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Abstract

We study the problem of no-regret learning algorithms for general monotone
and smooth games and their last-iterate convergence properties. Specifically, we
investigate the problem under bandit feedback and strongly uncoupled dynamics,
which allows modular development of the multi-player system that applies to a
wide range of real applications. We propose a mirror-descent-based algorithm,
which converges in O(T−1/4) and is also no-regret. The result is achieved by a
dedicated use of two regularizations and the analysis of the fixed point thereof.
The convergence rate is further improved to O(T−1/2) in the case of strongly
monotone games. Motivated by practical tasks where the game evolves over time,
the algorithm is extended to time-varying monotone games. We provide the first
non-asymptotic result in converging monotone games and give improved results
for equilibrium tracking games.

1 Introduction

We consider multi-player online learning in games. In this problem, the cost function for each player
is unknown to the player, and they need to learn to play the game through repeated interaction with
other players. We focus on a class of monotone and smooth games, which was first introduced
by Rosen (1965). This encapsulates a wide array of common games, such as two-player zero-sum
games, convex-concave games, and zero-sum polymatrix games (Bregman and Fokin, 1987). Our
goal is to find algorithms that solve the problem under bandit feedback and strongly uncoupled
dynamics. Within this context, each player can only access information regarding the cost function
associated with their chosen actions without prior insight into their counterparts. This allows modular
development of the multi-player system in real applications and leverages existing single-agent
learning algorithms for reuse.

Many works have focused on the time-average convergence to Nash equilibrium on learning in
monotone games (Even-Dar et al., 2009; Syrgkanis et al., 2015; Farina et al., 2022). However,
these works only guarantee the convergence of the time average of the joint action profile. Such
convergence properties are less appealing, because while the trajectories of the players converge in
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the time-average sense, it may still exhibit cycling (Mertikopoulos et al., 2018). This jeopardizes the
practical use of such algorithms.

Popular no-regret algorithms such as mirror descent have demonstrated convergence in the last
iterate within specific scenarios, such as two-player zero-sum games (Cai et al., 2023) and strongly
monotone games (Bravo et al., 2018; Drusvyatskiy et al., 2022; Lin et al., 2021). Yet convergence to
Nash equilibrium in monotone and smooth games is not available unless one assumes exact gradient
feedback and coordination of players (Cai et al., 2022; Cai and Zheng, 2023). It remains open as to
whether a no-regret algorithm can efficiently converge to a Nash equilibrium in monotone games with
bandit feedback and strongly uncoupled dynamics. In this paper, we investigate the pivotal question:

How fast can no-regret algorithms converge (in the last iterate) to a Nash equilibrium in general
monotone and smooth games with bandit feedback and strongly uncoupled dynamics?

In this work, we present a mirror-descent-based algorithm designed to converge to the Nash equilib-
rium in monotone and smooth games. Our algorithm is uncoupled and convergent and is applicable
to the general monotone and smooth game setting. Motivated by real applications, where many
games are also time-varying, we extend our study to encompass time-varying monotone games. This
justifies that our algorithm could be deployed in both stationary and non-stationary tasks.

We achieve state-of-the-art results in both monotone games and time-varying monotone games.

• In monotone and smooth games:
– Under bandit feedback and strongly uncoupled dynamics, we show our algorithm

achieves a last-iterate convergence rate of O(T−1/4).
– In cases where the game exhibits strong monotonicity, our result improves to O(T−1/2),

matching the current best available convergence rates for strongly monotone games
(Drusvyatskiy et al., 2022; Lin et al., 2021).

– Our algorithm is no regret albeit players may be self-interested. The individual regret
is at most O(T 3/4) in monotone games and at most O(T 1/2) in strongly monotone
games.

• In time-varying monotone and smooth games:
– If the game eventually converges to a static state within a time frame of O(Tα), our

algorithm achieves convergence in O(T−1/4+α).
– If the game does not converge but experiences gradual changes in the Nash

equilibrium that evolves in O(Tφ), our algorithm exhibits convergence rates of
O
(
max

{
T 2φ/3−2/3, T (4φ+5)2/72−9/8

})
. The algorithm outperforms best available

results of Tφ/5−1/5 by Duvocelle et al. (2023) and Tφ/3−2/3 by Yan et al. (2023).

Table 1 and Table 2 summarize our results and the results of previous works.

2 Related Works

Monotone games The convergence of monotone games has been studied in a significant line
of research. For a strongly monotone game under exact gradient feedback, the linear last-iterate
convergence rate is known (Tseng, 1995; Liang and Stokes, 2019; Zhou et al., 2020). Under noisy
gradient feedback, Jordan et al. (2023) showed a last-iterate convergence rate of O(T−1). Under
bandit feedback, Bervoets et al. (2020) proposed an algorithm that asymptotically converges to the
equilibrium if it is unique. Bravo et al. (2018) subsequently introduced an algorithm with a last-iterate
convergence rate of O(T−1/3), while also ensuring the no-regret property. Later works (Lin et al.,
2021) further improved the last-iterate convergence rate to O(T−1/2) under bandit feedback using
the self-concordant barrier function. Jordan et al. (2023) gave a result of the same rate, but with the
additional assumption that the Jacobian of each player’s gradient is Lipschitz continuous. In the case
of bandit but noisy feedback (with a zero-mean noise), Lin et al. (2021) showed that the convergence
rate is still O(T−1/2).

For monotone but not strongly monotone games, Mertikopoulos and Zhou (2019) leveraged the dual
averaging algorithm to demonstrate an asymptotic convergence rate under noisy gradient feedback.
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Table 1: Summary of results for monotone games. “E" stands for the result in expectation and “P" stands for the
result held in high probability. Strongly monotone games are abbreviated to “StroM", while monotone games
are abbreviated to “M". We use “linear*" to denote the two-player zero-sum game, which is a special case of the
linear game. We use “(N)" to remark that the results can also be obtained with noisy feedback. We also remark
that prior works have used mostly two different convergence metrics, the ℓ2 distance between the iterates and the
Nash equilibrium, and the gap function (see Theorem 5.4 for an example). Our results are obtained with the
Brgeman divergence between the iterates and the Nash equilibrium and we use the gap function for the lienar
cost function special case.

Class of games Feedback Results

Bravo et al. (2018) StroM bandit O(T−1/3) (E)
Drusvyatskiy et al. (2022) StroM bandit O(T−1/2) (E)

Lin et al. (2021) StroM bandit (N) O(T−1/2) (E)
Jordan et al. (2023) StroM noisy gradient O(T−1)

Ours StroM bandit (N) O(T−1/2) (E & P)
Mertikopoulos and Zhou (2019) M noisy gradient asymptotic

Cai and Zheng (2023) M exact gradient O(T−1)
Tatarenko and Kamgarpour (2019) M bandit asymptotic

Ours M bandit (N) O(T−1/4) (E)

Cai et al. (2023) linear* bandit O(T−1/6) (E)
Ours linear bandit O(T−1/6) (E)

Table 2: Summary of last-iterate convergence results for time-varying games. All results here are in expectation
results. Strongly monotone games are abbreviated to “StroM", and monotone games are abbreviated to “M".
We also remark that prior works have used mostly two different convergence metrics, the ℓ2 distance between
the iterates and the Nash equilibrium, and the gap function (see Theorem 5.4 for an example). Our results
are obtained with the Brgeman divergence between the iterates and the Nash equilibrium and we use the gap
function for the lienar cost function special case.

Class of
games Time-varying property Feedback Results

Duvocelle et al. (2023) StroM converging in O(Tα) bandit asymptotic
Ours M converging in O(Tα) bandit O(T−1/4+α)

Duvocelle et al. (2023) StroM O(Tφ) variation path bandit O(Tφ/5−1/5)

Yan et al. (2023) StroM O(Tφ) variation path exact
gradient O(Tφ/3−2/3)

Ours M O(Tφ) variation path bandit
O
(
max{T 2φ/3−2/3,

T (4φ+5)2/72−9/8}
)

With access to the exact gradient information, Cai and Zheng (2023) gave a last-iterate convergence
rate of O(T−1). In the context of bandit feedback, Tatarenko and Kamgarpour (2019) proposed an
algorithm that asymptotically converges to the Nash equilibrium. Table 1 provides a summary of the
recent results.

Time-varying monotone games Motivated by real-world applications such as Cournot competition,
where multiple firms supply goods to the market and pricing is subject to fluctuations due to factors
like weather, holidays, and politics. Duvocelle et al. (2023) studied the strongly monotone game under
a time-varying cost function. When the game converges to a static state, they propose an algorithm
that achieves asymptotic convergence under bandit feedback. Assuming the cost function varies
O(Tϕ) across a horizon T , Duvocelle et al. (2023) provided an algorithm that attains a convergence
rate of O(Tϕ/5−1/5) under bandit feedback. Subsequent work of Yan et al. (2023) further improved
this rate to O(Tϕ/3−2/3) under exact gradient feedback.
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3 Preliminaries

We consider a multi-player game with n players, with the set of players denoted as N . Each player i
takes action on a compact and convex set Xi ⊆ Rd of d dimensions, and has cost function ci(xi, x−i),
where xi ∈ Xi is the action of the i-th player and x−i ∈

∏
j∈[n],j ̸=i Xj is the action of all other

players. We assume the radius of Xi is bounded, i.e., ∥x− x′∥ ≤ B, ∀x, x′ ∈ Xi. Without loss of
generality, we further assume ci(x) ∈ [0, 1].

In this work, we study a class of monotone continuous games, where the gradient of the cost functions
is monotone and the cost functions continuous (Assumption 3.1). Games that satisfy this assumption
include convex-concave games, convex potential games, extensive form games, Cournot competition,
and splittable routing games. A discussion of these games is available in Section 3.1. Note that the
class of monotone continuous games is commonly studied in the literature (Lin et al., 2021; Farina
et al., 2022).
Assumption 3.1. For all player i ∈ N , the cost function ci(xi, x−i) is continuous, differentiable,
convex, and ℓi-smooth in xi. Further, ci has bounded gradient |∇ici(x)| ≤ G and the gradient
F (x) = [∇ici(x)]i∈N is a monotone operator, i.e., (F (x)− F (y))⊤(x− y) ≥ 0, ∀x, y.

For notational convenience, we denote L =
∑

i∈N ℓi.

A common solution concept in the game is Nash equilibrium, which is a state of dynamic where no
player can reduce its cost by unilaterally changing its action. Our aim is to learn a Nash equilibrium
x∗ ∈

∏
i Xi of the game. Formally, the Nash equilibrium is defined as follows.

Definition 3.1 (Nash equilibrium). An action x∗ ∈
∏

i Xi is a Nash equilibrium if ci(x∗) ≤
ci(xi, x

∗
−i) , ∀xi ∈ Xi, xi ̸= x∗

i , i ∈ N .

When the game satisfies Assumption 3.1, and is with a compact action set, it is known that it must
admit at least one Nash equilibrium (Debreu, 1952).

3.1 Examples of Monotone Continuous Games

A wide range of monotone games are captured by Assumption 3.1, and we now present a few classic
examples. We include more examples in the appendix.
Example 3.1 (convex-concave game). Consider a two-player convex-concave game, where the
objective function is c1(x1, x2) = f(x1, x2), c2(x1, x2) = −f(x1, x2). It is immediate that if f is
continuous, differentiable, smooth, convex in x1, concave in x2, then the game satisfies Assumption
3.1. Examples are rock paper scissors and chicken games.

Example 3.2 (Cournot competition). In the Cournot oligopoly model, there is a finite set of N
firms, where firm i supplies the market with a quantity xi ∈ [0, Ci] of some good and Ci is the
firm’s production capacity. The good is priced as a decreasing function P (xtot) = a− bxtot, where
xtot =

∑N
i=1 xi is the total number of goods supplied to the market, and a, b > 0 are positive

constants. The cost of firm i is then given by ci(xi, x−i) = dixi − xiP (xtot), where di is the cost
of producing one unit of good. This is the associated production cost minus the total revenue from
producing xi units of goods. It is clear that ci is continuous and differentiable, and Bravo et al.
(2018) showed ci has positive definite and bounded hessian (is convex and smooth).

Example 3.3 (Splittable routing game). In a splittable routing game, each player directs a flow,
denoted as fi, from a source to a destination within an undirected graph G = (V,E). Each edge
e ∈ E is linked to a latency function, represented as ℓe(f), which denotes the latency cost of the
flow passing through the edge. The strategies available to player i are the various ways of dividing
or "splitting" the flow fi into distinct paths connecting the source and the destination. With some
restrictions on the latency function, the game satisfies Assumption 3.1 (Roughgarden and Schoppmann,
2015).

3.2 Bandit Feedback and Strongly Uncoupled Dynamic

In this work, we focus on learning under bandit feedback and strongly uncoupled dynamics. The
bandit feedback setting restricts each player to only observe the cost function ci(xi, x−i) with respect
to the action taken xi. The strongly uncoupled learning dynamic (Daskalakis et al., 2011) means
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players do not have prior knowledge of cost function or the action space of other players and can
only keep track of a constant amount of historical information. As the bandit feedback and strongly
uncoupled dynamic only require each player to access information of its own, this allows for modular
development of the multi-player system, by reusing existing single-agent learning algorithms.

4 Algorithm

Our algorithm builds upon the renowned mirror-descent algorithm. The efficacy of online mirror-
descent in solving Nash equilibrium has been demonstrated under full information, and in both
linear or strongly monotone games, with extensive investigations into its last-iterate convergence
investigated in Cen et al. (2021); Lin et al. (2021); Cai et al. (2023); Duvocelle et al. (2023).

Our algorithm differs from classic online mirror descent approaches by making use of two regularizers:
A self-concordant barrier regularizer h to build an efficient Ellipsoidal gradient estimator and contest
the bandit feedback; and a regularizer p to accommodate monotone (and not strongly monotone)
games. Similar use of two regularizers has also been investigated (Lin et al., 2021). However, their
method used the Euclidean norm regularization, which cannot be extended to our setting.

Regularizers Let h be a ν-self-concordant barrier function (Definition 4.1), p be a convex function
with µI ⪯ ∇2p(x) ⪯ ζI , ζ > 0, µ ≥ 0. Let Dp denote the Bregman divergence induced by
p. We choose p such that for any xi, x

′
i ∈ Xi, Dp(xi, x

′
i) ≤ Cp < ∞, and for some κ > 0,

ci(xi, x−i)− κp(xi) to be convex. Notice that when ci is convex but not linear, we can always find
such p when the action set is bounded. Intuitively, this is to interpolate a function p that possesses
less curvature than all ci. We will discuss the modification to the algorithm needed when ci is linear
in Section 5.3.
Definition 4.1. A function h : int(X ) 7→ R is a ν-self concordant barrier for a closed convex
set X ⊆ Rn, where int(X ) is an interior of X , if 1) h is three times continuously differentiable;
2) h(x) → ∞ if x → ∂X , where ∂X is a boundary of X ; 3) for ∀x ∈ int(X ) and ∀λ ∈ Rn,
we have

∣∣∇3h(x)[λ, λ, λ]
∣∣ ≤ 2

(
λ⊤∇2h(x)λ

)3/2
and

∣∣∇h(x)⊤λ
∣∣ ≤ √

ν
(
λ⊤∇2h(x)λ

)1/2
where

∇3h(x) [λ1, λ2, λ3] =
∂3

∂t1∂t2∂t3
h (x+ t1λ1 + t2λ2 + t3λ3)

∣∣∣
t1=t2=t3=0

.

1. h is three times continuously differentiable;

2. h(x) → ∞ if x → ∂X , where ∂X is a boundary of X ;

3. for ∀x ∈ int(X ) and ∀λ ∈ Rn, we have
∣∣∇3h(x)[λ, λ, λ]

∣∣ ≤ 2
(
λ⊤∇2h(x)λ

)3/2
and

∣∣∇h(x)⊤λ
∣∣ ≤

√
ν
(
λ⊤∇2h(x)λ

)1/2
where ∇3h(x) [λ1, λ2, λ3] =

∂3

∂t1∂t2∂t3
h (x+ t1λ1 + t2λ2 + t3λ3)

∣∣∣
t1=t2=t3=0

.

It is shown that any closed convex domain of Rd has a self-concordant barrier (Lee and Yue, 2021).

Ellipsoidal gradient estimator As our algorithm operates under bandit feedback and strongly
uncoupled dynamics, we would need to design a gradient estimator while only using costs for the
individual player.

Let Sd, Bd be the d-dimensional unit sphere and the d-dimensional unit ball, respectively. Our
algorithm estimates the gradient using the following ellipsoidal estimator:

ĝti =
d

δt
ci(x̂

t)(At
i)

−1zti , At
i = (∇2h(xt

i) + ηt(t+ 1)∇2p(xt
i))

−1/2 , x̂t
i = xt

i + δtA
t
iz

t
i ,

where zti is uniformly independently sampled from Sd and δt, ηt ∈ [0, 1] are tunable parameters.

One can show that ĝti is an unbiased estimate of the gradient of a smoothed cost function
ĉi(x

t) = Ewt
i∼BdEzt

−i∼Πj ̸=iSd
[
ci
(
xt
i +At

iw
t
i , x̂

t
−i

)]
. When p is strongly convex, one can upper

bound ∥∇iĉi(x)−∇ici(x)∥ by the maximum eigenvalue of At
i and it suffices to take δt = 1, which

recovers the results in Lin et al. (2021). However, when p is convex and not strongly convex, one
would need to carefully tune δt to control the bias from estimating the smoothed cost function. This
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ellipsoidal gradient estimator was first introduced by Abernethy et al. (2008) for the case of ci being
linear, and was then extended by Hazan and Levy (2014) to the case of strongly convex costs. In
learning for games, the ellipsoidal estimator was used in the case of strongly monotone games (Bravo
et al., 2018; Lin et al., 2021).

Based on the ellipsoidal gradient estimator, we present our uncoupled and convergent algorithm for
monotone games under bandit feedback.

Algorithm 1: Algorithm
Input: Learning rate ηt, parameter δt, regularizer h(·), p(·), constant κ

1 x1
i = argminxi∈Xi

h(xi)
2 for t = 1, . . . , T do
3 Set At

i = (∇2h(xt
i) + ηt(t+ 1)∇2p(xt

i))
−1/2

4 Play x̂t
i = xt

i + δtA
t
iz

t
i , receive bandit feedback ci(x̂i, x̂−i), sample zti ∼ Sd

5 Update gradient estimator ĝti =
d
δt
ci(x̂

t)(At
i)

−1zti
6 Update the strategy

xt+1
i = argmin

xi∈Xi

{
ηt
〈
xi, ĝ

t
i

〉
+ ηtκ(t+ 1)Dp(xi, x

t
i) +Dh(xi, x

t
i)
}

(1)

Implementation Notice that solving Equation (1) is equivalent to solving a convex but potentially
non-smooth optimization problem. Certain sets X ⊆ Rd, including the cases when X is the strategy
space of a normal-form game or an extensive-form game, can be solved by proximal Newton algorithm
provably in O(log2(1/ϵ)) iterations (Farina et al., 2022). When such guarantees are not required,
one could accommodate other optimization methods in solving (1). Our experiment section provides
more details.

The choice of p and h is game-dependent. For example, when ci(x) = x2 and the action set is on the
positive half line, we can use the negative log function as our self-concordant barrier function h and
take p = x.

5 No-regret Convergence to Nash Equilibrium

In this section, we present our main results on the last-iterate convergence to the Nash equilibrium.
We show that Algorithm 1 converges to the Nash equilibrium in monotone, strongly monotone, and
linear games. Such convergence is no-regret, meaning that the individual regret of each player is
sublinear.

For notational simplicity, we present the results in a perfect bandit feedback model, where player i
observes exactly ci(x

t). The discussion of noisy bandit feedback, where player i observes ci(xt)+ ϵti,
with ϵti be a zero-mean noise, is deferred to the appendix (Theorem D.1).

5.1 Perfect Bandit Feedback

The following theorem describes the last-iterate convergence rate (in expectation) for convex and
strongly convex loss under perfect bandit feedback.

Theorem 5.1. Take ηt =

{
1

2dt3/4
µ = 0

1
2dt1/2

µ > 0 ,
, δt =

{
1

t1/4
µ = 0

1 µ > 0 .
. With Algorithm 1, we have

E

[∑
i∈N

Dp

(
x∗
i , x

T+1
i

)]

≤

O
(

ndν log(T )
κT 1/4 + nζdB

T 3/4 + nBL
κ
√
T
+

ndCp

T 1/4 + nd log(T )
κT 1/4 +

√
nB2L log(T )

κT 1/4

)
µ = 0

O
(

ndν log(T )

κ
√
T

+ ndζB
T + nBL

κ
√
T
+

ndCp√
T

+ nd log(T )

κ
√
T

+ BL log(T )

µκ
√
T

)
µ > 0 ,

.
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In the case of the monotone games, Bravo et al. (2018) showed an asymptotic convergence to
Nash equilibrium. To the best of our knowledge, Theorem 5.1 is the first result on the last-iterate
convergence rate for monotone games. For strongly monotone games, Bravo et al. (2018) first gave a
O(T−1/3) last-iterate convergence rate, which was later improved to O(T−1/2) by Lin et al. (2021).

We remark that the choice of regularizer function p determines the convergence metrics Dp(·, ·) and
therefore affect the meaning of convergence. In the most extreme case, where p is a linear function,
such metrics may be meaningless. Therefore, it is important to choose an appropriate p to recover the
Nash equilibrium.

While we defer the proof to the appendix, we discuss the main ideas for deriving the results. By the
update rule, we can obtain the inequality

Dh

(
ωi, x

t+1
i

)
+ ηtκ(t+ 1)Dp

(
ωi, x

t+1
i

)
≤ Dh

(
ωi, x

t
i

)
+ ηtκ(t+ 1)Dp

(
ωi, x

t
i

)
+ ηt

〈
∇ici

(
xt
)
, ωi − xt

i

〉
+ ηt · residual terms ,

(2)

where ωi is a fixed point given.

When the game is strongly monotone, we can directly use strongly monotonicity and take p to be the
Euclidean norm to obtain a recursive relation similar to

∥∥ωi − xt+1
i

∥∥2
2
≤ (1− η2t )

∥∥ωi − xt+1
i

∥∥2
2
+

residual terms. This amounts to applying this recursion and upper-binding the residual terms in-
dividually to obtain a last-iterate convergence. However, when the game is monotone but not
strongly monotone, we will need a different approach. Notice that G = ∇ci − ∇p is a mono-
tone operator. Using the property of Bregman divergence, we have ⟨G(x)−G(x′), x′ − x⟩ ≤
−
∑

i∈N (Dp (xi, x
′
i) +Dp (x

′
i, xi)).

We then sum the recursive inequality and leverage the combination of two regularizations, which
obtains ηTκ(T + 1)

∑
i∈N Dp

(
ωi, x

T+1
i

)
≤

∑
i∈N Dh

(
ωi, x

1
i

)
+ κ

∑
i∈N Dp

(
ωi, x

1
i

)
+∑T

t=1

∑
i∈N ηt ⟨∇ici(ω), ωi − xt

i⟩ +
∑T

t=1

∑
i∈N ηt ⟨ĝti −∇ici (x

t) , ωi − xt
i⟩ +∑T

t=1

∑
i∈N ηt

〈
ĝti , x

t
i − xt+1

i

〉
Now it suffices to properly choose a fixed point ωi such

that both the first term
∑

i∈N Dh

(
ωi, x

1
i

)
and the third term

∑T
t=1

∑
i∈N ηt ⟨∇ici(ω), ωi − xt

i⟩ are
bounded. When ωi is the Nash equilibrium x∗

i , the third term can be upper bounded trivially using
the monotonicity of ci, while it does not imply a bounded first term. Therefore, we set ωi = x∗

i when
the first term can be bounded. Otherwise, we set it to a close enough point to x∗

i , such that the first
term can be bounded and the third term is bounded through a more careful calculation.

High probability result In the case of a strongly monotone game, our results show that the
O(T−1/4) last-iterate convergence rate holds a high probability. This is the first high-probability
result for last-iterate convergence in strongly monotone games.

Theorem 5.2. With a probability of at least 1 − log(T )δ, δ ≤
e−1, and with Algorithm 1, we have

∑
i∈N Dp

(
x∗
i , x

T+1
i

)
≤

O
(

ndν log(T )√
T

+ ndζB
T + nBL√

T
+

ndCp√
T

+ nd log(T )√
T

+ dBL log(T )

µ
√
T

+ nBd2 log2(1/δ) log(T )

min{√µ,µ}
√
T

)
.

5.2 Individual Low Regret

Beyond the fast convergence to Nash equilibrium, our algorithm also ensures each player with a
sublinear regret when playing against other players. The sublinear regret convergence is a desirable
property as the players could be self-interested in general, and want to ensure their return even when
other players are not adhering to the protocol. The low regret property remains true for players that
are potentially adversarial, despite the convergence to Nash equilibrium no longer holds in that case.

For player i, and a sequence of actions {x̂t
i}Tt=1, define the individual regret as the cumulative

expected difference between the costs received and the cost of playing the hindsight optimal action.
That is,

∑T
t=1 E

[
ci
(
x̂t
i, x

t
−i

)
− ci

(
ωi, x

t
−i

)]
, where {xt

−i}Tt=1 is a fixed sequence of actions of
other players. The following theorem shows a guarantee of the individual regret of each player.
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Theorem 5.3. Take ηt =

{
1

2dt3/4
µ = 0

1
2dt1/2

µ > 0 ,
, δt =

{
1

t1/4
µ = 0

1 µ > 0 ,
. For a fixed ωi ∈ Xi, a fixed

sequence of {xt
−i}Tt=1, and with Algorithm 1, we have

T∑
t=1

E
[
ci
(
x̂t
i, x

t
−i

)
− ci

(
ωi, x

t
−i

)]
=

O
(
νdT 3/4 log(T ) +G

√
T + ℓi

√
nBT 3/4

)
µ = 0

O
(
νd

√
T log(T ) +G

√
T + nBℓi

√
T

µ

)
µ > 0

.

Our result matches the
√
T regret bound for strongly monotone games (Lin et al., 2021), but applies

to monotone games as well.

Implication on social welfare By designing the algorithm to be no-regret, we can also show that
the social welfare attained by the algorithm also converges to the optimal value.

The social welfare for a joint action x is defined as SW(x) =
∑

i∈N ci(x). We let OPT =
minx SW(x) to denote the optimal social welfare.
Definition 5.1 (Roughgarden 2015; Syrgkanis et al. 2015). A game is (C1, C2)-smooth, C1 > 0,
C2 < 1, if there exists a strategy x′, such that for any x ∈ N ,

∑
i∈N ci(x

′
i, x−i) ≤ C1OPT +

C2SW(x).

We have the following proposition which shows that the social welfare converges to optimal welfare
on average.
Proposition 5.1. With ηt =

1
2dt3/4

, δt =
1

t1/4
, and suppose every player employ Algorithm 1, we

have 1
T

∑T
t=1 E [SW(x̂)] = O

(
C1OPT
(1−C2)

+ nνd log(T )
(1−C2)T 1/4 +

√
nB

∑
i∈N ℓi

(1−C2)T 1/4

)
.

5.3 Special Case: Linear Cost Function

When ci is linear, there does not exist a p that is convex while making ci − κp convex. Algorithm 1
therefore does not apply to the linear case. This coincides with our intuition that the landscape ci
does not provide enough curvature information for the algorithm to utilize.

To extend the algorithm to the linear case, we modify line 6 of Algorithm 1 as xt+1
i =

argminxi∈Xi
{ηt ⟨xi, ĝ

t
i⟩+ ηtτ(t+ 1)Dp(xi, x

t
i) +Dh(xi, x

t
i)}. The idea is to first show the con-

vergence of xT to a game with the cost ci(x) + τp(x). With this regularized game, we choose p to be
a strongly convex function and measure the convergence in terms of the gap function ⟨ci(x), xi−x∗⟩.
By carefully controlling τ , we obtain the following result.
Theorem 5.4. With ηt = 1

2d
√
t
, τ = 1

T 1/6 , Gp = supx ∥∇p(x)∥
and Algorithm 1, we have E

[∑
i∈N

〈
∇ici

(
xT
)
, xT

i − x∗
i

〉]
≤

Õ

(
BGp+

√
d(BL+G)(nν+nBL+nd2)

T 1/6 +

√
dBL(BL+G)
√
µT 1/6 +

√
dnCp(BL+G)
√
µT 1/4

)
.

Similar regularization techniques have been used in the analysis of the zero-sum game (Cen et al.,
2021; Cai et al., 2023). Our result matches the last-iterate convergence for zero-sum matrix game
(Cai et al., 2023), which is a class of games with linear cost functions. However, our result is more
general as it applies to multi-player linear games with convex and compact action sets (while previous
works only apply to a simplex action set). It remains open to how games with linear cost functions
could be effectively learned and whether the convergence rate could be improved.

6 Application to Time-varying Game

In this section, we further apply Algorithm 1 to games that evolve over time. A time-varying game
Gt is a game where the cost function cti(·), i ∈ N depends on t. The game Gt is not revealed to the
players before choosing their actions xt. We assume that Gt satisfies Assumption 3.1 for every t.

Such evolving games have applications in Kelly’s auction and power control, where the cost function
may change as time-dependent values change, such as channel gains. While the changes of Gt can be
random, we discuss two cases here, 1) when Gt converges to a static game G in o(T ) time, and 2)
when the variation path of the Nash equilibrium,

∑T
t=1 ∥x

t+1,∗
i − xt,∗

i ∥ is bounded in o(T ).
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Figure 1: Experiment on Cournot competition, zero-sum two-player minimax game, and convex-concave game.
In Cournot competition, the curves of OMD and GD overlap with each other.

Converging monotone game Let Gt denote the game formed by the costs {cti(·)}i∈N , and G be
the game formed by the costs {ci(·)}i∈N . Suppose Gt converges to G, and let x∗ be the set of Nash
equilibrium of the game G. The cost function cti converges to some cost function ci in o(T ) time. The
following theorem shows the last iterate convergence to x∗.

Theorem 6.1. With
∑T

t=1

∑
i∈N maxx ∥∇ici(x) − ∇ic

t
i(x)∥2 = Tα, take ηt =

1
2dt3/4

, δt = 1
t1/4

, and under Algorithm 1, we have E
[∑

i∈N Dp

(
x∗
i , x

T+1
i

)]
≤

O
(

ndν log(T )
κT 1/4 + nζdB

T 3/4 + nBL
κ
√
T
+

ndCp

T 1/4 +nd log(T )
κT 1/4 +

√
nB2L log(T )

κT 1/4 + B
T 1/4−α

)
.

For monotone games, Duvocelle et al. (2023) showed an asymptotic last-iterate convergence rate.
To the best of our knowledge, Theorem 6.1 is the first last-iterate convergence rate for the class of
converging monotone game.

Evolving game and equilibrium tracking We now discuss the case where Gt does not necessarily
converge to a game G, but the cumulative changes of the equilibrium are bounded. We use the
variation path Vi(T ) =

∑
t∈[T ]

∥∥∥xt+1,∗
i − xt,∗

i

∥∥∥ to track the cumulative changes of equilibrium.
In this setting, the last-iterate convergence is not applicable, and the convergence is measured in
terms of the average gap. Because of this, the algorithm is slightly modified and updates with
xt+1
i = argminxi∈Xi

{ηt ⟨xi, ĝ
t
i⟩+Dh(xi, x

t
i)}.

Theorem 6.2. Assume Vi(T ) ≤ Tφ, φ ∈ [0, 1]. Take ηt = 1

2dt
(1−φ)

3

, δt = 1
t1/2

, and under Algorithm

1, we have 1
T

∑T
t=1

∑
i∈N

〈
∇ic

t
i

(
x̂t
i, x̂

t
−i

)
, x̂t

i − xt,∗
i

〉
= Õ

(
nνd+Ln3/2B2+nG

T
2(1−φ)

3

+ n

T
9
8
− (4φ+5)2

72

)
.

In the case of a strongly monotone game, Duvocelle et al. (2023) gave a result of Tφ/5−1/5 and Yan
et al. (2023) gave a result of Tφ/3−2/3. In comparison, Theorem 6.2 extends the study to monotone
games, and improves the result to O

(
max

{
T 2φ/3−2/3, T (4φ+5)2/72−9/8

})
.

7 Experiment

In this section, we provide a numerical evaluation of our proposed algorithm in three static games.
We repeat each experiment with 5 different random seeds. We ran all experiments with a 10-core
CPU, with 32 GB memory. We set ηt = 1√

t+1
, and δt = 0.001.

We present the results of the following example games described below. More results with other
parameters can be found in the Appendix K.

Cournot competition In this Cournot duopoly model, n players compete with constant marginal
costs, each having individual constant price intercepts and slopes. We model the game with 5
players, where the margin cost is 40, price intercept is [30, 50, 30, 50, 30], and the price slope is
[50, 30, 50, 30, 50].

Zero-sum matrix game In this zero-sum matrix game, the two players aim to solve the bilinear
problem minx maxy x

⊤Ay. We set this matrix A to be [[1, 2], [3, 4]].

9



monotone zero-sum matrix game In this monotone version of the zero-sum matrix game, we
regularize the game by the regularizer x2 + y2.

Algorithm 1 is evaluated against two baseline methods: online mirror descent and gradient descent,
with exact gradient, or estimated gradient (bandit feedback). We set the learning rate η to be 0.01 in
both zero-sum matrix games and monotone zero-sum matrix games and 0.09 in Cournot competition.

Figure 1 summarizes our experimental findings, where our algorithm attains comparable performance
to online mirror descent and gradient descent with full information. This demonstrates the efficacy
of our algorithm. We also compare our algorithm to gradient descent with an estimated gradient,
using the same ellipsoidal gradient estimator, for a more fair comparison. However, apart from the
zero-sum matrix game, we find the baseline algorithm performs too poorly to be compared.

8 Conclusion

In this work, we present a mirror-descent-based algorithm that converges in O(T−1/4) in general
monotone and smooth games under bandit feedback and strongly uncoupled dynamics. Our algo-
rithm is no-regret, and the result can be improved to O(T−1/2) in the case of strongly-monotone
games. To our best knowledge, this is the first uncoupled and convergent algorithm in general
monotone games under bandit feedback. We then extend our results to time-varying monotone
games and present the first result of O(T−1/4) for converging games and the improved result of
O
(
max{T 2φ/3−2/3, T (4φ+5)2/72−9/8}

)
for equilibrium tracking. We further verify the effective-

ness of our algorithm with empirical evaluations.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately and clearly state the main theoretical
claims made and discuss the main contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper clearly states the assumption made and gives examples of when
the assumptions are satisfied. The paper also states clearly of the experimental settings, the
computational resources needed, etc.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All implementation details are given in the experiment section. Code will be
released upon acceptance of this paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We will provide open access to the code and data upon acceptance of this
paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental settings are described in the experiment settings in detail to
reproduce the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, all figures for the experiments are shown with shading the one standard
deviation error.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All computational resources used have been stated in the experiment section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: I have reviewed the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper is foundational and theoretical research without particular applica-
tion or deployment.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper is theoretical with no such risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The experimental environment used in this paper is synthetic.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The experiment environments have been described in detail in this paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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A More Example Games

Example A.1 (Extensive form game (EFG)). EFGs are games on a directed tree. At terminal nodes
denoted as z ∈ Z , each player i ∈ N incurs a cost ci(z) based on a function ci : Z → R. The
action set of each player, Xi, is represented through a sequence-form polytope known as Xi Koller
et al. (1996). Considering the probability p(z) of reaching a terminal node z ∈ Z , the cost for player
i is expressed as ci(x) :=

∑
z∈Z p(z)ci(z)

∏
j∈N xj [σj,z]. Here, x = (x1, . . . , xn) ∈

∏
j∈N Xj

signifies the joint strategy profile, and xj [σj, z] denotes the probability mass assigned to the last
sequence σj,z encountered by player j before reaching z. The smoothness and concavity of utilities
directly arise from multilinearity.

Example A.2 (monotone potential game). A game is called a potential game if there exists a potential
function Φ : X → R, such that, ci(xi, x−i)− ci(x

′
i, x−i) = Φ(xi, x−i)−Φ(x′

i, x−i), for all i ∈ N .
If Φ is continuous, differentiable, smooth, and monotone in xi, then the game satisfies Assumption
3.1. For example, a non-atomic congestion game satisfies Assumption 3.1, as shown in Proposition 1
and 2 of Chen and Lu (2016).
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B Proof of Theorem 5.1

Theorem 5.1. Take ηt =

{
1

2dt3/4
µ = 0

1
2dt1/2

µ > 0 ,
, δt =

{
1

t1/4
µ = 0

1 µ > 0 .
. With Algorithm 1, we have

E

[∑
i∈N

Dp

(
x∗
i , x

T+1
i

)]

≤

O
(

ndν log(T )
κT 1/4 + nζdB

T 3/4 + nBL
κ
√
T
+

ndCp

T 1/4 + nd log(T )
κT 1/4 +

√
nB2L log(T )

κT 1/4

)
µ = 0

O
(

ndν log(T )

κ
√
T

+ ndζB
T + nBL

κ
√
T
+

ndCp√
T

+ nd log(T )

κ
√
T

+ BL log(T )

µκ
√
T

)
µ > 0 ,

.

Proof. We now upper bound the terms in Lemma J.1.

When µ = 0, taking expectation conditioned on xt, we have E
[
∥At

iĝ
t
i∥

2 | xt
]

=

d2

δ2t
E
[
ci(x̂

t)2∥zti∥2 | xt
]
≤ d2

δ2t
. By Lemma J.2, and the choice ηt =

1
2d

√
t
, we have

T∑
t=1

ηt
∑
i∈N

E
[〈
ĝti , x

t
i − xt+1

i

〉]
≤

T∑
t=1

η2t
∑
i∈N

E
[∥∥At

iĝ
t
i

∥∥2] ≤ nd2
T∑

t=1

η2t
δ2t

.

By the definition of ĉi,∑
i∈N

T∑
t=1

ηtE
[〈
ĝti −∇ici

(
xt
)
, ωi − xt

i

〉
| xt
]

=
∑
i∈N

T∑
t=1

ηtE
[〈
∇iĉi(x

t)−∇ici
(
xt
)
, ωi − xt

i

〉
| xt
]

=
∑
i∈N

T∑
t=1

ηtE
[
Ewi∼BdEz−i∼Πj ̸=iSd

〈
∇ici

(
xt
i + δtA

t
iwi, x̂

t
−i

)
−∇ici

(
xt
)
, ωi − xt

i

〉
| xt
]

≤ B
∑
i∈N

T∑
t=1

ηtE
[
Ewi∼BdEz−i∼Πj ̸=iSd

∥∥∇ici
(
xt
i + δtA

t
iwi, x̂

t
−i

)
−∇ici

(
xt
)∥∥ | xt

]
By the smoothness of ci,

Ewi∼BdEz−i∼Πj ̸=iSd
[∥∥∇ici

(
xt
i + δtA

t
iwi, x̂

t
−i

)
−∇ici

(
xt
)∥∥]

≤ ℓiEwi∼BdEz−i∼Πj ̸=iSd

√δ2t ∥Aiwi∥2 + δ2t
∑
j ̸=i

∥Ajzj∥2
 .

Since p is monotone, ∇2p(x) is positive semi-definite, and At
i ⪯ (∇2h(xi))

−1/2. For x̄t
i = xt

i +

At
iw

t
i . Define ∥v∥x =

√
v⊤∇2h(x)v, we have ∥x̄t

i − xt
i∥xi

≤ ∥ωt
i∥ ≤ 1, and x̄t

i ∈ W (xt
i), where

W (xi) = {x′
i ∈ Rd, ∥x′

i − xi∥xi
≤ 1} is the Dikin ellipsoid. Since W (xi) ⊆ Xi,∀xi ∈ int(Xi),

we can upper bound ∥Aiwi∥2 by B2, the diameter of the set Xi. Hence ∥∇iĉi(x
t)−∇ici (x

t) ∥ ≤
ℓiδt

√
nB. By Lemma J.5

∑
i∈N

T∑
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ηtE
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(
xt
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, ωi − xt
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(
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)
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(
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)∥∥ ∥∥ωi − xt
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≤
√
nB2

∑
i∈N
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T∑
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When µ > 0, we set δ = 1. Then, taking expectation conditioned on xt, we have E
[
∥At

iĝ
t
i∥

2 | xt
]
=

d2E
[
ci(x̂

t)2∥zti∥2 | xt
]
≤ d2. By Lemma J.2, and the choice ηt =

1
2d

√
t
, we have

T∑
t=1

ηt
∑
i∈N

E
[〈
ĝti , x

t
i − xt+1

i

〉]
≤
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t=1

η2t
∑
i∈N

E
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iĝ
t
i

∥∥2] ≤ nd2
T∑
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η2t .

By Lemma J.5, for any ωi ∈ Xi, we have

∑
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µ(t+ 1)

≤
B
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i∈N ℓi

µ

T∑
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1

(t+ 1)
.

where the third inequality is by ∇2h(x) being positive definite, and ∇2p(x) ≥ µI .

Let L =
∑

i∈N ℓi. When µ = 0, combing and rearranging the terms, we have

E
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(
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i
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+
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√
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√
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√
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.
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2dt3/4

, δt = 1
t1/4

, then
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t

δ2t
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(∑T
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1
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)
= O(log(T )), and
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O
(∑T

t=1
1
t

)
= O(log(T )). Hence, we have

E

[∑
i∈N
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(
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i

)]
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+
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+
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κ
√
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√
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)
.

When µ > 0, combing and rearranging the terms, we have

E

[∑
i∈N

Dp

(
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+
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, we have
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C Proof of Theorem 5.3

Theorem 5.3. Take ηt =

{
1

2dt3/4
µ = 0

1
2dt1/2

µ > 0 ,
, δt =

{
1

t1/4
µ = 0

1 µ > 0 ,
. For a fixed ωi ∈ Xi, a fixed

sequence of {xt
−i}Tt=1, and with Algorithm 1, we have
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t
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Proof. Define the smoothed version of ci as ĉi(x) = Ewi∼Bd [ci (xi + δAiwi, x−i)]. Then, we
decompose as
T∑

t=1

ci
(
x̂t
i, x

t
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)
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=
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ĉi
(
ωi, x

t
−i

)
− ci

(
ωi, x

t
−i

))
+

T∑
t=1

(
ci
(
x̂t
i, x

t
−i

)
− ci

(
xt
i, x

t
−i

))
.

For the first term, recall that by the update rule, we have,
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By Lemma J.5, for any ωi ∈ Xi, we have
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(
xt
)
+ κ∇p(xt

i), ωi − xt
i

〉
| xt
]
= E

[〈
∇iĉi(x
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(
xt
)
+ κ∇p(xt

i), ωi − xt
i

〉
| xt
]

= E
[
κ
〈
∇p(xt

i), ωi − xt
i

〉
| xt
]

= E
[
κp(ωi)− κp(xt

i)− κDp(ωi, x
t
i) | xt

]
,
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ĉi
(
xt
i, x

t
−i

)
− ĉi
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When µ = 0, by Lemma J.2, we have E
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Taking summation over T , and take ηt =
1

2dt3/4
, δt = 1
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we have
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ĉi
(
xt
i, x

t
−i

)
− ĉi
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For the second term, by Jensen’s inequality, we have
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When µ = 0, by the definition of ĉi and the smoothness of ci,

∥∇iĉi(x
t)−∇ici

(
xt
)
∥ =

∥∥Ewi∼BdEz−i∼Πj ̸=iSd
[
∇ici

(
xt
i + δtA

t
iwi, x̂

t
−i

)
−∇ici

(
xt
)]∥∥

≤ ℓi

√√√√√Ewi∼BdEz−i∼Πj ̸=iSd

δ2t ∥δtAiwi∥2 + δ2t
∑
j ̸=i

∥Ajzj∥2
 .

Since p is monotone, ∇2p(x) is positive semi-definite, and At
i ⪯ (∇2h(xi))

−1/2. For x̄t
i = xt

i +

At
iw

t
i . Define ∥v∥x =

√
v⊤∇2h(x)v, we have ∥x̄t

i − xt
i∥xi

≤ ∥ωt
i∥ ≤ 1, and x̄t

i ∈ W (xt
i), where

W (x) = {x′
i ∈ Rd, ∥x′

i − xi∥xi
≤ 1} is the Dikin ellipsoid. Since W (xi) ⊆ Xi,∀xi ∈ int(Xi),

we can upper bound ∥Aiwi∥2 by B2, the diameter of the set Xi. Hence ∥∇iĉi(x
t)−∇ici (x

t) ∥ ≤
ℓiδt

√
nB.
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Therefore, for the third term, we have

T∑
t=1

E
[
ĉi
(
ωi, x

t
−i

)
− ci

(
ωi, x

t
−i

)]
≤ O

(
T∑

t=1

ℓiδt
√
nB

)
.

Similarly, for the fourth term, we have
∑T

t=1 E
[
ci
(
x̂t
i, x

t
−i

)
− ci

(
xt
i, x

t
−i

)]
≤

O
(∑T

t=1 ℓiδt
√
nB
)

.

When µ > 0, by Lemma J.5, for any ωi ∈ Xi, we have∥∥∇iĉi(x
t)−∇ici

(
xt
)∥∥ ≤ ℓi

√∑
j∈N

(
σmax

(
At

j

)2) ≤ nℓi√
µ(t+ 1)

.

where the second inequality is by ∇2h(x) being positive definite, and ∇2p(x) ≥ µI .

Therefore, for the third term, we have

T∑
t=1

E
[
ĉi
(
ωi, x

t
−i

)
− ci

(
ωi, x

t
−i

)]
≤ O

(
nBℓi

√
T

µ

)
.

Similarly, for the fourth term, we have
∑T

t=1 E
[
ci
(
x̂t
i, x

t
−i

)
− ci

(
xt
i, x

t
−i

)]
≤ O

(
nBℓi

√
T

µ

)
.

When µ = 0, with δt =
1

t1/4
, we have the regret as

T∑
t=1

E
[
ci
(
x̂t
i, x

t
−i

)
− ci

(
ωi, x

t
−i

)]
= O

(
νdT 3/4 log(T ) + max

x
∥∇ici (x) ∥

√
T + ℓi

√
nBT 3/4

)
.

When µ > 0, we have the regret as

T∑
t=1

E
[
ci
(
x̂t
i, x

t
−i

)
− ci

(
ωi, x

t
−i

)]
= O

(
νdT 1/2 log(T ) + max

x
∥∇ici (x) ∥

√
T +

nBℓi
√
T

µ

)
.

Combining the terms yields the final result.
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D Proof of Theorem D.1

We now consider the case where every player receive c̃i(xt) = ci(x
t) + ϵti, where E[ϵti | x̂t] = 0, and

∥ϵti∥2 ≤ σ. The following theorem describes the last-iterate convergence rate (in expectation) for
monotone and strongly monotone loss under noisy bandit feedback.
Theorem D.1. With ηt =

1
4d2(1+σ)t3/4

, δt = 1
t1/4∑

i∈N
Dp

(
x∗
i , x

T+1
i

)
≤ O

(
nνd2(1 + σ) log(T )

κT 1/4
+

nζd2(1 + σ)B

T 3/4
+

nd2(1 + σ)Cp

T 1/4

+

√
nB2L log(T )

κT 1/4
+

nd log(T )

κ(1 + σ)2T 1/4

)
.

Proof. Similar to Theorem 5.1, with Lemma J.1, we have∑
i∈N

Dp

(
x∗
i , x

T+1
i

)
≤ O

(
nν log(T )

κηTT
+

nζB

ηTT 3/2

)
+O

(
nB
∑

i∈N ℓi

κT 3/2
+

n

κT 3/2

) ∑T
t=1 ηt
ηT

+O

(
nCp

ηTT

)

+

√
nB2L

∑T
t=1 ηtδt

ηTκ(T + 1)
+

1

ηTκ(T + 1)

∑
i∈N

T∑
t=1

ηt
〈
ĝti , x

t
i − xt+1

i

〉
.

Taking expectation conditioned on xt, we have E
[
∥At

iĝ
t
i∥

2 | xt
]
= d2

δ2t
E
[
c̃i(x̂

t)2∥zti∥2 | xt
]
≤

d2

δ2t
(2 + 2σ). By Lemma J.2, and the choice ηt =

1
4d2(1+σ)t3/4

, we have

T∑
t=1

ηt
∑
i∈N

E
[〈
ĝti , x

t
i − xt+1

i

〉]
≤

T∑
t=1

η2t
∑
i∈N

E
[∥∥At

iĝ
t
i

∥∥2] ≤ nd2
T∑

t=1

η2t
δ2t

=
n log(T )

16(1 + σ)2
.

Combining everything, we have∑
i∈N

Dp

(
x∗
i , x

T+1
i

)
≤ O

(
nνd2(1 + σ) log(T )

κT 1/4
+

nζd2(1 + σ)B

T 3/4
+

nd2(1 + σ)Cp

T 1/4
+

√
nB2L log(T )

κT 1/4
+

nd log(T )

κ(1 + σ)2T 1/4

)
.

26



E Proof of Theorem 5.2

Theorem 5.2. With a probability of at least 1 − log(T )δ, δ ≤
e−1, and with Algorithm 1, we have

∑
i∈N Dp

(
x∗
i , x

T+1
i

)
≤

O
(

ndν log(T )√
T

+ ndζB
T + nBL√

T
+

ndCp√
T

+ nd log(T )√
T

+ dBL log(T )

µ
√
T

+ nBd2 log2(1/δ) log(T )

min{√µ,µ}
√
T

)
.

Proof. Lemma J.1, we have∑
i∈N

Dp

(
x∗
i , x

T+1
i

)
≤ O

(
nν log(T )

κηTT
+

nζB

ηTT 3/2

)
+O

(
nB
∑

i∈N ℓi

κT 3/2
+

n

κT 3/2

) ∑T
t=1 ηt
ηT

+O

(
nCp

ηTT

)
+

1

κηT (T + 1)

∑
i∈N

T∑
t=1

ηt
〈
ĝti , x

t
i − xt+1

i

〉
+

1

κηT (T + 1)

T∑
t=1

ηt
∑
i∈N

〈
ĝti −∇ici

(
xt
)
, ωi − xt

i

〉
.

By Lemma J.2, we have
T∑

t=1

ηt
∑
i∈N

〈
ĝti , x

t
i − xt+1

i

〉
≤

T∑
t=1

η2t
∑
i∈N

∥∥At
iĝ

t
i

∥∥2 ≤ nd2
T∑

t=1

η2t .

We then decompose the last term as
T∑

t=1

ηt
∑
i∈N

〈
ĝti −∇ici

(
xt
)
, ωi − xt

i

〉
=

T∑
t=1

ηt
∑
i∈N

〈
gti − ĉti(x

t
i), ωi − xt

i

〉
+
∑
i∈N

T∑
t=1

ηt
〈
∇iĉi(x

t)−∇ici
(
xt
)
, ωi − xt

i

〉
.

By Lemma E.1, we have
T∑

t=1

ηt
〈
gti − ĉti(x

t
i), ωi − xt

i

〉
≤ O

(
Bd log2(1/δ) log(T )

min{√µ, µ}

)
,

with a probability of at least 1− log(T )δ, δ ≤ e−1.

By Lemma J.5, for any ωi ∈ Xi, we have∑
i∈N

T∑
t=1

ηt
〈
∇iĉi(x

t)−∇ici
(
xt
)
, ωi − xt

i

〉
≤
∑
i∈N

Bℓi

T∑
t=1

ηt
∑
j∈N

(
σmax

(
At

j

)2) | xt

≤
∑
i∈N

Bℓi

T∑
t=1

1

µ(t+ 1)

≤
B
∑

i∈N ℓi

µ

T∑
t=1

1

(t+ 1)

≤ BL log(T )

µ

where the third inequality is by ∇2h(x) being positive definite, and ∇2p(x) ≥ µI .

Therefore,
T∑

t=1

ηt
∑
i∈N

〈
ĝti −∇ici

(
xt
)
, ωi − xt

i

〉
≤ O

(
BL log(T )

µ
+

nBd log2(1/δ) log(T )

min{√µ, µ}

)
.

Combining the terms, and with ηt =
1

2d
√
t
, we have∑

i∈N
Dp

(
x∗
i , x

T+1
i

)
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≤ O

(
ndν log(T )

κ
√
T

+
ndζB

T
+

nBL

κ
√
T

+
ndCp√

T
+

nd log(T )

κ
√
T

+
dBL log(T )

κµ
√
T

+
nBd2 log2(1/δ) log(T )

κmin{√µ, µ}
√
T

)
.

Lemma E.1. With a probability of at least 1− log(T )δ, δ ≤ e−1, we have

T∑
t=1

ηt
〈
gti − ĉti(x

t
i), ωi − xt

i

〉
≤ O

(
Bd log2(1/δ) log(T )

min{√µ, µ}

)
.

Proof. Define Zt = ηt ⟨gti − ĉti(x
t
i), ωi − xt

i⟩. Var[Zt] ≤ η2(ωi − xt
i)

⊤E[gti(gti)⊤](ωi − xt
i). Then,

with ηt =
1

2d
√
t
,

max
t

|Zt| ≤ max
t

∥∥ηt (gti − ĉti(x
t
i)
)∥∥ ∥∥ωi − xt

i

∥∥ ≤ O
(
Bdmax

t
∥ηt(At

i)
−1zti∥

)
≤ O

(
max

t

Bd

µ(t+ 1)

)
≤ O

(
Bd

µ

)
,

where the third inequality is by the definition of At
i.

By the definition of gradient estimator, we have

(gti)
⊤gti ≤ d2

(
(At

i)
−1zti

)⊤ (
(At

i)
−1zti

)
≤ d2

µηt(t+ 1)
.

Therefore, with ηt =
1

2d
√
t

(ωi − xt
i)

⊤E[gti(gti)⊤](ωi − xt
i) ≤

d2∥ωi − xt
i∥2

µηt(t+ 1)
≤ d2B2

µηt(t+ 1)
≤ dB2

µ
√
t
.

We have√√√√ T∑
t=1

η2t (ωi − xt
i)

⊤E[gti(gti)⊤](ωi − xt
i) ≤

√√√√ T∑
t=1

B2

dµt3/2
≤ O

(
B
√
log(T )√
dµ

)
.

Then, by Lemma 2 of Bartlett et al. (2008), with a probability of at least 1− log(T )δ, δ ≤ e−1,

T∑
t=1

ηt
〈
gti − ĉti(x

t
i), ωi − xt

i

〉
≤ 2max

2

√√√√ T∑
t=1

Var[Zt],max
t

|Zt| log(1/δ)


≤ max

{
O

(
B
√
log(T )√
dµ

)
, O

(
Bd log(1/δ)

µ

)}
· log(1/δ)

≤ O

(
Bd log2(1/δ) log(T )

min{√µ, µ}

)
.
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F Proof of Theorem 5.4

Theorem 5.4. With ηt = 1
2d

√
t
, τ = 1

T 1/6 , Gp = supx ∥∇p(x)∥
and Algorithm 1, we have E

[∑
i∈N

〈
∇ici

(
xT
)
, xT

i − x∗
i

〉]
≤

Õ

(
BGp+

√
d(BL+G)(nν+nBL+nd2)

T 1/6 +

√
dBL(BL+G)
√
µT 1/6 +

√
dnCp(BL+G)
√
µT 1/4

)
.

Proof. We consider a regularized game with operator F̃ (x) = [F̃i(x)]i∈N , where F̃i(x) = ∇ci(x) +
τ∇p(xi), ∇p(x) = [∇ip(xi)]i∈N .

Similar to Lemma J.1, we have∑
i∈N

Dp

(
xτ
i , x

T+1
i

)
≤ O

(
nν log(T )

ηT τT
+

nµB

ηT τT 3/2

)
+O

(
nB
∑

i∈N ℓi

τT 3/2
+

n

τT 3/2

) ∑T
t=1 ηt
ηT

+O

(
nCp

ηTT

)
+

1

ηT τ(T + 1)

∑
i∈N

T∑
t=1

ηt
〈
ĝti , x

t
i − xt+1

i

〉
+

1

ηT τ(T + 1)

T∑
t=1

ηt
∑
i∈M

〈
ĝti − F̃i

(
xt
)
, xτ

i − xt
i

〉

+
1

ηT τ(T + 1)

T∑
t=1

ηt
∑

i∈N\M

〈
ĝti − F̃i

(
xt
)
, x̄i − xt

i

〉
.

Taking expectation conditioned on xt, we have E
[
∥At

iĝ
t
i∥

2 | xt
]
= d2E

[
ci(x̂

t)2∥zti∥2 | xt
]
≤ d2.

By Lemma J.2, and the choice ηt =
1

2d
√
t
, we have

T∑
t=1

ηt
∑
i∈N

E
[〈
ĝti , x

t
i − xt+1

i

〉]
≤

T∑
t=1

η2t
∑
i∈N

E
[∥∥At

iĝ
t
i

∥∥2] ≤ nd2
T∑

t=1

η2t .

By Lemma J.5, for any ωi ∈ Xi, we have∑
i∈N

T∑
t=1

ηtE
[〈
ĝti −∇ici

(
xt
)
, ωi − xt

i

〉
| xt
]
=
∑
i∈N

T∑
t=1

ηtE
[〈
∇iĉi(x

t)−∇ici
(
xt
)
, ωi − xt

i

〉
| xt
]

≤
∑
i∈N

T∑
t=1

ηtE
[∥∥∇iĉi(x

t)−∇ici
(
xt
)∥∥ ∥∥ωi − xt

i

∥∥ | xt
]

≤
∑
i∈N

Bℓi

T∑
t=1

ηtE

∑
j∈N

(
σmax

(
At

j

)2) | xt


≤
∑
i∈N

Bℓi

T∑
t=1

1

µ(t+ 1)

≤
B
∑

i∈N ℓi

µ

T∑
t=1

1

(t+ 1)
.

where the third inequality is by ∇2h(x) being positive definite, and ∇2p(x) ≥ µI .

Combing and rearranging the terms, we have

E

[∑
i∈N

Dp

(
xτ
i , x

T+1
i

)]

≤ O

(
nν log(T )

ηT τT
+

nζB

ηT τT 3/2

)
+O

(
nB
∑

i∈N ℓi

τ
√
T

+
n

τ
√
T

)
+O

(
nCp

ηTT

)
+O

(
nd2

τηTT

T∑
t=1

η2t +
B
∑

i∈N ℓi

τµηTT

T∑
t=1

1

t

)
.
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Take ηt =
1

2d
√
t
, we have

E

[∑
i∈N

Dp

(
xτ
i , x

T+1
i

)]

≤ O

(
ndν log(T )

τ
√
T

+
ndζB

τT
+

nB
∑

i∈N ℓi

τ
√
T

+
n

τ
√
T

+
ndCp√

T
+

nd log(T )

τ
√
T

+
dB log(T )

∑
i∈N ℓi

τµ
√
T

)
.

We can decompose as〈
F
(
xT
)
, xT − x∗〉

=
〈
F
(
xT
)
, xT − xτ

〉
+
〈
F
(
xT
)
, xτ − x∗〉

≤ G
∥∥xT − xτ

∥∥+ ⟨F (xτ ) + τ∇p(xτ ), xτ − x∗⟩+
〈
F
(
xT
)
− F (xτ ) , xτ − x∗〉+ τB ∥∇p(xτ )∥

≤
∑
i∈N

(Bℓi +G)
∥∥xT

i − xτ
∥∥+ τB ∥∇p(xτ )∥ .

Since ∇2p(x) ⪰ µI , we have ∥xτ
i −xT

i ∥ ≤
√
Dp(xτ

i , x
T
i ). Let Gp = supx ∥∇p(x)∥, L =

∑
i∈N ℓi,

we have

E

[∑
i∈N

〈
∇ici

(
xT
)
, xT

i − x∗
i

〉]

≤ O (τBGp) + Õ

(√
d(BL+G)(nν + nBL+ nd2)√

τT 1/4

)
+ Õ

(√
dBL(BL+G)
√
τµT 1/4

)
+O

(√
dnCp(BL+G)

√
µT 1/4

)

≤ Õ

(
BGp +

√
d(BL+G)(nν + nBL+ nd2)

T 1/6

)
+ Õ

(√
dBL(BL+G)
√
µT 1/6

)
+O

(√
dnCp(BL+G)

√
µT 1/4

)
,

where the last inequality is by taking τ = 1
T 1/6 .
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G Proof of Proposition 5.1

Proposition 5.1. With ηt =
1

2dt3/4
, δt =

1
t1/4

, and suppose every player employ Algorithm 1, we

have 1
T

∑T
t=1 E [SW(x̂)] = O

(
C1OPT
(1−C2)

+ nνd log(T )
(1−C2)T 1/4 +

√
nB

∑
i∈N ℓi

(1−C2)T 1/4

)
.

Proof. By Theorem 5.3, we have

T∑
t=1

∑
i∈N

E
[
ci
(
x̂t
i, x̂

t
−i

)]
≤

T∑
t=1

∑
i∈N

E
[
ci
(
ωi, x̂

t
−i

)]
+O

(
nνdT 3/4 log(T ) +

√
nBT 3/4

∑
i∈N

ℓi

)

≤ C1OPT · T + C2

T∑
t=1

E [SW(x̂)] +O

(
nνdT 3/4 log(T ) +

√
nBT 3/4

∑
i∈N

ℓi

)
.

As
∑T

t=1

∑
i∈N E

[
ci
(
x̂t
i, x̂

t
−i

)]
= E [SW(x̂)], we solve for E [SW(x̂)] and obtain

1

T

T∑
t=1

E [SW(x̂)] = O

(
C1OPT

(1− C2)
+

nνd log(T )

(1− C2)T 1/4
+

√
nB
∑

i∈N ℓi

(1− C2)T 1/4

)
.
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H Proof of Theorem 6.1

Theorem 6.1. With
∑T

t=1

∑
i∈N maxx ∥∇ici(x) − ∇ic

t
i(x)∥2 = Tα, take ηt =

1
2dt3/4

, δt = 1
t1/4

, and under Algorithm 1, we have E
[∑

i∈N Dp

(
x∗
i , x

T+1
i

)]
≤

O
(

ndν log(T )
κT 1/4 + nζdB

T 3/4 + nBL
κ
√
T
+

ndCp

T 1/4 +nd log(T )
κT 1/4 +

√
nB2L log(T )

κT 1/4 + B
T 1/4−α

)
.

Proof. Similar to Theorem 5.1, we have∑
i∈N

Dp

(
x∗
i , x

T+1
i

)
≤ O

(
nν log(T )

ηTκT
+

nζB

ηTT 3/2

)
+O

(
nB
∑

i∈N ℓi

κT 3/2
+

n

κT 3/2

) ∑T
t=1 ηt
ηT

+O

(
nCp

ηTT

)
+

1

κηT (T + 1)

∑
i∈N

T∑
t=1

ηt
〈
ĝti , x

t
i − xt+1

i

〉
+

1

κηT (T + 1)

T∑
t=1

ηt
∑
i∈M

〈
ĝti −∇ic

t
i

(
xt
)
, x∗

i − xt
i

〉
+

1

κηT (T + 1)

T∑
t=1

ηt
∑

i∈N\M

〈
ĝti −∇ic

t
i

(
xt
)
, x̄i − xt

i

〉
+B

T∑
t=1

∆t ,

where ∆t =
∑

i∈N maxx ∥∇ici(x)−∇ic
t
i(x)∥2.

We now upper bound the remaining terms by discussing them by cases.

When µ = 0, taking expectation conditioned on xt, we have E
[
∥At

iĝ
t
i∥

2 | xt
]

=

d2

δ2t
E
[
cti(x̂

t)2∥zti∥2 | xt
]
≤ d2

δ2t
. By Lemma J.2, and the choice ηt =

1
2d

√
t
, we have

T∑
t=1

ηt
∑
i∈N

E
[〈
ĝti , x

t
i − xt+1

i

〉]
≤

T∑
t=1

η2t
∑
i∈N

E
[∥∥At

iĝ
t
i

∥∥2] ≤ nd2
T∑

t=1

η2t
δ2t

.

By the definition of ĉi,∑
i∈N

T∑
t=1

ηtE
[〈
ĝti −∇ic

t
i

(
xt
)
, ωi − xt

i

〉
| xt
]

=
∑
i∈N

T∑
t=1

ηtE
[〈
∇iĉ

t
i(x

t)−∇ic
t
i

(
xt
)
, ωi − xt

i

〉
| xt
]

=
∑
i∈N

T∑
t=1

ηtE
[
Ewi∼BdEz−i∼Πj ̸=iSd

〈
∇ic

t
i

(
xt
i + δtA

t
iwi, x̂

t
−i

)
−∇ic

t
i

(
xt
)
, ωi − xt

i

〉
| xt
]

≤ B
∑
i∈N

T∑
t=1

ηtE
[
Ewi∼BdEz−i∼Πj ̸=iSd

∥∥∇ic
t
i

(
xt
i + δtA

t
iwi, x̂

t
−i

)
−∇ic

t
i

(
xt
)∥∥ | xt

]
By the smoothness of cti,

Ewi∼BdEz−i∼Πj ̸=iSd
[∥∥∇ic

t
i

(
xt
i + δtA

t
iwi, x̂

t
−i

)
−∇ic

t
i

(
xt
)∥∥]

≤ ℓiEwi∼BdEz−i∼Πj ̸=iSd

√δ2t ∥Aiwi∥2 + δ2t
∑
j ̸=i

∥Ajzj∥2
 .

Since p is monotone, ∇2p(x) is positive semi-definite, and At
i ⪯ (∇2h(xi))

−1/2. For x̄t
i = xt

i +

At
iw

t
i . Define ∥v∥x =

√
v⊤∇2h(x)v, we have ∥x̄t

i − xt
i∥xi ≤ ∥ωt

i∥ ≤ 1, and x̄t
i ∈ W (xt

i), where
W (xi) = {x′

i ∈ Rd, ∥x′
i − xi∥xi

≤ 1} is the Dikin ellipsoid. Since W (xi) ⊆ Xi,∀xi ∈ int(Xi),
we can upper bound ∥Aiwi∥2 by B2, the diameter of the set Xi. Hence ∥∇iĉi(x

t)−∇ici (x
t) ∥ ≤
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ℓiδt
√
nB. By Lemma J.5

∑
i∈N

T∑
t=1

ηtE
[〈
ĝti −∇ic

t
i

(
xt
)
, ωi − xt

i

〉
| xt
]
=
∑
i∈N

T∑
t=1

ηtE
[〈
∇iĉ

t
i

(
xt
)
−∇ic

t
i

(
xt
)
, ωi − xt

i

〉
| xt
]

≤
∑
i∈N

T∑
t=1

ηtE
[∥∥∇iĉ

t
i

(
xt
)
−∇ic

t
i

(
xt
)∥∥ ∥∥ωi − xt

i

∥∥ | xt
]

≤
√
nB2

∑
i∈N

ℓi

T∑
t=1

ηtδt .

Let L =
∑

i∈N ℓi. When µ = 0, combing and rearranging the terms, we have

E

[∑
i∈N

Dp

(
x∗
i , x

T+1
i

)]

≤ O

(
nν log(T )

κηTT
+

nζB

ηTT 3/2
+

nBL

κ
√
T

+
n

κ
√
T

+
nCp

ηTT
+

nd2

κηTT

T∑
t=1

η2t
δ2t

+

√
nB2L

∑T
t=1 ηtδt

κηTT
+

B
∑T

t=1 ∆
t

ηTT

)
.

Take ηt = 1
2dt3/4

, δt = 1
t1/4

, then
∑T

t=1
η2
t

δ2t
= O

(∑T
t=1

1
t

)
= O(log(T )), and

∑T
t=1 ηtδt =

O
(∑T

t=1
1
t

)
= O(log(T )). Hence, we have

E

[∑
i∈N

Dp

(
x∗
i , x

T+1
i

)]
≤ O

(
ndν log(T )

κT 1/4
+

nζdB

T 3/4
+

nBL

κ
√
T

+
ndCp

T 1/4
+

nd log(T )

κT 1/4
+

√
nB2L log(T )

κT 1/4
+

B∆

T 1/4

)
,

where ∆ =
∑T

t=1

∑
i∈N maxx ∥∇ici(x)−∇ic

t
i(x)∥2.
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I Proof of Theorem 6.2

Theorem 6.2. Assume Vi(T ) ≤ Tφ, φ ∈ [0, 1]. Take ηt = 1

2dt
(1−φ)

3

, δt = 1
t1/2

, and under Algorithm

1, we have 1
T

∑T
t=1

∑
i∈N

〈
∇ic

t
i

(
x̂t
i, x̂

t
−i

)
, x̂t

i − xt,∗
i

〉
= Õ

(
nνd+Ln3/2B2+nG

T
2(1−φ)

3

+ n

T
9
8
− (4φ+5)2

72

)
.

Proof. We first fix a player i decomposes
T∑

t=1

〈
∇ic

t
i

(
x̂t
i, x̂

t
−i

)
, x̂t

i − xt,∗
i

〉
=

T∑
t=1

〈
∇ic

t
i

(
x̂t
i, x̂

t
−i

)
, x̂t

i − ωi

〉
+

T∑
t=1

〈
∇ic

t
i

(
x̂t
i, x̂

t
−i

)
, ωi − xt,∗

i

〉
.

For the second term, we partition the horizon of play T into m batches Tk, k ∈ [m], each of length
|Tk| = T q , q ∈ [0, 1]. We will determine q later. Note that the number of batches is thus m = T 1−q .
For the batch Tk, we pick ωi to be the Nash equilibrium of the first game. Then∑

t∈[Tk]

〈
∇ic

t
i

(
x̂t
i, x̂

t
−i

)
, ωi − xt,∗

i

〉
≤
∑

t∈[Tk]

∥∥∇ic
t
i

(
x̂t
i, x̂

t
−i

)∥∥ ∥∥ωi − xt,∗
i

∥∥
≤ GT q max

t∈[Tk]

∥∥ωi − xt,∗
i

∥∥
≤ GT q

∑
t∈[Tk]

∥∥∥xt+1,∗
i − xt,∗

i

∥∥∥
≤ GT qVi(Tk) ,

where the third inequality is by the definition of ωi.

Therefore, we have
T∑

t=1

〈
∇ic

t
i

(
x̂t
i, x̂

t
−i

)
, x̂t

i − xt,∗
i

〉
=

m∑
k=1

∑
t∈[Tk]

〈
∇ic

t
i

(
x̂t
i, x̂

t
−i

)
, x̂t

i − ωi

〉
+GT qVi(T ) .

Define the smoothed version of ci as ĉti(x) = Ewi∼Bd [cti (xi + δAiwi, x−i)]. Then, for batch Tk,
we decompose

∑T
t=1

〈
∇ici

(
x̂t
i, x̂

t
−i

)
, x̂t

i − ωi

〉
as∑

t∈[Tk]

〈
∇ici

(
x̂t
i, x̂

t
−i

)
, x̂t

i − ωi

〉
=
∑

t∈[Tk]

〈
∇iĉi

(
x̂t
i, x̂

t
−i

)
, x̂t

i − ωi

〉
+
∑

t∈[Tk]

〈
∇ici

(
x̂t
i, x̂

t
−i

)
−∇iĉi

(
x̂t
i, x̂

t
−i

)
, x̂t

i − ωi

〉
≤
∑

t∈[Tk]

〈
∇iĉi

(
x̂t
i, x̂

t
−i

)
, x̂t

i − ωi

〉
+B

∑
t∈[Tk]

∥∥∇ici
(
x̂t
i, x̂

t
−i

)
−∇iĉi

(
x̂t
i, x̂

t
−i

)∥∥
2
.

For the first term, recall that by the update rule, we have,

Dh

(
ωi, x̂

t+1
i

)
= Dh

(
ωi, x̂

t
i

)
+ ηt

〈
∇ĉti

(
x̂t
)
, ωi − x̂t

i

〉
+ ηt

〈
ĝti −∇ĉti

(
x̂t
)
, ωi − x̂t

i

〉
+ ηt

〈
ĝti , x̂

t
i − x̂t+1

i

〉
.

By Lemma J.5, for any ωi ∈ Xi, we have

E
[〈
ĝti −∇ĉti

(
x̂t
)
, ωi − x̂t

i

〉
| x̂t
]
= E

[〈
∇iĉ

t
i(x̂

t)−∇iĉ
t
i

(
x̂t
)
, ωi − x̂t

i

〉
| x̂t
]
= 0 .

Therefore,

E
[
Dh

(
ωi, x̂

t+1
i

)]
= E

[
Dh

(
ωi, x̂

t
i

)
+ ηt

〈
∇ĉti

(
x̂t
)
, ωi − x̂t

i

〉]
+ ηtE

[〈
ĝti , x̂

t
i − x̂t+1

i

〉]
.

Rearranging the terms yields

E
[〈
∇ĉti

(
x̂t
)
, x̂t

i − ωi

〉]
≤ E

[(
Dh (ωi, x̂

t
i)−Dh

(
ωi, x̂

t+1
i

))
ηt

+ ηt
〈
ĝti , x̂

t
i − x̂t+1

i

〉]
.
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By Lemma J.2, we have E
[〈
ĝti , x̂

t
i − x̂t+1

i

〉]
≤ ηtE

[
∥At

iĝ
t
i∥

2
]
. Taking expectation condi-

tioned on x̂t, we have E
[
∥At

iĝ
t
i∥

2 | x̂t
]

= d2

δ2t
E
[
c̃ti(x̂

t)2∥zti∥2 | x̂t
]

≤ d2

δ2t
, and therefore

E
[〈
ĝti , x̂

t
i − x̂t+1

i

〉]
≤ ηtd

2

δ2t
.

Taking summation over T , and take ηt =
1

2dtp , δt = 1
tr we have∑

t∈[Tk]

E
[〈
∇ĉti

(
x̂t
)
, x̂t

i − ωi

〉]
≤ dT pE

[
Dh

(
ωi, x

1
i

)]
+
∑

t∈[Tk]

ηtd
2

δ2

≤ O
(
dT pE

[
Dh

(
ωi, x

1
i

)]
+ T q(p−2r)

)
,

as we assumed Dp(xi, x
′
i) is bounded for any xi, x

′
i.

Define πx(y) = inf
{
t ≥ 0 : x+ 1

t (y − x) ∈ Xi

}
. Notice that x1

i (x) = argminxi∈Xi
h(xi), so

Dh(ωi, x
1
i ) = h(ωi)− h(x1

i ).

• If πx1
i
(ωi) ≤ 1 − 1√

T q
, then by Lemma J.6, Dh(ωi, x

1
i ) = ν log(T q), and∑T

t=1 E
[
ĉi
(
x̂t
i, x

t
−i

)
− ĉi

(
ωi, x

t
−i

)]
= O

(
νdT 1−p log(T q)

)
.

• Otherwise, we find a point ω′
i such that ∥ω′

i − ωi∥ = O(1/
√
T q) and πx1

i
(ω′

i) ≤ 1− 1√
T q

.
Then Dh(ω

′
i, x

1
i ) = ν log(T q),〈

∇iĉ
t
i

(
ω′
i, x

t
−i

)
, ω′

i − ωi

〉
≤ ∥∇iĉ

t
i

(
ω′
i, x

t
−i

)
∥∥ω′

i − ωi∥ ≤ G√
T q

.

Therefore,
∑

t∈[Tk]
E
[
ĉi
(
x̂t
i, x

t
−i

)
− ĉi

(
ωi, x

t
−i

)]
=

O
(
νdT p log(T q) +GT q/2 + T q(p−2r)

)
.

By the definition of ĉi and the smoothness of ci,

∥∇iĉi(x̂
t)−∇ici

(
x̂t
)
∥ =

∥∥Ewi∼BdEz−i∼Πj ̸=iSd
[
∇ici

(
x̂t
i + δtA

t
iwi, x̂

t
−i

)
−∇ici

(
x̂t
)]∥∥

≤ ℓi

√√√√√Ewi∼BdEz−i∼Πj ̸=iSd

δ2t ∥δtAiwi∥2 + δ2t
∑
j ̸=i

∥Ajzj∥2
 .

Since p is monotone, ∇2p(x) is positive semi-definite, and At
i ⪯ (∇2h(xi))

−1/2. For x̄t
i = x̂t

i +

At
iw

t
i . Define ∥v∥x =

√
v⊤∇2h(x)v, we have ∥x̄t

i − x̂t
i∥xi

≤ ∥ωt
i∥ ≤ 1, and x̄t

i ∈ W (x̂t
i), where

W (x) = {x′
i ∈ Rd, ∥x′

i − xi∥xi ≤ 1} is the Dikin ellipsoid. Since W (xi) ⊆ Xi,∀xi ∈ int(Xi),
we can upper bound ∥Aiwi∥2 by B2, the diameter of the set Xi. Hence ∥∇iĉi(x̂

t)−∇ici (x̂
t) ∥ ≤

ℓiδt
√
nB.

With δt =
1
tr , we have∑

t∈[Tk]

E
[〈
∇ici

(
x̂t
i, x̂

t
−i

)
, x̂t

i − ωi

〉]
= O

(
νdT p log(T q) +GT q/2 + T q(p−2r) + ℓi

√
nB2T q(1−r)

)
.

Combining, as m = T 1−q we have

T∑
t=1

E
[〈
∇ic

t
i

(
x̂t
i, x̂

t
−i

)
, x̂t

i − xt,∗
i

〉]
= O (GT qVi(T )) +

∑
j∈[m]

Õ
(
νdT 1−p +GT q/2 + T q(p−2r) + ℓi

√
nB2T q(1−r)

)
= Õ

(
νdT (1−q)+p +GT (1−q)+q/2 + T (1−q)+q(p−2r) + ℓi

√
nB2T (1−q)+q(1−r) +GT qVi(T )

)
.
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When Vi(T ) = Tφ, φ ∈ [0, 1], we set q = 2(1−φ)
3 , p = (1−φ)

3 , r = 1
2 , we have

T∑
t=1

E
[〈
∇ic

t
i

(
x̂t
i, x̂

t
−i

)
, x̂t

i − xt,∗
i

〉]
= Õ

((
νd+G+ ℓi

√
nB2

)
T

1+2φ
3 + T

(2φ+1)(φ+2)
9

)
.

Divided by T , we have

1

T

T∑
t=1

E
[〈
∇ic

t
i

(
x̂t
i, x̂

t
−i

)
, x̂t

i − xt,∗
i

〉]
= Õ

(
νd+G+ ℓi

√
nB2

T
2(1−φ)

3

+
1

T
9
8−

(4φ+5)2

72

)
.

Sum over i ∈ N and we have the claimed result.
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J Auxiliary Lemmas

Lemma J.1. With the update rule equation 1,∑
i∈N

Dp

(
x∗
i , x

T+1
i

)
≤ O

(
nν log(T )

ηTκT
+

nζB

ηTT 3/2

)
+O

(
nB
∑

i∈N ℓi

κT 3/2
+

n

κT 3/2

) ∑T
t=1 ηt
ηT

+O

(
nCp

ηTT

)
+

1

κηT (T + 1)

∑
i∈N

T∑
t=1

ηt
〈
ĝti , x

t
i − xt+1

i

〉
+

1

κηT (T + 1)

T∑
t=1

ηt
∑
i∈M

〈
ĝti −∇ici

(
xt
)
, x∗

i − xt
i

〉
+

1

κηT (T + 1)

T∑
t=1

ηt
∑

i∈N\M

〈
ĝti −∇ici

(
xt
)
, x̄i − xt

i

〉
,

where x̄i is a point such that ∥x̄i − x∗
i ∥ = O(1/

√
T ) and inf

{
t ≥ 0 : x1

i +
1
t (x̄i − x1

i ) ∈ Xi

}
≤

1− 1/
√
T .

Proof. By the update rule equation 1, we have

ηtĝ
t
i + ηtκ(t+ 1)

(
∇p
(
xt+1
i

)
−∇p

(
xt
i

))
+
(
∇h
(
xt+1
i

)
−∇h

(
xt
i

))
= 0 .

For a fixed point ωi, by the three-point equality of Bregman divergence, we have

Dh

(
ωi, x

t+1
i

)
= Dh

(
ωi, x

t
i

)
−Dh

(
xt+1
i , xt

i

)
+
〈
∇h
(
xt
i

)
−∇h

(
xt+1
i

)
, ωi − xt+1

i

〉
= Dh

(
ωi, x

t
i

)
−Dh

(
xt+1
i , xt

i

)
+ ηt

〈
ĝti , ωi − xt+1

i

〉
+ ηtκ(t+ 1)

〈
∇p
(
xt+1
i

)
−∇p

(
xt
i

)
, ωi − xt+1

i

〉
= Dh

(
ωi, x

t
i

)
−Dh

(
xt+1
i , xt

i

)
+ ηt

〈
ĝti , ωi − xt+1

i

〉
+ ηtκ(t+ 1)

(
Dp

(
ωi, x

t
i

)
−Dp

(
ωi, x

t+1
i

)
−Dp

(
xt+1
i , xt

i

))
.

Rearranging and by the non-negativity of Bregman divergence, we have,

Dh

(
ωi, x

t+1
i

)
+ ηtκ(t+ 1)Dp

(
ωi, x

t+1
i

)
≤ Dh

(
ωi, x

t
i

)
+ ηtκ(t+ 1)Dp

(
ωi, x

t
i

)
+ ηt

〈
ĝti , ωi − xt

i

〉
+ ηt

〈
ĝti , x

t
i − xt+1

i

〉
= Dh

(
ωi, x

t
i

)
+ ηtκ(t+ 1)Dp

(
ωi, x

t
i

)
+ ηt

〈
∇ici

(
xt
)
, ωi − xt

i

〉
+ ηt

〈
ĝti −∇ici

(
xt
)
, ωi − xt

i

〉
+ ηt

〈
ĝti , x

t
i − xt+1

i

〉
.

By Lemma J.3 and the assumption that ci(x)− κp(xi) is monotone, we have

ηt
∑
i∈N

〈
∇ici

(
xt
)
, ωi − xt

i

〉
≤ − ηtκ

∑
i∈N

(
Dp

(
xt
i, ωi

)
+Dp

(
ωi, x

t
i

))
+ ηt

∑
i∈N

〈
∇ici (ω) , ωi − xt

i

〉
.

Therefore,∑
i∈N

Dh

(
ωi, x

t+1
i

)
+ ηtκ(t+ 1)

∑
i∈N

Dp

(
ωi, x

t+1
i

)
≤
∑
i∈N

Dh

(
ωi, x

t
i

)
+ ηtκt

∑
i∈N

Dp

(
ωi, x

t
i

)
+ ηt

∑
i∈N

〈
∇ici(ω), ωi − xt

i

〉
+ ηt

∑
i∈N

〈
ĝti −∇ici

(
xt
)
, ωi − xt

i

〉
+ ηt

∑
i∈N

〈
ĝti , x

t
i − xt+1

i

〉
.

Summing over T , by the non-negativity of Bregman divergence, we have

ηTκ(T + 1)
∑
i∈N

Dp

(
ωi, x

T+1
i

)
≤
∑
i∈N

Dh

(
ωi, x

1
i

)
+ κ

∑
i∈N

Dp

(
ωi, x

1
i

)
+

T∑
t=1

∑
i∈N

ηt
〈
∇ici(ω), ωi − xt

i

〉
+

T∑
t=1

∑
i∈N

ηt
〈
ĝti −∇ici

(
xt
)
, ωi − xt

i

〉
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+

T∑
t=1

∑
i∈N

ηt
〈
ĝti , x

t
i − xt+1

i

〉
.

Define πx(y) = inf
{
t ≥ 0 : x+ 1

t (y − x) ∈ Xi

}
, let us consider x∗

i , the equilibrium of the game.

• If πx1
i
(x∗

i ) ≤ 1− 1/
√
T , we set ωi = x∗

i . Let this set of player be M

• Otherwise, we find x̄i ∈ Xi such that ∥x̄i − x∗
i ∥ = O(1/

√
T ) and πx1

i
(x̄i) ≤ 1 − 1/

√
T .

We set ωi = x̄i.

By Lemma J.6, and initializing x1
i to minimize h, thus Dh(ωi, x

1
i ) = h(ωi)− h(x1

i ) ≤ ν log(T ).

Therefore, we have

ηTκ(T + 1)

∑
i∈M

Dp

(
x∗
i , x

T+1
i

)
+

∑
i∈N\M

Dp

(
x̄i, x

T+1
i

)
≤ nν log(T ) + κ

∑
i∈M

Dp

(
x∗
i , x

1
i

)
+ κ

∑
i∈N\M

Dp

(
x̄i, x

1
i

)
+

T∑
t=1

ηt
∑
i∈M

〈
∇ici(x

∗
M, x̄N\M), x∗

i − xt
i

〉
+

T∑
t=1

ηt
∑

i∈N\M

〈
∇ici(x

∗
M, x̄N\M), x̄i − xt

i

〉
+ ηt

T∑
t=1

∑
i∈M

〈
ĝti −∇ici

(
xt
)
, x∗

i − xt
i

〉
+ ηt

T∑
t=1

∑
i∈N\M

〈
ĝti −∇ici

(
xt
)
, x̄i − xt

i

〉
+
∑
i∈N

T∑
t=1

ηt
〈
ĝti , x

t
i − xt+1

i

〉
.

By the three-point inequality and the non-negativity of Bregman divergence, we have∑
i∈N\M

Dp

(
x̄i, x

T+1
i

)
=

∑
i∈N\M

Dp (x̄i, x
∗
i ) +

∑
i∈N\M

Dp

(
x∗
i , x

T+1
i

)
−

∑
i∈N\M

〈
x̄i − x∗

i ,∇p
(
xT+1
i

)
−∇p (x̄i)

〉
≥

∑
i∈N\M

Dp

(
x∗
i , x

T+1
i

)
−

∑
i∈N\M

〈
x̄i − x∗

i ,∇p
(
xT+1
i

)
−∇p (x̄i)

〉
.

By Cauchy-Schwarz and the smoothness of p, we have∑
i∈N\M

〈
x̄i − x∗

i ,∇p
(
xT+1
i

)
−∇p (x̄i)

〉
≤

∑
i∈N\M

∥x̄i − x∗
i ∥
∥∥∇p

(
xT+1
i

)
−∇p (x̄i)

∥∥
≤ ζ

∑
i∈N\M

∥x̄i − x∗
i ∥
∥∥xT+1

i − x̄i

∥∥
≤ O

(
nζB√

T

)
As x∗

i is a Nash equilibrium, we have
∑

i∈N ⟨∇ici(x
∗), x∗

i − xt
i⟩ = 0, therefore,

ηt
∑
i∈M

〈
∇ici(x

∗
M, x̄N\M), x∗

i − xt
i

〉
+ ηt

∑
i∈N\M

〈
∇ici(x

∗
M, x̄N\M), x̄i − xt

i

〉
= ηt

∑
i∈N

〈
∇ici(x

∗), x∗
i − xt

i

〉
+ ηt

∑
i∈N

〈
∇ici(x

∗
M, x̄N\M)−∇ici(x

∗), x∗
i − xt

i

〉
+ ηt

∑
i∈N\M

〈
∇ici(x

∗
M, x̄N\M), x̄i − x∗

i

〉

≤ ηt
∑
i∈N

ℓi
∥∥x∗

i − xt
i

∥∥ ∑
i∈N\M

∥x∗
i − x̄i∥

+ ηt
∑

i∈N\M

∥∥∇ici(x
∗
M, x̄N\M)

∥∥ ∥x̄i − x∗
i ∥
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≤ O

(
ηtnB

∑
i∈N ℓi√
T

+
ηtn√
T

)
.

Hence, as Dp(xi, x
′
i) ≤ Cp,∀xi, x

′
i,∑

i∈N
Dp

(
x∗
i , x

T+1
i

)
≤ O

(
nν log(T )

ηTκT
+

nζB

ηTT 3/2

)
+O

(
nB
∑

i∈N ℓi

κT 3/2
+

n

κT 3/2

) ∑T
t=1 ηt
ηT

+O

(
nCp

ηTT

)
+

1

κηT (T + 1)

∑
i∈N

T∑
t=1

ηt
〈
ĝti , x

t
i − xt+1

i

〉
+

1

κηT (T + 1)

T∑
t=1

ηt
∑
i∈M

〈
ĝti −∇ici

(
xt
)
, x∗

i − xt
i

〉
+

1

κηT (T + 1)

T∑
t=1

ηt
∑

i∈N\M

〈
ĝti −∇ici

(
xt
)
, x̄i − xt

i

〉
.

Lemma J.2. Take ηt ≤ 1
2d , we have〈

ĝti , x
t
i − xt+1

i

〉
= ηt

∥∥At
iĝ

t
i

∥∥2 .

Proof. Define

f(xi) = ηt
〈
xi, ĝ

t
i

〉
+ ηt(t+ 1)Dp(xi, x

t
i) +Dh(xi, x

t
i) .

As adding the linear term ⟨xi, ĝ
t
i⟩ does not affect the self-concordant barrier property, and p is strongly

monotone, f(x) is a self-concordant barrier.

Define the local norm ∥h∥x :=
√
h⊤∇2f(x)h, by Holder’s inequality, we have〈

ĝti , x
t
i − xt+1

i

〉
=
∥∥ĝti∥∥xt

i,∗

∥∥xt
i − xt+1

i

∥∥
xt
i

.

Notice that

∇f(xt
i) = ηtĝ

t
i ,∇2f(xt

i) = ηt(t+ 1)∇2p(xt
i) +∇2h(xt

i) .

Therefore, by our assumption that ci(x) ∈ [0, 1],∥∥∥(∇2f(xt
i)
)−1 ∇f(xt

i)
∥∥∥
xt
i

= ηt
∥∥At

iĝ
t
i

∥∥
≤ ηtd|ci(x̂t)| ≤ ηtd .

By Lemma J.4, take ηt ≤ 1
2d , we have∥∥xt

i − xt+1
i

∥∥
xt
i

=
∥∥∥xt

i − argmin
x

f(xt
i)
∥∥∥
xt
i

≤ 2
∥∥∥(∇2f(xt

i)
)−1 ∇f(xt

i)
∥∥∥
xt
i

≤ ηt
∥∥At

iĝ
t
i

∥∥ .

Therefore, we have 〈
ĝti , x

t
i − xt+1

i

〉
= ηt

∥∥At
iĝ

t
i

∥∥2 .

Lemma J.3. [Proposition 1 Bauschke et al. (2017)] For an operator G that G−∇p(x) is monotone,

⟨G(x)−G(x′), x′ − x⟩ ≤ −
∑
i∈N

(Dp (xi, x
′
i) +Dp (x

′
i, xi)) .
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Proof. By the monotonicity of G−∇p(x), we have

⟨G(x)−G(x′), x′ − x⟩ ≤ ⟨∇p(x)−∇p(x′), x′ − x⟩

≤ −
∑
i∈N

(Dp (xi, x
′
i) +Dp (x

′
i, xi)) ,

where the second inequality is due to the definition of Bregman divergence.

Lemma J.4 (Lemma 3 Lin et al. (2021)). For any self-concordant function g and let λ(x, g) ≤ 1
2 ,

λ(x, g) := ∥∇g(x)∥x,⋆ =
∥∥∥(∇2g(x)

)−1 ∇g(x)
∥∥∥
x

, we have ∥x− argminx′∈X g (x′) ∥x ≤ 2λ(x, g),

where ∥ · ∥x is the local norm given by ∥h∥x :=
√
h⊤∇2g(x)h.

Lemma J.5 (Lemma 7 of Lin et al. (2021)). Suppose that ci is a monotone function and Ai ∈ Rd×d

is an invertible matrix for each i ∈ N , we define the smoothed version of ci with respect to Ai by
ĉi(x) = Ewi∼BdEz−i∼Πj ̸=iSd [ci (xi +Aiwi, x̂−i)] where Sd is a d-dimensional unit sphere, Bd is a
d-dimensional unit ball and x̂i = xi +Aizi for all i ∈ N . Then, the following statements hold true:

• ∇iĉi(x) = E
[
d · ci (x̂i, x̂−i) (Ai)

−1
zi | x1, x2, . . . , xN

]
.

• If ∇ci is ℓi-Lipschitz continuous and we let σmax(A) be the largest eigenvalue of A, we

have ∥∇iĉi(x)−∇ici(x)∥ ≤ ℓi

√∑
j∈N (σmax (Aj))

2.

Lemma J.6 (Lemma 2 Lin et al. (2021)). Suppose that X is a closed, monotone and compact set,
R is a ν-self-concordant barrier function for X and x̄ = argminx∈X R(x) is a center. Then, we

have R(x)− R(x̄) ≤ ν log
(

1
1−πx̄(x)

)
. For any ϵ ∈ (0, 1] and x ∈ Xϵ, we have πx̄(x) ≤ 1

1+ϵ and

R(x)−R(x̄) ≤ ν log
(
1 + 1

ϵ

)
.
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K More Experimental Results

In Figure 2 and 3 we supplement more experiment results for zero-sum matrix games and Cournot
competition. Note that in Figure 3, the curve of OMD with gradient coincides exactly with the curve
GD with gradient. We found similar observations that our algorithm attains comparable performance
to OMD and GD with full information gradient.

Figure 2: More examples on the zero-sum matrix game, with A being [2, 1], [1, 3], [3, 0], [0, 1], and [1, 2], [2, 0].

Figure 3: More examples on the Cournot competition, with the marginal cost being 50, 60, 70.

41


	Introduction
	Related Works
	Preliminaries
	Examples of Monotone Continuous Games
	Bandit Feedback and Strongly Uncoupled Dynamic

	Algorithm
	No-regret Convergence to Nash Equilibrium
	Perfect Bandit Feedback
	Individual Low Regret
	Special Case: Linear Cost Function

	Application to Time-varying Game
	Experiment
	Conclusion
	More Example Games
	Proof of Theorem 5.1
	Proof of Theorem 5.3
	Proof of Theorem D.1
	Proof of Theorem 5.2
	Proof of Theorem 5.4
	Proof of Proposition 5.1
	Proof of Theorem 6.1
	Proof of Theorem 6.2
	Auxiliary Lemmas
	More Experimental Results

