitations per-332

taining to the use of ChatGPT were encountered.333

First and foremost, the exclusive nature of ChatGPT334

means that it is accessible solely via its designated335

API. This limited the extent of model adjustments,336

with the number of epochs during fine-tuning being337

the only modifiable hyperparameter at the time of338

our experimentation. Furthermore, financial con-339

siderations present an additional constraint. As per340

the current pricing structure, the cost for training341

ChatGPT stands at $0.008 per 1,000 tokens10. Fine-342

tuning a dataset with 100,000 tokens over three343

epochs is estimated to cost about $2.40 USD. To put344

this in perspective, the estimated cost for training345

the SemEval-2016 dataset was around $21.77 USD.346

Given such pricing, the act of fine-tuning becomes347

financially challenging without a substantial budget.348

In the fine-tuning process of the Llama 2 models,349

we encountered certain limitations. We were350

able to successfully fine-tune the Llama 2 7b and351

Llama 2 13b models using the NVIDIA A100 GPU352

with 40GB. However, due to the more extensive353

structure of the Llama 2 70b model, we needed a354

more powerful GPU to fine-tune it. This emerged355

as a constraint that we couldn’t overcome with our356

current resources.357

In the SemEval-2016 dataset, a notable limitation358

was the training dataset size for the targets. In359

comparison, there was a more extensive training360

resource available for P-Stance. With more training361

data for each target in SemEval-2016, the LLMs362

could likely achieve better stance detection results.363

Ethical Considerations364

In the course of this research, it’s crucial to365

acknowledge the potential limitations of Large366

Language Models. Both ChatGPT and Llama 2, like367

other LLMs, may produce inaccurate information368

about targets present in stance detection datasets.369

Such inaccuracies can emerge from various factors370

inherent to algorithmic predictions and inherent371

model limitations.372

This research relied on publicly available datasets373

for the fine-tuning of LLMs. The primary goal in374

using these datasets was academic research. At no375

stage was there an intention to produce or support376

biased predictions. For transparency and further377

review, both the predictions made by the fine-tuned378

10https://openai.com/pricing

models and the code used in the research will be 379

made publicly available. 380
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A Fine-tuning Details for Llama 2 Models569

The LoRA method was particularly designed to em-570

phasize the queries and values in the self-attention571

modules (Hu et al., 2021). The hyperparameters for572

LoRA were set with a rank of 8, an α of 16, and a573

dropout rate of 0.05. We employed a warmup strat-574

egy, utilizing 10% of the training data. Training was575

set to run for three epochs with a learning rate of 3×576

10−4 and a batch size of 128. We trained the models577

with bfloat16 precision on an NVIDIA A100 GPU578

with 40GB. The fine-tuning of Llama2-7b on the579

SemEval-2016 dataset took approximately 20 min-580

utes, while Llama2-13b took around 30 minutes.581

B Prompting Technique582

In our fine-tuning process, structured prompts were583

essential in creating the training and test datasets584

for the LLMs. The prompts are designed to offer585

context, guidelines, and the exact task the model is586

expected to accomplish. In this section, we provide587

a detailed overview of the prompts utilized for each588

dataset while fine-tuning ChatGPT.589

B.1 ChatGPT Fine-tuning Prompts590

B.1.1 SemEval-2016 Template591

For the SemEval-2016 dataset, the following592

structured prompt was utilized:593

### Instruction: 594

Analyze the tweet below in the following 595

context: [topic]. Consider the text, 596

subtext, regional and cultural references, 597

and any implicit meanings to determine 598

the stance expressed in the tweet towards 599

the target. The possible stances are: 600

• FAVOR: The tweet has a positive 601

or supportive attitude towards the 602

target, either explicitly or implicitly. 603

• AGAINST: The tweet opposes or 604

criticizes the target, either explicitly 605

or implicitly. 606

• NONE: The tweet is neutral or 607

doesn’t have a stance towards the 608

target. 609

Tweet: [tweet] 610

### Question: 611

What is the stance expressed in the tweet 612

towards the target "[target]"? 613

Choose one of the following options: 614

FAVOR, AGAINST, NONE. 615

### Answer: 616

For this prompt structure, placeholders are 617

utilized: [tweet], [target], and [topic]. 618

• [tweet]: Represents the actual tweet being 619

analyzed. 620

• [target]: Denotes what or whom the tweet’s 621

stance is directed at, whether directly or 622

indirectly. 623

• [topic]: Offers a brief description of the 624

[target]. Specifically for the SemEval-2016 625

dataset, this description was crafted by us 626

to facilitate the understanding of the tweet’s 627

context. 628

When fine-tuning, these placeholders are substi- 629

tuted with real data, making it easier for the model 630

to understand the context and identify the stance. 631

B.1.2 P-Stance Template 632

For the P-Stance dataset, the prompt tailored 633

specifically for political domain analysis was: 634

### Instruction: 635

Analyze the following tweet, which is in 636

the political domain, deeply. Consider 637
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any subtext, regional and cultural refer-638

ences, or implicit meanings to determine639

the tweet’s stance towards the target. The640

possible stances are:641

• FAVOR: The tweet has a positive642

or supportive attitude towards the643

target, either explicitly or implicitly.644

• AGAINST: The tweet opposes or645

criticizes the target, either explicitly646

or implicitly.647

Tweet: [tweet]648

### Question:649

What is the stance of the tweet above650

towards the target "[target]"?651

Select from FAVOR or AGAINST.652

### Answer:653

The placeholders [tweet] and [target] are654

used in a similar manner as explained for the655

SemEval-2016 template above.656

B.2 Llama 2 Fine-Tuning Prompts657

B.2.1 SemEval-2016 Llama 2 Template658

This prompt template focuses on detecting the659

stance in tweets using a structured instruction to660

guide the model:661

[INST] «SYS»662

You are a helpful, respectful, and honest663

assistant for stance detection for a given664

target. Always answer from the possible665

options given below as helpfully as666

possible. Stance detection is the process667

of determining whether the author of a668

tweet is in support of or against a given669

target. The target may not always be670

explicitly mentioned in the text, and the671

tweet’s stance can be conveyed implicitly672

through subtext, regional and cultural673

references, or other implicit meanings.674

The possible stances are:675

• support: The tweet has a positive676

or supportive attitude towards the677

target, either explicitly or implicitly.678

• against: The tweet opposes or679

criticizes the target, either explicitly680

or implicitly.681

• none: The tweet is neutral or doesn’t682

have a stance towards the target.683

</SYS> 684

Tweet: [tweet] 685

Stance towards the target 686

[target]:[/INST] 687

For this prompt structure, placeholders are 688

utilized: [tweet] and [target]. 689

• [tweet]: Represents the actual tweet being 690

analyzed. 691

• [target]: Denotes what or whom the tweet’s 692

stance is directed at. 693

B.2.2 P-Stance Llama 2 Template 694

This prompt template is specifically designed for 695

analyzing tweets related to the US presidential 696

candidates: 697

[INST] «SYS» 698

You are a helpful, respectful, and honest 699

assistant for stance detection for presi- 700

dential candidates for the USA election. 701

Always answer from the possible options 702

given below as helpfully as possible. 703

Stance detection is the process of 704

determining whether the author of a 705

tweet is in favor of or against a given 706

target. The target may not always be 707

explicitly mentioned in the text, and the 708

tweet’s stance can be conveyed implicitly 709

through subtext, regional and cultural 710

references, or other implicit meanings. 711

The possible stances are: 712

• support: The tweet has a positive 713

or supportive attitude towards the 714

target, either explicitly or implicitly. 715

• against: The tweet opposes or 716

criticizes the target, either explicitly 717

or implicitly. 718

</SYS> 719

Tweet: [tweet] 720

Stance towards the target 721

[target]:[/INST] 722

The placeholders [tweet] and [target] are 723

used in a similar manner as explained for the 724

SemEval-2016 template above. 725

Note on Terminology: In the Llama 2 templates, 726

we decided to use the term "support" instead of 727

"favor". This decision was made based on token 728

analysis for Llama 2, revealing that the model had 729
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a specific token for "support" but not for "favor".730

As a result, for the sake of efficiency, "support" was731

used in our prompt.732

C Stance Detention Results733

The summarized comparison for all targets in the734

SemEval-2016 Dataset is depicted in Table 3. This735

table encapsulates the strengths and potential areas736

of improvement for each model across different tar-737

gets. Observing the data, ChatGPT-ft generally738

exhibits superior performance across the majority739

of the targets. Notably, for the Climate Change740

and Feminist Movement targets, this model dis-741

tinctly leads, signifying its robustness in these do-742

mains. However, the competition tightens for the743

Hillary Clinton target, where the Llama-2-13b-ft744

model slightly surpasses both the ChatGPT-ft and745

Llama-2-7b-ft. This reveals that even though746

large language models like ChatGPT-ft generally747

excel, they can be outperformed in specific domains748

or targets by other variants. Furthermore, the perfor-749

mance of Llama-2-7b-ft is particularly intriguing,750

given that it achieves higher scores than its more siz-751

able counterpart, Llama-2-13b-ft, in some targets752

like Atheism and Donald Trump. This variance reit-753

erates the importance of model fine-tuning and adap-754

tation for specific tasks, as mere model size does not755

guarantee consistent supremacy across all domains.756
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Model A CC DT FM HC LA
ChatGPT-ft 81.3 86.2 70.4 79.7 83.4 72.6
llama2-7b-ft 78.9 69.8 72.0 73.3 84.2 71.2
llama2-13b-ft 76.9 80.4 70.9 76.0 84.8 72.5

Table 3: Favg scores among fine-tuned models for each target in SemEval-2016 Dataset.
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