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Abstract— We present a new traffic dataset, METEOR, which
captures traffic patterns and multi-agent driving behaviors
in unstructured scenarios. METEOR consists of more than
1000 one-minute videos, over 2 million annotated frames with
bounding boxes and GPS trajectories for 16 unique agent
categories, and more than 13 million bounding boxes for traffic
agents. METEOR is a dataset for rare and interesting, multi-
agent driving behaviors that are grouped into traffic violations,
atypical interactions, and diverse scenarios. Every video in ME-
TEOR is tagged using a diverse range of factors corresponding
to weather, time of the day, road conditions, and traffic density.
We use METEOR to benchmark perception methods for object
detection and multi-agent behavior prediction. Our key finding
is that state-of-the-art models for object detection and behavior
prediction, which otherwise succeed on existing datasets such
as Waymo, fail on the METEOR dataset. METEOR is a step
towards developing more sophisticated perception models for
dense, heterogeneous, and unstructured scenarios.

I. INTRODUCTION

Recent research in learning-based techniques for robotics,
computer vision, and autonomous driving has been driven
by the availability of datasets and benchmarks. Several traffic
datasets have been collected from different parts of the world
to stimulate research in autonomous driving, driver assistants,
and intelligent traffic systems. These datasets correspond to
highway or urban traffic, and are widely used in the devel-
opment and evaluation of new methods for perception [1],
prediction [2], behavior analysis [3], and navigation [4].

Many initial autonomous driving datasets were motivated
by computer vision or perception tasks such as object
recognition, semantic segmentation or 3D scene understand-
ing. Recently, many other datasets have been released that
consist of point-cloud representations of objects captured
using LiDAR, pose information, 3D track information, stereo
imagery or detailed map information for applications related
to 3D object recognition and motion forecasting. Many large-
scale motion forecasting datasets such as Argoverse [5], and
Waymo Open Motion Dataset [6], among others, have been
used extensively by researchers and engineers to develop
robust prediction models that can forecast vehicle trajec-
tories. However, existing datasets do not capture the rare
behaviors or heterogeneous patterns. Therefore, prediction
models trained on these existing datasets are not very robust
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in terms of handling challenging traffic scenarios that arise
in the real world.

A major challenge currently faced by research in au-
tonomous driving is the heavy tail problem [5], [6], which
refers to the challenge of dealing with rare and interesting
instances. There are several ways in which existing datasets
currently address the heavy tail problem:

1) Mining: The Argoverse and Waymo datasets use a
mining procedure that includes scoring each trajectory
based on its “interestingness” to explicitly search for
difficult and unusual scenarios [5], [6].

2) Diversifying the taxonomy: Train the prediction and
forecasting models to identify the unknown agents at
the time of testing. This approach necessitates annotat-
ing a diverse taxonomy of class labels. Argoverse and
nuScenes [9] contain 15 and 23 classes, respectively.

3) Increasing dataset size: This approach is to simply
collect more data with the premise that collecting more
traffic data will likely also increase the number of such
scenarios in the dataset.

In spite of many efforts along these lines, existing datasets
manage to collect only a handful of such instances, due
to the infrequent nature of their occurrence. For example,
the Waymo Open Motion dataset [6] contains only atypi-
cal interactions and diverse scenarios while the Argoverse
dataset [5] contains only atypical interactions. There is
clearly a need for a different approach to addressing the
heavy tail problem. Our solution is to build a traffic dataset
from videos collected in India, where the inherent nature
of the traffic is dense, heterogeneous, and unstructured. The
traffic patterns and surrounding environment in parts of India
are more challenging. than those in other parts of the world.
This includes high congestion and traffic density. Some of
these roads are unmarked or unpaved. Moreover, the traffic
agents moving on these roads correspond to vehicles, buses,
trucks, bicycles, pedestrians, auto-rickshaws, two-wheelers
such as scooters and motorcycles, etc.

A. Main Contributions

1) We present a novel dataset, METEOR, corresponding to
the dense, heterogeneous, and unstructured traffic in In-
dia. METEOR is the first large-scale dataset containing
annotated scenes for rare and interesting instances and
multi-agent driving behaviors, broadly grouped into:

a) Traffic violations—running traffic signals, driving
in the wrong lanes, taking wrong turns).

b) Atypical interactions—cut-ins, yielding, overtak-
ing, overspeeding, zigzagging, lane changing.



TABLE I: Characteristics of Traffic Datasets: We compare METEOR with state-of-the-art autonomous driving datasets that have been
used for trajectory tracking, motion forecasting, semantic segmentation, prediction, and behavior classification. METEOR is the largest
(in terms of number of annotated frames) and most diverse in terms of heterogeneity, scenarios, varying behaviors, densities, and rare
instances. Darker shades represent a richer collection in that category. Best viewed in color.

Rare and Interesting Behaviors‡

Datasets Location Bad weather Night Road type Het.? Size Density Lidar HD Maps Traffic Atypical Diverse
Violations Interactions Scenarios

Argoverse [5] USA 3 3 urban 10 22K Medium 3 3 7 3 7
Lyft Level 5 [7] USA 7 7 urban 9 46K Low 3 3 7 7 7

Waymo [6] USA 3 urban 4 200K Medium 3 3 7 3 3
ApolloScape [8] China 7 3 urban, rural 5 144K High 3 3 7 7 7

nuScenes [9] USA/Sg. 3 3 urban 13 40K Low 3 3 7 3 3
INTERACTION [10] International 7 7 urban 1 − Medium 3 3 7 7 7

CityScapes [11] Europe 7 7 urban 10 25K Low 7 7 7 7 7
IDD [12] India 7 7 urban, rural 12 10K High 7 7 7 7 7

HDD [13] USA 7 7 urban − 275K Medium 3 7 7 3 3
Brain4cars [14] USA 7 7 urban − 2000K Low 7 3 7 7 7

D2-City [15] China 3 7 urban 12 700K Medium 7 7 7 7 3
TRAF [16] India 7 3 urban, rural 8 72K High 7 7 7 7 7
BDD [17] USA 3 3 urban 8 3000K High 7 7 7 7 3

ROAD [18] UK 3 3 urban 7 122K Low 3 7 7 7 3

METEOR India 3 3 urban, rural† 16†† 2027K High§ 7 7 3 3 3

‡ Rare instances can be broadly grouped into (i) traffic violations, (ii) atypical interactions, and (iii) difficult scenarios.
† Includes roads without lane markings. Roads in other datasets with rural roads may contain lane markings.
? Heterogeneity. We indicate the classes corresponding to moving traffic agents only, excluding static objects such as poles, traffic lights, etc.
§ Up to 40 agents per frame.
†† Up to 9 unique agents per frame.

c) Diverse scenarios—intersections, roundabouts,
and traffic signals.

2) METEOR has more than 2 million labeled frames and
13 million annotated bounding boxes for 16 unique
traffic agents, and GPS trajectories for the ego-agent.

3) Every video in METEOR is tagged using a diverse
range of factors including weather, time of the day,
road conditions, and traffic density.

4) We use METEOR to extract new insights in perception
tasks such as 2D object detection and multi-agent be-
havior recognition in unstructured traffic. Additionally,
we present a novel, fine-grained analysis on the rela-
tionship between traffic environments (traffic density,
mixture of agents, area, time of the day, and weather
conditions) and 2D object detection.

B. Applications and Benefits
We list some promising directions in which METEOR can

contribute towards autonomous driving research:
• Towards Robust Perception: We observe that per-

ception tasks like 2D object detection and multi-agent
behavior recognition fail in challenging Indian traffic
scenarios, compared to their performance on existing
datasets captured in the US, Europe, and other devel-
oped nations. METEOR can be a useful benchmark for
research in perception in unstructured traffic environ-
ments and developing nations.

• Towards Risk-Aware Planning and Control: ME-
TEOR can aid the development of risk-aware motion
planners by predicting the behaviors of surrounding
agents. Motion planners can compute controls that guar-
antee safety around aggressive drivers who are prone to
overtaking and overspeeding.

• Towards Fine-grained Traffic Analysis: With ME-
TEOR, researchers can study the causality relationship
between traffic patterns, static scene elements, and
dynamic agent behaviors resulting in novel ADAS for
unstructured traffic environments.

II. COMPARISON WITH EXISTING DATASETS

A. Tracking and Trajectory Prediction Datasets

Datasets such as the Argoverse [5], Lyft Level 5 [7],
Waymo Open Dataset [6], ApolloScape [8], nuScenes
dataset [9] are used for trajectory forecasting [16], [19],
[20], [21], [22] and tracking [1]. Several of these datasets
use mining procedure [6], [5] that heuristically searches
the dataset for rare and interesting scenarios. The resulting
collection of such scenarios and behaviors, however, is only
a fraction of the entire dataset. METEOR, by comparison,
exclusively contains such scenarios due to the inherent nature
of the unstructured traffic in India.

METEOR has many additional characteristics with respect
to these datasets. For instance, METEOR’s 2.02 million
annotated frames are more than 10× the current highest
number of annotated frames with respect to other dataset
with high density traffic (ApolloScape). Furthermore, ME-
TEOR consists of 16 different traffic-agents that include only
on-road moving entities (and not static obstacles). This is by
far, the most diverse in terms of class labels. In comparison,
Argoverse and nuScenes both contain 10 and 13 traffic-
agents, respectively. METEOR is the first motion forecasting
and behavior prediction dataset with traffic patterns from ru-
ral and urban areas that consist of unmarked roads and high-
density traffic. In contrast, traffic scenarios in Argoverse,
Waymo, Lyft, and nuScenes have been captured on sparse
to medium density traffic with well-marked structured roads
in urban areas.

B. Semantic Segmentation Datasets

CityScapes [11] is widely used for several tasks, primarily
semantic segmentation. It is based on urban traffic data
collected from European cities with structured roads and
low traffic density. In contrast, the Indian Driving Dataset
(IDD) [12] is collected in India with both urban and rural ar-
eas with high-density traffic. A common aspect of both these
datasets (CityScapes and IDD), however, is the relatively low



Fig. 1: METEOR: We summarize various characteristics of our dataset in terms of scene: traffic density, road type, lighting conditions,
agents (we indicate the total count of each agent across 1250 videos), and behaviors, along with their size distribution (in GB). The
total size of the current version of the dataset is around 100GB, and it will continue to expand. Our dataset can be used to evaluate
the performance of current and new methods for perception, prediction, behavior analysis, and navigation based on some or all of these
characteristics. Details of the organization of our dataset are given at https://gamma.umd.edu/meteor.

annotated frame count (25K and 10K, respectively). This is
probably due to the effort involved with annotating every
pixel in each image. IDD also contains high-density traffic
scenarios in rural areas, similar to METEOR. However, our
dataset has 200× the number of annotated frames and 1.6×
the number of traffic-agent classes. Similar to TRAF, the
IDD does not contain behavior data.

C. Behavior Prediction

Behavior prediction corresponds to the task of predicting
turns (right, U-turn, or left), acceleration, merging, and
braking in addition to driver-intrinsic behaviors such as over-
speeding, overtaking, cut-ins, yielding, and rule-breaking.
The two most prominent datasets for action prediction
include the Honda Driving Dataset (HDD) [13] and the
BDD dataset [17]. Some of the major distinctions between
METEOR and the HDD in terms of size (approximately
10×), the availability of scenes with night driving and rainy
weather, and the inclusion of unstructured environments in
low-density traffic. The BDD dataset [17] contains more
annotated samples than METEOR, however, the BDD dataset
contains 100K videos while METEOR contains 1K videos.
So the number of annotated samples per video is 66× higher
for METEOR. The annotations in prior datasets are limited to
actions and do not contain the rare and interesting behaviors
contained in METEOR.

III. METEOR DATASET

Our dataset is summarized in Figure 1 and visually shown
in Figure 2. Below, we present some details of the data col-

lection process and discuss some of the salient characteristics
of METEOR.

A. Dataset Collection and Organization

The data was collected in and around the city of Hy-
derabad, India within a radius of 42 to 62 miles. Several
outskirts were chosen to cover rural and unstructured roads.
Our hardware capture setup consists of two wide-angle
Thinkware F800 dashcams mounted on an MG Hector and
Maruti Ciaz. The camera sensor has 2.3 megapixel resolution
with a 140◦ field of view. The video is captured in full high
definition with a resolution of 1920×1080 pixels at a frame
rate of 30 frames per second. The dashcam is embedded
with an accurate positioning system that stores the GPS
coordinates, which were processed into the world frame
coordinates. The sensor synchronizes between the camera
and the GPS. Recordings from the dashcam are streamed
continuously and are clipped into 1 minute video segments.

The dataset is organized as 1250 one-minute video clips.
Each clip contains static and dynamic XML files. Each
static file summarizes the meta-data of the entire video
clip including the behaviors, road type, scene structure etc.
Each dynamic file describes frame-level information such as
bounding boxes, GPS coordinates, and agent behaviors. Our
dataset can be searched using helpful filters that sort the data
according to the road type, traffic density, area, weather, and
behaviors. We also provide many scripts to easily load the
data after downloading.



(a) Cut-ins/Jaywalking. (b) Yielding/Cut-ins.

(c) Overtaking/Overspeeding. (d) Driving in wrong lane.

(e) Running red traffic lights. (f) Ignoring lane signs/wrong lane driving.

(g) High density. (h) Rainy weather. (i) Night time. (j) Rural areas.

Fig. 2: Annotations for rare instances: One of the unique aspects of METEOR is the availability of explicit labels for rare and interesting
instances including atypical interactions, traffic violations, and diverse scenarios. These annotations can be used to benchmark new methods
for object detection and multi-agent behavior prediction.

B. Annotations

We manually annotated the videos using the Computer
Vision Annotation Tool (CVAT) and provide the following la-
bels: (i) bounding boxes for every agent, (ii) agent class IDs,
(iii) GPS trajectories for the ego-vehicle, (iv) environment
conditions including weather, time of the day, traffic density,
and heterogeneity, (v) road conditions with urban, rural,
lane markings, (vi) road network including intersections,
roundabouts, traffic signal, (vii) actions corresponding to
left/right turns, U-turns, accelerate, brake, (viii) rare and
interesting behaviors, and (ix) the camera intrinsic matrix for
depth estimation to generate trajectories of the surrounding
vehicles. This set of annotations is the most diverse and
extensive compared prior datasets.

A diverse and rich taxonomy of agent categories is nec-
essary to ensure that autonomous driving systems can detect
different types of agents in any given scenario. Towards
that goal, datasets for autonomous driving are designed
or captured to achieve two goals: (a) capture as many
different types of agent categories as possible; (b) capture
as many instances of each category as possible. In both
these aspects, METEOR outperforms all prior datasets. We
annotate 16 types of moving traffic entities with rare and
interesting behaviors. Note specifically that the percentages
of pedestrians, motorbikes, and bicycles are higher than
the percentage of passenger vehicles. This is particularly
useful as the former categories are known as “vulnerable
road users” (VRUs) [23], and it is important for autonomous

driving systems to be able to detect them–necessitating many
instances of these VRUs in any dataset.

C. Rare and Interesting Behaviors

We provide a total of 17 different types of rich collection
of rare and interesting cases that are unique to our dataset.
They are be visually shown in Figure 2. They can be
summarized in terms of the following groups:

1) Atypical Interactions: Atypical interactions correspond
to pairwise interactions among traffic agents that are not
often observed in regular traffic scenarios. Some examples of
atypical interactions include yielding to, and cutting across,
pedestrians, zigzagging through traffic, pedestrian jaywalk-
ing, overtaking, sudden lane changing, and overspeeding. We
describe these in more detail below:

• Overtaking (OT): When an agent overtakes another
agent with sudden or aggressive movement.

• Overspeeding (OS): If the vehicle over-speeds (based
on speed limits) due to any reason.

• Yield (Y): A pedestrian, bicycle, or any slow-moving
agent trying to cross the road in front of another agent.
If the latter slows down or stops, letting them cross the
road then such behavior is labeled as yield.

• Cutting (C): When pedestrians, bicycles, or any slow-
moving agents trying to cross the road is interrupted
by another agent. Yielding and cutting can also be re-
labeled as instances of jaywalking. In a majority of these



(a) High traffic density: METEOR has up to 40 agents per frame.

(b) Number of scenes in which
behaviors occur

(c) Average scene duration of be-
haviors (in seconds)

(d) High heterogeneity: Up to 9
unique agents in a single frame.

(e) Rich features: Up to 13 mil-
lion boxes.

Fig. 3: We highlight the high traffic density, heterogeneity, and
the richness of behavior information in METEOR. Abbreviations
correspond to various behavior categories and are explained in
Section III-C

cases, one of the agents involved is a pedestrian crossing
the road in the middle of traffic.

• Lane change w. lane markings (LC(m)): Agents aggres-
sively change lanes on roads with clear lane markings.

• Lane change w/o. lane markings (LC): Agents aggres-
sively change lanes on roads without lane markings.
The above two annotations can be used to identify
videos in the dataset that contain roads without lane
markings for relevant applications.

• Zigzagging (ZM): If any of the agent of interest un-
dergoes a zigzag movement in the traffic, the agent
behavior is classified as zigzagging.

2) Traffic Violations: In addition to the above driving
behaviors, we also annotate traffic agents breaking traffic
rules. These are particularly unique since rule breaking
scenarios are rare.
• Running a traffic light (RB TL): Passing through an

intersection even though the traffic signal is red.
• Wrong Lane (RB WL): A road may not be divided for

inbound and outbound traffic by a physical barrier, mak-
ing it possible for the motorists to use the inbound lane
for the outbound traffic and vice versa. This behavior
identifies all such cases.

• Wrong Turn (RB WT): When an agent makes an illegal
turn (including U-turns).

3) Diverse Scenarios: Finally, we provide annotations for
challenging scenarios that include intersections, roundabouts,
traffic signals, executing left turns, right turns, and U-turns.

D. Dataset statistics

We analyze the dataset statistics and distribution of agents
and their behaviors in terms of total count, uniqueness, and
duration (in seconds). Figures 3a and 3d show that METEOR

TABLE II: Training Details for Object Detection (BS: Batch size,
Mom: Momentum, WD: Weight decay, MGN: Max Gradient Norm)

Method Backbone BS Opt. LR Mom. WD (L2) MGN

DETR [24] ResNet-50 2 AdamW 1e−4 − 1e−4 0.1
Def. DETR [25] ResNet-50 2 AdamW 2e−4 − 1e−4 0.1

YOLOv3 [26] Darknet-53 8 SGD 1e−3 0.9 5e−4 35
CenterNet [27] ResNet-18 16 SGD 1e−3 0.9 5e−4 35

is very dense and highly heterogeneous, respectively; the
total number of agents in a single frame can reach up
to 40 and up to 9 unique agents can exist in a single
frame. Figure 3b represents the distribution of behaviors
across videos and Figure 3c shows the distribution of each
behavior’s average duration. In particular, we note that the
average duration can reach up to 3 seconds which, at 30
frames per second, corresponds to approximately 90 frames
that contain visual, contextual, and semantic information that
can inform behavior prediction algorithms for more accurate
perception and prediction.

IV. USING METEOR TO EXTRACT NEW INSIGHTS IN
PERCEPTION IN UNSTRUCTURED TRAFFIC

We provide the pre-trained models for object detection
and behavior prediction at https://gamma.umd.edu/
meteor.

A. 2D Object Detection

Our main goal is to leverage the unique aspects of ME-
TEOR to address the following questions:

1) How do static scene features (location, traffic density,
traffic composition, weather, time of the day etc.) affect
2D object detection?

2) How do state-of-the-art 2D object detectors for struc-
tured traffic compare to unstructured traffic?

We use the MMDetection [29] toolbox to train the
following 2D object detection models—DETR [24], De-
formable DETR [25] (with iterative bounding box refine-
ment), YOLOv3 [26] (with scale 608), CenterNet [27] (with
normal convolutions), and Swin-T [30]. We provide the
training details in Table II and report the mAP, mAP50,
mAP75, mAPS, mAPM, and mAPL metrics [31].
Results: Unstructured traffic scenarios are richly diverse in
terms of scene-specific features and it is important to under-
stand the impact of static features such as the road conditions,
location, weather conditions, time of the day, and types of
agents on 2D object detection. METEOR facilitates extensive
empirical analysis along these lines. In Table III, bolded
attributes observed high detection accuracy. We immediately
spot some expected trends such as object detection being
better in the day time and in clear weather. We also, however,
note some new observations: modern deep learning-based 2D
object detection is susceptible to both low- and high-density
traffic in rural areas with uniform agents.

Furthermore, in Table IV we observe that the most widely
used 2D object detectors, that perform well on the Waymo
Open Motion Dataset [6] and the KITTI dataset [28], do not
perform well on METEOR. More specifically, the detectors
achieve 37% − 65% and 23% − 81% mAP on the Waymo
and KITTI datasets, respectively, while the same methods
achieve 8% − 31% mAP on the METEOR dataset. In other
words, the best possible result on METEOR is 1

2× and 1
3× the



TABLE III: Effect of meta features on object detection: We analyze how meta features such as traffic density, type of agents, location,
time of the day, and weather play a role in 2D object detection using the DETR, Deformable DETR, YOLOv3 and CenterNet object
detectors. Bold indicates the type of meta feature that is the most effective for object detection.

DETR and Deformable DETR (in parentheses)

Density Agents Environment Time Weather

Low Medium High Mixed Uniform Urban Rural Day Night Clear Rainy

mAP 19.00 (22.70) 27.00 (38.30) 19.30 (28.10) 27.00 (38.30) 14.80 (31.30) 27.00 (38.30) 14.20 (25.70) 27.00 (38.30) 12.00 (20.60) 27.00 (38.30) 12.00 (20.90)
mAP50 33.33 (36.80) 48.40 (61.80) 32.40 (41.40) 48.40 (61.80) 31.80 (44.30) 48.40 (61.80) 23.40 (34.90) 48.40 (61.80) 22.70 (36.10) 48.40 (61.80) 21.90 (32.70)
mAP75 21.50 (22.10) 28.10 (41.50) 20.40 (31.30) 28.10 (41.50) 11.70 (37.00) 21.80 (41.50) 16.30 (28.40) 28.10 (41.50) 12.20 (20.50) 28.10 (41.50) 12.60 (22.90)
mAPS 2.60 (7.10) 1.20 (12.10) 0.20 (2.50) 1.20 (12.10) 0.30 (12.80) 1.20 (12.10) 2.00 (10.30) 1.20 (12.10) 0.10 (0.30) 1.20 (12.10) 1.80 (9.50)
mAPM 7.40 (25.20) 8.30 (22.50) 10.50 (16.90) 8.30 (22.50) 7.20 (34.30) 8.30 (22.50) 11.70 (28.10) 8.30 (22.50) 3.30 (12.50) 8.30 (22.50) 6.20 (19.90)
mAPL 25.60 (24.90) 45.90 (54.10) 24.70 (35.60) 45.90 (54.10) 40.30 (57.80) 45.90 (54.10) 26.30 (35.60) 45.90 (54.10) 16.70 (27.80) 45.90 (54.10) 15.10 (23.80)

YOLOv3 and CenterNet (in parentheses)

Density Agents Environment Time Weather

Low Medium High Mixed Uniform Urban Rural Day Night Clear Rainy

mAP 19.20 (22.90) 30.40 (32.90) 21.10 (23.30) 30.40 (32.90) 19.10 (30.20) 30.40 (32.90) 13.80 (13.60) 30.40 (32.90) 13.30 (15.90) 30.40 (32.90) 13.40 (14.00)
mAP50 36.90 (34.80) 52.50 (55.40) 36.30 (32.50) 52.50 (55.40) 35.10 (43.40) 52.50 (55.40) 22.00 (22.70) 52.50 (55.40) 25.00 (25.70) 52.50 (55.40) 25.00 (22.50)
mAP75 16.10 (28.10) 32.30 (33.40) 23.20 (26.70) 32.30 (33.40) 19.70 (37.30) 32.30 (33.40) 15.70 (13.20) 32.30 (33.40) 13.40 (27.00) 32.30 (33.40) 13.60 (15.50)
mAPS 2.70 (8.40) 2.40 (13.10) 0.60 (2.90) 2.40 (13.10) 7.90 (19.30) 2.40 (13.10) 5.20 (5.40) 2.40 (13.10) 0.00 (0.90) 2.40 (13.10) 1.30 (10.90)
mAPM 14.10 (26.20) 13.10 (30.50) 11.70 (17.60) 13.10 (30.50) 19.10 (38.80) 13.10 (30.50) 22.50 (25.80) 13.10 (30.50) 7.50 (11.60) 13.10 (30.50) 11.60 (17.40)
mAPL 23.70 (29.50) 48.70 (44.60) 27.30 (27.90) 48.70 (44.60) 38.90 (40.00) 48.70 (44.60) 21.20 (21.40) 48.70 (44.60) 18.50 (21.70) 48.70 (44.60) 16.40 (14.30)

TABLE IV: Object detection on Waymo and KITTI: We report
the standard mAP for many widely used methods on autonomous
driving datasets.

DETR [24] CenterNet YOLO v3 Def. DETR Swin-T

KITTI [28] 23.00 80.40 81.60 42.20 −
Waymo [6] 65.31 64.83 56.93 65.31 37.20

METEOR 8.30 12.10 14.30 15.80 32.50

TABLE V: Swin-T on Waymo and METEOR: We present a
more detailed analysis of Swin-T, one of the state-of-the-art object
detection approaches, on Waymo and METEOR.

Dataset mAP mAP50 mAP75 mAPS mAPM mAPL

Waymo [6] 37.20 70.60 52.00 17.20 41.80 67.20
METEOR 32.50 46.00 36.20 22.30 35.20 49.40

best result on the Waymo and KITTI datasets, respectively.
In Table V, we compare METEOR in depth with the Waymo
dataset using the Swin-T method [30], which is currently one
of the top performing methods on the standard COCO 2D
object detection benchmark leaderboard [32]. The Swin-T
method performs 14% better on the Waymo Dataset.

We reiterate that our goal in this paper is not to improve
object detection on the METEOR dataset, rather, it is to
show that perception performance degrades significantly in
unstructured traffic scenarios. Investigating the causes of this
degradation and exploring ways to improve object detection
in unstructured environments is beyond the scope of this
work, but is a promising direction of future work.

B. Multi-Agent Behavior Recognition
The METEOR dataset is ideal for spatio-temporal multi-

agent behavior recognition due to the availability of bounding
box annotations and their corresponding behavior labels for
more than 1231 one-minute video clips and over 2 million
annotated frames. We use 1000 video clips for training
and 231 video clips for testing. As the guidelines of the
benchmarks, we evaluate 16 behavior classes with mean
Average Precision (mAP) as the metric, using a frame-
level IoU threshold of 0.5. We use the ActorContext-Actor
Relation Network (ACAR-Net) [33] which builds upon a
novel high-order relation reasoning operator and an actor-

TABLE VI: ACAR-Net on METEOR: PT: pre-train, BS: batch size,
Opt.: Optimization, LR: learning rate, WD: weight decay, FR(RX-
101): Faster R-CNN (ResNeXt-101), Kin.-700: Kinetics-700, CR
(Swin-T): Cascade R-CNN (Swin-T)

Dataset Detector PT BS Opt. LR WD mAP
METEOR CR(Swin-T) Kin.-700 32 SGD 0.008 1e−7 6.10

context feature bank for indirect relation reasoning for spatio-
temporal action localization.
Results: In Table VI, we show that ACAR-Net yields 6.1%
mAP on METEOR. We hypothesize that several reasons
cause this degradation: (i) METEOR consists of 16 different
categories of agents from vehicles to animals, most of which
are novel for most detectors and therefore hard to detect,
(ii) the movements of the agents on the road are very fast,
making them hard to capture, and (iii) different agents have
different motion patterns; pedestrians move differently than
vehicles and buses move differently than motorbikes. All
of these factors collectively contribute to the complexity of
multi-agent behavior recognition in dense, heterogeneous,
and unstructured traffic scenarios. Our experiments show that
there is much room for improvement and our hope with
METEOR is that it provides the research community the
resources it needs to tackle this important problem.

V. CONCLUSION, LIMITATIONS AND FUTURE WORK

We present a new dataset, METEOR, for autonomous driv-
ing applications in dense, heterogeneous, and unstructured
traffic with rare and interesting scenarios. We found that
current object detection and behavior prediction models fail
on the METEOR, necessitating development of sophisticated
and robust perception for unstructured scenarios.

Our dataset has some limitations. Currently, we do not
provide trajectory information from a fixed reference frame.
One would have to use depth estimation techniques to extract
such trajectories. Furthermore, our dataset does not contain
HD maps and pointcloud data, which are used in many
applications. For future work, we hope that our dataset can
benefit in terms of design and evaluation of new motion
forecasting and behavior prediction algorithms in dense and
heterogeneous traffic.
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