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Abstract
Large Language Models (LLMs) embed sensitive,
human-generated data, prompting the need for un-
learning methods. Although certified unlearning
offers strong privacy guarantees, its restrictive as-
sumptions make it unsuitable for LLMs, giving
rise to various heuristic approaches typically as-
sessed through empirical evaluations. These stan-
dard evaluations randomly select data for removal,
apply unlearning techniques, and use membership
inference attacks (MIAs) to compare unlearned
models against models retrained without the re-
moved data. However, to ensure robust privacy
protections for every data point, it is essential to
account for scenarios in which certain data sub-
sets face elevated risks. Prior research suggests
that outliers, particularly including data tied to mi-
nority groups, often exhibit higher memorization
propensity which indicates they may be more dif-
ficult to unlearn. Building on these insights, we in-
troduce a complementary, minority-aware evalua-
tion framework to highlight blind spots in existing
frameworks. We substantiate our findings with
carefully designed experiments, using canaries
with personally identifiable information (PII) to
represent these minority subsets and demonstrate
that they suffer at least 20% higher privacy leak-
age across various unlearning methods, MIAs,
datasets, and LLM scales. Our proposed minority-
aware evaluation framework1 marks an essential
step toward more equitable and comprehensive
assessments of LLM unlearning efficacy.
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1. Introduction
Large Language Models (LLMs) are trained on vast and
diverse datasets, often sourced from public content on the
web, much of which is generated by humans (Touvron et al.,
2023; Ouyang et al., 2022). This practice raises significant
ethical concerns, particularly when the data includes sen-
sitive information, leading to potential privacy violations.
Individuals whose data has been used may seek to exercise
their “right to be forgotten”, a protection guaranteed by
regulations such as the General Data Protection Regulation
(GDPR) (Krzysztofek, 2018).

The ideal approach to fulfilling such a request is to retrain
the LLM from scratch, excluding the data to be removed.
However, this solution is prohibitively expensive and im-
practical for large-scale models. To address this, the concept
of machine unlearning has emerged as a promising alter-
native. Machine unlearning seeks to efficiently modify the
LLM so that it becomes statistically indistinguishable from
a model retrained from scratch. In this way, no adversary
could confidently determine whether a model has undergone
an unlearning process or been retrained, ensuring compli-
ance with the “right to be forgotten”.

Unfortunately, it remains an open problem to enforce the
formal unlearning guarantee for deep neural networks and
LLMs without exact retraining. Despite recent progress in
theoretical unlearning research (Guo et al., 2020; Sekhari
et al., 2021; Neel et al., 2021; Ullah et al., 2021; Chien et al.,
2023; Ullah & Arora, 2023; Chien et al., 2024a;b), their
restrictive assumptions limit practical applicability to deep
neural networks and LLMs. Concurrently, researchers have
developed efficient unlearning heuristics and empirically
evaluated their efficacy (Golatkar et al., 2020a;b; Graves
et al., 2021; Liu et al., 2024a;c; Yao et al., 2024), often
by comparing approximately unlearned models to those
retrained from scratch (Pawelczyk et al., 2024a). Among the
various evaluation methods, membership inference attacks
(MIAs) (Shokri et al., 2017), originally developed to infer
data usage during training, have been widely adopted for
assessing unlearning performance (Shi et al., 2024b).

We identify a critical pitfall in the aforementioned LLM
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unlearning efficacy evaluation. Prior work has demonstrated
that unlearning difficulty can vary substantially across in-
dividual data points in vision tasks (Thudi et al., 2024;
Zhao et al., 2024). Similarly, recent studies on LLMs also
reveal highly non-uniform memorization patterns, where
certain samples are memorized much more strongly than
others (Feldman & Zhang, 2020; Carlini et al., 2022). How-
ever, current unlearning evaluation methods only capture
“average-case” performance through random data removal
from the training set. This approach inadequately addresses
privacy risks for hard-to-unlearn data, failing to account for
challenging scenarios necessitating rigorous privacy pro-
tection (Steinke & Ullman, 2020; Aerni et al., 2024). It
neglects the principle that every individual’s right to be for-
gotten should be upheld equally, thus ignoring data from
minority groups, which are often treated as outliers and
can be more resistant to unlearning due to the aforemen-
tioned stronger memorization effects (Carlini et al., 2022;
Nasr et al., 2021; 2023). Consequently, standard unlearn-
ing evaluation significantly underestimates privacy risks for
these groups, overlooking crucial social responsibilities in
personal data protection.

Contributions. Motivated by the privacy auditing litera-
ture (Jagielski et al., 2020; Steinke et al., 2024), we conduct
a synthetic experiment on unlearning injected canaries per-
taining to minority groups. We choose Personally Identifi-
able Information (PII) as a representative minority identifier,
while noting that our approach extends to broader cases.
We show that minorities suffer from at least 20% more
privacy leakage in most cases across combinations of six
unlearning approaches, three MIA variants, three datasets,
and two LLMs of different scales. These results underscore
the prevalence of the issue in practical settings, highlighting
the need for a more effective LLM unlearning evaluation,
particularly in regard to privacy risks for minority groups.
Accordingly, we propose a minority-aware LLM unlearning
evaluation protocol (Figure 1) as an initial step toward this
goal. With this minority-aware protocol, we benchmark
existing unlearning approaches and investigate the effects of
forget set size as well as unlearning complexity. This study
provides a more holistic understanding of different LLM un-
learning approaches for practitioners. Notably, we observe
that Langevin Unlearning—the only approach incorporating
noise—achieves a favorable privacy-utility trade-off com-
pared to noiseless methods such as SCRUB and Gradient
Ascent (GA), suggesting a potential crucial role of noise
incorporation in effective unlearning. In summary, these
insights underline the critical role of our minority-aware
evaluation framework in advancing equitable assessments
of unlearning efficacy across different methods.

2. Related Work
Privacy auditing is a fundamental yet challenging aspect of
LLM unlearning due to the difficulty of distinguishing train-
ing samples effectively (Duan et al., 2024). Various privacy-
related metrics, such as exposure (Carlini et al., 2019), mean
reciprocal rank (Wu et al., 2023), extraction likelihood (Jang
et al., 2022), and truth ratio (Maini et al., 2024), have been
proposed to probe privacy leakage. Among these, MIAs
remain one of the most crucial tools for evaluating machine
unlearning methods (Liu et al., 2024b). Standard MIAs
typically involve training numerous shadow models inde-
pendently to empirically approximate the distribution (Car-
lini et al., 2022). This approach has also been adopted for
LLM unlearning, as seen in the NeurIPS 2023 Machine Un-
learning Challenge2 (which compares the point-wise output
distributions of multiple unlearned and retrained models
to perform MIAs) and Kurmanji et al. (2024); Pawelczyk
et al. (2024b). Hayes et al. (2024) further highlights the
limitations of average-case evaluations and introduces a spe-
cialized per-sample MIA method for unlearning evaluation.
Their approach focuses on unlearning a randomly selected
subset of training data by training a series of shadow models
and performing per-sample MIA using a likelihood ratio
test under Gaussian fitting (Carlini et al., 2022).

A major downside of MIA approaches involving shadow
models is their computational expense, as they require train-
ing a large number of LLMs independently (Liu et al.,
2024b). To address this downside, another line of re-
search compares the outputs of models using different sta-
tistical metrics without requiring shadow models (Zhang
et al., 2024; Liu et al., 2024a;c; Yao et al., 2024; Li et al.,
2024a), making these methods more computationally fea-
sible (Maini et al., 2024). For instance, Shi et al. (2024b)
measures privacy risk through the normalized AUC differ-
ence between unlearned and retrained models, using MIAs
such as Min-K% (Shi et al., 2024a). However, these works
typically select the forget set randomly from the training
set, corresponding to an average-case evaluation. Our study
highlights a critical limitation of this approach: the pri-
vacy risks of minority populations within the training set
are severely underestimated because minority data are less
likely to be selected in the unlearning evaluation pipeline.
By focusing on minority-aware scenarios, our work provides
a more comprehensive perspective on unlearning evaluation
and privacy risks. In a related context, Zhao et al. (2024)
explores how the memorization of image representations
affects the difficulty of unlearning individual samples in
vision tasks by introducing an entanglement-based metric.
Our work further explores the systematic degradation in
unlearning efficacy for minority subgroups during the fine-

2https://unlearning-challenge.github.io/
assets/data/Machine_Unlearning_Metric.pdf
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Figure 1. Illustration of our proposed LLM unlearning approaches (highlighted in red), when compared with the existing pipeline.
Standard LLM unlearning evaluation typically involves randomly sampling data for removal from the training set (Case 1), which may
underestimate privacy leakage for minority groups. In contrast, we design experiments to assess unlearning efficacy by removing canaries
(deliberately inserted data points) related to minority groups (Case 2) and by directly removing data from minority groups (Case 3). Our
approach provides a more comprehensive, minority-aware evaluation by considering the worst result across the three settings.

tuning of large language models. As a future direction, it
would be valuable to examine the relationship between the
entanglement-based difficulty metrics proposed by Zhao
et al. (2024) and the minority-aware phenomena we identify
in natural language contexts.

3. Preliminaries
Machine unlearning (Cao & Yang, 2015; Bourtoule et al.,
2021) has emerged as an important direction in trustworthy
language models. It was initially motivated by privacy due
to “the right to be forgotten” from GDPR and later extended
to other legal and ethical concerns, including copyright (Yao
et al., 2024), biased or outdated information mitigation (Liu
et al., 2024b), hallucination removal (Yao et al., 2023), en-
tity forgetting (Maini et al., 2024) and data poisoning re-
moval (Pawelczyk et al., 2024a; Li et al., 2024b). In this
work, we focus on the privacy aspect of the problem, albeit
our methodology extends to other cases whenever the in-
distinguishability to the retrained model is an appropriate
metric.

We briefly state the generic machine unlearning setting for
privacy. Assume a training dataset Dtrain and a holdout test
set Dtest are given. Let Mlearn ← A(M0, Dtrain) be the lan-
guage model trained on Dtrain starting from an initial model
M0 via the training algorithm A, which may be either a pre-
trained language model or random initialization. Once the
model is trained, we receive data removal requests that parti-

tion the training set Dtrain = Dforget ∪Dkeep into a subset to
be forgotten later Dforget and a keep set Dkeep. An unlearning
algorithm U takes Mlearn, Dforget and Dtrain as input to re-
turn an updated model Munlearn ← U(Mlearn, Dforget, Dtrain).
It is worth noting that Munlearn depends on the choice of
Dforget. The gold standard to adhere to “the right to be
forgotten” is retraining without Dforget, namely Mretrain ←
A(M0, Dtrain \Dforget). We say U achieves good unlearning
efficacy if Munlearn and Mretrain are indistinguishable in their
behavior m(Munlearn, D) ≈ m(Mretrain, D) on any corpus
D, where m is any evaluation metric. Since Munlearn and
Mretrain depend on the choice Dforget, such approximation
should be taken over the worst case ideally.

3.1. Efficient MIAs for LLM Unlearning

As previously discussed, the effectiveness of unlearning
methods can be measured by the indistinguishability be-
tween the resulting unlearned models and an exactly re-
trained model. MIA is often leveraged to determine whether
a specific sample is part of the training set and is widely
applied to audit training data privacy leakage. Therefore, to
evaluate the efficacy of an unlearning approach, we consider
the PrivLeak (PL) metric (Shi et al., 2024b). First, we
define the difference in AUC scores between the unlearned
model Munlearn and the retrained model Mretrain as ∆AUC =
AUC(Munlearn;Dforget, Dtest)− AUC(Mretrain;Dforget, Dtest),
where AUC is the AUC-ROC score of an MIA (Ye et al.,
2022) that tries to discriminate samples from Dforget and
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Dtest based on the output statistics (e.g. loss) of a given
model M . Then, the PL metric is formulated as:

PrivLeak (PL) =
∆AUC

AUC
(
Mretrain;Dforget, Dtest

) (1)

By normalizing the difference in AUC scores between
Munlearn and Mretrain using the AUC of Mretrain, the met-
ric accounts for the inherent difficulty of distinguishing the
forget and test sets. Note that for an effective unlearning
method, the metric should be around zero since the behavior
of Munlearn,Mretrain are indistinguishable. A larger magni-
tude of the PL metric implies a greater amount of privacy
information that has been leaked under the tested MIA. A
positive value indicates that the sample has not been fully
forgotten, as the attacker has a higher AUC for Munlearn than
Mretrain. Conversely, a negative metric value suggests over-
forgetting, which still indicates that Munlearn differs from
Mretrain and thus cause privacy breaches. Finally, note that
an effective unlearning solution should lead to a small PL
metric for any choice of MIA. In this work, we consider
three popular MIAs and report the corresponding PL metric.

• lossMIA (Yeom et al., 2018): Determines membership of
a sample x for a model M based on its loss ℓ(M ;x).

• zlibMIA (Carlini et al., 2021): Determines membership of
a sample based on the sample loss normalized by its zlib
compression size, ℓ(M ;x)/zlib(x).

• Min-K% (Shi et al., 2023): Selects the lowest K% of
token likelihoods and leverages the corresponding negative
log-likelihood for membership inference.

4. The Underestimated Privacy Risk of Data
Minorities

Recall that both the unlearned Munlearn ←
U(Mlearn, Dforget, Dtrain) and retrained Mretrain ←
A(M0, Dtrain \ Dforget) language models depend on
the choice of the forget set Dforget. Whenever we estimate
the privacy leakage of an unlearning method U via some
evaluation m, it is important to account for potential
high-risk partitions of Dforget to ensure a comprehensive
assessment of privacy risk. Unfortunately, the current LLM
unlearning evaluation pipeline overlooks this critical aspect,
where the partition leading to Dforget is chosen uniformly
at random (Jang et al., 2023; Chen & Yang, 2023; Yao
et al., 2024; Maini et al., 2024; Zhang et al., 2024; Shi
et al., 2024b). The reported privacy risk therein hence
corresponds to the “average case”, which may significantly
underestimate the privacy risk of highly privacy-sensitive
points that request unlearning. It is known in the privacy
literature that some rare training samples (minorities) may
have an outsized effect on model memorization compared

to common training samples (majorities) (Feldman &
Zhang, 2020; Carlini et al., 2022). Intuitively, a similar
phenomenon persists for unlearning.

Table 1. Top three most fre-
quent and least frequent area
codes within Enron dataset.

Area code Count
713 (Houston) 135,307
800 (Toll-free) 11,902
212 (New York) 10,739
484 (Allentown) 1

Here we utilize the Enron
dataset as a case study. This
dataset comprises 535,703
authentic emails from 158
employees of the Enron
Corporation. It is a stan-
dard benchmark dataset for
studying PII leakage, where
the phone number is one
form of PII that has been extensively studied (Lukas et al.,
2023). The phone numbers here follow the format of the
U.S. phone numbers (e.g., 123-456-7890), with the first
three digits serving as the area code, representing the loca-
tion where the number holder applied for the number. Such
information is considered sensitive as it leaks not only the
phone number itself, but also the geographic information
pertaining to the number holder.

Table 1 illustrates the least frequent and three most frequent
area codes in the Enron dataset. The area code distribution is
far from uniform. Consequently, if emails containing phone
numbers are uniformly sampled for the forget set Dforget,

Figure 2. Area code histogram in
Enron Dataset.

minority data, such as
emails with rare area
codes like 484, are un-
likely to be included due
to their lower frequency.
If unlearning minority
data is inherently more
challenging and results
in greater privacy leak-
age, the existing evalua-
tion pipeline may under-
estimate privacy risks for minorities.

4.1. Verify Underestimated Privacy Risks of Minority
via Canary Injection

To rigorously show that removing data from minority3 popu-
lations indeed leads to higher unlearning privacy leakage,
we design experiments based on the idea of canaries in the
privacy auditing literature (Jagielski et al., 2020; Steinke
et al., 2024). For simplicity, we focus on the scenario where
data removal requests pertain to PIIs, where each training
sample x ∈ D

(1)
train consists of PIIs such as phone numbers or

organizations. We choose PIIs as a representative minority
identifier, albeit a similar idea extends beyond PIIs. We

3Minority here refers to any subset of the data, defined by some
shared value, that is under-represented in the training set. This term
is generic and may apply to any type of attribute, demographic or
otherwise.
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[…] Body: […] I have forwarded your
request to Zarin Imam at EES. Her 
phone number is 713-853-7107.  […]

𝐷𝐷forget 𝐷𝐷canary 𝐷𝐷minority

[…] Body: […] I have forwarded your
request to Zarin Imam at EES. Her 
phone number is 484-853-7107.  […]

[…] Body: email address: 
spalmer@cfg.nef.com Home 
address: 264 Iven Ave. Apt 3-A St. 
Davids, PA 19087 […] Cell Phone: 
484-432-5656 […]

Identical except area codes are replaced to least frequent one (i.e., 484).
Replace the entire email with the 
email containing phone number
with least frequent area code.

[…] Body: […] I have forwarded your 
request to Zarin Imam at EES. Her 

phone number is 713-853-7107.  […]

𝐷𝐷forget
[…] Body: […] I have forwarded your 
request to Zarin Imam at EES. Her 
phone number is 484-853-7107.  […]

𝐷𝐷canary
[…] Body: email address: 
spalmer@cfg.nef.com Home 
address: 264 Iven Ave. Apt 3-A St. 
Davids, PA 19087 […] Cell Phone: 
484-432-5656 […]

𝐷𝐷minority

Identical except area codes are replaced with the least frequent one (i.e., 484).
Replace the entire email with the 
email containing phone number 
with least frequent area code.

Figure 3. Illustration of the forget set Dforget, the construction of the canary set Dcanary, and the minority set Dminority for the Enron dataset.
The minority set consists of emails with phone numbers containing the least frequent area codes. A histogram and distribution of area
codes (e.g., 713 as the most frequent and 484 as the least frequent) are shown in Figure 2 and Table 1.

consider the following cases, see Figure 1 for an illustration.
1) Random: we randomly partition D

(1)
train = Dforget∪Dkeep

as in the standard unlearning evaluation pipeline. This leads
to M

(1)
learn ← A(M0, D

(1)
train). 2) Canary: For the same

forget set Dforget = {xi}ni=1, we construct a canary set
Dcanary = {x′

i}ni=1, where each x′
i is identical to xi except

that only the PII is replaced by the least frequent one among
D

(1)
train, isolating the impact of non-PII components. Finally,

we construct a synthetic training set D(2)
train = Dcanary∪Dkeep,

which leads to M
(2)
learn ← A(M0, D

(2)
train). By executing the

same unlearning evaluation process for both cases M (1)
learn and

M
(2)
learn, we aim to show that the privacy risk for Canary is

much higher than Random. By applying the same unlearn-
ing algorithm for removing Dforget and Dcanary, we obtain
the unlearned model M (1)

unlearn and M
(2)
unlearn respectively. The

privacy leakage (PL) is then computed for these cases as
described in Section 3.1. The calculation of PL for Canary
entails replacing Dforget with Dcanary in Eq. (1). Note that
the retrained model Mretrain ← A(M0, Dkeep) is identical
for both scenarios.

An illustrative example of canary construction is provided in
Figure 3. Note that for each email within Dforget in Random,
we construct the corresponding canary by only replacing
its area code with the least frequent one (i.e., 484). This
design is critical as we ensure the other part of the email is
identical to the original email. Hence, if the privacy leakage
of Canary is greater than Random, it must be due to the
difference in the area code. We repeat the similar canary
construction for the other PII such as email domain and year
of legal judgment for different datasets.

4.2. Quantify the Underestimated Privacy Risk of
Unlearning Minority

While our synthetic experiment on canary injection may be
used to verify whether the unlearning privacy risk of mi-
nority populations is underestimated in the standard LLM

unlearning evaluation pipeline, it cannot quantify the pri-
vacy risk for minorities in the real-world setting. We further
design the third case aiming at quantifying the amount of
underestimated privacy risk by directly choosing data to be
removed containing the least frequent PII. 3) Minority:
construct a set Dminority that is of the same size as Dforget
in Random, which consists of samples with the least fre-
quent PII within the dataset. By comparing the computed
privacy risk of Random and Minority, we can quantify
the amount of underestimated privacy risk for data removal
from minority groups compared to the average case. If the
resulting privacy risk is significantly higher than Random,
any conclusion pertaining to unlearning efficacy drawn from
Random can be misleading and the right to be forgotten of
minorities is overlooked.

5. Unlearning Methods
We evaluate the following popular unlearning approaches in
the literature. With a slight abuse of notation, we denote M
for both the model and its parameters for simplicity.

• Random Labels (RL) (Golatkar et al., 2020a; Yao et al.,
2024): In the context of next-token prediction, this method
involves randomly selecting tokens from the entire vo-
cabulary during training on Dforget, aiming to disturb the
model’s learning from this dataset. The intuition behind
this approach is that a model uninformed by Dforget should
behave as though it is randomly guessing the next token.
However, as argued in Yao et al. (2024), this intuition may
not always hold, depending on the specific scenario.

• Exact Unlearning (EUk) and Catastrophic Forgetting
(CFk) (Goel et al., 2022): Exact unlearning can be done
by retraining the entire model from scratch on Dkeep, al-
beit it is prohibitively expansive in practice. Goel et al.
(2022) proposes EUk method, which retrains only the last
k layers of the model while freezing the other layers. As
a result, it is computationally cheaper than retraining the
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entire model. They also propose the CFk method, which
continues training the last k layers on the Dkeep without
retraining from scratch, while freezing the other layers.

• Gradient Ascent (GA) (Golatkar et al., 2020a; Graves
et al., 2021; Jang et al., 2023): Gradient ascent is arguably
the most popular heuristic for machine unlearning. It seeks
to remove the influence of the Dforget from the trained
model by reversing the gradient updates associated with
Dforget. Notably, researchers have reported that gradient
ascent can lead to significant model utility degradation in
some cases (Ilharco et al., 2023; Pawelczyk et al., 2024a).

• NegGrad+ (Kurmanji et al., 2024): NegGrad+ is a com-
bination of gradient ascent on Dforget and gradient descent
on Dkeep. It finetunes the current model by optimizing:

β · Êx∼Dkeep [ℓ(M ;x)]− (1− β)Êx∼Dforget [ℓ(M ;x)]

where β ∈ (0, 1) is a hyperparameter and Ê is the empiri-
cal expectation. The intuition is to “review” the informa-
tion from Dkeep in order to prevent the model degradation
due to the gradient ascent.

• SCRUB (Kurmanji et al., 2024): SCalable Remembering
and Unlearning unBound (SCRUB) is a state-of-the-art
unlearning method that leverages a student-teacher frame-
work. It updates the model by optimizing the objective:

Êx∼Dkeep [KL(Mlearn(x)∥M(x)) + ℓ(M ;x)]

− Êx∼Dforget [KL(Mlearn(x)∥M(x))]

where KL is the Kullback-Leibler divergence. SCRUB
shares a similar intuition with NegGrad+, which can also
be viewed as a combination of gradient ascent on Dforget
and descent on Dkeep. Nevertheless, instead of directly
employing the original loss ℓ, SCRUB leverages the KL
divergence to the original model Mlearn. It provides a
different regularization compared to NegGrad+.

• Langevin Unlearning (Chien et al., 2024a;b): Langevin
Unlearning leverages noisy gradient descent for machine
unlearning. Specifically, during the training process, it re-
places the common gradient descent with DP-SGD (Abadi
et al., 2016). For unlearning process, it finetunes the model
on Dkeep with DP-SGD as well. Chien et al. (2024a) estab-
lishes a smooth theoretical connection between differential
privacy and unlearning and shows that Langevin Unlearn-
ing can provide a formal privacy guarantee for non-convex
problems. Unfortunately, they mentioned that the resulting
privacy bound is too loose to be applied in practice. We
test Langevin Unlearning empirically in our experiments.

All the above unlearning methods fall under approximate
unlearning (Thudi et al., 2022), valued for their practical
efficiency. In contrast, exact unlearning methods, such as the

sharding-based framework SISA (Bourtoule et al., 2021),
demand significant computational and storage resources.
SISA achieves exact unlearning by training multiple models
independently on disjoint data partitions, but this deviates
from standard machine learning workflows and introduces
considerable memory overhead.

5.1. Enforcing the Same Computation Budget for
Unlearning Methods

We categorize all methods as follows: those that only require
the forget set (RL, GA), those that only require the keep
set (EUk, CFk, Langevin), and those that require both the
forget and keep sets (NegGrad+, SCRUB). Since machine
unlearning is about the trade-off between privacy-utility-
efficiency (Guo et al., 2020; Chien et al., 2024a; Liu et al.,
2024c), we carefully ensure a similar computational com-
plexity for all tested unlearning methods when demonstrat-
ing the privacy-utility trade-off. We define a Complexity
Unit as the gradient computation budget of one training
epoch on |Dforget| samples and limit all unlearning methods
to a maximum of 10 Complexity Units. Since |Dforget| = U
is roughly 1% of |Dtrain| throughout our experiments, all
unlearning methods are indeed much more efficient than
retraining from scratch (Pawelczyk et al., 2024a).

For unlearning approaches that leverage Dforget only, they
can be tuned via unlearning process for at most 10 epochs.
For those that leverage Dkeep only, we randomly subsam-
ple it to size U for each epoch and unlearn for at most 10
epochs. For methods that leverage both Dforget and Dkeep
simultaneously, we limit their maximum unlearning epoch
to 5. The situation is slightly more complicated for EUk and
CFk approaches since only the last k layers are trained to
save computation. We randomly select U/r samples from
the keep set in each epoch, where r is the ratio of trainable
parameters in the last k layers compared to the total number
of parameters in the model. Our setup ensures that all tested
unlearning approaches exhibit a similar unlearning compu-
tational complexity for a fair comparison. We optimize the
unlearning epoch for each method under the 10 Complexity
Unit constraint by the following criterion: if the perplexity
of the unlearned model on Dtrain increases by more than 1
point compared to that of the initial model (No Unlearn), we
stop at the first epoch where this condition is met; otherwise,
we use the checkpoint from the last epoch.

6. Experiments
Datasets. Our LLM unlearning evaluation is conducted
on two representative PII datasets: Enron (Klimt & Yang,
2004) and ECHR (Chalkidis et al., 2019). The Enron
dataset contains corporate emails released by the Federal
Energy Regulatory Commission, while the ECHR dataset
comprises legal case information from the European Court

6
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Table 2. The privacy leakage (PL) for each unlearning method against different attackers for GPT-2 / Llama-2 7B on the Enron-Phone
dataset. The number in the parenthesis is the excess ratio of PL magnitude for cases Canary and Minority compared to Random,
where a larger PL magnitude implies a more severe underestimation of privacy leakage in the standard unlearning evaluation (Random).
Bold font indicates the case that the amount of underestimated privacy leakage is at least 20%.

Method PL (lossMIA) PL (zlibMIA) PL (Min-K%)

Random Canary Minority Random Canary Minority Random Canary Minority

Enron-Phone Dataset / GPT-2

No Unlearn 0.190 0.283 (49%↑) 0.340 (79%↑) 0.052 0.076 (48%↑) 0.064 (24%↑) 0.300 0.447 (49%↑) 0.524 (75%↑)

RL 0.118 0.191 (61%↑) 0.210 (77%↑) 0.044 0.067 (52%↑) 0.060 (37%↑) 0.258 0.401 (55%↑) 0.447 (73%↑)
EUk 0.027 0.080 (198%↑) 0.124 (362%↑) 0.035 0.051 (47%↑) 0.052 (49%↑) 0.092 0.215 (134%↑) 0.223 (143%↑)
CFk 0.190 0.278 (46%↑) 0.337 (77%↑) 0.053 0.075 (41%↑) 0.064 (21%↑) 0.298 0.435 (46%↑) 0.514 (73%↑)
GA 0.089 0.140 (57%↑) 0.127 (42%↑) 0.024 0.042 (73%↑) 0.026 (7%↑) 0.151 0.242 (60%↑) 0.171 (13%↑)

NegGrad+ 0.183 0.271 (48%↑) 0.327 (79%↑) 0.052 0.073 (42%↑) 0.058 (13%↑) 0.293 0.435 (48%↑) 0.511 (74%↑)
SCRUB 0.167 0.251 (50%↑) 0.321 (92%↑) 0.048 0.070 (44%↑) 0.062 (28%↑) 0.295 0.450 (52%↑) 0.527 (78%↑)

Langevin 0.093 0.144 (54%↑) 0.157 (69%↑) 0.024 0.037 (54%↑) 0.027 (12%↑) 0.160 0.258 (61%↑) 0.264 (65%↑)

Enron-Phone Dataset / Llama-2 7B

No Unlearn 0.060 0.242 (303%↑) 0.172 (187%↑) 0.034 0.098 (188%↑) 0.067 (97%↑) 0.076 0.115 (51%↑) 0.179 (136%↑)

RL -0.242 -0.084 (65%↓) -0.055 (77%↓) -0.005 0.065 (1400%↑) 0.102 (2140%↑) -0.123 -0.073 (41%↓) 0.012 (90%↓)
EUk 0.057 0.246 (332%↑) 0.185 (225%↑) 0.039 0.106 (172%↑) 0.082 (110%↑) 0.063 0.132 (110%↑) 0.189 (200%↑)
CFk 0.057 0.236 (314%↑) 0.168 (195%↑) 0.032 0.094 (194%↑) 0.063 (97%↑) 0.072 0.108 (50%↑) 0.171 (138%↑)
GA -0.562 -0.430 (23%↓) -0.464 (17%↓) -0.014 0.038 (371%↑) 0.083 (593%↑) -0.625 -0.459 (27%↓) -0.517 (17%↓)

NegGrad+ -0.074 -0.184 (149%↑) -0.040 (46%↓) -0.021 -0.048 (129%↑) -0.002 (90%↓) -0.069 -0.271 (293%↑) -0.057 (17%↓)
SCRUB 0.059 0.162 (175%↑) 0.170 (188%↑) 0.034 0.063 (85%↑) 0.065 (91%↑) 0.074 -0.031 (58%↓) 0.177 (139%↑)

Langevin 0.033 0.180 (445%↑) 0.104 (215%↑) 0.016 0.068 (325%↑) 0.036 (125%↑) 0.033 0.055 (67%↑) 0.091 (176%↑)

of Human Rights. For our experiments, we focus on specific
PIIs based on their distributions: phone numbers (Enron-
Phone) and email domains (Enron-Email) in Enron, and the
year of judgment (ECHR-Year) in ECHR. Data minorities
are defined based on these PIIs. Detailed dataset statistics
are provided in App. A.1. Our study centers on instance-
level unlearning, treating each individual as a single record.

General Settings. We focus on the fine-tuning scenario,
where the initial model M0 is a pretrained LLM (GPT-
2 (Radford et al., 2019) or Llama-2 7B (Touvron et al.,
2023)). The fine-tuned model Mlearn is obtained by training
M0 on a dataset Dtrain for 5 epochs. In the GPT-2 experi-
ments, both the training and test sets contain 10,000 samples,
subsampled from the full dataset. For Llama-2, we employ
efficient fine-tuning using LoRA (Hu et al., 2021); both the
training and test sets consist of 50,000 samples, subsampled
from the entire dataset. In all cases, the forget set size is
set to 1% of the training set size. The models are optimized
using the AdamW optimizer with a constant learning rate of
10−5, following the settings described in Shi et al. (2024b).
During the unlearning process, all unlearning methods are
constrained to the same computational budget—not exceed-
ing 10 complexity units—as detailed in Section 5.1. We
ensure that the unlearning complexity of each method is
similar to allow for a fair comparison. Our ultimate goal is
to achieve a superior privacy-utility-efficiency trade-off. We
utilize MIA to estimate the empirical privacy risk measured
by the PL metric as described in Section 3.1. For evaluating
the utility of the LLMs, we report the perplexity following
standard practices in the literature (Radford et al., 2019;

Zhang et al., 2022), where a lower perplexity indicates that
the model is more confident in its predictions. Additional
details are provided in App. B.

6.1. Standard Approaches Underestimate Privacy Risk
for Minorities.

We report the results pertaining to the Enron-Phone, Enron-
Email, and the ECHR-Year datasets. The experiment setting
follows the explanation in Section 4 and further details
are relegated to App. A.1. Table 2 shows that across all
three attackers (lossMIA, zlibMIA, and Min-K%), all six
unlearning methods and original model (no unlearning),
the privacy leakage measure is significantly larger when
unlearning canaries and minorities on Enron-Phone dataset
for GPT-2 and Llama-2 7B respectively. Notably, in almost
all cases the privacy leakage is underestimated for at least
20%. A similar phenomenon holds for the Enron-Email and
ECHR-Year (Table 4, 5, 6, 7 in App. C.1) datasets. These
results verify our claim that the current LLM unlearning
evaluation indeed understated the privacy risk, especially
for minorities. Our results call for a more careful empirical
LLM unlearning evaluation, where considering canaries and
minorities as we described can be an effective first step.

6.2. Benchmarking Unlearning Approaches under
Minority-Aware Evaluation.

Motivated by our observations, we propose the minority-
aware LLM unlearning evaluation. Instead of reporting the
privacy leakage (PL) score under the Random case, we pro-
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Combine All Privacy Evaluation

(a) (b) (c) (d)

GPT-2 Llama-2

Phone Email

(e) (f) (g) (h)

GPT-2 Llama-2

Figure 4. Benchmarking unlearning approaches via our minority-aware evaluation for GPT-2 and Llama-2 on Enron-Phone (Left) and
Enron-Email (Right) datasets. (a),(c),(e),(g): Maximum privacy leakage (PL) over three cases (Random, Canary, and Minority) for
Min-K% attack. (b),(d),(f),(h): Worst perplexity over the three cases of each method. More results on lossMIA and zlibMIA attackers are
deferred to App. C.2.

pose to report the magnitude of maximum PL score of
three settings (Random, Canary, and Minority) . This
provides a better privacy risk estimation while keeping the
entire evaluation pipeline efficient. Besides, we report the
corresponding worst-case perplexity as the utility measure
for each unlearning approach. We benchmark the popu-
lar unlearning methods under our new evaluation pipeline,
where the result is summarized in Figure 4 for GPT-2 and
Llama-2 on the Enron-Phone and Enron-Email datasets. See
App. C.2 for additional results.

We found that Langevin Unlearning offers the best balance
between privacy and utility empirically. Note that while gra-
dient ascent has on-par performance compared to Langevin
Unlearning on the Enron-Phone dataset, it significantly de-
grades the model utility on the Enron-Email dataset. This
echoes the finding of Ilharco et al. (2023); Pawelczyk et al.
(2024a), albeit for different tasks. We found that gradient as-
cent is inherently unstable. In contrast, unlearning methods
that leverage keep set Dkeep are much more stable, including
Langevin Unlearning and SCRUB.

We also present results using utility metrics, including
BERTScore (Zhang et al., 2019) and ROUGE (Lin, 2004),
which capture semantic meaning. These results, provided in
App. C.3, exhibit a consistent trend.

6.3. Ablation studies.

We present ablation studies on the Enron-Phone dataset
using the GPT-2 model, unless otherwise specified, and
further results are deferred to App. C.4, C.5 and C.6.

Privacy-Utility Trade-off. We analyze the privacy-utility
trade-off curves for stable methods like Langevin Unlearn-
ing and SCRUB, along with the widely used GA. For
Langevin Unlearning, we adjust the noise scale during train-
ing and unlearning. In SCRUB, we vary the weights that
balance the loss and KL regularizer terms in its objective
function (Sec. 5). For GA, we explore different learning

rates ranging from 1e−7 to 1e−3. As shown in Fig.6,

Figure 6. Privacy-utility Trade-
off Curves for GPT-2.

these curves are evaluated
on the Enron-Phone and
Enron-Email datasets.
The results indicate that
Langevin Unlearning
(Green Line) outperforms
SCRUB (Purple Line)
with a superior privacy-
utility trade-off. Notably,
while GA performs
reasonably well on the
Enron-Phone dataset, its
trade-off on Enron-Email
is significantly weaker,
revealing its instability.
Detailed hyperparameter
tuning for these methods
is provided in App.C.6.

Unlearning Iteration. We investigate the effect of unlearn-
ing epochs on privacy (Max PL) and utility (perplexity) for
each unlearning approach in Fig. 5 (Left). We observe that
RL and GA are unstable in PL score. Furthermore, these two
methods can lead to significant model utility degradation
in terms of perplexity, where even unlearning for 2 epochs
can already result in a model breakdown. This observation
again demonstrates that gradient ascent, albeit being simple
and popular, is not a reliable LLM unlearning solution. We
should focus on stable unlearning solutions such as SCRUB
and Langevin Unlearning.

Size of Forget Set. In Fig. 5 (Right), we report the effect of
different forget set sizes on the privacy (Max PL) and utility
(Perplexity) trade-offs for each unlearning method. We find
that both the GA and RL methods are highly sensitive to the
forget set size, leading to significant model utility degrada-
tion and poor reliability in practice. In contrast, methods
like Langevin Unlearning demonstrate good performance in

8
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(a) (b)

(a) (b)

The effect of unlearning epochs for each unlearning
approach.(a): Maximum PL with the attacker being
Min-K%. (b): Model perplexity.

(a) (b)

(a) (b)

The effect of forget set size for each unlearning approach.(a): Maximum PL
with the attacker being Min-K%. (Results on lossMIA, zlibMIA are deferred
to App. C.5). (b): Model perplexity.

Figure 5. Ablation studies on unlearning iterations and forget set size.

terms of stability.

7. Conclusions
We identify a critical limitation in the typical evaluation
pipeline for LLM unlearning efficacy: privacy risks to mi-
nority groups in the training data are often underestimated.
Through carefully designed experiments using unlearning
canaries tied to minority groups, inspired by privacy au-
diting research, we demonstrate that minority groups face
at least 20% greater privacy leakage on average. Using
personally identifiable information (PII) as a proxy for mi-
nority identifiers, we emphasize the need for more rigorous
evaluations to ensure the right to be forgotten applies univer-
sally. Benchmarking existing unlearning methods with our
minority-aware evaluation reveals that popular heuristics
like gradient ascent are unstable and can degrade model
utility. In contrast, methods such as Langevin Unlearning
achieve a more favorable privacy-utility trade-off.

Impact Statement
This work introduces a minority-aware evaluation frame-
work aimed at enhancing the comprehensiveness and equi-
table nature of LLM unlearning assessments. Our research
contributes to the standardization of user data protection
and the responsible utilization of machine learning data.
However, we emphasize the importance of using compliant,
publicly available, or officially authorized data when con-
ducting minority-aware evaluations with LLMs. Building
on these foundations, our work aims to foster more ethical
and inclusive practices in the development and application
of machine learning technologies.
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ski, M., Carlini, N., and Terzis, A. Tight auditing of
differentially private machine learning. In 32nd USENIX
Security Symposium (USENIX Security 23), pp. 1631–
1648, 2023.

Neel, S., Roth, A., and Sharifi-Malvajerdi, S. Descent-to-
delete: Gradient-based methods for machine unlearning.
In Algorithmic Learning Theory, pp. 931–962. PMLR,
2021.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in neural information
processing systems, 35:27730–27744, 2022.

Pawelczyk, M., Di, J. Z., Lu, Y., Kamath, G., Sekhari,
A., and Neel, S. Machine unlearning fails to remove
data poisoning attacks. arXiv preprint arXiv:2406.17216,
2024a.

Pawelczyk, M., Neel, S., and Lakkaraju, H. In-context un-
learning: Language models as few-shot unlearners. In
Forty-first International Conference on Machine Learn-
ing, 2024b. URL https://openreview.net/
forum?id=GKcwle8XC9.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Sekhari, A., Acharya, J., Kamath, G., and Suresh, A. T. Re-
member what you want to forget: Algorithms for machine
unlearning. Advances in Neural Information Processing
Systems, 34:18075–18086, 2021.

Shi, W., Ajith, A., Xia, M., Huang, Y., Liu, D., Blevins,
T., Chen, D., and Zettlemoyer, L. Detecting pretrain-
ing data from large language models. arXiv preprint
arXiv:2310.16789, 2023.

11

https://aclanthology.org/2023.acl-long.805
https://aclanthology.org/2023.acl-long.805
https://doi.org/10.14778/3681954.3681994
https://doi.org/10.14778/3681954.3681994
https://openreview.net/forum?id=GKcwle8XC9
https://openreview.net/forum?id=GKcwle8XC9


Underestimated Privacy Risks for Minority Populations in Large Language Model Unlearning

Shi, W., Ajith, A., Xia, M., Huang, Y., Liu, D., Blevins,
T., Chen, D., and Zettlemoyer, L. Detecting pretrain-
ing data from large language models. In The Twelfth
International Conference on Learning Representations,
2024a. URL https://openreview.net/forum?
id=zWqr3MQuNs.

Shi, W., Lee, J., Huang, Y., Malladi, S., Zhao, J., Holtz-
man, A., Liu, D., Zettlemoyer, L., Smith, N. A., and
Zhang, C. Muse: Machine unlearning six-way evaluation
for language models. arXiv preprint arXiv:2407.06460,
2024b.

Shokri, R., Stronati, M., Song, C., and Shmatikov, V. Mem-
bership inference attacks against machine learning mod-
els. In 2017 IEEE symposium on security and privacy
(SP), pp. 3–18. IEEE, 2017.

Steinke, T. and Ullman, J. The pitfalls of average-
case differential privacy. DifferentialPrivacy.org, 07
2020. https://differentialprivacy.org/
average-case-dp/.

Steinke, T., Nasr, M., and Jagielski, M. Privacy auditing
with one (1) training run. Advances in Neural Information
Processing Systems, 36, 2024.

Thudi, A., Jia, H., Shumailov, I., and Papernot, N. On
the necessity of auditable algorithmic definitions for ma-
chine unlearning. In 31st USENIX Security Symposium
(USENIX Security 22), pp. 4007–4022, 2022.

Thudi, A., Jia, H., Meehan, C., Shumailov, I., and Papernot,
N. Gradients look alike: Sensitivity is often overestimated
in {DP-SGD}. In 33rd USENIX Security Symposium
(USENIX Security 24), pp. 973–990, 2024.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Ullah, E. and Arora, R. From adaptive query release to
machine unlearning. In International Conference on Ma-
chine Learning, pp. 34642–34667. PMLR, 2023.

Ullah, E., Mai, T., Rao, A., Rossi, R. A., and Arora, R. Ma-
chine unlearning via algorithmic stability. In Conference
on Learning Theory, pp. 4126–4142. PMLR, 2021.

Wu, X., Li, J., Xu, M., Dong, W., Wu, S., Bian, C., and
Xiong, D. Depn: Detecting and editing privacy neu-
rons in pretrained language models. arXiv preprint
arXiv:2310.20138, 2023.

Yao, J., Chien, E., Du, M., Niu, X., Wang, T., Cheng, Z.,
and Yue, X. Machine unlearning of pre-trained large lan-
guage models. In Ku, L.-W., Martins, A., and Srikumar,
V. (eds.), Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), pp. 8403–8419, Bangkok, Thailand,
August 2024. Association for Computational Linguis-
tics. URL https://aclanthology.org/2024.
acl-long.457.

Yao, Y., Xu, X., and Liu, Y. Large language model un-
learning. In Socially Responsible Language Modelling
Research, 2023. URL https://openreview.net/
forum?id=wKe6jE065x.

Ye, J., Maddi, A., Murakonda, S. K., Bindschaedler, V.,
and Shokri, R. Enhanced membership inference attacks
against machine learning models. In Proceedings of the
2022 ACM SIGSAC Conference on Computer and Com-
munications Security, pp. 3093–3106, 2022.

Yeom, S., Giacomelli, I., Fredrikson, M., and Jha, S. Privacy
risk in machine learning: Analyzing the connection to
overfitting. In 2018 IEEE 31st computer security founda-
tions symposium (CSF), pp. 268–282. IEEE, 2018.

Zhang, R., Lin, L., Bai, Y., and Mei, S. Negative preference
optimization: From catastrophic collapse to effective un-
learning. arXiv preprint arXiv:2404.05868, 2024.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V.,
et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., and Artzi,
Y. Bertscore: Evaluating text generation with bert. arXiv
preprint arXiv:1904.09675, 2019.
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A. Dataset
A.1. Dataset Details

In this paper, we examine two representative PII datasets: Enron and ECHR, described as follows:

• Enron (Klimt & Yang, 2004). The Enron dataset consists of 536,000 authentic emails from 158 employees of the Enron
Corporation, made publicly available by the Federal Energy Regulatory Commission following an investigation. Each
email typically includes the sending timestamp, sender and recipient information, a greeting, the main content, and a footer
containing the sender’s personal details.

• ECHR (Chalkidis et al., 2019). The ECHR dataset comprises case records from the European Court of Human Rights.
Each record contains a series of factual lists that detail the specifics of a case. In our experiments, we further decompose
these cases into individual facts, with each fact forming a distinct sample, averaging around 80 tokens in length. In total,
the dataset includes around 118,000 samples.

A.2. PII Selection

As outlined in Sec. 4, we selected U.S. phone numbers from the Enron dataset based on a criterion aimed at analyzing
privacy risks in minority groups. To ensure the PII distribution was imbalanced, reflecting both minority and majority
groups, we additionally selected two standard PII types (Lukas et al., 2023): email addresses (Enron) and years (ECHR).
The distributions of these PII counts are depicted in Fig. 7.
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Figure 7. Histogram of email addresses (Enron-Email) and years (ECHR-Year).

A.3. Preprocessing and Dataset Split

Dataset Preprocess. In our experiments, since the average token length of Enron samples is approximately 770, we
controlled the token length of each fact to ensure the model could effectively memorize the samples. We randomly selected
three coherent sentences from each sample, and if the sample contained specific PIIs of interest, we prioritized selecting
sentences around them. We will keep the original samples for the ECHR dataset.

Dataset Construction. We begin by searching the dataset for occurrences of specific PIIs and analyzing their distribution.
To form the minority set used in our Minority setting, we select 100 samples containing the least frequent PIIs; this set
serves as our forget set. In the Random setting, we construct the forget set by randomly selecting 100 samples containing
PIIs. To create the canary set, we replace the PIIs in the forget set (Random setting) with the least frequent PII found in the
dataset. From the remaining data, we randomly select samples to create the training and test sets. For experiments with
GPT-2 (117M), we uniformly at random selected 10,000 samples each for both the training and test sets. For Llama-2 7B,
we uniformly at random selected 50,000 samples for both the training and test sets.

B. Experimental Details
B.1. Compute Configurations

All experiments were conducted using 8 NVIDIA A100 GPUs (80GB) and 14 NVIDIA RTX 6000 Ada GPUs (48GB).
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B.2. Unlearning Experiment Setup

Unlearning Algorithms. For all unlearning methods, we use a constant learning rate of 10−5 and a batch size of 32,
consistent with the fine-tuning stage. Note that some unlearning algorithms require additional hyperparameters. We follow
the common designs from previous literature (Pawelczyk et al., 2024a) and detail the hyperparameter selection as follows:

• EUK and CFK. In our experiments, we set the number of retrained layers to k = 3 for both GPT-2 and Llama-2 (LoRA)
models. For GPT-2, the unfrozen trainable parameters account for approximately 16% of the total parameters, while for
Llama-2 7B, the unfrozen parameters account for around 10%.

• NegGrad+. As noted in the main text, the hyperparameter β balances samples between Dforget and Dkeep. In these
experiments, we set β = 0.999.

• SCRUB. In the SCRUB method, three hyperparameters are used to balance the loss function on the keep set and the KL
regularizers on both the keep and forget sets. According to the definition of the objective function in Section 5, three terms
are weighted sequentially by setting: α = 0.999, β = 1, and γ = 0.01.

• Langevin Unlearning. The Langevin Unlearning method leverages noisy gradient descent to unlearn samples from the
forget set. In our experiments, we set the Gaussian noise scale to σ = 5e− 4 (for GPT-2) and σ = 5e− 3 (for Llama-2),
and the clipping norm to 1.

Unlearning Epoch Selection. As outlined in Section 5.1, all unlearning methods are constrained to a maximum of 10
complexity units, and the optimal epoch for each method is selected based on whether the perplexity of the unlearned model
on Dtrain increases by more than 1 point. Under our computational budget, methods that only require the forget set (RL, GA)
are run for 10 epochs, while methods requiring both the keep and forget sets (NegGrad+, SCRUB) are limited to 5 epochs,
due to the equal-sized cycling between the two sets. For methods that only require the keep set (EUK, CFK, Langevin), we
use 10 epochs, with varying sample sizes for EUK and CFK, as some model parameters remain frozen. The selected epoch
for each method in each experiment is detailed in Table 3.

Table 3. Epochs comparison between unlearning methods on GPT2 and LLaMA2 models.

Unlearning Methods GPT-2 Llama-2 7B

Enron ECHR Enron ECHR

RL Epoch 1 Epoch 1 Epoch 1 Epoch 1
EUk Epoch 10 Epoch 10 Epoch 10 Epoch 10
CFk Epoch 10 Epoch 10 Epoch 10 Epoch 10
GA Epoch 1 Epoch 1 Epoch 1 Epoch 1
NegGrad+ Epoch 5 Epoch 5 Epoch 1 Epoch 5
SCRUB Epoch 5 Epoch 5 Epoch 5 Epoch 5
Langevin Epoch 10 Epoch 10 Epoch 10 Epoch 10

Attack Method Hyperparameters. We employed three attack methods in our evaluation pipeline. For lossMIA and
zlibMIA, there are no hyperparameters to tune. The Min-K% method is based on the observation that non-member examples
tend to have more tokens with lower likelihoods compared to member examples. In this method, the hyperparameter
K controls the selection of the bottom K% of tokens in each sample based on their likelihoods. Following previous
recommendations in (Duan et al., 2024; Shi et al., 2024a), we set K = 20 in our experiments.

Random Seed Selection. In all our experiments, we followed the common practice and fixed our random seed to be 42.

C. Additional Experimental Results
In this section, we present supplementary experimental results to further substantiate our claims in the main text.
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Table 4. The privacy leakage (PL) for each unlearning method against different attackers for GPT-2 on the Enron-Email dataset.
Method PL (lossMIA) PL (zlibMIA) PL (Min-K%)

Random Canary Minority Random Canary Minority Random Canary Minority
No Unlearn 0.303 0.535 (77%↑) 1.145 (278%↑) 0.200 0.309 (54%↑) 0.262 (31%↑) 0.529 0.934 (76%↑) 1.468 (178%↑)

RL 0.033 0.153 (366%↑) 0.448 (1265%↑) 0.062 0.142 (127%↑) 0.121 (94%↑) 0.431 0.772 (79%↑) 1.200 (179%↑)
EUk 0.232 0.440 (89%↑) 0.582 (150%↑) 0.135 0.229 (70%↑) 0.152 (13%↑) 0.501 0.886 (77%↑) 1.034 (106%↑)
CFk 0.296 0.515 (74%↑) 1.139 (285%↑) 0.197 0.295 (49%↑) 0.260 (32%↑) 0.526 0.905 (72%↑) 1.478 (181%↑)
GA -0.279 -0.173 (38%↓) 0.739 (165%↑) -0.119 -0.037 (69%↓) 0.168 (41%↑) -0.390 -0.304 (22%↓) 1.034 (165%↑)

NegGrad+ 0.265 0.471 (77%↑) 1.103 (316%↑) 0.179 0.269 (50%↑) 0.251 (40%↑) 0.496 0.864 (74%↑) 1.434 (189%↑)
SCRUB 0.286 0.499 (74%↑) 1.097 (283%↑) 0.190 0.289 (52%↑) 0.253 (34%↑) 0.519 0.902 (74%↑) 1.473 (184%↑)

Langevin 0.154 0.319 (107%↑) 0.606 (293%↑) 0.086 0.178 (107%↑) 0.124 (44%↑) 0.336 0.645 (92%↑) 0.940 (180%↑)

Table 5. The privacy leakage (PL) for each unlearning method against different attackers for GPT-2 on ECHR-year datasets.
Method PL (lossMIA) PL (zlibMIA) PL (Min-K%)

Random Canary Minority Random Canary Minority Random Canary Minority
No Unlearn 0.198 0.247 (25%↑) 0.263 (33%↑) 0.086 0.103 (20%↑) 0.122 (42%↑) 0.213 0.276 (30%↑) 0.299 (40%↑)

RL 0.161 0.213 (32%↑) 0.234 (45%↑) 0.067 0.088 (31%↑) 0.086 (28%↑) 0.190 0.259 (36%↑) 0.257 (35%↑)
EUk 0.125 0.176 (41%↑) 0.138 (10%↑) 0.067 0.088 (31%↑) 0.070 (4%↑) 0.114 0.187 (64%↑) 0.135 (18%↑)
CFk 0.188 0.234 (24%↑) 0.260 (38%↑) 0.084 0.095 (13%↑) 0.120 (43%↑) 0.209 0.264 (26%↑) 0.295 (41%↑)
GA 0.067 0.027 (60%↓) 0.105 (57%↑) 0.024 0.019 (21%↓) 0.038 (58%↑) 0.090 -0.019 (79%↓) 0.143 (59%↑)

NegGrad+ 0.183 0.221 (21%↑) 0.247 (35%↑) 0.071 0.088 (24%↑) 0.112 (58%↑) 0.191 0.237 (24%↑) 0.274 (43%↑)
SCRUB 0.179 0.223 (25%↑) 0.253 (41%↑) 0.080 0.099 (24%↑) 0.116 (45%↑) 0.197 0.253 (38%↑) 0.289 (47%↑)

C.1. Experiments on Enron-Email and ECHR-year datasets

In Tables 4, 7, 5 and 7, we report the PL scores for all three attackers across the three scenarios on the Enron-email,
ECHR-year datasets for GPT-2 and Llama-2, respectively. The results support our claim that the current LLM unlearning
evaluation (Random setting) significantly underestimates privacy risk.

Table 6. The privacy leakage (PL) for each unlearning method against different attackers for Llama-2 7B on the Enron-Email dataset.

Method PL (lossMIA) PL (zlibMIA) PL (Min-K%)

Random Canary Minority Random Canary Minority Random Canary Minority

No Unlearn 0.050 0.282 (464%↑) 0.174 (248%↑) 0.046 0.236 (413%↑) 0.095 (106%↑) 0.064 0.474 (640%↑) 0.224 (250%↑)

RL -0.609 -0.567 (7%↓) -0.821 (12%↓) -0.832 -0.874 (5%↑) -0.478 (43%↓) -0.931 -0.931 (0%) -0.849 (9%↓)
EUk 0.037 0.241 (551%↑) 0.169 (356%↑) 0.015 0.186 (1140%↑) 0.102 (580%↑) 0.040 0.364 (810%↑) 0.206 (415%↑)
CFk 0.049 0.264 (438%↑) 0.169 (245%↑) 0.046 0.220 (378%↑) 0.090 (96%↑) 0.062 0.436 (603%↑) 0.218 (251%↑)
GA -0.512 -0.692 (35%↑) 0.059 (89%↓) -0.435 -0.232 (47%↓) 0.184 (58%↓) -0.569 -0.479 (16%↓) 0.294 (48%↓)

NegGrad+ -0.931 -0.929 (2%↓) -0.821 (12%↓) -0.832 -0.874 (5%↑) -0.478 (43%↓) -0.931 -0.931 (0%) -0.849 (9%↓)
SCRUB 0.040 0.257 (543%↑) 0.174 (335%↑) 0.034 0.209 (515%↑) 0.095 (179%↑) 0.056 0.426 (661%↑) 0.224 (300%↑)

Langevin 0.022 0.191 (768%↑) 0.048 (118%↑) 0.020 0.141 (605%↑) 0.021 (5%↑) 0.035 0.339 (868%↑) 0.079 (126%↑)

Table 7. The privacy leakage (PL) for each unlearning method against different attackers for Llama-2 7B on the ECHR-year dataset.

Method PL (lossMIA) PL (zlibMIA) PL (Min-K%)

Random Canary Minority Random Canary Minority Random Canary Minority

No Unlearn 0.056 0.094 (68%↑) 0.076 (35%↑) 0.030 0.048 (60%↑) 0.096 (220%↑) 0.067 0.114 (70%↑) 0.138 (106%↑)

RL -0.069 0.044 (36%↓) -0.532 (671%↑) -0.024 0.029 (21%↑) -0.192 (700%↑) -0.034 0.070 (106%↑) -0.458 (1247%↑)
EUk 0.059 0.084 (42%↑) 0.079 (34%↑) 0.030 0.044 (47%↑) 0.079 (163%↑) 0.065 0.110 (69%↑) 0.153 (135%↑)
CFk 0.056 0.088 (57%↑) 0.073 (30%↑) 0.028 0.044 (57%↑) 0.088 (214%↑) 0.063 0.106 (68%↑) 0.131 (108%↑)
GA -0.046 -0.376 (717%↑) -0.624 (1257%↑) -0.016 -0.120 (650%↑) -0.267 (1569%↑) -0.063 -0.404 (541%↑) -0.574 (811%↑)

NegGrad+ 0.024 -0.272 (1033%↑) -0.624 (2500%↑) 0.012 -0.099 (725%↑) -0.235 (1858%↑) 0.026 -0.404 (1454%↑) -0.663 (2449%↑)
SCRUB 0.056 0.094 (68%↑) 0.073 (30%↑) 0.030 0.048 (60%↑) 0.090 (200%↑) 0.067 0.112 (67%↑) 0.139 (107%↑)

Langevin 0.026 0.052 (100%↑) 0.041 (58%↑) 0.010 0.025 (150%↑) 0.046 (360%↑) 0.028 0.062 (121%↑) 0.078 (179%↑)

C.2. More Results on Minority-Aware Evaluation

In this section, we present further benchmarking results for unlearning approaches under minority-aware LLM evaluation.
Following the same setup as Section 6.2, Fig. 8 reports the maximum PL score under lossMIA and zlibMIA attackers on
Enron-Phone and Enron-Email and Fig. 9 reports the maximum PL score and worst-case perplexity for various unlearning
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methods on ECHR-Year (GPT-2) dataset.

(a) (b) (c) (d)

GPT-2 Llama-2

(e) (f) (g) (h)

GPT-2 Llama-2

Phone Email

GPT-2 and Llama-2 on Enron-Phone and Enron-Email dataset

Figure 8. Benchmarking unlearning approaches via our minority-aware evaluation for GPT-2 and Llama-2 on Enron-Phone and Enron-
Email dataset. (a),(c),(e),(g): Maximum privacy leakage (PL) over three cases (Random, Canary, and Minority) for lossMIA attack.
(b),(d),(f),(h): Maximum privacy leakage (PL) over three cases (Random, Canary, and Minority) for zlibMIA attack.

ECHR – GPT2

(a) (b) (c) (d)

Figure 9. Benchmarking unlearning approaches via our minority-aware evaluation for GPT-2 on ECHR-year dataset. (a)-(c): Maximum
privacy leakage (PL) over three cases (Random, Canary, and Minority) for lossMIA, zlibMIA, and Min-K% attacks respectively. (d):
Worst perplexity over the three cases of each method.

ECHR – Llama

(a) (b) (c) (d)

Figure 10. Benchmarking unlearning approaches via our minority-aware evaluation for Llama-2 on ECHR Year dataset. (a)-(c): Maximum
privacy leakage (PL) over three cases (Random, Canary, and Minority) for lossMIA, zlibMIA, and Min-K% attacks respectively. (d):
Worst perplexity over the three cases of each method.

We observe that both GA and Langevin Unlearning methods maintain a favorable balance between privacy and utility.
However, GA can be sensitive to the forget set size and the number of unlearning iterations (Section 6.3). In practice, the GA
method should be applied with caution, whereas more stable approaches like Langevin Unlearning offer a better trade-off in
terms of privacy, utility, and stability.

16



Underestimated Privacy Risks for Minority Populations in Large Language Model Unlearning

C.3. Results on Other Utility Metrics

In this section, we report the worst-case utility performance across three settings (Random, Canary, and Minority)
using utility metrics BERTScore (Zhang et al., 2019) and ROUGE score (Lin, 2004), which capture semantic meaning,
on the Enron-Email dataset. The results are shown in Fig.11 (GPT-2) and Fig.12 (Llama-2). As illustrated in the figures,
the performance of Random Label and gradient-ascent-based methods (Gradient Ascent and NegGrad+) is unstable under
all utility metrics (Perplexity, BERTScore, and ROUGE). In contrast, Langevin Unlearning demonstrates relatively stable
performance and achieves a favorable privacy-utility trade-off.

(a) (b) (c)

(d)

Enron-email-gpt2

(e) (f)
Figure 11. Benchmarking unlearning approaches via our minority-aware evaluation for GPT-2 on Enron-email dataset. (a)-(c): Maximum
privacy leakage (PL) over three cases (Random, Canary, and Minority) for lossMIA, zlibMIA, and Min-K% attacks respectively.
(d-f): Worst utility performance over the three cases of each method.

C.4. Further Details and Results on Langevin Unlearning

In this section, we provide additional details and results on the Langevin Unlearning methods. As mentioned in Section 5,
Langevin leverages noisy gradient descent and involves training the model on the dataset Dtrain using DP-SGD. Furthermore,
Langevin conducts machine unlearning by fine-tuning the model on the dataset Dkeep with DP-SGD as well.

It is important to note that for the Langevin Unlearning method, the training process incorporates noise. Consequently, our
retrain baseline is adjusted to train the initial model on Dkeep using DP-SGD for 5 epochs. Furthermore, in Table 8 and 9,
we report the effectiveness of Langevin Unlearning by evaluating it against three MIA methods (lossMIA, zlibMIA, and
Min-K%) across different datasets on GPT-2. These evaluations are conducted across three scenarios (Random, Canary,
Minority), assessing the PL scores, the maximum PL scores and the worst-case perplexity. By comparing the results of
the Noisy No Unlearn baseline (which fine-tunes the initial model with DP-SGD for 5 epochs) with those of the Langevin
Unlearning method, we observe that minority scenarios (Canary, Minority) lead to significantly higher privacy leakage,
and Langevin Unlearning achieves superior privacy-utility trade-offs. Additionally, in practical applications, the number
of steps employing noisy gradient descent can be tailored based on the acceptable computational costs, thereby enabling
potentially better privacy-utility trade-offs. This flexibility allows practitioners to balance the trade-off between enhanced
privacy and computational efficiency according to specific application requirements.
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(a) (b) (c)

(d)

Enron-email-llama2

(e) (f)
Figure 12. Benchmarking unlearning approaches via our minority-aware evaluation for Llama-2 on Enron-email dataset. (a)-(c): Maximum
privacy leakage (PL) over three cases (Random, Canary, and Minority) for lossMIA, zlibMIA, and Min-K% attacks respectively.
(d-f): Worst utility performance over the three cases of each method.

Table 8. The privacy leakage (PL) for Langevin Unlearning against different attackers for GPT-2 on All datasets.
Method PL (lossMIA) PL (zlibMIA) PL (Min-K%)

Random Canary Minority Random Canary Minority Random Canary Minority

Enron-phone

Noisy No Unlearn 0.097 0.152 (57%↑) 0.170 (75%↑) 0.024 0.039 (63%↑) 0.033 (38%↑) 0.164 0.259 (58%↑) 0.268 (63%↑)
Langevin 0.092 0.144 (57%↑) 0.157 (71%↑) 0.024 0.037 (54%↑) 0.027 (13%↑) 0.159 0.259 (63%↑) 0.264 (66%↑)

Enron-email

Noisy No Unlearn 0.156 0.342 (119%↑) 0.642 (312%↑) 0.102 0.193 (89%↑) 0.130 (27%↑) 0.344 0.691 (101%↑) 0.945 (175%↑)
Langevin 0.154 0.319 (107%↑) 0.606 (294%↑) 0.097 0.178 (84%↑) 0.124 (28%↑) 0.336 0.645 (92%↑) 0.939 (179%↑)

ECHR-year

Noisy No Unlearn 0.101 0.152 (51%↑) 0.122 (21%↑) 0.049 0.067 (37%↑) 0.064 (31%↑) 0.122 0.180 (48%↑) 0.145 (19%↑)
Langevin 0.103 0.140 (36%↑) 0.125 (21%↑) 0.049 0.061 (24%↑) 0.065 (33%↑) 0.117 0.168 (44%↑) 0.146 (25%↑)

Table 9. Maximum PL Scores and Worst-case Perplexity for Noisy No Unlearn and Langevin across Datasets on GPT-2
Dataset Methods lossMIA zlibMIA Min-K% Perplexity

Enron
phone

Noisy No Unlearn 0.170 0.039 0.268 13.87
Langevin 0.157 (7.65%↓) 0.037 (5.13%↓) 0.264 (1.49%↓) 13.88

Enron
email

Noisy No Unlearn 0.642 0.193 0.945 12.52
Langevin 0.606 (5.61%↓) 0.178 (7.77%↓) 0.939 (0.63%↓) 12.61

ECHR
year

Noisy No Unlearn 0.152 0.067 0.180 12.75
Langevin 0.140 (7.89%↓) 0.061 (8.96%↓) 0.168 (6.67%↓) 12.78

C.5. More Results on Forget Set Size

In this section, we report additional results on the impact of forget set size for each unlearning method, using LossMIA and
ZlibMIA attackers. As shown in Fig. 13, similar to the results in the main text, both RL and GA methods are sensitive to the
forget set size, whereas methods like SCRUB and Langevin Unlearning demonstrate greater stability.
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(a) (b)

(a) (b)

Figure 13. The effect of forget set size for each unlearning approach. (a)(b): Maximum PL over three cases (Random, Canary, Minority)
with the attacker being lossMIA and zlibMIA respectively.

C.6. More Details on the Privacy-Utility Trade-off Curves for Langevin Unlearning and SCRUB Methods

This section provides an comprehensive experiments of the privacy-utility trade-off curves for the Langevin Unlearning and
SCRUB methods, as introduced in Sec. 6.3. We detailed the hyperparameters used in the ablation study as follows:
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Figure 14. Privacy-utility transition curves for Enron-Phone dataset with hyperparameter β = 1 (Top) and hyperparameter β = 1e− 3
(Bottom).

Langevin Unlearning. For the Langevin Unlearning method, we fix the clipping norm to 1 and vary the noise scale added
during training to control the privacy-utility trade-off. In experiments with the GPT-2 model, the noise scale σ is adjusted
across the values {1e− 4, 3e− 4, 5e− 4, 8e− 4, 1e− 3}. Table 19 and 20 present the AUC scores under various attackers
(lossMIA, zlibMIA, Min-k%) and utility (perplexity) on the Enron-Phone and Enron-Email datasets, respectively.

SCRUB. The SCRUB training objective comprises the original loss ℓ on the keep set, along with two KL divergence
regularizers on the keep and forget sets. These terms are balanced by three hyperparameters:

Êx∼Dkeep [αKL(Mlearn(x)∥M(x)) + βℓ(M ;x)]− Êx∼Dforget [γKL(Mlearn(x)∥M(x))]. (2)

We conducted an extensive hyperparameter search, setting β to 1 and 1e− 3 in separate configurations. For each fixed β, α
and γ are independently varied from {1e − 4, 5e − 4, 1e − 3, 5e − 3, 1e − 2, 5e − 2, 1e − 1, 5e − 1, 1}. Fig. 14 and 15
illustrates the resulting transition curves, showing the maximum privacy leakage (PL) for three scenarios (Random, Canary,
Minority) across different attackers (lossMIA, zlibMIA, Min-k%) and utility (perplexity) metrics on both Enron-Phone and
Enron-Email datasets. The transition curves highlight how SCRUB’s performance depends on balancing the three objective
terms. Notably, when the KL regularizer weight on the keep set is greater than or equal to that on the forget set, SCRUB
achieves relatively high utility, albeit with increased privacy leakage. Besides, we observe in our experiments that the
zlibMIA attacker fails to capture the inherent privacy-utility trade-off for SCRUB as demonstrated in the transition curves.

We further report the privacy-utility trade-off curves for both methods under attacker being lossMIA and zlibMIA. Similar
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Figure 15. Privacy-utility transition curves for Enron-Email dataset with hyperparameter β = 1 (Top) and hyperparameter β = 1e− 3
(Bottom).

Figure 16. Privacy-utility trade-off curves under lossMIA and zlibMIA.

to the results demonstrated in Sec. 6.3, Langevin Unlearning method achieves the best trade-off performance over SCRUB
method.

C.7. Privacy Underestimation Across Complexity Units

2 4 10
Complexity Unit

102

103

M
ax

 P
L 

Un
de

re
st

im
at

io
n 

(%
) Min-K% - Enron-Phone - GPT-2

Methods
Random Label
EUk
CFk
Gradient Ascent
NegGrad+
Scrub
Langevin

Figure 17. Degree of the largest underestimation
in privacy leakage (Canary, Minority) com-
pared to Random settings across varying Com-
plexity Units.

In Fig. 17, we report the degree of largest underestimation (Canary &
Minoirty settings) in privacy leakage compared to Random settings
across different complexity units under Min-k% attacker. As demonstrated
in the figure, under different complexity units, the privacy leakage for each
unlearning methods are severely underestimated. Detailed results under each
settings are reported in Table 11 and 12.

C.8. Discussion
on Retraining LLMs with Equivalent Computational Budget

In this subsection, we examine the scenario where the LLM is retrained
from scratch using a computational budget equivalent to that of unlearning
methods. Intuitively, if retraining with the same computational resources
could already achieve a satisfactory privacy-utility trade-off, employing
unlearning methods would be less important. To empirically illustrate this
point, we consider the Enron (Phone) dataset with the GPT-2 model as a representative case study. Specifically, we report
the privacy leakage metrics (PrivLeak) across different attack scenarios, as well as the corresponding perplexity scores in
Tab. 10. Additionally, the performance of the retrained model with an equivalent computational budget is highlighted in
Fig. 18 (Black). Our findings reveal that while retraining alone indeed achieves relatively low privacy leakage, it drastically
compromises model utility. These results underscore the importance and practical necessity of developing and evaluating
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unlearning methods.

Table 10. Privacy Leakage (PL) for Retrain with 10 Complexity Units.

Random Canary Minority

Loss PL 0.004 0.043 0.083
Zlib PL 0.058 0.075 0.077
Min-k% PL 0.083 0.174 0.188

Perplexity 23.44
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Figure 18. Privacy-Utility Trade-off for Enron-Phone
Min-k% with Retrain (Same Computation Budget).

C.9. Results on AUC Scores, Perplexity across Different Models and Datasets

We further report the AUC scores under different attackers (lossMIA, zlibMIA, Min-K%) and utility (perplexity) over
holdout test set Dtest for GPT-2 and Llama-2 in Table. 13-18.

C.10. Discussion on TPR@low FPR Metric

Note that aside from the AUC score, a commonly reported metric for privacy evaluation is TPR@low FPR (Carlini et al.,
2022), where the low FPR is often set to 0.01. However, in our scenario, the canary size is set to 100 (1% of the total training
set size). At FPR = 0.01, the TPR would be calculated based on only a few canary samples, making the overall score very
coarse. To avoid the impact of this coarse granularity on our experimental results, we primarily focus on the AUC score.

Table 11. PL Scores for MIA across Three Settings for GPT-2 on Enron (Phone) under Different Complexity Units.
Enron-Phone GPT-2 Min-k%

Methods Complexity Units 2 Complexity Units 4 Complexity Units 10

Random Canary Minority Random Canary Minority Random Canary Minority

Random Label 0.166 0.284 0.136 -0.059 0.037 0.290 0.168 0.320 0.355
EUk 0.068 0.169 0.234 0.068 0.174 0.202 0.092 0.216 0.223
CFk 0.302 0.445 0.518 0.300 0.438 0.519 0.298 0.435 0.514
Gradient Ascent -0.175 -0.245 -0.203 -0.245 -0.469 -0.352 -0.031 -0.012 -0.427
NegGrad+ 0.309 0.452 0.543 0.309 0.447 0.529 0.298 0.452 0.510
Scrub 0.311 0.443 0.525 0.313 0.447 0.525 0.306 0.445 0.532
Langevin 0.163 0.259 0.265 0.161 0.259 0.265 0.159 0.259 0.265

Table 12. Perplexity for MIA across Three Settings for GPT-2 on Enron (Phone) under Different Complexity Units.
Enron-Phone GPT-2 Perplexity

Methods Complexity Units 2 Complexity Units 4 Complexity Units 10

Random Canary Minority Random Canary Minority Random Canary Minority

Random Label 29.85 28.93 30+ 30+ 30+ 30+ 30+ 30+ 30+
EUk 30+ 30+ 30+ 30+ 30+ 30+ 23.64 23.65 26.60
CFk 12.72 12.71 12.72 12.72 12.72 12.73 12.67 12.67 12.67
Gradient Ascent 16.63 15.76 29.28 30+ 30+ 30+ 30+ 30+ 30+
NegGrad+ 12.86 12.87 12.83 12.84 12.86 12.88 12.83 12.80 12.88
Scrub 12.94 12.95 12.96 13.11 13.09 13.19 13.09 12.88 12.96
Langevin 13.84 13.85 13.88 13.85 13.86 13.88 13.84 13.88 13.88
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Table 13. AUC Scores for MIA and Perplexity across Three Settings for GPT-2 on Enron (Phone Numbers)

AUC - LossMIA AUC - ZlibMIA

Random Canary Minority Random Canary Minority

No Unlearn 0.533 0.531 0.422 0.694 0.693 0.619
Retrain 0.448 0.414 0.315 0.660 0.644 0.582
Noisy No Unlearn 0.474 0.464 0.365 0.678 0.674 0.606
Noisy Retrain 0.432 0.403 0.312 0.662 0.649 0.587

Unlearning Methods

Random Label 0.501 0.493 0.381 0.689 0.687 0.617
Langevin 0.472 0.461 0.361 0.678 0.673 0.603
EUk 0.460 0.447 0.354 0.683 0.677 0.612
CFk 0.533 0.529 0.421 0.695 0.692 0.619
Gradient Ascent 0.488 0.472 0.355 0.676 0.671 0.597
NegGrad+ 0.530 0.526 0.418 0.694 0.691 0.616
SCRUB 0.523 0.518 0.416 0.692 0.689 0.618

AUC - Min-K% Perplexity

Random Canary Minority Random Canary Minority

No Unlearn 0.594 0.592 0.471 12.72 12.72 12.72
Retrain 0.457 0.409 0.309 12.74 12.74 12.74
Noisy No Unlearn 0.518 0.511 0.393 13.84 13.85 13.87
Noisy Retrain 0.445 0.406 0.310 13.84 13.84 13.83

Unlearning Methods

Random Label 0.575 0.573 0.447 14.49 14.41 14.86
Langevin 0.516 0.511 0.392 13.84 13.88 13.88
EUk 0.499 0.497 0.378 23.64 23.65 23.60
CFk 0.593 0.587 0.468 12.67 12.67 12.67
Gradient Ascent 0.526 0.508 0.362 13.22 13.20 14.10
NegGrad+ 0.591 0.587 0.467 12.86 12.86 12.88
SCRUB 0.592 0.593 0.472 13.00 12.98 12.96
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Table 14. AUC Scores for MIA and Perplexity across Three Settings for GPT-2 on Enron (Email)

AUC - LossMIA AUC - ZlibMIA

Random Canary Minority Random Canary Minority

No Unlearn 0.555 0.551 0.354 0.462 0.462 0.563
Retrain 0.426 0.359 0.165 0.385 0.353 0.446
Noisy No Unlearn 0.488 0.483 0.271 0.422 0.421 0.512
Noisy Retrain 0.422 0.360 0.165 0.383 0.353 0.453

Unlearning Methods

Random Label 0.440 0.414 0.239 0.409 0.403 0.500
Langevin 0.487 0.475 0.265 0.420 0.416 0.509
EUk 0.525 0.517 0.261 0.437 0.434 0.514
CFk 0.552 0.544 0.353 0.461 0.457 0.562
Gradient Ascent 0.307 0.297 0.287 0.339 0.340 0.521
NegGrad+ 0.539 0.528 0.347 0.454 0.448 0.558
SCRUB 0.548 0.538 0.346 0.458 0.455 0.559

AUC - Min-K% Perplexity

Random Canary Minority Random Canary Minority

No Unlearn 0.607 0.611 0.506 12.11 12.11 12.12
Retrain 0.397 0.316 0.205 12.19 12.19 12.19
Noisy No Unlearn 0.516 0.519 0.387 12.51 12.52 12.50
Noisy Retrain 0.384 0.307 0.199 12.48 12.48 12.48

Unlearning Methods

Random Label 0.568 0.560 0.451 15.87 16.13 13.54
Langevin 0.513 0.505 0.386 12.58 12.58 12.61
EUk 0.596 0.596 0.417 23.58 23.70 23.58
CFk 0.606 0.602 0.508 12.14 12.15 12.15
Gradient Ascent 0.242 0.220 0.417 27.30 21.86 14.53
NegGrad+ 0.594 0.589 0.499 12.34 12.34 12.37
SCRUB 0.603 0.601 0.507 12.15 12.15 12.32
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Table 15. AUC Scores for MIA and Perplexity across Three Settings for GPT-2 on ECHR (Year)

AUC - LossMIA AUC - ZlibMIA

Random Canary Minority Random Canary Minority

No Unlearn 0.661 0.650 0.658 0.532 0.524 0.560
Retrain 0.552 0.521 0.521 0.490 0.475 0.499
Noisy No Unlearn 0.600 0.592 0.581 0.514 0.509 0.535
Noisy Retrain 0.545 0.514 0.518 0.490 0.477 0.503

Unlearning Methods

Random Label 0.641 0.632 0.643 0.523 0.517 0.542
Langevin 0.601 0.586 0.583 0.514 0.506 0.536
EUk 0.621 0.613 0.593 0.523 0.517 0.534
CFk 0.656 0.643 0.656 0.531 0.520 0.559
Gradient Ascent 0.589 0.535 0.576 0.502 0.484 0.518
NegGrad+ 0.653 0.636 0.650 0.525 0.517 0.555
SCRUB 0.651 0.637 0.653 0.529 0.522 0.557

AUC - Min-K% Perplexity

Random Canary Minority Random Canary Minority

No Unlearn 0.671 0.661 0.673 11.81 11.81 11.81
Retrain 0.553 0.518 0.518 11.82 11.82 11.82
Noisy No Unlearn 0.615 0.609 0.586 12.74 12.74 12.75
Noisy Retrain 0.548 0.516 0.512 12.73 12.73 12.73

Unlearning Methods

Random Label 0.658 0.652 0.651 12.70 12.70 12.67
Langevin 0.612 0.603 0.587 12.78 12.78 12.78
EUk 0.616 0.615 0.588 22.04 22.06 22.00
CFk 0.669 0.655 0.671 11.78 11.78 11.79
Gradient Ascent 0.603 0.508 0.592 12.11 12.20 12.11
NegGrad+ 0.659 0.641 0.660 12.01 12.04 12.03
SCRUB 0.662 0.649 0.668 12.02 12.03 12.01

24



Underestimated Privacy Risks for Minority Populations in Large Language Model Unlearning

Table 16. AUC Scores for MIA and Perplexity across Three Settings for Llama-2 on Enron (Phone Number)

AUC - LossMIA AUC - ZlibMIA

Random Canary Minority Random Canary Minority

No Unlearn 0.614 0.606 0.551 0.578 0.571 0.575
Retrain 0.579 0.488 0.470 0.559 0.520 0.539
Noisy No Unlearn 0.605 0.598 0.539 0.578 0.572 0.576
Noisy Retrain 0.584 0.500 0.482 0.568 0.533 0.554

Unlearning Methods

Random Label 0.439 0.447 0.444 0.556 0.554 0.594
Langevin 0.603 0.590 0.532 0.577 0.569 0.574
EUk 0.612 0.608 0.557 0.581 0.575 0.583
CFk 0.612 0.603 0.549 0.577 0.569 0.573
Gradient Ascent 0.253 0.278 0.252 0.551 0.540 0.584
NegGrad+ 0.536 0.398 0.451 0.547 0.495 0.538
SCRUB 0.613 0.567 0.550 0.578 0.553 0.574

AUC - Min-K% Perplexity

Random Canary Minority Random Canary Minority

No Unlearn 0.611 0.610 0.579 9.45 9.47 9.48
Retrain 0.568 0.547 0.491 9.48 9.48 9.48
Noisy No Unlearn 0.600 0.602 0.570 10.21 10.21 10.21
Noisy Retrain 0.579 0.565 0.516 10.19 10.19 10.19

Unlearning Methods

Random Label 0.498 0.507 0.497 2124 2559 2445
Langevin 0.598 0.596 0.563 10.20 10.21 10.20
EUk 0.604 0.619 0.584 11.00 11.24 10.82
CFk 0.609 0.606 0.575 9.43 9.45 9.46
Gradient Ascent 0.213 0.296 0.237 4e9 8e9 2e9
NegGrad+ 0.529 0.399 0.463 9.82 9.90 9.85
SCRUB 0.610 0.530 0.578 9.45 9.48 9.48

25



Underestimated Privacy Risks for Minority Populations in Large Language Model Unlearning

Table 17. AUC Scores for MIA and Perplexity across Three Settings for Llama-2 on Enron (Email)

AUC - LossMIA AUC - ZlibMIA

Random Canary Minority Random Canary Minority

No Unlearn 0.628 0.613 0.418 0.548 0.539 0.451
Retrain 0.598 0.478 0.356 0.524 0.436 0.412
Noisy No Unlearn 0.594 0.572 0.393 0.515 0.502 0.443
Retrain 0.579 0.470 0.375 0.503 0.433 0.434

Unlearning Methods

Random Label 0.234 0.207 0.394 0.333 0.333 0.458
Langevin 0.592 0.560 0.393 0.513 0.494 0.443
EUk 0.620 0.593 0.416 0.532 0.517 0.454
CFk 0.627 0.604 0.416 0.548 0.532 0.449
Gradient Ascent 0.292 0.147 0.377 0.296 0.335 0.488
NegGrad+ 0.041 0.034 0.064 0.088 0.055 0.215
SCRUB 0.622 0.601 0.418 0.542 0.527 0.451

AUC - Min-K% Perplexity

Random Canary Minority Random Canary Minority

No Unlearn 0.632 0.619 0.421 4.83 4.84 4.84
Retrain 0.594 0.420 0.344 4.84 4.84 4.84
Noisy No Unlearn 0.592 0.569 0.397 5.38 5.38 5.38
Noisy Retrain 0.570 0.410 0.368 5.39 5.39 5.39

Unlearning Methods

Random Label 0.230 0.181 0.330 730 542 255
Langevin 0.590 0.549 0.397 5.36 5.36 5.37
EUk 0.618 0.573 0.415 5.42 5.53 5.37
CFk 0.631 0.603 0.419 4.83 4.83 4.83
Gradient Ascent 0.256 0.219 0.445 4e8 6e12 6e12
NegGrad+ 0.041 0.029 0.052 12.15 14.73 6.20
SCRUB 0.627 0.599 0.421 4.86 4.86 4.86
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Table 18. AUC Scores for MIA and Perplexity across Three Settings for Llama-2 on ECHR (Year)

AUC - LossMIA AUC - ZlibMIA

Random Canary Minority Random Canary Minority

No Unlearn 0.570 0.547 0.726 0.513 0.499 0.513
Retrain 0.540 0.500 0.675 0.498 0.476 0.468
Noisy No Unlearn 0.556 0.532 0.721 0.504 0.491 0.510
Noisy Retrain 0.541 0.502 0.685 0.498 0.476 0.476

Unlearning Methods

Random Label 0.503 0.522 0.316 0.486 0.490 0.378
Langevin 0.555 0.528 0.715 0.503 0.488 0.498
EUk 0.572 0.542 0.728 0.513 0.497 0.505
CFk 0.570 0.544 0.724 0.512 0.497 0.509
Gradient Ascent 0.515 0.312 0.254 0.490 0.419 0.343
NegGrad+ 0.553 0.364 0.254 0.504 0.429 0.358
SCRUB 0.570 0.547 0.724 0.513 0.499 0.510

AUC - Min-K% Perplexity

Random Canary Minority Random Canary Minority

No Unlearn 0.573 0.559 0.686 4.89 4.89 4.89
Retrain 0.537 0.502 0.603 4.89 4.89 4.89
Noisy No Unlearn 0.553 0.541 0.675 5.03 5.03 5.02
Noisy Retrain 0.537 0.504 0.616 5.02 5.02 5.02

Unlearning Methods

Random Label 0.519 0.537 0.327 90 129 127.43
Langevin 0.552 0.535 0.664 5.03 5.03 5.03
EUk 0.572 0.557 0.695 5.27 5.21 5.32
CFk 0.571 0.555 0.682 4.87 4.88 4.87
Gradient Ascent 0.503 0.299 0.257 7.94 10.68 29.48
NegGrad+ 0.551 0.299 0.203 4.96 5.10 5.41
SCRUB 0.573 0.558 0.687 4.88 4.88 4.87
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Table 19. AUC Scores for MIA and Perplexity across Three Settings for GPT-2 on Enron (Phone Number) for Noisy Learning

AUC - LossMIA AUC - ZlibMIA

Random Canary Minority Random Canary Minority

Noisy No Unlearn 1e-4 0.541 0.536 0.427 0.699 0.697 0.621
Noisy Retrain 1e-4 0.446 0.412 0.309 0.658 0.643 0.577
Langevin 1e-4 0.540 0.535 0.424 0.698 0.695 0.619

Noisy No Unlearn 3e-4 0.492 0.484 0.381 0.682 0.678 0.607
Noisy Retrain 3e-4 0.436 0.405 0.311 0.660 0.647 0.583
Langevin 3e-4 0.492 0.483 0.379 0.682 0.678 0.606

Noisy No Unlearn 5e-4 0.474 0.464 0.365 0.678 0.674 0.606
Noisy Retrain 5e-4 0.432 0.403 0.312 0.662 0.649 0.587
Langevin 5e-4 0.472 0.461 0.361 0.678 0.673 0.603

Noisy No Unlearn 8e-4 0.463 0.450 0.352 0.677 0.672 0.606
Noisy Retrain 8e-4 0.428 0.401 0.311 0.664 0.653 0.590
Langevin 8e-4 0.460 0.448 0.350 0.676 0.670 0.604

Noisy No Unlearn 1e-3 0.459 0.446 0.348 0.677 0.671 0.606
Noisy Retrain 1e-3 0.427 0.400 0.311 0.665 0.655 0.592
Langevin 1e-3 0.456 0.443 0.347 0.675 0.670 0.604

AUC - Min-K% Perplexity

Random Canary Minority Random Canary Minority

Noisy No Unlearn 1e-4 0.599 0.599 0.465 12.26 12.24 12.27
Noisy Retrain 1e-4 0.454 0.410 0.303 12.25 12.25 12.25
Langevin 1e-4 0.598 0.596 0.460 12.32 12.32 12.33

Noisy No Unlearn 3e-4 0.538 0.535 0.409 13.20 13.20 13.21
Noisy Retrain 3e-4 0.447 0.405 0.308 13.19 13.19 13.19
Langevin 3e-4 0.538 0.535 0.408 13.24 13.24 13.22

Noisy No Unlearn 5e-4 0.518 0.511 0.393 13.84 13.85 13.87
Noisy Retrain 5e-4 0.445 0.406 0.310 13.84 13.84 13.83
Langevin 5e-4 0.516 0.511 0.392 13.84 13.88 13.88

Noisy No Unlearn 8e-4 0.505 0.498 0.378 14.40 14.39 14.39
Noisy Retrain 8e-4 0.442 0.405 0.313 14.42 14.42 14.42
Langevin 8e-4 0.502 0.497 0.376 14.44 14.44 14.43

Noisy No Unlearn 1e-3 0.500 0.492 0.374 14.71 14.70 14.70
Noisy Retrain 1e-3 0.440 0.408 0.313 14.73 14.73 14.73
Langevin 1e-3 0.497 0.487 0.371 14.74 14.74 14.73
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Table 20. AUC Scores for MIA and Perplexity across Three Settings for GPT-2 on Enron (Phone Email) for Noisy Learning

AUC - LossMIA AUC - ZlibMIA

Random Canary Minority Random Canary Minority

Noisy No Unlearn 1e-4 0.584 0.587 0.369 0.480 0.483 0.578
Noisy Retrain 1e-4 0.431 0.362 0.165 0.387 0.356 0.447
Langevin 1e-4 0.584 0.578 0.368 0.479 0.476 0.579

Noisy No Unlearn 3e-4 0.512 0.511 0.311 0.436 0.436 0.535
Noisy Retrain 3e-4 0.424 0.360 0.164 0.384 0.353 0.449
Langevin 3e-4 0.510 0.499 0.309 0.432 0.429 0.534

Noisy No Unlearn 5e-4 0.488 0.483 0.271 0.422 0.421 0.512
Noisy Retrain 5e-4 0.422 0.360 0.165 0.383 0.353 0.453
Langevin 5e-4 0.487 0.475 0.265 0.420 0.416 0.509

Noisy No Unlearn 8e-4 0.470 0.464 0.248 0.414 0.412 0.503
Noisy Retrain 8e-4 0.417 0.357 0.170 0.383 0.354 0.459
Langevin 8e-4 0.471 0.457 0.243 0.411 0.406 0.500

Noisy No Unlearn 1e-3 0.463 0.456 0.243 0.410 0.408 0.500
Noisy Retrain 1e-3 0.414 0.354 0.172 0.381 0.355 0.462
Langevin 1e-3 0.462 0.450 0.237 0.408 0.403 0.499

AUC - Min-K% Perplexity

Random Canary Minority Random Canary Minority

Noisy No Unlearn 1e-4 0.651 0.661 0.528 12.18 12.25 12.16
Noisy Retrain 1e-4 0.407 0.318 0.210 12.25 12.25 12.25
Langevin 1e-4 0.655 0.655 0.532 12.27 12.28 12.27

Noisy No Unlearn 3e-4 0.553 0.562 0.420 12.31 12.34 12.28
Noisy Retrain 3e-4 0.390 0.311 0.199 12.23 12.23 12.23
Langevin 3e-4 0.552 0.547 0.421 12.38 12.39 12.38

Noisy No Unlearn 5e-4 0.516 0.519 0.387 12.51 12.52 12.50
Noisy Retrain 5e-4 0.384 0.307 0.199 12.48 12.48 12.48
Langevin 5e-4 0.513 0.505 0.386 12.58 12.58 12.61

Noisy No Unlearn 8e-4 0.478 0.483 0.355 12.83 12.80 12.82
Noisy Retrain 8e-4 0.369 0.298 0.200 12.84 12.84 12.84
Langevin 8e-4 0.477 0.469 0.349 12.87 12.86 12.89

Noisy No Unlearn 1e-3 0.465 0.467 0.341 13.01 12.98 13.01
Noisy Retrain 1e-3 0.365 0.296 0.201 13.02 13.02 13.02
Langevin 1e-3 0.462 0.453 0.335 13.04 13.03 13.06
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