© © N O O A~ W N =

22
23
24
25
26
27
28

29
30
31
32
33
34
35
36

Protein Design with Agent Rosetta:
A Case Study for Specialized Scientific Agents

Anonymous Author(s)
Affiliation
Address

email

Abstract

Large language models (LLMs) are increasingly capable of emulating reasoning
and using tools, creating opportunities for autonomous agents that execute complex
scientific tasks. Protein design provides a natural case study: existing deep learning
models achieve strong results, but they are typically restricted to canonical amino
acids and narrow objectives, leaving space for a generalist tool for broad design
pipelines. We introduce Agent Rosetta, an LLM agent built on top of the Rosetta
suite—the leading physics-based software for heteropolymer design, capable of
modeling non-canonical building blocks and geometries. Agent Rosetta is a single-
agent, multi-turn framework that iteratively refines heteropolymers to achieve the
goals of a user-defined task brief, combining the biophysical knowledge of modern
LLMs with the accuracy of Rosetta’s physics-based methods. In evaluations,
Agent Rosetta achieves performance comparable to specialized deep learning
models, especially when combined with inference-time techniques such as best-of-
n sampling. Interestingly, we find that prompt engineering alone is insufficient for
reliably producing RosettaScripts actions. This underscores the need for building
a comprehensive environment that, for example, simplifies the most challenging
aspects of RosettaScripts syntax. These results demonstrate that combining frontier
LLMs with established domain-specific scientific tools can yield flexible agentic
frameworks that not only lower barriers to use but also achieve performance
competitive with specialized deep learning models.

1 Introduction

Autonomous agents built on large language models (LLMs) are becoming increasingly capable of
executing complex, multi-turn tasks that demand the emulation of reasoning and the capability to
use tools [100, 101]. A key strength of these agents lies in their ability to write, debug, and execute
code [21, 39, 89], which makes them well-suited for aiding the automation of scientific discovery
workflows that rely on code-based interfaces, spanning chemistry [7, 15], mathematics [92], physics
[5, 63], and biology [33, 46, 83]. By combining sustained reasoning with iterative feedback, agents
offer new ways to address scientific challenges where machine learning methods remain limited.

Protein design—and, more generally, heteropolymer design—is a central challenge in science, with
broad implications for developing nanomaterials [35, 45, 52, 53], medically- or industrially-relevant
enzymes [36, 49, 82, 95], and drugs [43, 74]. While machine learning-based (ML) protein modeling
methods, such as AlphaFold [51], RFdiffusion [110], and ProteinMPNN [26], have advanced the
field, they are often restricted to the 20 canonical amino acids, specialized to particular pipelines, and
dependent on large training datasets. Even inversion of a chiral center results in poor ML performance,
for want of training data for non-canonical D-amino acid peptides [22]. In contrast, the Rosetta
Macromolecular Modeling Suite [58], built on a largely physics-based energy function [6], requires

Submitted to the Al for Science workshop (NeurIPS 2025). Do not distribute.



37
38
39
40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55
56
57
58
59

60

61
62
63
64

65
66
67
68

69
70
71
72

73
74
75
76
77

78
79

80

81
82
83
84
85
86
87
88
89

minimal training data and can accurately model proteins containing non-canonical building blocks
that have not been observed in experimentally-determined structures [10, 25, 29, 67, 73, 85, 86, 109].
This dramatically expands the accessible design space and has enabled advances in, for example, drug
development [11, 42, 43, 69, 74]. Yet effective use of Rosetta demands not only deep biophysical
expertise and coding proficiency, but also familiarity with its idiosyncratic input formats, such as the
RosettaScripts scripting language [32]. Because these barriers limit accessibility, hybrid approaches
that combine ML models trained on prior knowledge with general physics-based methods could
be transformative for heteropolymer design [70]. Here, we identify an opportunity for LLM-based
agents: by combining multi-turn reasoning with code generation and tool use, such agents could
accelerate Rosetta protocol development even for advanced users, while making Rosetta’s powerful
capabilities available to non-expert users in the broader scientific community.

In this work, we develop Agent Rosetta, a single-agent, multi-turn agentic framework that follows a
user-defined brief and progressively refines protein designs through structured dialogue and feedback
with a RosettaScripts [32] environment. To enable this, we built an OpenAl Gym-like environment
[16] in which the agent can perform multiple types of actions and receive feedback from Rosetta,
allowing for iterative design refinement. Our approach leverages the biophysical knowledge of the
base LLM through artificial reasoning, combines it with the constraints of XML scripting in Rosetta,
and uses the code-writing capabilities of LLMs. We find this framework an interesting test case for
building autonomous agents aimed at real-world scientific workloads. For example, we find that even
though many examples of RosettaScripts are certainly included in modern LLM training corpora, its
rich and complex syntax—unlike that of mainstream software packages—creates many challenges.
In specific cases, we found that these difficulties proved significant enough that prompt engineering
alone was insufficient to extract scientifically sound outputs from frontier language models.

We briefly summarize the main contributions of this work:

* We introduce Agent Rosetta, an LLM agent capable of executing general user-defined task briefs
via multi-turn interactions with a RosettaScripts environment. In building our agent, we found that
prompting alone may be insufficient to bridge general-purpose LL.Ms with specialized scientific
software. Instead, tool and environment design play a crucial role.

* We evaluate Agent Rosetta on designing amino acid sequences to stabilize input polypeptide
backbone conformations, and we study how scaling inference-time compute affects the quality of
the designs. In particular , we investigate longer multi-turn interactions and more parallel designs
in best-of-n sampling. Our results show that increasing compute overall improves design quality.

* We compare Agent Rosetta with ProteinMPNN—an existing deep learning model trained specifi-
cally for fixed-backbone design of canonical protein sequences. The best designs of our agent are
comparable with ProteinMPNN’s, highlighting that general-purpose LLM agents using scientific
software are comparable with specialized models trained to solve particular tasks.

This work represents an important step towards understanding the merits and limitations of LLM-
based agents for scientific tasks. Our results demonstrate that coupling frontier LLMs with domain-
specific scientific tools can yield flexible frameworks that achieve performance competitive with
deep learning models trained for narrowly defined design tasks. This suggests that generalist agentic
approaches can combine accuracy with versatility, opening new opportunities for scientific discovery.

We refer readers to Appendix A for a detailed discussion of prior works in designing scientific agents,
deep learning approaches to protein design, and heteropolymer design with Rosetta.

2 Agent Rosetta

The Rosetta modeling suite [58] is a general collection of software supporting a wide range of
applications such as heteropolymer structure prediction, docking, and design. A central component
of Rosetta’s methodology is the use of Monte Carlo algorithms guided by an energy function [6] to
explore either conformation space (i.e., to sample favorable structural conformations given a fixed
sequence of chemical building blocks) or sequence space (i.e., to sample favorable sequences given a
fixed heteropolymer backbone conformation) [14, 56]. To carry out these simulations, Rosetta defines
Movers (i.e., actions that alter a molecular structure) to guide the sampling process and navigate the
energy landscape, as well as Filters (i.e., modules that measure some property of a structure and
decide whether to continue or to start over).



90
91
92
93
94

95
96
97
98
99
100
101

102
103
104
105
106
107
108
109
110

111
112
113
114
115
116
117

118
119
120
121

(A) System design

O design brief
M

scientist

J Action
succeeds

Agent Rosetta
design refinement

RosettaScripts
environment

fails

error message

multi-turn interaction feedback

Agent Rosetta
error correction

(B) Refinement

1. Choose next action 2. Write action call

m Agent next action N action L, Agent next action
Rosetta name docs Rosetta call

L)

Figure 1: Illustration of our multi-turn agentic system. (A) Overall schematics of an Agent Rosetta
trajectory. (B) Design refinement protocol: first, the agent chooses which action to take next and the
environment returns the appropriate documentation, then the full action call is generated.

Scientists typically construct protocols composed of multiple Movers and Filters that may require
hours to days to execute. Because individual Movers can take tens of minutes—depending on
polymer length and structural complexity—intermediate results are seldom examined. Consequently,
researchers must commit to executing entire protocols before assessing their success, often foregoing
potentially valuable information about intermediate states.

In contrast, LLM agents can interact with Rosetta in a sequential manner, selecting each subsequent
Mover immediately after the preceding one completes. This enables adaptive guidance of the design
process informed by the properties of intermediate structures. When parallelized across multiple
design trajectories, such an approach also facilitates a broader and more diverse exploration of
protocols than is typically feasible for human researchers. To realize these advantages, we introduce
Agent Rosetta, a multi-turn framework that analyzes the current structure at each step and determines
the next action (see Fig. 1 and Appendix B).

The design brief. Rosetta offers a versatile toolkit that can be used for a variety of tasks. For
example, it can modify natural proteins to alter their function [68, 103, 104], construct antibodies
that can bind to particular antigens [4, 91], or design synthetic exotic peptides that can bind to target
proteins of therapeutic interest [43, 74]. Agent Rosetta is instructed to follow a design brief that states
these goals in terms of both quantitative and qualitative objectives. For example, an entry-level design
brief could be to “Redesign ubiquitin so that its core is well-packed and its stability is maximized”.
Together with the design brief, the user can define an initial structure the agent should start from: in
our example, the Protein Data Bank (PDB) file 1UBQ, describing the 3D conformation of ubiquitin.
In other tasks, this could be left to the agent to generate with internal Rosetta modeling tools.

The environment state. At any step of the design process, the structure of a candidate polymer
in Rosetta is stored as a data structure called a Pose [58], which can be written to a PDB file.
Pose objects are highly complex data structures, and PDB files can easily contain hundreds of
lines—making either impractical for direct use as context for the agent. Instead, we use summary
statistics such as the amino acid sequence, the individual scores in the Rosetta energy function, and
key structural information. In particular, at each step, we compute the radius of gyration and the
cavity volume [93] of the current design.

Stability is one of the most important criteria for assessing the quality of protein designs, yet it
remains difficult to quantify without experimental validation. To approximate it, we rely on surrogate
metrics. For canonical protein design, at each step, we use ESMFold [64] to predict the native fold
of the amino acid sequence, and we compare this predicted fold with the current Rosetta-generated



122
123
124
125
126
127
128
129

130
131
132
133

134

135
136
137
138
139
140
141
142
143
144

145
146
147
148
149

151
152
153
154

156
157

158
159

160
161
162
163
164
165
166
167
168

170
171
172
173
174
175

structure in terms of Root Mean Squared Deviation (RMSD). A stable design should yield similar
folds, and thus a small RMSD. We complement the RMSD with the average pLDDT of the C,, atoms:
values close to 1 indicate high confidence in ESMFold’s prediction, providing further evidence for
stability. We include the RMSD and pLDDT in the definition of our state as easy-to-compute but
imperfect proxies for design stability. Note, however, that since ESMFold and related models are
trained on natural proteins, they may not reliably capture the stability of Rosetta designs that deviate
from naturalistic sequences. Similarly, Rosetta’s re£2015 energy function [6] also serves as a general
but imperfect proxy for design stability.

Finally, we complement the state with task-specific evaluation metrics. For example, when the task
is to stabilize a given polymer backbone, we evaluate the RMSD between the current structure and
this target conformation to inform the agent on how well the current design adheres to the target
conformation.

In Appendix C, we illustrate how the agent uses this information in practice.

Available actions. Since RosettaScripts accepts XML scripts as actions, a reasonable choice would
be to let Agent Rosetta generate them from scratch. This approach, however, leads to unnecessarily
long generations that are prone to errors, harder for the agent to correct, and computationally more
expensive. In this work, instead, we leverage the well-structured RosettaScripts action schema [32],
which allows us to define fypes of actions with their respective XML templates that are populated at
runtime with the action parameters generated by the agent. This removes a significant overhead from
the agent, focusing on the scientifically-relevant parameters of each action only, without having to
devote considerable computation to the overall syntax for the action type. We define three general
types of actions that fit several design pipelines and allow Agent Rosetta to explore a vast sequence
space (see Appendix D for example action calls):

* rotamer_change uses Rosetta’s FastDesign Mover [10] to change the side chains of the
molecule, relaxing the structure in the process. It also allows the agent to specify amino acid
composition constraints that penalize deviations from a target composition and guide sequence
sampling [71]. Beyond compositional constraints, the agent can use ResidueSelectors to select
which regions of the structure to penalize (e.g., the core, the surface), and TaskOperations to restrict
the search space (e.g., by limiting the residues allowed at certain positions).

* backbone_change includes three RosettaScripts Movers that randomly perturb the torsion angles
of the backbone to modify its conformation: Small, Shear, and Backrub [96]. Backbone changes
can be used to escape sub-optimal conformations difficult to stabilize with any choice of sequence,
permitting discovery of nearby conformations compatible with much more stabilizing sequences.
Each Mover accepts specific parameters and residue selectors, which the agent is free to specify.

* go_back_to allows the agent to revert to a previous node in the trajectory in case the design has
diverged too far from the goal.

The multi-turn agentic workflow. Agent Rosetta iteratively refines the design by interacting with
the environment. Each turn of our framework follows these general steps:

1. Structured artificial reasoning and action selection: First, the agent receives the current

state of the environment as described above, and a summary of the previous actions. History
summarization is important to prevent the context of the underlying LLM from saturating over
long trajectories with multiple interactions [76, 94, 99, 120]. Here, we use a tabular summary of
the previous actions and their effect on key design metrics (see Fig. C.1 for an example).
Then, we prompt Agent Rosetta to reflect on the progress towards the design goals and choose
the next action. We provide structured reasoning instructions, explicitly mentioning to take into
consideration the individual Rosetta energy terms, the structural information, and the trajectory
history. This is important to elicit the biophysical knowledge in the LLM and to verify that the
action chosen by the agent is coherent with the objectives of the design brief.

2. Structured reasoning and parameter generation: After the agent selects the next action, the
environment responds with the necessary RosettaScripts documentation. This ensures access to
the appropriate syntax and parameter information, which is different from the majority of code
LLMs are trained on, and it can vary significantly across different types of actions. Instead of the
online RosettaScript’s documentation, we opted to write ad-hoc summaries tailored to clarify and
emphasize the aspects the agent struggles the most with.



176
177
178

179
180
181
182

183

184
185
186
187

188
189
190
191
192
193
194
195
196
197

198
199
200
201
202

203

204
205
206

Agent Rosetta’s reasoning

To improve the design:
- Add a penalty to reduce the fraction of proline.

L [T 57 0 S Correct simplified syntax

PENALTY_DEFINITION
TYPE PRO PENALTY_DEFINITION

FRACTION 0.2 ?Ki&?ﬂ ,
FRACT_DELTA_START -0.05 PADILS O o5

FRACT_DELTA_END 0.05 —
==> PENALTIES 1.0 0.0 <== WRONG
BEFORE_FUNCTION QUADRATIC
AFTER_FUNCTION QUADRATIC
END_PENALTY_DEFINITION

==> SHAPE ABOVE <== CORRECT
STRENGTH 1.0

BOUNDARY QUADRATIC
END_PENALTY_DEFINITION

Figure 2: A representative example of a failure mode of prompting for generation of the compositional
penalty blocks for the rotamer_change action. Even though Agent Rosetta wants to reduce the
number of prolines in the sequence, the penalty block achieves the opposite effect due to the wrong
PENALTIES 1.0 0.0 line, which encourages more than 15% of proline content. We also include
the correct penalty block using our simplified syntax, which is easier for the agent to follow.

We include the action’s documentation in the context of the LLM, and we prompt the agent to
reason again and generate the full action call with its parameters. We use the same structured
reasoning steps as for action selection.

3. Action parsing, execution, and feedback: We parse the action parameters, format them in
the corresponding XML template, and execute the script in the environment. If the action was
successful, the state is updated, and the agent proceeds to the next design refinement turn. If not,
we pass the error message to the agent to fix its mistakes (see Appendix E for examples).

3 Results

Agent Rosetta can be used to generate diverse structures—including cyclic peptides and those with
non-canonical residues. However, in order to allow rigorous comparison with existing baselines,
we evaluate its performance on the simpler task of stabilizing fixed backbone conformations using
canonical amino acids only.

Since we are interested in focusing on Rosetta-based exploration of sequence space for this task, we
use RFdiffusion [110] to sample backbone conformations and to generate input structures for Rosetta.
RFdiffusion generates backbone-only PDB files, where each residue is, by default, glycine. The initial
state of the trajectory is the target poly-glycine conformation, and the task brief instructs Agent Rosetta
to change its side chains so that it is stable, it folds in the same shape as the target, and it has low
Rosetta energy (see Appendix B for the design brief). We compare the quality of the designs generated
with our agent with those generated by ProteinMPNN [26], an ML encoder-decoder model trained
specifically for fixed-backbone design. Unlike Rosetta’s physics-based sampling, ProteinMPNN was
trained on known protein sequences and structures to approximates the conditional distribution of
amino acid sequences given an input conformation (in our case, the one generated with RFdiffusion).

We consider 4 sequence length ranges: from 40 to 60 residues, from 60 to 80, 80 to 100, and 100 to
120. For each range, we sample 5 independent backbones. For each backbone, we run Agent Rosetta
16 times for at most 40 iterations—including successful and failed turns—and sample 128 sequences
with ProteinMPNN with temperature parameter set to 0.3 to increase sequence diversity. Herein, we
use GPT-4.1 [3] as the underlying LLM.

3.1 Prompting can fail to generate specialized code

Rosetta and RosettaScripts have extensive online presence, including their source code, documenta-
tion, and discussion forums. It is reasonable to assume, then, that they are in the training set of frontier
LLMs, thus prompting should suffice to bring forth the necessary knowledge from the training data.



207
208
209
210
211
212
213
214
215
216
217
218
219
220

221
222
223
224
225
226
227
228

229

230
231
232
233
234

236

237
238

240
241

o

/'_/—— 0.85 o design length
0.9 . = _100 —— 102 residues
S b [ 2 0.80 ® 104 residues
®o0.8 © 3 —200 —— 114 residues
o 5 0.75 Ec') —— 118 residues
; 0.7 g 0.70 $ —~300 120 residues
Q +
= o
Fos S 065 R e o —
0.60 < =J e
05 -500
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Total number of design steps Total number of design steps Total number of design steps
— 0.90 0
0.85 3 _
o 09 E | &-100
S //_— 8 o0.80 —_— S
2 0.8 2 & -200
- Q
g / % 0.75 =
o © @ -300
207 | 7 070 <
[+3] -
a @ —400 —
0)
0.6 0.65 2 \_.
0.60 =500
12 4 8 16 12 4 8 16 12 4 8 16
Number of trajectories Number of trajectories Number of trajectories

Figure 3: Quality of designs generated by Agent Rosetta as a function of number of successful design
steps (top row) and number of parallel trajectories in best-of-n sampling (bottom row). We show
results for 5 backbone conformations with 100 to 120 residues, and defer remaining backbones to the
appendix. We plot quality metrics for the design with highest TM score, averaging results over 50
independent replicates. Error bars represent 95% confidence intervals.

We found that LLMs know general facts about Rosetta and RosettaScripts syntax, but they struggle to
generate semantically correct action calls with prompting alone. Consider the composition penalty
blocks for the rotamer_change action: these follow a particular syntax that defines which residues
to select, a target fractional or absolute range, and a sequence of magnitudes that specify penalties for
deviations from the desired range. Furthermore, the number of magnitudes changes according to the
width of the penalty range, and whether the target composition is fractional or absolute. All these
factors are both somewhat counter-intuitive to first-time RosettaScripts users, and also sources of
potential errors for the agent, even if its reasoning is plausible. We include a representative example
from a trajectory in our experiments in Fig. 2. The agent correctly recognizes that excessive proline
content may be causing steric clashes, and wants to correct it. However, the line PENALTIES 1.0
0.0, even if syntactically correct, increases proline content. In our experiments, extending prompting
instructions and clarifications only yielded minor improvements, without removing semantic errors
that are computationally wasteful: the LLM generates an action call, RosettaScripts runs successfully,
but the outcome is counterproductive.

To solve these issues, we simplified the syntax of composition penalty blocks to align with the
high-level intentions of the agent. We include the corrected equivalent of the penalty block with
our simplified syntax in Fig. 2. Not only is our syntax simpler to generate for an agent, but also
more intuitive to a user. Agent Rosetta generates a TARGET and RADIUS parameters that define the
target range, chooses the shape of the penalty between BELOW, ABOVE, or OUTSIDE, and specifies one
STRENGTH value. Then, we automatically translate this syntax into its RosettaScripts equivalent. We
expand on this with examples in Appendix F. These findings highlight that prompting and specialized
documentation can fail to bridge general-purpose LLMs with specialized scientific software.

3.2 Scaling inference-time compute improves design quality

Inference-time techniques such as step-by-step reasoning [111], best-of-n sampling [23, 97], Monte
Carlo tree search [116], or evolutionary algorithms [79, 88] have emerged as successful approaches
to improve the performance of LLMs for solving challenging tasks. Given the iterative nature of
protein design, we investigate how longer multi-turn interactions and parallelizing more trajectories
with best-of-n sampling affect the quality of designs generated with Agent Rosetta.

Recall the objective of the agent is to stabilize a target backbone conformation. Hence, at each step,
we use three metrics to evaluate quality:

* Structural similarity with the target: We predict the native fold of the current design with
ESMFold [64] and compute its template modeling (TM) score [118] with the target RFdiffusion
backbone. The TM score is a normalized notion of similarity (1 being a perfect match) that,
compared to the RMSD, is less sensitive to local differences. A high TM score means that the
predicted fold aligns with the target conformation.



242
243
244
245

246
247
248
249

250
251
252
253
254
255
256
257

259
260
261
262

263
264
265
266
267
268
269

(R) (8)

ProteinMPNN design

RFdiffusion backbone Agent Rosetta design

=
o
o

51 residues

-150

*

Rosetta energy
& |
S w
8 2

-
o
o

!
o
3

-100

62 residues
TM score

-150

Rosetta energy

-200 A

-
o
o

85 residues
TM score
Rosetta energy
Lok
S o
8 8

|
w
S
S

*;

*

**

%k

H
o
%
o

*

114 residues
TM score
L

3 &
&

Rosetta energy
Lo
A w N e
S & 9 o
8 8 8 8

0.2 *

By
Bk x
K. * o x

0.4 8

o

0.4 1.0

0.6 0.; 0.6 0.8
Cq pLDDT Cq pLDDT

Figure 4: Comparison of designs generated with ProteinMPNN and Agent Rosetta for 5 backbone
conformations of increasing length. (A) Visual inspection of designs. The leftmost column includes
the initial backbone, the center column the ESMFold predicted structure of the best sequence sampled
with ProteinMPNN, and, similarly, the rightmost column shows the ESMFold predicted structure
of the best sequence designed with Agent Rosetta. Designs are successful if the align well with the
initial conformation. (B) Quantitative comparison of the distribution of designs, we include both the
best design for each Agent Rosetta trajectory and intermediate steps.

* Confidence of ESMFold predicted structure: We complement the TM score with the average
pLDDT of the C,, atoms. This is a heuristic quantity between 0 and 1 that conveys the confidence
of the model in predicting the 3D coordinates of each residue. A low pLDDT may indicate both an
intrinsically flexible region but also an uncertain prediction.

* Total Rosetta energy: We report the total energy of the current Rosetta design. This evaluates
whether the design is favorable, such as having a compact hydrophobic core, no clashes between
side chains, and hydrogen bonds. If the Rosetta Monte Carlo algorithm is proceeding towards a
minimum of the energy landscape, then energy should decrease.

Fig. 3 includes results for the 5 longest backbone conformations, and we include results for the
remaining ones in Fig. H.1. For performance as a function of total successful design steps, we
randomly sample 10 trajectories, remove failed action calls, and truncate them to the desired length.
We show quality metrics for the design with highest structural similarity with the target conformation.
In particular, we report average and 95% confidence intervals over 50 independent replicates. Overall,
we found that longer trajectories generally lead to better designs in terms of TM score and pLDDT.
During the first interactions, both rapidly increase, demonstrating that the agent is able to efficiently
steer the trajectory towards plausible sequences. For later interactions, results vary across designs,
with potential saturation. This may be due to the fact that not all RFdiffusion backbones are designable.
Overall, designs converge, providing evidence that the agent is able to sustain multiple interactions.
We note that the total Rosetta energy shows the least amount of improvement as a function of number
of steps. This is not surprising, as the energy landscape is very rugged, with several local minimizers
that have similar energies but different physical properties.

For results as a function of number of parallel trajectories, we randomly subsample the pool of 16
trajectories per backbone. As above, we report average quality metrics and confidence intervals
of the design with highest TM score over 50 independent replicates. We found that increasing
the number of trajectories is also beneficial. This is important for two reasons. First, one of the
main advantages of LLM agents compared to human scientists is scalability. Second, reinforcement
learning methodologies for reasoning tasks (e.g., GRPO [92]) rely on multiple parallel trajectories to
explore the upper tail of the reward for a given task. We consider studying the extent to which this is



270
271

272

273
274
275

284

294

296
297

299

300

301
302
303
304

305
306

308
309
310
311

312
313
314
315

317

318

320
321

true for smaller, open source models as next steps. This would enable training smaller, specialized
agents capable of aiding automation of general scientific discovery pipelines.

3.3 Comparing Agent Rosetta designs with those produced by ProteinMPNN

We study the tradeoffs between scientific agents using general-purpose tools and deep learning models
trained for specific design pipelines. In particular, we compare the quality of designs generated with
Agent Rosetta and ProteinMPNN [26]—a model trained specifically for fixed-backbone design.

We visually inspect the ESMFold predicted structure of a few designs for each method in Fig. 4 (A).
For each target backbone, we show the best design in terms of all three quality metrics, confirming
they align well with the target. Both methods miss a turn for the backbone with 62 residues, which
suggests that it may not be possible to stabilize all conformations generated by RFdiffusion.

Quantitatively, we compare the distribution of designs with Agent Rosetta and ProteinMPNN in
Fig. 4 (B). For Agent Rosetta, we show both the best designs for each trajectory and intermediate
structures. For ProteinMPNN, we show all 128 sequences. We found that, in terms of TM score and
pLDDT, the best designs of both methods are comparable. Furthermore, the distributions of designs
mostly overlap for shorter sequences but diverge for longer (results for all backbones are in Fig. H.2).

The designs of our agents generally have lower Rosetta energy, even those with worse pLDDT.
Although Rosetta’s energy function is an imperfect proxy to stability, this highlights the capacity
to discover potentially favorable sequences that are very different from the natural sequences on
which ESMFold was trained. There is reason to believe that, even in the realm of canonical protein
design, approaches like Agent Rosetta that produce diverse designs—some of which do not resemble
known sequences—could have advantages over ML approaches that focus exclusively on the realm of
sequences resembling known ones. While natural proteins are evolutionarily optimized for marginal
stability, with melting temperatures in the 40-60 °C [48] to permit degradation, Rosetta-designed
proteins routinely show extreme stability (often a desirable property in engineered proteins), with
melting temperatures of 90 °C or higher [54, 87]. This suggests that a great deal of diversity (with
favorable properties) exists beyond the natural proteins on which ML models are trained.

Finally, both energy functions and sequence optimization algorithms are ongoing fields of research.
Rosetta features extensible architecture (particularly when linked against the newly-introduced Masala
software suite [117], which features enhanced optimizers), which means that it can readily make
state-of-the-art algorithms available to the agent without need for retraining.

4 Conclusions

In this work, we introduced Agent Rosetta, an LLM agent capable of using the RosettaScripts
language for protein design. Through multi-turn feedback with the environment, Agent Rosetta
follows a user-defined brief to refine protein designs. Our framework is general, and it encompasses
design pipelines with non-canonical building blocks and geometries.

In building our framework, we found that prompt engineering alone can fail to bridge general-
purpose LLMs with specialized scientific software that have rich and complex syntax different from
mainstream code. Instead, careful tool and environment design are necessary to bring forth the desired
capabilities. We compared the quality of the designs generated with Agent Rosetta and ProteinMPNN
on stabilizing fixed backbone conformations with canonical amino acids. Our results showed that
general-purpose LLM agents using specialized software are comparable to deep learning models
trained specifically to solve the same task.

As important next steps, we consider studying design tasks with non-canonical structures. Since
these follow the same underlying principles as canonical proteins, we expect Agent Rosetta’s skills
to generalize well. Furthermore, our work builds the necessary infrastructure to fine-tune smaller,
open-source models, and subsequently train them with reinforcement learning techniques. Training
specialized models opens up several exciting directions. For example, multi-modal agents could
combine information from several sources, going beyond a text-based context with summary statistics.

Overall, our work contributes to the broader scientific community by studying what it takes to develop
specialized scientific agent with the capability to aid scientists in real-world tasks, saving experts
person-hours during methods development, while providing entry for biochemists and biologists with
little Rosetta experience into the world or rational heteropolymer design.



322

323
324
325

326
327
328

329
330
331

332
333
334
335
336
337

338
339
340

341
342
343
344

345
346
347

348
349
350

351
352
353
354

355
356
357
358
359
360
361
362
363

364
365
366
367
368
369
370

References

(1]

[2

—_—

(3]

[4

[}

(5]

(6]

[7

—

(8]

(9]

(10]

(11]

Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
prediction of biomolecular interactions with alphafold 3. Nature, 630(8016):493-500, 2024.

Tamer Abuelsaad, Deepak Akkil, Prasenjit Dey, Ashish Jagmohan, Aditya Vempaty, and
Ravi Kokku. Agent-e: From autonomous web navigation to foundational design principles in
agentic systems. arXiv preprint arXiv:2407.13032, 2024.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

Jared Adolf-Bryfogle, Oleks Kalyuzhniy, Michael Kubitz, Brian D. Weitzner, Xiaozhen
Hu, Yumiko Adachi, William R. Schief, and Roland L. Dunbrack Jr. RosettaAntibodyDe-
sign (RAbD): A general framework for computational antibody design. PLOS Computa-
tional Biology, 14(4):¢1006112, April 2018. ISSN 1553-7358. doi: 10.1371/journal.pcbi.
1006112. URL https://journals.plos.org/ploscompbiol/article?id=10.1371/
journal.pcbi.1006112. Publisher: Public Library of Science.

Microsoft Research Al4Science and Microsoft Azure Quantum. The impact of large language
models on scientific discovery: a preliminary study using gpt-4, 2023. URL https://arxiv.
org/abs/2311.07361.

Rebecca F Alford, Andrew Leaver-Fay, Jeliazko R Jeliazkov, Matthew J O’Meara, Frank P
DiMaio, Hahnbeom Park, Maxim V Shapovalov, P Douglas Renfrew, Vikram K Mulligan,
Kalli Kappel, et al. The rosetta all-atom energy function for macromolecular modeling and
design. Journal of chemical theory and computation, 13(6):3031-3048, 2017.

Soren Arlt, Haonan Duan, Felix Li, Sang Michael Xie, Yuhuai Wu, and Mario Krenn. Meta-
designing quantum experiments with language models, 2024. URL https://arxiv.org/
abs/2406.02470.

Jinheon Baek, Sujay Kumar Jauhar, Silviu Cucerzan, and Sung Ju Hwang. Researchagent:
Iterative research idea generation over scientific literature with large language models. arXiv
preprint arXiv:2404.07738, 2024.

Minkyung Baek, Frank DiMaio, Ivan Anishchenko, Justas Dauparas, Sergey Ovchinnikov,
Gyu Rie Lee, Jue Wang, Qian Cong, Lisa N Kinch, R Dustin Schaeffer, et al. Accurate
prediction of protein structures and interactions using a three-track neural network. Science,
373(6557):871-876, 2021.

Gaurav Bhardwaj, Vikram Khipple Mulligan, Christopher D. Bahl, Jason M. Gilmore, Peta J.
Harvey, Olivier Cheneval, Garry W. Buchko, Surya V. S. R. K. Pulavarti, Quentin Kaas, Alexan-
der Eletsky, Po-Ssu Huang, William A. Johnsen, Per Jr Greisen, Gabriel J. Rocklin, Yifan Song,
Thomas W. Linsky, Andrew Watkins, Stephen A. Rettie, Xianzhong Xu, Lauren P. Carter,
Richard Bonneau, James M. Olson, Evangelos Coutsias, Colin E. Correnti, Thomas Szyperski,
David J. Craik, and David Baker. Accurate de novo design of hyperstable constrained peptides.
Nature, 538(7625):329-335, October 2016. ISSN 1476-4687. doi: 10.1038/nature19791.
URL https://www.nature.com/articles/nature19791. Publisher: Nature Publishing
Group.

Gaurav Bhardwaj, Jacob O’Connor, Stephen Rettie, Yen-Hua Huang, Theresa A. Ramelot,
Vikram Khipple Mulligan, Gizem Gokce Alpkilic, Jonathan Palmer, Asim K. Bera, Matthew J.
Bick, Maddalena Di Piazza, Xinting Li, Parisa Hosseinzadeh, Timothy W. Craven, Roberto
Tejero, Anna Lauko, Ryan Choi, Calina Glynn, Linlin Dong, Robert Griffin, Wesley C. van
Voorhis, Jose Rodriguez, Lance Stewart, Gaetano T. Montelione, David Craik, and David Baker.
Accurate de novo design of membrane-traversing macrocycles. Cell, 185(19):3520-3532.e26,
September 2022. ISSN 1097-4172. doi: 10.1016/j.cell.2022.07.019.


https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006112
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006112
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006112
https://arxiv.org/abs/2311.07361
https://arxiv.org/abs/2311.07361
https://arxiv.org/abs/2311.07361
https://arxiv.org/abs/2406.02470
https://arxiv.org/abs/2406.02470
https://arxiv.org/abs/2406.02470
https://www.nature.com/articles/nature19791

371
372
373
374

375
376

377
378
379

380

382

383
384
385

386
387
388

389
390
391

392
393
394

395
396
397

398
399
400

401
402
403

404

406

407
408

410
411
412
413
414
415

416
417
418

[12]

(13]

(14]

[15]

[16]

(17]

(18]

[19

—

(20]

(21]

(22]

(23]

[24]

[25]

(26]

Aadyot Bhatnagar, Sarthak Jain, Joel Beazer, Samuel C Curran, Alexander M Hoffnagle, Kyle
Ching, Michael Martyn, Stephen Nayfach, Jeffrey A Ruffolo, and Ali Madani. Scaling unlocks
broader generation and deeper functional understanding of proteins. bioRxiv, pages 2025-04,
2025.

Daniil A Boiko, Robert MacKnight, Ben Kline, and Gabe Gomes. Autonomous chemical
research with large language models. Nature, 624(7992):570-578, 2023.

R. Bonneau, J. Tsai, I. Ruczinski, D. Chivian, C. Rohl, C. E. Strauss, and D. Baker. Rosetta in
CASP4: progress in ab initio protein structure prediction. Proteins, Suppl 5:119-126, 2001.
ISSN 0887-3585. doi: 10.1002/prot.1170.

Andres M Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D White, and Philippe
Schwaller. Chemcrow: Augmenting large-language models with chemistry tools. arXiv
preprint arXiv:2304.05376, 2023.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. 2016. eprint. arXiv preprint arXiv:1606.01540, 50,
2016.

Chai Discovery. Chai-1: Decoding the molecular interactions of life. bioRxiv, 2024. doi:
10.1101/2024.10.10.615955. URL https://www.biorxiv.org/content/early/2024/
10/11/2024.10.10.615955.

Chai Discovery. Zero-shot antibody design in a 24-well plate. bioRxiv, 2025. doi: 10.
1101/2025.07.05.663018. URL https://wuw.biorxiv.org/content/early/2025/07/
06/2025.07.05.663018.

Sidhartha Chaudhury, Sergey Lyskov, and Jeffrey J Gray. Pyrosetta: a script-based interface for
implementing molecular modeling algorithms using rosetta. Bioinformatics, 26(5):689-691,
2010.

Hui Chen, Miao Xiong, Yujie Lu, Wei Han, Ailin Deng, Yufei He, Jiaying Wu, Yibo Li,
Yue Liu, and Bryan Hooi. Mlr-bench: Evaluating ai agents on open-ended machine learning
research. arXiv preprint arXiv:2505.19955, 2025.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating
large language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Henry Childs, Pei Zhou, and Bruce R. Donald. Has AlphaFold 3 Solved the Protein Folding
Problem for D-Peptides? bioRxiv: The Preprint Server for Biology, page 2025.03.14.643307,
March 2025. ISSN 2692-8205. doi: 10.1101/2025.03.14.643307.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Gabriele Corso, Hannes Stirk, Bowen Jing, Regina Barzilay, and Tommi Jaakkola. Diffdock:
Diffusion steps, twists, and turns for molecular docking. In International Conference on
Learning Representations (ICLR), 2023.

Bobo Dang, Haifan Wu, Vikram Khipple Mulligan, Marco Mravic, Yibing Wu, Thomas
Lemmin, Alexander Ford, Daniel-Adriano Silva, David Baker, and William F. DeGrado. De
novo design of covalently constrained mesosize protein scaffolds with unique tertiary structures.
Proceedings of the National Academy of Sciences, 114(41):10852—10857, September 2017.
ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1710695114. URL http://www.pnas.
org/lookup/doi/10.1073/pnas.1710695114.

Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F

Milles, Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Robust deep
learning—based protein sequence design using proteinmpnn. Science, 378(6615):49-56, 2022.

10


https://www.biorxiv.org/content/early/2024/10/11/2024.10.10.615955
https://www.biorxiv.org/content/early/2024/10/11/2024.10.10.615955
https://www.biorxiv.org/content/early/2024/10/11/2024.10.10.615955
https://www.biorxiv.org/content/early/2025/07/06/2025.07.05.663018
https://www.biorxiv.org/content/early/2025/07/06/2025.07.05.663018
https://www.biorxiv.org/content/early/2025/07/06/2025.07.05.663018
http://www.pnas.org/lookup/doi/10.1073/pnas.1710695114
http://www.pnas.org/lookup/doi/10.1073/pnas.1710695114
http://www.pnas.org/lookup/doi/10.1073/pnas.1710695114

419
420
421
422

423
424
425

426
427
428
429

431
432

433
434
435

436
437

438
439
440
441

442
443
444

445
446
447

448
449
450

451
452
453
454

455
456
457

458
459

461
462
463

464

466
467

(27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

(37]

(38]

(39]

(40]

Edoardo Debenedetti, Jie Zhang, Mislav Balunovic, Luca Beurer-Kellner, Marc Fischer, and
Florian Tramer. Agentdojo: A dynamic environment to evaluate prompt injection attacks and
defenses for 1lm agents. Advances in Neural Information Processing Systems, 37:82895-82920,
2024.

Joseph Dodd-O, Amanda M. Acevedo-Jake, Abdul-Rahman Azizogli, Vikram Khipple Mulli-
gan, and Vivek A. Kumar. How to Design Peptides. Methods in Molecular Biology (Clifton,
N.J.), 2597:187-216, 2023. ISSN 1940-6029. doi: 10.1007/978-1-0716-2835-5_15.

Kevin Drew, P. Douglas Renfrew, Timothy W. Craven, Glenn L. Butterfoss, Fang-Chieh
Chou, Sergey Lyskov, Brooke N. Bullock, Andrew Watkins, Jason W. Labonte, Michael
Pacella, Krishna Praneeth Kilambi, Andrew Leaver-Fay, Brian Kuhlman, Jeffrey J. Gray,
Philip Bradley, Kent Kirshenbaum, Paramjit S. Arora, Rhiju Das, and Richard Bonneau.
Adding Diverse Noncanonical Backbones to Rosetta: Enabling Peptidomimetic Design. PLoS
ONE, 8(7):¢67051, July 2013. ISSN 1932-6203. doi: 10.1371/journal.pone.0067051. URL
http://dx.plos.org/10.1371/journal.pone.0067051.

Richard Evans, Michael O’Neill, Alexander Pritzel, Natasha Antropova, Andrew Senior, Tim
Green, Augustin Zidek, Russ Bates, Sam Blackwell, Jason Yim, et al. Protein complex
prediction with alphafold-multimer. biorxiv, pages 2021-10, 2021.

Noelia Ferruz, Steffen Schmidt, and Birte Hocker. Protgpt2 is a deep unsupervised language
model for protein design. Nature communications, 13(1):4348, 2022.

Sarel J Fleishman, Andrew Leaver-Fay, Jacob E Corn, Eva-Maria Strauch, Sagar D Khare,
Nobuyasu Koga, Justin Ashworth, Paul Murphy, Florian Richter, Gordon Lemmon, et al.
Rosettascripts: a scripting language interface to the rosetta macromolecular modeling suite.
PloS one, 6(6):¢20161, 2011.

Alireza Ghafarollahi and Markus J Buehler. Protagents: protein discovery via large language
model multi-agent collaborations combining physics and machine learning. Digital Discovery,
3(7):1389-1409, 2024.

Alireza Ghafarollahi and Markus J Buehler. Sciagents: automating scientific discovery through
bioinspired multi-agent intelligent graph reasoning. Advanced Materials, 37(22):2413523,
2025.

Shane Gonen, Frank DiMaio, Tamir Gonen, and David Baker. Design of ordered two-
dimensional arrays mediated by noncovalent protein-protein interfaces. Science (New York,
N.Y.), 348(6241):1365-1368, June 2015. ISSN 1095-9203. doi: 10.1126/science.aaa9897.

Sydney R. Gordon, Elizabeth J. Stanley, Sarah Wolf, Angus Toland, Sean J. Wu, Daniel Hadidi,
Jeremy H. Mills, David Baker, Ingrid Swanson Pultz, and Justin B. Siegel. Computational
design of an a-gliadin peptidase. Journal of the American Chemical Society, 134(50):20513—
20520, December 2012. ISSN 1520-5126. doi: 10.1021/ja3094795.

Juraj Gottweis, Wei-Hung Weng, Alexander Daryin, Tao Tu, Anil Palepu, Petar Sirkovic,
Artiom Myaskovsky, Felix Weissenberger, Keran Rong, Ryutaro Tanno, et al. Towards an ai
co-scientist. arXiv preprint arXiv:2502.18864, 2025.

Mourad Gridach, Jay Nanavati, Khaldoun Zine El Abidine, Lenon Mendes, and Christina
Mack. Agentic ai for scientific discovery: A survey of progress, challenges, and future
directions. arXiv preprint arXiv:2503.08979, 2025.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets
programming—the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Sikun Guo, Amir Hassan Shariatmadari, Guangzhi Xiong, Albert Huang, Myles Kim, Corey M
Williams, Stefan Bekiranov, and Aidong Zhang. Ideabench: Benchmarking large language
models for research idea generation. In Proceedings of the 31st ACM SIGKDD Conference on
Knowledge Discovery and Data Mining V. 2, pages 5888-5899, 2025.

11


http://dx.plos.org/10.1371/journal.pone.0067051

468
469
470

471
472
473
474
475
476
477

478
479
480
481
482
483

484

494

504

507
508
509
510
511
512

513
514
515

516
517
518

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

(51]

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong
Lan, and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal
models. arXiv preprint arXiv:2401.13919, 2024.

Parisa Hosseinzadeh, Gaurav Bhardwaj, Vikram Khipple Mulligan, Matthew D. Shortridge,
Timothy W. Craven, Fatima Pardo-Avila, Stephen A. Rettie, David E. Kim, Daniel-Adriano
Silva, Yehia M. Ibrahim, Ian K. Webb, John R. Cort, Joshua N. Adkins, Gabriele Varani,
and David Baker. Comprehensive computational design of ordered peptide macrocycles.
Science, 358(6369):1461-1466, December 2017. ISSN 0036-8075, 1095-9203. doi: 10.1126/
science.aap7577. URL http://www.sciencemag.org/lookup/doi/10.1126/science.
aap7577.

Parisa Hosseinzadeh, Paris R. Watson, Timothy W. Craven, Xinting Li, Stephen Rettie, Fitima
Pardo-Avila, Asim K. Bera, Vikram Khipple Mulligan, Peilong Lu, Alexander S. Ford, Brian D.
Weitzner, Lance J. Stewart, Adam P. Moyer, Maddalena Di Piazza, Joshua G. Whalen, Per Jr
Greisen, David W. Christianson, and David Baker. Anchor extension: a structure-guided
approach to design cyclic peptides targeting enzyme active sites. Nature Communications, 12
(1):3384, June 2021. ISSN 2041-1723. doi: 10.1038/s41467-021-23609-8.

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo,
John Grundy, and Haoyu Wang. Large language models for software engineering: A systematic
literature review. ACM Transactions on Software Engineering and Methodology, 33(8):1-79,
2024.

Yang Hsia, Jacob B. Bale, Shane Gonen, Dan Shi, William Sheffler, Kimberly K. Fong, Una
Nattermann, Chunfu Xu, Po-Ssu Huang, Rashmi Ravichandran, Sue Yi, Trisha N. Davis,
Tamir Gonen, Neil P. King, and David Baker. Design of a hyperstable 60-subunit protein
icosahedron. Nature, 535(7610):136—139, June 2016. ISSN 0028-0836, 1476-4687. doi: 10.
1038/nature18010. URL http://www.nature.com/doifinder/10.1038/nature18010.

Kexin Huang, Serena Zhang, Hanchen Wang, Yuanhao Qu, Yingzhou Lu, Yusuf Roohani,
Ryan Li, Lin Qiu, Gavin Li, Junze Zhang, et al. Biomni: A general-purpose biomedical ai
agent. biorxiv, pages 2025-05, 2025.

Ian R Humphreys, Jimin Pei, Minkyung Baek, Aditya Krishnakumar, Ivan Anishchenko,
Sergey Ovchinnikov, Jing Zhang, Travis J Ness, Sudeep Banjade, Saket R Bagde, et al.
Computed structures of core eukaryotic protein complexes. Science, 374(6573):eabm4805,
2021.

Anna Jarzab, Nils Kurzawa, Thomas Hopf, Matthias Moerch, Jana Zecha, Niels Leijten,
Yangyang Bian, Eva Musiol, Melanie Maschberger, Gabriele Stoehr, Isabelle Becher, Charlotte
Daly, Patroklos Samaras, Julia Mergner, Britta Spanier, Angel Angelov, Thilo Werner, Marcus
Bantscheff, Mathias Wilhelm, Martin Klingenspor, Simone Lemeer, Wolfgang Liebl, Hannes
Hahne, Mikhail M. Savitski, and Bernhard Kuster. Meltome atlas-thermal proteome stability
across the tree of life. Nature Methods, 17(5):495-503, May 2020. ISSN 1548-7105. doi:
10.1038/541592-020-0801-4.

Lin Jiang, Eric A. Althoff, Fernando R. Clemente, Lindsey Doyle, Daniela Rothlisberger,
Alexandre Zanghellini, Jasmine L. Gallaher, Jamie L. Betker, Fujie Tanaka, Carlos F.
Barbas, Donald Hilvert, Kendall N. Houk, Barry L. Stoddard, and David Baker. De
Novo Computational Design of Retro-Aldol Enzymes. Science (New York, N.Y.), 319
(5868):1387-1391, March 2008. ISSN 0036-8075. doi: 10.1126/science.1152692. URL
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431203/.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik Narasimhan. Swe-bench: Can language models resolve real-world github issues?
arXiv preprint arXiv:2310.06770, 2023.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin 7idek, Anna Potapenko, et al.
Highly accurate protein structure prediction with alphafold. nature, 596(7873):583-589, 2021.

12


http://www.sciencemag.org/lookup/doi/10.1126/science.aap7577
http://www.sciencemag.org/lookup/doi/10.1126/science.aap7577
http://www.sciencemag.org/lookup/doi/10.1126/science.aap7577
http://www.nature.com/doifinder/10.1038/nature18010
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431203/

519
520
521
522

523
524
525
526

527
528
529

530
531
532
533

534
535

537

538
539
540
541

542
543
544
545
546
547

549

550
551

552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

(52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

(60]

Neil P. King, William Sheffler, Michael R. Sawaya, Breanna S. Vollmar, John P. Sumida,
Ingemar André, Tamir Gonen, Todd O. Yeates, and David Baker. Computational design of
self-assembling protein nanomaterials with atomic level accuracy. Science (New York, N.Y.),
336(6085):1171-1174, June 2012. ISSN 1095-9203. doi: 10.1126/science.1219364.

Neil P. King, Jacob B. Bale, William Sheffler, Dan E. McNamara, Shane Gonen, Tamir
Gonen, Todd O. Yeates, and David Baker. Accurate design of co-assembling multi-component
protein nanomaterials. Nature, 510(7503):103—108, June 2014. ISSN 1476-4687. doi:
10.1038/nature13404.

Nobuyasu Koga, Rie Tatsumi-Koga, Gaohua Liu, Rong Xiao, Thomas B. Acton, Gaetano T.
Montelione, and David Baker. Principles for designing ideal protein structures. Nature, 491
(7423):222-227, November 2012. ISSN 1476-4687. doi: 10.1038/nature11600.

Rohith Krishna, Jue Wang, Woody Ahern, Pascal Sturmfels, Preetham Venkatesh, Indrek
Kalvet, Gyu Rie Lee, Felix S Morey-Burrows, Ivan Anishchenko, Ian R Humphreys, et al.
Generalized biomolecular modeling and design with rosettafold all-atom. Science, 384(6693):
eadl2528, 2024.

Brian Kuhlman and David Baker. Native protein sequences are close to optimal for their
structures. Proceedings of the National Academy of Sciences of the United States of America,
97(19):10383-10388, September 2000. ISSN 0027-8424. URL https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC27033/.

Brian Kuhlman, Gautam Dantas, Gregory C. Ireton, Gabriele Varani, Barry L. Stoddard, and
David Baker. Design of a novel globular protein fold with atomic-level accuracy. Science
(New York, N.Y.), 302(5649):1364-1368, November 2003. ISSN 1095-9203. doi: 10.1126/
science.1089427.

Andrew Leaver-Fay, Michael Tyka, Steven M. Lewis, Oliver F. Lange, James Thompson, Ron
Jacak, Kristian W. Kaufman, P. Douglas Renfrew, Colin A. Smith, Will Sheffler, lan W. Davis,
Seth Cooper, Adrien Treuille, Daniel J. Mandell, Florian Richter, Yih-En Andrew Ban, Sarel J.
Fleishman, Jacob E. Corn, David E. Kim, Sergey Lyskov, Monica Berrondo, Stuart Mentzer,
Zoran Popovié, James J. Havranek, John Karanicolas, Rhiju Das, Jens Meiler, Tanja Kortemme,
Jeffrey J. Gray, Brian Kuhlman, David Baker, and Philip Bradley. Rosetta3. In Methods in
Enzymology, volume 487, pages 545-574. Elsevier, 2011. ISBN 978-0-12-381270-4. doi:
10.1016/B978-0-12-381270-4.00019-6.

Jin Sub Lee, Osama Abdin, and Philip M Kim. Language models for protein design. Current
Opinion in Structural Biology, 92:103027, 2025.

Julia Koehler Leman, Brian D. Weitzner, Steven M. Lewis, Jared Adolf-Bryfogle, Nawsad
Alam, Rebecca F. Alford, Melanie Aprahamian, David Baker, Kyle A. Barlow, Patrick Barth,
Benjamin Basanta, Brian J. Bender, Kristin Blacklock, Jaume Bonet, Scott E. Boyken, Phil
Bradley, Chris Bystroff, Patrick Conway, Seth Cooper, Bruno E. Correia, Brian Coventry,
Rhiju Das, René M. De Jong, Frank DiMaio, Lorna Dsilva, Roland Dunbrack, Alexan-
der S. Ford, Brandon Frenz, Darwin Y. Fu, Caleb Geniesse, Lukasz Goldschmidt, Ragul
Gowthaman, Jeffrey J. Gray, Dominik Gront, Sharon Guffy, Scott Horowitz, Po-Ssu Huang,
Thomas Huber, Tim M. Jacobs, Jeliazko R. Jeliazkov, David K. Johnson, Kalli Kappel, John
Karanicolas, Hamed Khakzad, Karen R. Khar, Sagar D. Khare, Firas Khatib, Alisa Khra-
mushin, Indigo C. King, Robert Kleffner, Brian Koepnick, Tanja Kortemme, Georg Kuenze,
Brian Kuhlman, Daisuke Kuroda, Jason W. Labonte, Jason K. Lai, Gideon Lapidoth, An-
drew Leaver-Fay, Steffen Lindert, Thomas Linsky, Nir London, Joseph H. Lubin, Sergey
Lyskov, Jack Maguire, Lars Malmstrom, Enrique Marcos, Orly Marcu, Nicholas A. Marze,
Jens Meiler, Rocco Moretti, Vikram Khipple Mulligan, Santrupti Nerli, Christoffer Norn,
Shane O’ Conchiiir, Noah Ollikainen, Sergey Ovchinnikov, Michael S. Pacella, Xingjie Pan,
Hahnbeom Park, Ryan E. Pavlovicz, Manasi Pethe, Brian G. Pierce, Kala Bharath Pilla,
Barak Raveh, P. Douglas Renfrew, Shourya S. Roy Burman, Aliza Rubenstein, Marion F.
Sauer, Andreas Scheck, William Schief, Ora Schueler-Furman, Yuval Sedan, Alexander M.
Sevy, Nikolaos G. Sgourakis, Lei Shi, Justin B. Siegel, Daniel-Adriano Silva, Shannon
Smith, Yifan Song, Amelie Stein, Maria Szegedy, Frank D. Teets, Summer B. Thyme, Ray

13


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC27033/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC27033/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC27033/

572 Yu-Ruei Wang, Andrew Watkins, Lior Zimmerman, and Richard Bonneau. Macromolec-

573 ular modeling and design in Rosetta: recent methods and frameworks. Nature Methods,
574 17(7):665-680, July 2020. ISSN 1548-7105. doi: 10.1038/s41592-020-0848-2. URL
575 https://www.nature.com/articles/s41592-020-0848-2. Publisher: Nature Publish-
576 ing Group.

577 [61] Julia Koehler Leman, Brian D. Weitzner, P. Douglas Renfrew, Steven M. Lewis, Rocco

578 Moretti, Andrew M. Watkins, Vikram Khipple Mulligan, Sergey Lyskov, Jared Adolf-
579 Bryfogle, Jason W. Labonte, Justyna Krys, RosettaCommons Consortium, Christopher
580 Bystroff, William Schief, Dominik Gront, Ora Schueler-Furman, David Baker, Philip
581 Bradley, Roland Dunbrack, Tanja Kortemme, Andrew Leaver-Fay, Charlie E. M. Strauss,
582 Jens Meiler, Brian Kuhlman, Jeffrey J. Gray, and Richard Bonneau. Better together: El-
583 ements of successful scientific software development in a distributed collaborative com-
584 munity. PLOS Computational Biology, 16(5):e1007507, May 2020. ISSN 1553-7358.
585 doi: 10.1371/journal.pcbi.1007507. URL https://journals.plos.org/ploscompbiol/
586 article?id=10.1371/journal.pcbi.1007507. Publisher: Public Library of Science.

s87  [62] Long Li, Weiwen Xu, Jiayan Guo, Ruochen Zhao, Xingxuan Li, Yuqian Yuan, Bogiang Zhang,
588 Yuming Jiang, Yifei Xin, Ronghao Dang, et al. Chain of ideas: Revolutionizing research via
589 novel idea development with 1lm agents. arXiv preprint arXiv:2410.13185, 2024.

590  [63] Shanda Li, Tanya Marwah, Junhong Shen, Weiwei Sun, Andrej Risteski, Yiming Yang, and
591 Ameet Talwalkar. Codepde: An inference framework for llm-driven pde solver generation.
592 arXiv preprint arXiv:2505.08783, 2025.

593  [64] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos
594 Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, et al. Language models of
595 protein sequences at the scale of evolution enable accurate structure prediction. BioRxiv, 2022:
596 500902, 2022.

s97  [65] Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The
598 ai scientist: Towards fully automated open-ended scientific discovery. arXiv preprint
599 arXiv:2408.06292, 2024.

600  [66] Thang Luong and Edward Lockhart. Advanced version of gemini with
601 deep think officially achieves gold-medal standard at the international
602 mathematical olympiad. https://deepmind.google/discover/blog/
603 advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-
604 July 2025. Google DeepMind Blog.

605  [67] Jeremy H. Mills, Sagar D. Khare, Jill M. Bolduc, Farhad Forouhar, Vikram Khipple Mulli-
606 gan, Scott Lew, Jayaraman Seetharaman, Liang Tong, Barry L. Stoddard, and David Baker.
607 Computational design of an unnatural amino acid dependent metalloprotein with atomic level
608 accuracy. Journal of the American Chemical Society, 135(36):13393—-13399, September 2013.
609 ISSN 1520-5126. doi: 10.1021/ja403503m.

610 [68] Rocco Moretti, Brian J. Bender, Brittany Allison, and Jens Meiler. Rosetta and the Design of
611 Ligand Binding Sites. In Barry L. Stoddard, editor, Computational Design of Ligand Binding
612 Proteins, pages 47—-62. Springer, New York, NY, 2016. ISBN 978-1-4939-3569-7. doi: 10.
613 1007/978-1-4939-3569-7_4. URL https://doi.org/10.1007/978-1-4939-3569-7_4.
614  [69] Vikram K. Mulligan. The emerging role of computational design in peptide macrocycle drug
615 discovery. Expert Opinion on Drug Discovery, 15(7):833-852, July 2020. ISSN 1746-045X.
616 doi: 10.1080/17460441.2020.1751117.

617 [70] Vikram Khipple Mulligan. Current directions in combining simulation-based macromolecular
618 modeling approaches with deep learning. Expert Opinion on Drug Discovery, 16(9):1025—
619 1044, September 2021. ISSN 1746-045X. doi: 10.1080/17460441.2021.1918097.

620  [71] Vikram Khipple Mulligan. Computational Methods for Peptide Macrocycle Drug Design.
621 In Seetharama D. Jois, editor, Peptide Therapeutics: Fundamentals of Design, Development,
622 and Delivery, volume 47, pages 79—161. Springer International Publishing, New York, 2022.

14


https://www.nature.com/articles/s41592-020-0848-2
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007507
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007507
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007507
https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://doi.org/10.1007/978-1-4939-3569-7_4

623
624
625

626
627
628
629
630
631
632

633
634
635
636
637
638

639
640
641
642
643
644
645

655
656
657
658

659
660
661
662

663
664
665
666

667
668
669
670
671

672
673

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

(81]

(82]

ISBN 978-3-031-04543-1 978-3-031-04544-8. doi: 10.1007/978-3-031-04544-8_3. URL
https://link.springer.com/10.1007/978-3-031-04544-8_3. Series Title: AAPS
Advances in the Pharmaceutical Sciences Series.

Vikram Khipple Mulligan and Parisa Hosseinzadeh. Computational Design of Peptide-Based
Binders to Therapeutic Targets. In Swapnil V. Ghodge, Kaustav Biswas, and Andrei A.
Golosov, editors, Approaching the Next Inflection in Peptide Therapeutics: Attaining Cell
Permeability and Oral Bioavailability, volume 1417 of ACS Symposium Series, pages 55-102.
American Chemical Society, Washington, DC, August 2022. ISBN 978-0-8412-9761-6 978-
0-8412-9760-9. doi: 10.1021/bk-2022-1417.ch003. URL https://pubs.acs.org/doi/
abs/10.1021/bk-2022-1417.ch003.

Vikram Khipple Mulligan, Christine S. Kang, Michael R. Sawaya, Stephen Rettie, Xinting Li,
Inna Antselovich, Timothy W. Craven, Andrew M. Watkins, Jason W. Labonte, Frank DiMaio,
Todd O. Yeates, and David Baker. Computational design of mixed chirality peptide macrocycles
with internal symmetry. Protein Science, 29(12):2433-2445, 2020. ISSN 1469-896X. doi:
https://doi.org/10.1002/pro.3974. URL https://onlinelibrary.wiley.com/doi/abs/
10.1002/pro.3974. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/pro.3974.

Vikram Khipple Mulligan, Sean Workman, Tianjun Sun, Stephen Rettie, Xinting Li, Liam J.
Worrall, Timothy W. Craven, Dustin T. King, Parisa Hosseinzadeh, Andrew M. Watkins,
P. Douglas Renfrew, Sharon Guffy, Jason W. Labonte, Rocco Moretti, Richard Bonneau,
Natalie C. J. Strynadka, and David Baker. Computationally designed peptide macrocycle
inhibitors of New Delhi metallo-3-lactamase 1. Proceedings of the National Academy of
Sciences of the United States of America, 118(12):¢2012800118, March 2021. ISSN 1091-6490.
doi: 10.1073/pnas.2012800118.

Siddharth M Narayanan, James D Braza, Ryan-Rhys Griffiths, Albert Bou, Geemi Wellawatte,
Mayk Caldas Ramos, Ludovico Mitchener, Samuel G Rodriques, and Andrew D White.
Training a scientific reasoning model for chemistry. arXiv preprint arXiv:2506.17238, 2025.

Deepak Nathani, Lovish Madaan, Nicholas Roberts, Nikolay Bashlykov, Ajay Menon, Vincent
Moens, Amar Budhiraja, Despoina Magka, Vladislav Vorotilov, Gaurav Chaurasia, et al.
Migym: A new framework and benchmark for advancing ai research agents. arXiv preprint
arXiv:2502.14499, 2025.

Erik Nijkamp, Jeffrey A Ruffolo, Eli N Weinstein, Nikhil Naik, and Ali Madani. Progen2:
exploring the boundaries of protein language models. Cell systems, 14(11):968-978, 2023.

Liangbo Ning, Ziran Liang, Zhuohang Jiang, Haohao Qu, Yujuan Ding, Wenqi Fan, Xiao-yong
Wei, Shanru Lin, Hui Liu, Philip S Yu, et al. A survey of webagents: Towards next-generation
ai agents for web automation with large foundation models. In Proceedings of the 31st ACM
SIGKDD Conference on Knowledge Discovery and Data Mining V. 2, pages 6140-6150, 2025.

Alexander Novikov, Ngan Vii, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang,
Adam Zsolt Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas
Mehrabian, et al. Alphaevolve: A coding agent for scientific and algorithmic discovery. arXiv
preprint arXiv:2506.13131, 2025.

Saro Passaro, Gabriele Corso, Jeremy Wohlwend, Mateo Reveiz, Stephan Thaler, Vignesh Ram
Somnath, Noah Getz, Tally Portnoi, Julien Roy, Hannes Stark, David Kwabi-Addo, Dominique
Beaini, Tommi Jaakkola, and Regina Barzilay. Boltz-2: Towards accurate and efficient binding
affinity prediction. bioRxiv, 2025. doi: 10.1101/2025.06.14.659707.

Kevin Pu, KJ Kevin Feng, Tovi Grossman, Tom Hope, Bhavana Dalvi Mishra, Matt Latzke,
Jonathan Bragg, Joseph Chee Chang, and Pao Siangliulue. Ideasynth: Iterative research idea
development through evolving and composing idea facets with literature-grounded feedback.
In Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems, pages
1-31, 2025.

Ingrid Swanson Pultz, Malcolm Hill, Joanne M. Vitanza, Clancey Wolf, Lasse Saaby, Tina
Liu, Peter Winkle, and Daniel A. Leffler. Gluten Degradation, Pharmacokinetics, Safety, and

15


https://link.springer.com/10.1007/978-3-031-04544-8_3
https://pubs.acs.org/doi/abs/10.1021/bk-2022-1417.ch003
https://pubs.acs.org/doi/abs/10.1021/bk-2022-1417.ch003
https://pubs.acs.org/doi/abs/10.1021/bk-2022-1417.ch003
https://onlinelibrary.wiley.com/doi/abs/10.1002/pro.3974
https://onlinelibrary.wiley.com/doi/abs/10.1002/pro.3974
https://onlinelibrary.wiley.com/doi/abs/10.1002/pro.3974

674
675
676

677
678
679

680
681
682

683

685

686
687
688
689

690

692
693
694
695

696
697
698
699

700
701
702
703
704

706
707
708

709
710
71
712
713
714
715
716
717

718
719
720

721
722

723
724
725

[83]

[84]

[85]

[86]

[87]

(88]

[89]

[90]

[91]

[92]

(93]

[94]

Tolerability of TAK-062, an Engineered Enzyme to Treat Celiac Disease. Gastroenterology,
161(1):81-93.e3, July 2021. ISSN 00165085. doi: 10.1053/j.gastro.2021.03.019. URL
https://linkinghub.elsevier.com/retrieve/pii/S0016508521005278.

Yuanhao Qu, Kaixuan Huang, Ming Yin, Kanghong Zhan, Dyllan Liu, Di Yin, Henry C
Cousins, William A Johnson, Xiaotong Wang, Mihir Shah, et al. Crispr-gpt for agentic
automation of gene-editing experiments. Nature Biomedical Engineering, pages 1-14, 2025.

Marissa Radensky, Simra Shahid, Raymond Fok, Pao Siangliulue, Tom Hope, and Daniel S
Weld. Scideator: Human-llm scientific idea generation grounded in research-paper facet
recombination. arXiv preprint arXiv:2409.14634, 2024.

P. D. Renfrew, T. W. Craven, G. L. Butterfoss, K. Kirshenbaum, and R. Bonneau. A rotamer
library to enable modeling and design of peptoid foldamers. Journal of the American Chemical
Society, 136:8772-8782, 2014. doi: 10.1021/ja503776z.

P. Douglas Renfrew, Eun Jung Choi, Richard Bonneau, and Brian Kuhlman. Incorporation of
Noncanonical Amino Acids into Rosetta and Use in Computational Protein-Peptide Interface
Design. PLoS ONE, 7(3):e32637, March 2012. ISSN 1932-6203. doi: 10.1371/journal.pone.
0032637. URL http://dx.plos.org/10.1371/journal .pone.0032637.

Gabriel J. Rocklin, Tamuka M. Chidyausiku, Inna Goreshnik, Alex Ford, Scott Houliston,
Alexander Lemak, Lauren Carter, Rashmi Ravichandran, Vikram K. Mulligan, Aaron Chevalier,
Cheryl H. Arrowsmith, and David Baker. Global analysis of protein folding using massively
parallel design, synthesis, and testing. Science, 357(6347):168—175, July 2017. ISSN 0036-
8075, 1095-9203. doi: 10.1126/science.aan0693. URL http://www.sciencemag.org/
lookup/doi/10.1126/science.aan0693.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468-475, 2024.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov,
Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan
Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas
Usunier, Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for
code, 2024. URL https://arxiv.org/abs/2308.12950.

Yangjun Ruan, Honghua Dong, Andrew Wang, Silviu Pitis, Yongchao Zhou, Jimmy Ba, Yann
Dubois, Chris J] Maddison, and Tatsunori Hashimoto. Identifying the risks of Im agents with
an Im-emulated sandbox. arXiv preprint arXiv:2309.15817, 2023.

Clara T. Schoeder, Samuel Schmitz, Jared Adolf-Bryfogle, Alexander M. Sevy, Jessica A.
Finn, Marion F. Sauer, Nina G. Bozhanova, Benjamin K. Mueller, Amandeep K. Sangha,
Jaume Bonet, Jonathan H. Sheehan, Georg Kuenze, Brennica Marlow, Shannon T. Smith, Hope
Woods, Brian J. Bender, Cristina E. Martina, Diego del Alamo, Pranav Kodali, Alican Gulsevin,
William R. Schief, Bruno E. Correia, James E. Jr. Crowe, Jens Meiler, and Rocco Moretti.
Modeling Immunity with Rosetta: Methods for Antibody and Antigen Design. Biochemistry,
60(11):825-846, March 2021. ISSN 0006-2960. doi: 10.1021/acs.biochem.0c00912. URL
https://doi.org/10.1021/acs.biochem.0c00912. Publisher: American Chemical So-
ciety.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Will Sheffler and David Baker. Rosettaholes: rapid assessment of protein core packing for
structure prediction, refinement, design, and validation. Protein Science, 18(1):229-239, 2009.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Re-
flexion: Language agents with verbal reinforcement learning. Advances in Neural Information
Processing Systems, 36:8634-8652, 2023.

16


https://linkinghub.elsevier.com/retrieve/pii/S0016508521005278
http://dx.plos.org/10.1371/journal.pone.0032637
http://www.sciencemag.org/lookup/doi/10.1126/science.aan0693
http://www.sciencemag.org/lookup/doi/10.1126/science.aan0693
http://www.sciencemag.org/lookup/doi/10.1126/science.aan0693
https://arxiv.org/abs/2308.12950
https://doi.org/10.1021/acs.biochem.0c00912

726
727
728
729
730

731
732
733
734
735

736
737
738

740
741
742
743
744
745

746
747

748
749

750
751
752

754
755
756

757
758

760
761

762
763
764
765

767
768
769
770

771
772

773
774
775

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

Justin B. Siegel, Alexandre Zanghellini, Helena M. Lovick, Gert Kiss, Abigail R. Lambert,
Jennifer L. St Clair, Jasmine L. Gallaher, Donald Hilvert, Michael H. Gelb, Barry L. Stoddard,
Kendall N. Houk, Forrest E. Michael, and David Baker. Computational design of an enzyme
catalyst for a stereoselective bimolecular Diels-Alder reaction. Science (New York, N.Y.), 329
(5989):309-313, July 2010. ISSN 1095-9203. doi: 10.1126/science.1190239.

Colin A. Smith and Tanja Kortemme. Backrub-Like Backbone Simulation Recapitu-
lates Natural Protein Conformational Variability and Improves Mutant Side-Chain Pre-
diction. Journal of Molecular Biology, 380(4):742-756, July 2008. ISSN 0022-2836.
doi: 10.1016/j.jmb.2008.05.023. URL https://wuw.sciencedirect.com/science/
article/pii/S0022283608005779.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Kumar. Scaling Ilm test-time compute opti-
mally can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314,
2024.

Eva-Maria Strauch, Steffen M Bernard, David La, Alan J Bohn, Peter S Lee, Caitlin E
Anderson, Travis Nieusma, Carly A Holstein, Natalie K Garcia, Kathryn A Hooper, Rashmi
Ravichandran, Jorgen W Nelson, William Sheffler, Jesse D Bloom, Kelly K Lee, Andrew B
Ward, Paul Yager, Deborah H Fuller, Ian A Wilson, and David Baker. Computational design
of trimeric influenza-neutralizing proteins targeting the hemagglutinin receptor binding site.
Nature Biotechnology, 35(7):667-671, July 2017. ISSN 1087-0156, 1546-1696. doi: 10.1038/
nbt.3907. URL http://www.nature.com/articles/nbt.3907.

Theodore Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas Griffiths. Cognitive archi-
tectures for language agents. Transactions on Machine Learning Research, 2023.

Gemini Team. Gemini: a family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805, 2023.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv
preprint arXiv:2507.20534, 2025.

NovelSeek Team, Bo Zhang, Shiyang Feng, Xiangchao Yan, Jiakang Yuan, Zhiyin Yu, Xiaohan
He, Songtao Huang, Shaowei Hou, Zheng Nie, et al. Novelseek: When agent becomes
the scientist—building closed-loop system from hypothesis to verification. arXiv preprint
arXiv:2505.16938, 2025.

David F. Thieker, Jack B. Maguire, Stephan T. Kudlacek, Andrew Leaver-Fay, Sergey Lyskov,
and Brian Kuhlman. Stabilizing proteins, simplified: A Rosetta-based webtool for predict-
ing favorable mutations. Protein Science, 31(10):e4428, 2022. ISSN 1469-896X. doi:
10.1002/pro.4428. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/pro.
4428. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/pro.4428.

Summer Thyme and David Baker. Redesigning the Specificity of Protein—-DNA Interactions
with Rosetta. In David R. Edgell, editor, Homing Endonucleases: Methods and Protocols,
pages 265-282. Humana Press, Totowa, NJ, 2014. ISBN 978-1-62703-968-0. doi: 10.1007/
978-1-62703-968-0_17. URL https://doi.org/10.1007/978-1-62703-968-0_17.

Christine E. Tinberg, Sagar D. Khare, Jiayi Dou, Lindsey Doyle, Jorgen W. Nelson, Alberto
Schena, Wojciech Jankowski, Charalampos G. Kalodimos, Kai Johnsson, Barry L. Stoddard,
and David Baker. Computational design of ligand-binding proteins with high affinity and
selectivity. Nature, 501(7466):212-216, September 2013. ISSN 0028-0836, 1476-4687. doi:
10.1038/nature12443. URL http://www.nature.com/articles/nature12443.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476-482, 2024.

Eric Wang, Samuel Schmidgall, Paul F Jaeger, Fan Zhang, Rory Pilgrim, Yossi Matias,

Joelle Barral, David Fleet, and Shekoofeh Azizi. Txgemma: Efficient and agentic 1lms for
therapeutics. arXiv preprint arXiv:2504.06196, 2025.

17


https://www.sciencedirect.com/science/article/pii/S0022283608005779
https://www.sciencedirect.com/science/article/pii/S0022283608005779
https://www.sciencedirect.com/science/article/pii/S0022283608005779
http://www.nature.com/articles/nbt.3907
https://onlinelibrary.wiley.com/doi/abs/10.1002/pro.4428
https://onlinelibrary.wiley.com/doi/abs/10.1002/pro.4428
https://onlinelibrary.wiley.com/doi/abs/10.1002/pro.4428
https://doi.org/10.1007/978-1-62703-968-0_17
http://www.nature.com/articles/nature12443

776
777
778

779
780
781

784

794

811

814
815
816

817
818
819

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Xing
Jin, Kefan Yu, Minh Nhat Nguyen, Licheng Liu, et al. Ragen: Understanding self-evolution in
Ilm agents via multi-turn reinforcement learning. arXiv preprint arXiv:2504.20073, 2025.

A. M. Watkins, T. W. Craven, P. D. Renfrew, P. S. Arora, and R. Bonneau. Rotamer libraries
for the high-resolution design of S-amino acid foldamers. Structure, 25(11):1771-1780.e3,
2017. doi: 10.1016/j.str.2017.09.005.

Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E
Eisenach, Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo
design of protein structure and function with rfdiffusion. Nature, 620(7976):1089-1100, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824-24837, 2022.

Zhepei Wei, Wenlin Yao, Yao Liu, Weizhi Zhang, Qin Lu, Liang Qiu, Changlong Yu, Puyang
Xu, Chao Zhang, Bing Yin, et al. Webagent-r1: Training web agents via end-to-end multi-turn
reinforcement learning. arXiv preprint arXiv:2505.16421, 2025.

Jeremy Wohlwend, Gabriele Corso, Saro Passaro, Noah Getz, Mateo Reveiz, Ken Leidal,
Wojtek Swiderski, Liam Atkinson, Tally Portnoi, Itamar Chinn, Jacob Silterra, Tommi Jaakkola,
and Regina Barzilay. Boltz-1: Democratizing biomolecular interaction modeling. bioRxiv,
2024. doi: 10.1101/2024.11.19.624167.

Yutaro Yamada, Robert Tjarko Lange, Cong Lu, Shengran Hu, Chris Lu, Jakob Foerster, Jeff
Clune, and David Ha. The ai scientist-v2: Workshop-level automated scientific discovery via
agentic tree search. arXiv preprint arXiv:2504.08066, 2025.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik
Narasimhan, and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software
engineering. Advances in Neural Information Processing Systems, 37:50528-50652, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models.
Advances in neural information processing systems, 36:11809-11822, 2023.

Tristan Zaborniak, Noora Azadvari, Qiyao Zhu, SM Bargeen A Turzo, Parisa Hosseinzadeh,
P Douglas Renfrew, and Vikram Khipple Mulligan. The open-source masala software suite:
Facilitating rapid methods development for synthetic heteropolymer design. bioRxiv, pages
2025-07, 2025.

Yang Zhang and Jeffrey Skolnick. Scoring function for automated assessment of protein
structure template quality. Proteins: Structure, Function, and Bioinformatics, 57(4):702-710,
2004.

Yu Zhang, Xiusi Chen, Bowen Jin, Sheng Wang, Shuiwang Ji, Wei Wang, and Jiawei Han. A
comprehensive survey of scientific large language models and their applications in scientific
discovery. arXiv preprint arXiv:2406.10833, 2024.

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing
large language models with long-term memory. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pages 19724-19731, 2024.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for
building autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

18



820

821

822
823
824
825
826

827
828

830
831
832
833
834
835

836
837
838
839
840
841
842

844
845
846

847
848
849
850
851
852
853

854

855
856

857

858
859

860

A Related works
In this section, we provide a detailed overview of relevant related works.

LLM agents. Through text generation, modern LLMs are capable of using external tools such
as web browsers [2, 41, 78, 112, 121], email [27, 90], and, more broadly, code-based interfaces
[44, 50, 115]. Coupled with reasoning and chain-of-thought prompting [92, 111], LLMs can act as
efficient agents, automating repetitive workflows and solving complex tasks that require multi-turn
interactions [108].

Scientific agents. Scientific discovery workflows are generally well-structured, which makes them
attractive for the development of Al scientists [37, 65, 102]. Recent works have explored LLMs
agents for idea and hypothesis generation [8, 40, 62, 81, 84], experiment design [13, 33], and paper
writing [20, 34, 114]. These approaches have found several applications in math [66, 106], chemistry
[13,15,75], and therapeutics [107]. Most closely related to our work, ProtAgents [33] is a multi-agent
system that orchestrates the use of existing machine learning tools for de novo protein discovery;
CRISPR-GPT [83] studies LLM agents for gene editing tasks; and Biomni [46] develops an agentic
framework for general biomedical tasks. We refer interested readers to [38, 119] for comprehensive
reviews.

Manually-crafted Rosetta protocols for heteropolymer design. Rosetta has been extensively
used for rational design of new protein folds [54, 57, 87],rigidly-structured peptides [10, 25, 42, 73],
and other heteropolymers [29, 85, 86]. Proteins have been rationally designed with Rosetta that
self-assemble into sheets [35] or cages [45, 53], that bind metals [67] or small molecules [105], that
catalyze new enzymatic reactions [49, 95], and that specifically recognize target proteins [98]. Non-
canonical peptides have also been designed which bind target proteins [43, 74] or passively diffuse
across cell membranes [11]. Rosetta’s infrastructure, energy function, and development are described
in [6, 58, 60, 61]. Rosetta’s scripting interfaces are described in [19, 32]. Non-canonical Rosetta
design methods are reviewed in [28, 69, 71, 72]. Recently, the Masala libraries were introduced to
permit easy, plugin-based development of new optimizers and other algorithms to extend Rosetta or
other heteropolymer modelling software [117].

ML for protein design. Deep learning methodologies have proved successful at training models
for particular design pipelines. For example, models exist for both monomer (AlphaFold 2 [51],
RoseTTAFold [9, 47], ESMFold [64]) and multimer structure prediction (AlphaFold 3 [1] and Multi-
mer [30], RosettaFold All-Atom [55], Chai-1/2 [17, 18], Boltz-1/2 [80, 113]); sequence generation
(ProteinMPNN [26], ProGen2/3 [12, 77], ProtGPT2 [31]); and structure generation and docking
(RFdiffusion [110], DiffDock [24]). We point to [59] for a recent review on language models for
protein design, and [70] for a review of earlier ML approaches used for protein modeling.

B Prompts

In this section, we include all prompt templates. In the prompts, fields enclosed within curly brackets
(e.g., {field_name}) are populated at run time.

B.1 System prompt

First, we include Agent Rosetta’s system prompt. The {action_docs} are populated with Python-
style docstrings that summarize the available actions and their parameters:

System prompt

You are an expert RosettaScripts coding agent that supports scientists in
biomolecular design tasks:

- Rosetta is a computational toolkit for modeling, predicting, and designing

biomolecular structures and interactions, using physics-based energy
functions and stochastic search.

19



861

- RosettaScripts is Rosetta’s XML-based interface for assembling custom modeling
protocols by combining modular actions (i.e., movers), filters, and scoring
terms.

Your goal is to follow a user-defined brief and to design a valid RosettaScripts
protocol that captures the brief precisely.

You have interactive access to a RosettaScripts environment with the following
actions:

{action_docs}
*xInstructions: **

1. Reason about the design brief:

- Carefully read the design brief.

- Think about its implications for the peptide sequence from a biophysical
perspective. Consider both composition and the breakdown of the energy
scores.

2. Choose the next action:

- Motivate your choice.

- If the action requires arguments, only write the action name, the
environment will display the documentation for the action and re-prompt you
to write the full action call with all its arguments.

- If the action does not require arguments, it will be executed immediately.

3. Write the full action call with all its arguments:

- Carefully read the documentation of the action you chose.

- Write an implementation plan that translates your thought process into the
action call. Be specific. The expert biomolecular scientists on your team
should be able to understand and review your plan.

- Write the action call in the specified format.

**Formatting: xx*

- FIRST write your thought process inside ‘<think>...</think>‘ tags.

- THEN write your action with the following format (do not include any other
text, comments, or explanations):

(3

<action>

<name tag="choose/run">action_name</name>

<arg_namel>arg_valuel</arg_namel>

<arg_name2>arg_value2</arg_name2>

</action>

ccc¢

**Examples : x*

- For an action with arguments, first output:
ccc¢
<think> ...your thought process goes here... </think>
<action tag="choose">
<name>action_name</name>
</action>
cc¢

then, after the environment displays the documentation, output:
cc¢

<think> ...your thought process goes here... </think>

<action tag="run">

<name>action_name</name>

<arg_namel>arg_valuel</arg_namel>
<arg_name2>arg_value2</arg_name2>

</action>

20




- For an action without arguments, simply output:
(33
<think> ...your thought process goes here... </think>
<action tag="choose">
<name>action_name</name>
</action>

(33

and the action will be executed immediately.

Now, read the design brief and start designing your RosettaScripts protocol!

862

ss3  The action docstrings of the three types of actions presented in this works are:

Action docstrings

- rotamer_change

"""Perform a Rosetta FastRelax action with design enabled. This action uses the
compositional penalties in ‘penalties‘ to guide the search, the residue
selectors defined in ‘residue_selectors‘ to specify which residues to apply
the penalties to, and the task operations defined in ‘task_operations‘ to
control the design space.

Arguments:

- penalties (array, required): a list of compositional penalty definitions.
Each item includes the following parameters:
- comp (string, required): the penalty definition blocks specifying the
compositional constraints.
- comp_selector_name (string, optional): the name of the residue selector to
apply the compositional constraints to.

- residue_selectors (string, optional): the XML definitions of the residue
selectors.

- task_operations (string, optional): the XML definitions of the task

operations to control the design space.
nnn

- backbone_change

"""Perturb the backbone of the sequence. This action implements three Rosetta
backbone movers: ‘small®, ‘shear‘, and ‘backrub‘. Specify the mover to use
with ‘mover_name‘, the parameters of the mover in XML format with
‘mover_params‘, and the residues to perturb with ‘residue_selector®.

Arguments:

- mover_name (string, required): the name of the Rosetta backbone mover to use
(can be ‘small‘, ‘shear®, or ‘backrub‘).

- mover_params (string, required): the parameters of the mover in XML format.

- residue_selectors (string, optional): the XML definitions of the residue
selectors.

- mover_selector_name (string, optional): the name of the residue selector to
apply the mover to.

- go_back_to_step

"""Revert the environment state to a previous step in the trajectory. This
action resets the environment to the state at the end of the specified
step, allowing you to retry actions or explore different paths.

Arguments:

- step (integer, optional): the number of the step to revert to, starting from
0.

864

21



865

866
867
868

869
870

871

872

B.2 Multi-turn interaction prompts

At each turn, Agent Rosetta is prompted to either refine the current design if the previous action was
successful, or to correct its own mistakes. Here, we include the prompts used in our experiments,
starting from design refinement.

Recall that refinement comprises two steps: action selection and parameter generation, each with its
own prompt:

Design refinement—action selection prompt

The RosettaScripts environment successfully executed your action:

**Step Number:** {step}
*xAction Name:** {act_name}
**Results: *x*

{state}

*xHistory Summary:**
This is a summary of the previous steps with their actions and results:

{summary}

**Revision Instructions**:

1. Review:
- Remind yourself of the design brief goal.
- Carefully read the results from the last action.
2. Judge the results of the last action using the following criteria:
- COMPOSITION.
- BREAKDOWN OF ENERGY TERMS.
- STRUCTURE.
3. Summarize:
- What went well?
- What went wrong?
- What are the next steps to achieve the design goal?
4. Choose the next action, motivating your choice.

Follow the format specified in the system prompt.

Design refinement—parameter generation prompt

You chose to perform action ‘{act_name}‘. This is the full documentation of the
action:

{docs}

*xAction Instructions:*x*

1. Carefully read the documentation of the action you chose.
2. Write a detailed implementation plan that translates your thought process
into the action call:
- Motivate your choice of arguments and their values.
- The expert biomolecular scientists on your team should be able to
understand, review, and critique your plan in detail.
3. Write the full action call with all its arguments according to the format in
the system prompt.

22



873
874
875

876

877

878

880

881

882

883
884

Error correction, instead, consists of one prompt only. We found that it is important to remind the
model not to change the intended meaning of the wrong action for it not to remove problematic lines
of code instead of trying to fix them:

Error correction prompt

The RosettaScripts environment encountered an error while executing the action:
{error}
**Instructions:**
1. Carefully read the error message.
2. Think about the possible causes of the error and come up with a solution:
- Was the action call formatted correctly?
- Did the action use valid Rosetta syntax?

3. Fix the error in the content of the message without changing its meaning.

Follow the format specified in the system prompt.

B.3 Design brief

Finally, we include the task prompt used in this work to stabilize backbone conformations. Task
prompts should be precise and avoid ambiguities in order for the agent to correctly understand what
the desired goals are.

Task prompt

**Design Brief :**
You are given a blank poly-glycine backbone structure generated by RFdiffusion.

Your task is to design the side chains of this structure such that:
1. It contains as few glycines as possible.
2. It is stable and has low Rosetta energy.
3. It folds into the same shape as the initial backbone structure.

At each step, you will be given the following information:

- The current sequence.

- The Rosetta energy breakdown of the current sequence.

- Structural information (all terms are in Angstroms, symbol "R"):

- RMSD to the initial structure: this measures the distance between the
current structure and the initial structure.

- RMSD to the ESMFold structure: this measures the distance between the
current structure and the predicted ESMFold structure. This term is a proxy
for the stability of the current structure.

- Cavity volume: this measures the volume of the cavity in the current
structure. A value of 20 &% is approximately equivalent to one carbon atom.

- Radius of gyration: this measures the compactness of the current structure
around its center of mass.

- CA pLDDT: this measures the average confidence of the ESMFold prediction for
the CA atoms of the current structure. It is a value between O and 1, where
higher values indicate higher confidence.

**Starting State:**

{initial_state}

C Environment state

In this section, we include an example state of the RosettaScripts environment, and we verify the
agent is able to extract meaningful information to guide its reasoning process.

23



sss The state includes the amino acid sequence, the breakdown of the Rosetta energy function terms,
ggs  structural information, and a tabular summary of the previous actions in the design trajectory:

Environment state

- Sequence:

LYS,GLU,GLU,GLU, ILE,LYS, THR, ILE,LEU, TRP,LYS ,MET, PHE, LEU, ILE, VAL ,MET, LYS, ILE,
PHE,LEU, ASP,PRO, ARG, LEU, SER, ASP,GLU, GLU, ILE, LEU, TRP, LEU, ILE,ALA,LYS,LEU,
MET,GLU,GLU, VAL, ALA,LYS,LYS,LEU, ASN, LEU, SER, LEU, ASP, GLN, LEU, ALA,LYS , PHE,
LEU,ILE,LYS,LEU,ALA,ARG,GLN, TYR,LEU, ASP,GLU, ASP,LEU, ILE, ARG, LYS,LEU, GLU, THR,
LEU,LEU,LYS, ILE, ILE,LEU,LYS, TRP,LEU,LYS, SER

- Rosetta energy terms:

fa_atr: -559.135 (+9.824)

fa_rep: 61.983 (-4.009)

fa_sol: 319.433 (+14.178)
fa_intra_sol_xover4: 15.113 (+0.029)
1k_ball_wtd: -10.933 (+2.150)
fa_intra_rep: 1.177 (-0.082)
fa_elec: -182.289 (-16.464)
pro_close: 0.134 (+0.134)
hbond_sr_bb: -65.597 (+0.328)
hbond_lr_bb: -1.747 (-0.125)
hbond_bb_sc: -11.760 (-1.938)
hbond_sc: -15.302 (-2.441)
dslf_fa13: 0.000 (+0.000)
rama_prepro: -17.624 (-0.229)
omega: 6.072 (+0.530)

fa_dun: 93.085 (-7.179)

p_aa_pp: -16.813 (+0.026)
yhh_planarity: 0.000 (-0.000)

ref: 33.569 (-8.302)
aspartimide_penalty: 0.000 (+0.000)

total energy: -350.632 (-13.571)

- Composition penalty:

before design: 326.000, after design: 0.000 (-326.000)
- Structure:

RMSD to initial structure: 0.765 (&)

RMSD to ESMFold predicted structure: 3.156 (), CA pLDDT: 0.851 (0-1)
Cavity volume: 28.783 (&%)

Radius of gyration: 12.577 (&)

**History Summary:**

see Figure B.1 below
887 e

gse for ease of readability, we include a screenshot of the tabular history summary below:

889 We include the reasoning trace of the agent for the particular example state above:

Agent Rosetta’s reasoning

Reviewing the design brief and last action:
- The brief is to design side chains on a poly-glycine backbone such that (1)
glycine is minimized, (2) the structure is stable with low energy, and (3)

the backbone shape is maintained (low RMSD to initial structure).
890

24



891

892
893
894

895

896
897
898
899

901

902
903
904
905

*xHistory Summary:xx

This is a summary of the previous steps with their actions and results:

score_pt
rotamer_change |
rotamer_change |

Figure C.1: Screenshot of an example tabular history summary appended after the environment state.

Judging the results:

- COMPOSITION: The sequence is now almost entirely composed of non-glycine
residues, with only one glycine remaining in the designed chain. The
compositional penalty for glycine dropped from 326.0 to 0.0, which is a
strong positive. There are no excessive Trp/Met residues.

- ENERGY: The total Rosetta energy improved to -350.6, a significant decrease
from the initial +108.7. Key improvements are seen in fa_atr, fa_elec, and
the removal of the glycine penalty. Sidechain energies (fa_dun, hbond_sc,
etc.) are reasonable. There are no major outliers in the energy breakdown.

- STRUCTURE: The RMSD to the initial structure is 0.765 !@\AA{}!@, which is very
close to the original backbone and within the design goals. RMSD to ESMFold
prediction is 3.16 !@\AA{}'@ with a high CA pLDDT of 0.85, indicating
strong predicted stability. Cavity volume is 28.8 !'@\AA{}$"3$!@, suggesting
some small internal cavities, but nothing egregious. Radius of gyration is
nearly unchanged.

Summary :

- What went well: Glycine content is essentially eliminated, energy is
favorable, and the structure is highly preserved with high predicted
confidence.

- What went wrong: There is still a single glycine present in the sequence, and
a small cavity has appeared (though the volume is not large).

- Next steps: To fully meet the brief, we should eliminate the last glycine
residue, possibly by explicitly restricting glycine at all positions with a
task operation. Additionally, a round of relaxation without compositional
penalties may help optimize packing and reduce cavity volume.

Choice of next action:

- I will perform a rotamer_change with a task operation that explicitly
prohibits glycine at all positions, ensuring complete glycine elimination.
I will not apply the compositional penalty this time, as the sequence
composition is now reasonable; instead, I will focus on the explicit
exclusion of glycine.

We can see that Agent Rosetta is able to reason both about the compositional, energetic, and structural
aspects of the current design in the context of the user-defined task brief, and to choose the next
action accordingly.

D Actions

Rosetta offers several programming interfaces (e.g., PyRosetta [19]). In this work, we use Roset-
taScripts [32]—the XML scripting interface—which offers more structured syntax compared to
freeform Python code. This is important as it allows us to scaffold a set of flexible rypes of actions
(i.e., meta-actions) for which our agent, Agent Rosetta, generates the appropriate parameters. To
achieve this, we leverage the ability of instruction-tuned LLMs to generate structured outputs that are
easier to parse compared to text.

In this section, we include each action’s XML script scaffold and an example action call generated
by Agent Rosetta. In the XML scaffolds, ‘{field_name}*‘ indicates a field that is formatted
dynamically at runtime depending on the agent’s action call. We remark that the go_back_to action
does not run Rosetta, so it does not need XML scripting.

25



906

907

908

909

910

911

912

913

914

915

D.1 Rotamer change

The RosettaScripts XML scaffold for the action is:

rotamer_change XML scaffold

<ROSETTASCRIPTS>
<SCOREFXNS>
</SCOREFXNS>

<PACKER_PALETTES>
</PACKER_PALETTES>

<RESIDUE_SELECTORS>
{residue_selectors}
</RESIDUE_SELECTORS>

<TASKOPERATIONS>
{task_operations}
</TASKOPERATIONS>

<SIMPLE_METRICS>
<SequenceMetric name="record_sequence" output_mode="basename" />
</SIMPLE_METRICS>

<MOVERS>
{comp_movers}
<FastDesign name="fdes" repeats="1" {operations_names}>
<MoveMap name="fdes_mml">
<Span begin="1" end="999" bb="true" chi="true" />
</MoveMap>
</FastDesign>
</MOVERS>

<PROTOCOLS>

{comp_protocol}

<Add mover="fdes" />

<Add metrics="record_sequence" />
</PROTOCOLS>

<OUTPUT />
</ROSETTASCRIPTS>

The agent can specify the following parameters:

* comp_movers: the compositional penalties,
* residue_selectors: the regions of the peptide to apply the penalties to,

* task_operations: the Rosetta TaskOperations to constraint the design space,

and the remaining parameters are populated automatically by the environment.

An example action call generated by Agent Rosetta that uses all available parameters is:

Example rotamer_change action call

<action tag="run">
<name>rotamer_change</name>
<penalties>

<item>

<comp>

# Strongly penalize presence of glycines anywhere in the sequence
PENALTY_DEFINITION
TYPE GLY
SHAPE ABOVE
TARGET 0O

26



BOUNDARY QUADRATIC
STRENGTH 100
END_PENALTY_DEFINITION
</comp>
</item>
<item>
<comp>
# Mildly favor large sidechains in the core to reduce cavity volume
PENALTY_DEFINITION
TYPE TRP TYR PHE MET LEU ILE
SHAPE BELOW
TARGET 0.35
RADIUS 0.1
BOUNDARY QUADRATIC
STRENGTH 5
END_PENALTY_DEFINITION
</comp>
<comp_selector_name>core</comp_selector_name>
</item>
</penalties>
<residue_selectors>
<Layer name="core" select_core="true" select_boundary="false"
select_surface="false" use_sidechain_neighbors="true"/>
</residue_selectors>
<task_operations>
<RestrictAbsentCanonicalAAS name="no_gly" keep_aas="ACDEFGHIKLMNPQRSTVWY"/>
</task_operations>
</action>

916

917 D.2  Backbone change

918 The RosettaScripts XML scaffold for the action is:

backbone_change XML scaffold

<ROSETTASCRIPTS>
<SCOREFXNS>
</SCOREFXNS>

<PACKER_PALETTES>
</PACKER_PALETTES>

<RESIDUE_SELECTORS>
{residue_selectors}
</RESIDUE_SELECTORS>

<MOVE_MAP_FACTORIES>
{movemap_factory}
</MOVE_MAP_FACTORIES>

<TASKOPERATIONS>
</TASKOPERATIONS>

<SIMPLE_METRICS>
<SequenceMetric name="record_sequence" output_mode="basename" />
</SIMPLE_METRICS>

<MOVERS>

<{mover_name} name="backbone_change" {mover_params} />

<MinMover name="minl" bb="false" chi="true" tolerance="1.0e-07"/>
</MOVERS>

<PROTOCOLS>
<Add mover="backbone_change" />

919

27



920
921

922

923

924

925
926

927

928
929

930

931

933
934
935
936

937

938
939
940
941
942

943

<Add mover="mini" />
<Add metrics="record_sequence" />
</PROTOCOLS>

<O0UTPUT />
</ROSETTASCRIPTS>

The agent can specify the following parameters:

* mover_name: the name of the backbone mover to use,

* mover_params: the parameters of the backbone mover,

* residue_selectors: the regions of the backbone to perturb,

and the remaining parameters are populated automatically by the environment depending on the
chosen Mover.

We include an example action call generated by Agent Rosetta that uses the Small Mover:

Example backbone_change action call—Small mover

<action tag="run">

<name>backbone_change</name>

<mover_name>small</mover_name>

<mover_params>temperature="0.8" nmoves="20" angle_max=“15"</mover_params>
</action>

and an example action call for the Backrub Mover:

Example backbone_change action call—Backrub mover

<action tag="run">

<name>backbone_change</name>

<mover_name>backrub</mover_name>

<mover_params>max_angle_disp_4="10.0" max_angle_disp_7="6.0"
max_angle_disp_slope="0.5"</mover_params>

<residue_selectors>

<Layer name="core" select_core="true" select_boundary="true"
select_surface="false"/>

</residue_selectors>

<mover_selector_name>core</mover_selector_name>

</action>

E Error correction

In this section, we include examples of Agent Rosetta reasoning traces when correcting its own
mistakes. When an action fails, the agent is prompted with the offending action call and the error
message from the RosettaScripts environment. We note that the action documentation is maintained
in the LLM context during error correction. If error correction needs multiple interaction turns, we
only keep the most recent error in the context.

E.1 Wrong compositional penalty blocks

Recall that the rotamer_change action accepts penalty definition blocks that penalize deviations
from a target composition. This guides the Monte Carlo algorithm in Rosetta. It can happen, however,
that Agent Rosetta tries to penalize structural properties of the chain, which are not allowed and cause
the action to fail. We show how the agent reasons in such situations, starting with the wrong action
call:

Wrong action call generated by Agent Rosetta

<action tag="run">
<name>rotamer_change</name>
<penalties>

28



944

945
946

947

948
949

950

<item>
<comp>
# Penalize cavity volume above 20 3
PENALTY_DEFINITION
TYPE CAVITY
SHAPE ABOVE
TARGET 20
BOUNDARY QUADRATIC
STRENGTH 25
END_PENALTY_DEFINITION
</comp>
</item>
<item>
<comp>
# Penalize fa_rep above 60
PENALTY_DEFINITION
TYPE FA_REP
SHAPE ABOVE
TARGET 60
BOUNDARY QUADRATIC
STRENGTH 15
END_PENALTY_DEFINITION
</comp>
</item>
</penalties>
<task_operations>
# Restrict design to repacking (no mutations)
RestrictToRepacking name="repack_only"/>
# Add extra rotamers for better sampling
ExtraRotamersGeneric name="ex1l_ex2" exl1="1" ex2="1"/>
</task_operations>
</action>

The penalty definition blocks include TYPE CAVITY and TYPE FA_REP, which are not valid, and the

environment responds with the following error message:

RosettaScripts error message

The RosettaScripts environment encountered an error while executing the action:

<error>

ERROR: Error in core::scoring::aa_composition_energy
: :AACompositionEnergySetup: :parse_a_penalty_definition(): One or more
three-letter residue type codes must be present after "TYPE" on a "TYPE"
line.

ERROR:: Exit from:
src/core/scoring/aa_composition_energy/AACompositionEnergySetup.cc line: 621

[ ERROR ]: Caught exception:

File: src/core/scoring/aa_composition_energy/AACompositionEnergySetup.cc:621

[ ERROR ] UtilityExitException

ERROR: Error in core::scoring::aa_composition_energy
: :AACompositionEnergySetup: :parse_a_penalty_definition(): One or more
three-letter residue type codes must be present after "TYPE" on a "TYPE"
line.

</error>

The error message specifies that the TYPE lines should only contain valid three-letter residue types,

and the agent proceeds to correct the action call:

Agent Rosetta’s error correction reasoning

The error message indicates that the "TYPE" line in the PENALTY_DEFINITION block
requires one or more three-letter amino acid codes (e.g., GLY, ALA, VAL,
etc.), but "CAVITY" and "FA_REP" are not valid residue types. These blocks

29



951

954
955
956
957

958
959
960
961

962
963
964

965

are meant for compositional control of amino acid sequence, not for
structural or energy term constraints like cavity volume or fa_rep.

For this first step, the priority is to reduce the glycine content while
allowing all other amino acids, except perhaps cysteine (to avoid
disulfides at this early stage). We’ll penalize the presence of glycine and
encourage the design protocol to replace as many glycines as possible with
other amino acids, while the FastRelax protocol with side-chain design will
optimize energy and packing.

I will:

- Apply a strong quadratic penalty on glycine content (TYPE GLY, SHAPE ABOVE,
TARGET 2, BOUNDARY QUADRATIC, STRENGTH 200), aiming for as few glycines as
possible.

- Not restrict other amino acids, to maximize design diversity.

- Allow design at all positioms.

- Add extra rotamers for sampling.

No residue selectors are needed at this stage, as the penalty is applied
globally.

Corrected action generated by Agent Rosetta

<action tag="run">
<name>rotamer_change</name>
<penalties>

<item>

<comp>
# Penalize glycine count above 2 to minimize glycine content
PENALTY_DEFINITION
TYPE GLY
SHAPE ABOVE
TARGET 2
BOUNDARY QUADRATIC
STRENGTH 200
END_PENALTY_DEFINITION
</comp>

</item>
</penalties>
<task_operations>
<ExtraRotamersGeneric name="ex1_ex2" ex1="1" ex2="1"/>
</task_operations>
</action>

E.2 TaskOperations syntax

TaskOperations are useful to restrict the search space for Rosetta’s Monte Carlo algorithm. The
sequence space grows exponentially with the length of the sequence, but, in many cases, certain
positions can be restricted to assume only a subset of the available rotamers. This makes the design
step more targeted and efficient.

TaskOperations, however, do not follow a unified nomenclature for parameters. At the same time, it
is infeasible to provide prompting instructions about every TaskOperations available. Instead, we
only provide general instructions on what TaskOperations can be used for in protein design task, and
let the agent converse with the RosettaScripts environment to correct syntactical mistakes.

Here, we provide an example of such a situation. The agent is trying to prohibit the inclusion of
proline and cysteine globally in the design. We start by including the offending action call with the
error message from the environment:

Wrong action call generated by Agent Rosetta

<action tag="run">
<name>rotamer_change</name>

30



966

967

<penalties>
<item>
<comp>
# Penalize glycine content above 4, allow flexibility for backbone constraints
PENALTY_DEFINITION
TYPE GLY
SHAPE ABOVE
TARGET 4
BOUNDARY QUADRATIC
STRENGTH 30
END_PENALTY_DEFINITION
</comp>
</item>
<item>
<comp>
# Discourage any single non-glycine amino acid from exceeding 8 (softly)
PENALTY_DEFINITION
NOT_TYPE GLY
SHAPE ABOVE
TARGET 8
BOUNDARY QUADRATIC
STRENGTH 6
END_PENALTY_DEFINITION
</comp>
</item>
</penalties>
<task_operations>
<ProhibitSpecifiedBaseResidueTypes name="nopro_cys" aa="PRO CYS"/>
</task_operations>
</action>

RosettaScripts error message

The RosettaScripts environment encountered an error while executing the action:

<error>

[ ERROR ]: Caught exception:

File: src/protocols/rosetta_scripts/RosettaScriptsParser.cc:1217

Input rosetta scripts XML file "./rotamer_change_11.xml" failed to validate
against the rosetta scripts schema. Use the option -parser::output_schema
<output filename> to output the schema to a file to see all valid options.

Your XML has failed validation. The error message below will tell you where in
your XML file the error occurred. Here’s how to fix it:

1) If the validation fails on something obvious, like an illegal attribute due
to a spelling error (perhaps you used scorefnction instead of
scorefunction), then you need to fix your XML file.

2) If you haven’t run the XML rewriter script and this might be pre-2017 Rosetta
XML, run the rewriter script (tools/xsd_xrw/rewrite_rosetta_script.py) on
your input XML first. The attribute values not being in quotes
(scorefunction=talaris2014 instead of scorefunction="talaris2014") is a
good indicator that this is your problem.

3) If you are a developer and neither 1 nor 2 worked - email the developer’s
mailing list or try Slack.

4) If you are an academic or commercial user - try the Rosetta Forums
https://www.rosettacommons.org/forum

Error messages were:

From line 18:

Error: Element ’ProhibitSpecifiedBaseResidueTypes’, attribute ’aa’: The
attribute ’aa’ is not allowed.

13: <RESIDUE_SELECTORS>
14:

{I5E </RESIDUE_SELECTORS>
16:

17: <TASKOPERATIONS>

31



968

969
970
971
972

973
974
975
976
977
978
979

980

18: <ProhibitSpecifiedBaseResidueTypes name="nopro_cys" aa="PRO CYS"/>
19: </TASKOPERATIONS>

20:

21: <SIMPLE_METRICS>

22: <SequenceMetric name="record_sequence" output_mode="basename" />
23: </SIMPLE_METRICS>

</error>

This message shows that the RosettaScripts error indicates the wrong use of the attribute aa in the
action call. However, it does not provide any more indications of what should be done to correct it.
We stress that this is a nontrivial task for the agent. Now, we include the reasoning trace of Agent
Rosetta after being prompted to correct its mistakes in the action call:

Agent Rosetta’s error correction reasoning

The error message states: "Element ’ProhibitSpecifiedBaseResidueTypes’,
attribute ’aa’: The attribute ’aa’ is not allowed." This means that the XML
syntax for specifying which amino acids to prohibit in the
‘ProhibitSpecifiedBaseResidueTypes‘ TaskOperation is incorrect. In modern
RosettaScripts, the correct attribute is likely ‘amino_acids® rather than
‘aa‘, or (more commonly) a child element such as ‘<residue_name3>‘ or
‘<residue_name>‘ for specifying a list.

Alternatively, in many recent RosettaScripts, the ‘RestrictAbsentCanonicalAAS¢
operation is used, which takes an attribute ‘keep_aas‘ listing the allowed
amino acids. This is the most robust way to restrict the design space to
canonical amino acids, excluding, for example, proline and cysteine.

Plan:

- Replace ‘ProhibitSpecifiedBaseResidueTypes‘ with ‘RestrictAbsentCanonicalAAS¢.

- Use ‘keep_aas‘ to specify all canonical amino acids except PRO and CYS.

- This will prevent the design protocol from introducing proline or cysteine,
which are special-case residues (proline disrupts backbone flexibility,
cysteine can form disulfides).

- Keep the compositional penalties unchanged, as they are valid Rosetta
compositional penalty blocks.

The agent reflects on the possible causes of the error and reasons on which options it has to correct
its mistake. We stress that, in our prompts, we never include information about the TaskOperations
mentioned in the reasoning trace, meaning this was already included in the training data of the
underlying LLM. Agent Rosetta correctly recognizes there is not only one way to go about fixing
this error, and it reasons on which approach might be the most robust. To conclude, we include the
corrected action call, which executed successfully:

Corrected action call generated by Agent Rosetta

<action tag="run">
<name>rotamer_change</name>
<penalties>
<item>
<comp>
# Penalize glycine content above 4, allow flexibility for backbone constraints
PENALTY_DEFINITION
TYPE GLY
SHAPE ABOVE
TARGET 4
BOUNDARY QUADRATIC
STRENGTH 30
END_PENALTY_DEFINITION
</comp>
</item>
<item>

32



981

982

983
984
985
986
987
988
989
990

991
992
993

994

995

<comp>
# Discourage any single non-glycine amino acid from exceeding 8 (softly)
PENALTY_DEFINITION
NOT_TYPE GLY
SHAPE ABOVE
TARGET 8
BOUNDARY QUADRATIC
STRENGTH 6
END_PENALTY_DEFINITION
</comp>
</item>
</penalties>
<task_operations>
<RestrictAbsentCanonicalAAS name="nopro_cys" keep_aas="ADEFGHIKLMNQRSTVWY"/>
</task_operations>
</action>

E.3 Removing offending lines

Agent Rosetta is explicitly prompted to correct mistakes without changing the meaning of the wrong
action call. This is important because a trivial way to fix errors is to remove the problematic lines,
which may change the intended effect of the action. It can happen, however, that the agent gets
stuck in trying to fix syntax errors. For example, consider again TaskOperations syntax. The agent
may oscillate between action calls using aa="PRO CYS" or residues="PR0O CYS", failing to use
the correct keep_aas="..." syntax. This happens because we only keep the last wrong action in
the context of the LLM, and discard previous error correction attempts. This choice is motivated by
keeping a context window of fixed size throughout the trajectory, and alternatives exist.

Situations like this cause error correction loops the agent struggles to escape. We noticed that, usually
after a few rounds of error correction, the agent removes the wrong lines. We include such an example
below:

Wrong action call generated by Agent Rosetta

<action tag="run">
<name>rotamer_change</name>
<penalties>

<item>

<comp>
# Strong penalty for excess glycine, but tolerate up to 2+2
PENALTY_DEFINITION
TYPE GLY
SHAPE OUTSIDE
TARGET 2
RADIUS 2
BOUNDARY QUADRATIC
STRENGTH 100
END_PENALTY_DEFINITION
</comp>

</item>
</penalties>
<task_operations>

<ProhibitSpecifiedBaseResidueTypes name="no_cys" residues="CYS" />
</task_operations>
</action>

RosettaScripts error message

The RosettaScripts environment encountered an error while executing the action:

<error>
[ ERROR ]: Caught exception:
File: src/protocols/rosetta_scripts/RosettaScriptsParser.cc:1217

33



Input rosetta scripts XML file "./rotamer_change_1.xml" failed to validate
against the rosetta scripts schema. Use the option -parser::output_schema
<output filename> to output the schema to a file to see all valid options.

Your XML has failed validation. The error message below will tell you where in
your XML file the error occurred. Here’s how to fix it:

1) If the validation fails on something obvious, like an illegal attribute due
to a spelling error (perhaps you used scorefnction instead of
scorefunction), then you need to fix your XML file.

2) If you haven’t run the XML rewriter script and this might be pre-2017 Rosetta
XML, run the rewriter script (tools/xsd_xrw/rewrite_rosetta_script.py) on
your input XML first. The attribute values not being in quotes
(scorefunction=talaris2014 instead of scorefunction="talaris2014") is a
good indicator that this is your problem.

3) If you are a developer and neither 1 nor 2 worked - email the developer’s
mailing list or try Slack.

4) If you are an academic or commercial user - try the Rosetta Forums
https://www.rosettacommons.org/forum

Error messages were:

From line 18:

Error: Element ’ProhibitSpecifiedBaseResidueTypes’, attribute ’residues’: The
attribute ’residues’ is not allowed.

13: <RESIDUE_SELECTORS>

14:

15: </RESIDUE_SELECTORS>

16:

17: <TASKOPERATIONS>

18: <ProhibitSpecifiedBaseResidueTypes name="no_cys" residues="CYS"/>
19: </TASKOPERATIONS>

20:

21: <SIMPLE_METRICS>

22: <SequenceMetric name="record_sequence" output_mode="basename" />
23: </SIMPLE_METRICS>

</error>
996

997 Here, the agent reasons that given the early stage of the design, it might be reasonable to drop the
998 wrong line completely:

Agent Rosetta’s error correction reasoning

The error message indicates that the attribute ’residues’ is not allowed for the
’ProhibitSpecifiedBaseResidueTypes’ TaskOperation in the XML. This suggests
the correct attribute should likely be ’aa’ (the usual RosettaScripts
attribute for specifying amino acids for this TaskOperation), or possibly
that the syntax for this TaskOperation is slightly different.

Given that the main design goal here is to reduce glycines and maintain
stability-not specifically to prohibit cysteines-it may be prudent to
remove the erroneous TaskOperation for now and focus on the compositional
penalty for glycine, which is the primary requirement of the design brief
at this stage.

If desired later, a more advanced specification for allowed/disallowed amino
acids can be reintroduced with valid syntax.

Thus, I will remove the task_operations section for now and focus on a strong
compositional penalty to minimize glycines.

999
Corrected action call generated by Agent Rosetta
<action tag="run">
<name>rotamer_change</name>
<penalties>

1000



1001

1002

1003
1004

1005
1006
1007
1008
1009

1010

<item>
<comp>
# Strong penalty for excess glycine, but tolerate up to 242
PENALTY_DEFINITION
TYPE GLY
SHAPE OUTSIDE
TARGET 2
RADIUS 2
BOUNDARY QUADRATIC
STRENGTH 100
END_PENALTY_DEFINITION
</comp>
</item>
</penalties>
</action>

F Simplified composition penalty blocks syntax

Here, we expand on the simplified syntax for RosettaScripts’ rotamer_change composition penalty
blocks.

First, for the sake of completeness, we include the system prompt used to generate the example
wrong penalty block included in Fig. 2. We note that this was an earlier iteration compared to the
final system prompt included in Appendix B. At this stage in the development of our framework, the
objective was to investigate whether general purpose LLMs have been trained on RosettaScripts and
can generate syntactically valid penalty definition blocks:

System prompt—wrong penalty block

You are a helpful RosettaScripts agent that supports scientists in biomolecular
design tasks.

Your goal is to translate a high-level design brief (appended after this prompt)
into a valid ‘*.comp‘ file which contains one or more ‘PENALTY_DEFINITION®
blocks.

Each block defines how Rosetta penalizes (or rewards) certain amino acid types
or residue properties, depending on their relative abundance in the peptide
sequence.

Your goal is to generate penalty blocks that capture the design goals precisely,
balancing global and local constraints.
The combined penalties should steer the Monte-Carlo search in Rosetta toward the

task objective while avoiding mutually impossible requirements.

You have access to a RosettaScripts environment to evaluate your output ‘*.comp®
file and then refine it.

**¥Syntax Rules:**
Each penalty definition block must use this valid Rosetta syntax:

PENALTY_DEFINITION
- One or more of:

TYPE <restypel> <restype2> ... # a residue should be counted if
its three-letter code matches ANY of the names provided

OR_PROPERTIES <propertyl> <property2> ... # a residue should be counted if
it has ANY of the properties listed

PROPERTIES <propertyl> <property2> ... # a residue should be counted if
it has ALL of the properties listed

NOT_TYPE <restypel> <restype2> ... # a residue should NOT be counted

if its three-letter code matches ANY of the names provided

35



1011

NOT_PROPERTIES <propertyl> <property2> ... # a residue should NOT be counted
if it has ANY of the properties listed
- Exactly ome of:

ABSOLUTE <int> # target absolute count of
residues that match the penalty definition
DELTA_START <int> # target range start, relative to
target count, can be negative
DELTA_END <int> # target range end, relative to
target count
_or_
FRACTION <float> # target fraction of the residues
that match the penalty definition (e.g., 0.05 for 5%)
FRACT_DELTA_START <float> # target range start, relative to
target fraction, can be negative
FRACT_DELTA_END <float> # target range end, relative to
target fraction
PENALTIES <floatl> <float2> <float3> ... # one or more values, interpolated
over the range
BEFORE_FUNCTION <shape> # shape before DELTA_START,
default is QUADRATIC. Can be QUADRATIC, LINEAR, or CONSTANT.
AFTER_FUNCTION <shape> # shape after DELTA_END, default

is QUADRATIC. Can be QUADRATIC, LINEAR, or CONSTANT.
END_PENALTY_DEFINITION

A residue is counted if the following boolean conditions are satisfied:

( any TYPE matches ) OR (( no NOT_TYPE matches ) AND (( no NOT_PROPERTIES
property is present) AND ((no PROPERTIES or OR_PROPERTIES are defined) OR (
all PROPERTIES are present ) OR ( any OR_PROPERTIES are present ))))

Each PENALTY_DEFINITION block must:
- Contain one or more of the OR_PROPERTIES, PROPERTIES, TYPE, NOT_TYPE,
NOT_PROPERTIES definitions.

- Contain exactly one of ABSOLUTE or FRACTION, and never both. The numeric value
defines the target composition and must be included.

If the ABSOLUTE option is used, DELTA_START and DELTA_END must be integers.

- If the FRACTION option is used, DELTA_START and DELTA_END must be floats.

- The shape parameter for BEFORE_FUNCTION and AFTER_FUNCTION must be uppercase.

**Range Computation Rules:**
This is how RosettaScripts computes the range for each penalty definition:

- Case 1: ABSOLUTE
- The range is computed as:
- MIN_RANGE = target count + DELTA_START.
- MAX_RANGE = target count + DELTA_END.
- Example: If target count is 10, DELTA_START is -2, and DELTA_END is 3, the
range is [8, 13].

- Case 2: FRACTION

Suppose the sequence has N residues. Then,

- The target count is computed as target count = target fraction * N.

- The range is computed as:
- MIN_RANGE = target count + N * floor (FRACT_DELTA_START * N)
- MAX_RANGE = target count + N * ceil (FRACT_DELTA_END * N)

- Example: If N is 100, target fraction is 0.1, FRACT_DELTA_START is -0.05,
and FRACT_DELTA_END is 0.02, the range is [5, 12].

In both cases, MIN_RANGE must be stricly smaller than MAX_RANGE, i.e. MIN_RANGE
< MAX_RANGE.

36




1012

1013

1014

1015
1016

1017

1018

1019
1020
1021

1022

1023
1024

1025

*xInstructions: **

appropriate.

- Generate penalty blocks based on the given design brief.
- Refine them based on feedback from the RosettaScripts environment.
- Ensure valid Rosetta syntax in every block.

First, read the design brief and think about what penalty definitions would be

Remember to take into consideration the starting ‘*.pdb‘¢ backbone strucutre.
Then, output the corresponding ‘*.comp‘ file content.

Your thought process must be enclosed in <think> </think> tags, and the ‘*.comp
file content must be enclosed in <comp> </comp> tags.

[

Next, we compare the original RosettaScripts syntax with our simplified version side-by-side.

Original RosettaScripts syntax

PENALTY_DEFINITION
- One or more of:
TYPE <restypel> <restype2> ...

PROPERTIES <propertyl> <property2> ...
NOT_TYPE <restypel> <restype2> ...

- Exactly ome of:
ABSOLUTE <int>
DELTA_START <int>
DELTA_END <int>
_or_
FRACTION <float>
FRACT_DELTA_START <float>
FRACT_DELTA_END <float>
PENALTIES <floatl> <float2> <float3> ...
BEFORE_FUNCTION <shape>
AFTER_FUNCTION <shape>
END_PENALTY_DEFINITION

OR_PROPERTIES <propertyl> <property2> ...

NOT_PROPERTIES <propertyl> <property2> ...

Simplified syntax

PENALTY_DEFINITION

- Exactly omne of:
TYPE <restypel> <restype2>
NOT_TYPE <restypel> <restype2>
PROPERTIES <property>
NOT_PROPERTIES <property>

SHAPE <OUTSIDE | ABOVE | BELOW>

TARGET <int or float>

RADIUS <int or float>

BOUNDARY <function>

STRENGTH <int>

END_PENALTY_DEFINITION

We can appreciate how the simplified syntax is more concise and abstract in order to better align with
the intentions of the agent. The main differences between the two are that:

* The simplified syntax accepts only one of types or properties.

* It unifies fractional and absolute targets with TARGET and RADIUS.

* It eliminates the PENALTIES line, which is the most complicated for LLMs to generate correctly.
Instead, it uses a SHAPE parameter that directly expresses the shape of the penalty block, which is

more intuitive for the agent to correctly generate.

We note that these changes do restrict the expressivity of the syntax. However, they retain the basic
block shapes that are most commonly used in design tasks. We include a few example simplified
blocks generated by Agent Rosetta and their translation to valid RosettaScripts syntax:

Simplified syntax

# Favor hydrophobics in the core
PENALTY_DEFINITION

TYPE ALA VAL LEU ILE MET PHE TRP TYR
SHAPE QUTSIDE

TARGET 0.7

RADIUS 0.15

BOUNDARY QUADRATIC

STRENGTH 30

END_PENALTY_DEFINITION

RosettaScripts syntax

PENALTY_DEFINITION

TYPE ALA VAL LEU ILE MET PHE TRP TYR
FRACTION 0.7

FRACT_DELTA_START -0.20
FRACT_DELTA_END 0.20

PENALTIES 30 O 30

BEFORE_FUNCTION QUADRATIC
AFTER_FUNCTION QUADRATIC
END_PENALTY_DEFINITION

37




1026

1027

1028
1029

1030

1031
1032
1033

1034

1035
1036

1037

RosettaScript t
Simplified syntax Oserascrps Ssynax

PENALTY_DEFINITION
# Penalize more than 2 Tryptophans

TYPE TRP
PENALTY_DEFINITION

ABSOLUTE 2
TYPE TRP

DELTA_START -1
SHAPE ABOVE

DELTA_END 1
TARGET 2

PENALTIES O 0 50
BOUNDARY QUADRATIC

BEFORE_FUNCTION CONSTANT
STRENGTH 50

AFTER_FUNCTION QUADRATIC

l END_PENALTY_DEFINITION J
l END_PENALTY_DEFINITION J
Simplified syntax RosettaScripts syntax
# Favor polar/charged residues at PENALTY_DEFINITION
the surface (at least 45\7%) TYPE SER THR ASN GLN ASP GLU LYS ARG
PENALTY_DEFINITION HIS
TYPE SER THR ASN GLN ASP GLU LYS ARG FRACTION 0.45
HIS FRACT_DELTA_START -0.05

SHAPE BELOW FRACT_DELTA_END 0.05
TARGET 0.45 PENALTIES 20 0 O
BOUNDARY QUADRATIC BEFORE_FUNCTION QUADRATIC
STRENGTH 20 AFTER_FUNCTION CONSTANT
END_PENALTY_DEFINITION END_PENALTY_DEFINITION

The intentions of the agent in the comment at the top of each block are now in agreement with the
shape of the penalty blocks, differently from the example in Fig. 2.

G Example reasoning traces

In this section, we include example reasoning traces generated by the agent while executing our task
of stabilizing poly-glycine backbone conformations. We include a representative example for each of
the available actions.

G.1 rotamer_change action

Here, we include an example interaction step where the agent chose to perform a rotamer_change
action that overall decreased the energy of the design. We start by including the environment state:

RosettaScripts environment state

The RosettaScripts environment successfully executed your action:

**Step Number:** 12
**Action Name:** rotamer_change
**Results: *x*

- Sequence:

SER,GLU,GLU,GLU, ILE, ARG, ARG, ILE, VAL ,PHE, TRP, ALA, ALA ,MET, GLU, CYS, ALA,LYS, TYR, ILE,
PHE, ASP,PRO, ARG, ILE,PRO, ASP,GLU, GLU, ILE, ILE, ARG, ARG, ILE,MET,GLU, ILE, ASN, LYS,
LYS,THR,LEU,GLU, TRP,ALA,LYS, ILE, SER, PRO, ASP,GLU,LEU, TYR,LYS, TYR, THR,LYS,GLU,
ILE,ALA,SER,GLN,TYR, TYR, ASP,GLU,GLU,GLN,LEU,LYS,LYS,MET,LEU,LYS, TYR, VAL, LYS,
ILE,ALA,LEU,ASP,GLN,LEU,LYS, SER

- Rosetta energy terms:
fa_atr: -565.030 (+4.816)

fa_rep: 64.214 (-7.652)
fa_sol: 360.466 (+49.876)

fa_intra_sol_xover4: 19.689 (+2.026)

38



1lk_ball_wtd: -10.704 (-0.049)
fa_intra_rep: 1.127 (-0.053)
fa_elec: -203.623 (-21.169)
pro_close: 0.229 (+0.102)
hbond_sr_bb: -64.322 (+1.799)
hbond_lr_bb: -1.530 (+0.282)
hbond_bb_sc: -11.683 (-0.748)
hbond_sc: -20.367 (-2.576)
dslf_fal3: 0.000 (+0.000)
rama_prepro: -14.086 (+1.555)
omega: 5.987 (+0.275)

fa_dun: 114.092 (+14.475)
p_aa_pp: -14.607 (+3.305)
yhh_planarity: 0.030 (+0.015)
ref: 5.987 (-33.975)
aspartimide_penalty: 0.000 (+0.000)

total energy: -334.131 (+12.304)

- Composition penalty:

before design: 900.000, after design: 0.000 (-900.000)
- Structure:

RMSD to initial structure: 2.094 (R)

RMSD to ESMFold predicted structure: 0.422 A, ca pLDDT: 0.932 (0-1)
Cavity volume: 23.177 (&3)

Radius of gyration: 12.183 (&)

1038

1039 The reasoning of the agent is as follows

Agent Rosetta’s reasoning trace to choose the next action

Review of the design brief:

- The goal is to design side chains for a poly-glycine backbone so that the
final sequence has as few glycines as possible, is stable and low in
energy, and preserves the initial backbone shape.

Results of the last action:

- The current sequence contains zero glycines, fulfilling the "as few glycines
as possible" criterion.

- Energy: The total energy is -334.131, which is quite favorable, and the
composition penalty is now zero.

- Structure: The RMSD to the initial backbone is 2.094 & (slightly increased
from previous steps but still reasonable for design). The RMSD to the
ESMFold prediction is extremely low at 0.422 R, and the CA pLDDT is high
(0.932), suggesting high predicted stability/confidence. The radius of
gyration is stable (~12.2 ), and the cavity volume is small (23 &3,
roughly one residue-sized cavity).

What went well:

- The sequence is now fully designed with no glycines.

- Energetics are favorable and the structure is predicted to be stable by
ESMFold.

- The protein is compact and lacks large cavities.

What could be improved:

- RMSD to the design backbone has increased a bit (2.094 k), but this is still
within a reasonable range.

- The energy is not as low as the best step (-348.882), suggesting room for
further optimization.

- Cavity volume is low, but could possibly be improved more by repacking.

1040

39



1041

1042
1043

1044

1045
1046
1047
1048
1049

Next steps:

- Since the sequence already has no glycines, and the structure is stable with
high confidence, the main avenue for improvement is to further optimize the
side-chain packing and overall energy.

- Small, local repacking/design may help lower the energy and perhaps slightly
reduce the RMSD to the original backbone.

- Therefore, I will run another round of ‘rotamer_change‘ (FastRelax with
design) without compositional penalties, to allow for local optimization
and side-chain refinement. This will focus solely on energetic improvement,
as the composition is already satisfactory.

And, after receiving the action’s documentation, the agent reasons again before generating the full
action call:

Agent Rosetta’s reasoning trace to generate the full action call

Review and Plan:

- The design brief requires minimal glycine, low energy, and preservation of the
backbone structure.

- The previous step produced a well-packed, low-energy, diverse sequence with
only a few proline and no glycine residues. The RMSD to the initial
backbone is 2.094 R (excellent), and the RMSD to ESMFold is 0.422 ! with a
very high CA pLDDT (0.932), indicating a stable, predictable fold.

- The energy is very low (-334), with no composition penalty, and the sequence
contains very few glycine residues (possibly none) and only a reasonable
number of prolines (3).

- Cavity volume is small (23 %), so packing is good.

- However, some energy terms have room for improvement: fa_sol, fa_rep, and
fa_dun are somewhat elevated, suggesting that a round of design focusing on
optimizing packing and rotamers could further lower energy.

- Additional fine-tuning could be achieved by discouraging overuse of
large/bulky hydrophobics, limiting surface-exposed hydrophobics, and
ensuring at least a minimal level of glycine (<2) to alleviate possible
backbone strain.

- No residue selectors or task operations have been used yet. Adding a selector
for surface residues and penalizing hydrophobics on the surface could help
further.

Implementation Plan:

- Keep global compositional penalties similar to last time for overall amino
acid balance.

- Add a penalty for glycine ABOVE 2 (to ensure minimal glycine, in case a few
are present).

- Use a Layer selector to define "surface" residues and apply a penalty for
hydrophobic residues (LEU, ILE, VAL, MET, PHE, TRP) on the surface ABOVE a
small target.

- For task operations, allow all positions to be designable except cysteines and
prolines (to avoid introducing new CYS/PRO unless already present).

- This should further improve packing, surface polarity, and lower
solvation/repulsion energies.

Arguments:

- penalties: global balance, glycine penalty, surface hydrophobic penalty.
- residue_selectors: Layer selector for surface.

- task_operations: RestrictToRepacking for CYS/PRO residues.

We can see that, initially, the agent is planning on running a round of side chain optimization with no
compositional penalty blocks, letting Rosetta optimize for energy with no constraints. Instead, after
receiving the action documentation, the agent generates a well-detailed plan, changing its intentions.
This stresses the importance of prompting the agent to reason again to generate the full action call.
We omit the full action call for the sake of conciseness.

40



1050

1051
1052

1053

1054

1055

G.2 backbone_change action

We include an example interaction step where the agent chose to perform a backbone_change
action. We start by including the environment state:

RosettaScripts environment state

The RosettaScripts environment successfully executed your action:

**Step Number:** 3
**Action Name:** rotamer_change
**Results: **

- Sequence:

GLU,GLU,GLU,GLU, ARG, ARG, ARG, ILE,MET,LEU, TRP,ALA,PHE,GLU,LEU, VAL ,MET,LYS, ILE,
VAL,LEU, ASP,PRO, ARG, LEU, SER,GLU,GLU,GLU,LYS,LEU, ARG, LEU, ILE, ARG,GLU, ILE,
VAL,ILE,TRP,ALA,ALA,ARG,VAL,LEU,ASN,VAL,PRO, TRP,GLU, TRP,VAL,ASN,LYS, VAL,
ILE,PHE,TRP,LEU,ALA,THR,LEU, TYR,PHE, ASP,GLU, TRP, TRP,LEU,LYS,ILE,ILE,LEU,
THR,LEU,LEU,ILE,LYS,THR,LEU,LYS,LEU,MET,LEU, SER

- Rosetta energy terms:

fa_atr: -571.650 (-14.577)

fa_rep: 68.660 (+4.611)

fa_sol: 313.981 (+4.157)
fa_intra_sol_xover4: 16.644 (+0.688)
1k_ball_wtd: -12.839 (-3.026)
fa_intra_rep: 1.235 (+0.008)
fa_elec: -173.336 (+3.040)
pro_close: 0.180 (-0.043)
hbond_sr_bb: -64.824 (-0.651)
hbond_lr_bb: -1.597 (+0.164)
hbond_bb_sc: -10.826 (-0.591)
hbond_sc: -12.111 (+3.466)
dslf_fal3: 0.000 (+0.000)
rama_prepro: -14.994 (+0.677)
omega: 4.814 (-1.668)

fa_dun: 88.577 (-4.761)

p_aa_pp: -18.100 (+0.546)
yhh_planarity: 0.001 (+0.000)

ref: 53.848 (+5.434)
aspartimide_penalty: 0.000 (+0.000)

total energy: -332.336 (-2.525)

- Composition penalty:

before design: 0.000, after design: 0.000 (+0.000)
- Structure:

RMSD to initial structure: 0.784 (R)

RMSD to ESMFold predicted structure: 10.840 (i), CA pLDDT: 0.720 (0-1)
Cavity volume: 20.852 (&3)

Radius of gyration: 12.391 (R)

The reasoning of the agent is as follows:

Agent Rosetta’s reasoning trace to choose the next action

Reviewing the design brief, our goals are:

1. Minimize glycine content (ideally eliminate all glycines).

2. Achieve a stable, low-energy sequence.

3. Maintain the backbone conformation (low RMSD to the initial structure).

41



From the last action:

- COMPOSITION: All glycines have been eliminated, which is good. The sequence is
now diverse, with a mix of hydrophobic and polar residues.

- ENERGY: The total energy is -332.336, which is a favorable score. Most energy
terms (e.g., fa_atr, hbond terms) are improved compared to the starting
poly-Gly. However, the fa_dun and fa_sol terms are somewhat high, and the
cavity volume is >20 13, suggesting the presence of voids inside the
structure.

- STRUCTURE: RMSD to the initial structure is 0.784 i (acceptable, indicating
backbone preservation). However, RMSD to the ESMFold prediction has jumped
to 10.84 &, and CA pLDDT dropped to 0.72, indicating a loss of stability
and poor confidence in the predicted fold.

Summary:

- What went well: Glycines successfully removed; overall energy is low; backbone
shape is still similar to initial structure.

- What went wrong: ESMFold RMSD increased (structure deviates from a stable
fold); CA pLDDT confidence dropped; cavity volume increased.

- Next steps: The main priority is to recover structural stability and
compactness. The high cavity volume and loss of ESMFold confidence suggest
that sidechain packing is suboptimal. We should perform a round of backbone
relaxation (with small backbone moves) to optimize both sidechain and
backbone conformations, helping close cavities and stabilize the structure.

Action Choice:

- I will use the ‘backbone_change‘ action with the ‘small® mover to allow small
backbone adjustments throughout the structure to facilitate better
sidechain packing while preserving the overall fold.

1056

1057 And, after seeing the action’s documentation, the agent reasons again before generating the full action
1058 call:

Agent Rosetta’s reasoning trace to generate the full action call

Review of the design brief and results:

- The goal is to design a sequence with minimal glycine content, low energy, and
high structural fidelity to the initial backbone.

- The previous design step replaced all glycines with a diverse set of amino
acids, leading to a compositionally rich sequence (no glycines) and a
significant drop in total energy (-332.34 vs +108.72).

- However, after the first design step, RMSD to ESMFold prediction increased
sharply (0.531 -> 10.84 k), and CA pLDDT dropped (0.918 -> 0.720),
indicating a probable loss of structure or stability.

- This suggests the sidechain introduction perturbed the backbone, and the
sequence is currently not optimal for its intended fold. Cavity volume
increased (0.0 -> 20.85 1%), possibly indicating poor packing or undesired
voids.

What went well:
- Glycine minimization was achieved.
- Energy improved dramatically.

- The structure is still fairly close to the starting backbone (RMSD 0.784 £3).

What went wrong:

- The structure deviated strongly from the ESMFold-predicted model, and
predicted confidence dropped.

- Cavity formation may indicate suboptimal packing.

Next steps:
- The backbone likely needs to adapt to the new side chains to restore stability
and fold (as measured by ESMFold RMSD and CA pLDDT).

1059

42



1060

1061
1062

1063

1064
1065
1066
1067

1068

1069

- A gentle backbone relaxation is warranted to allow the structure to
accommodate new side chains, possibly improving the fold and stability
without losing the initial global fold (RMSD to initial structure is still
reasonable) .

- I will use the ‘small‘ backbone mover, which makes small torsion angle moves.

This is less aggressive than backrub and appropriate for global refinement

after large sequence changes.

will apply it globally, as all regions have undergone design.

will set a moderate temperature (temperature="1.0"), a reasonable number of

moves (nmoves="5"), and a small angle (angle_max="8.0"), to allow

adaptation without radical changes.

Action Plan:

- Use the ‘small‘ mover.

- Set temperature="1.0", nmoves="5", angle_max="8.0".
- Apply to all residues (no selector required).

As with the example reasoning trace for a rotamer_change action call above, we can see that the
plan of the agent after seeing the action’s documentation is well-structured and implementable.

G.3 go_back_to action

Finally, we include an example scenario where the agent chose to revert to a previous node in the
trajectory. This is important, as task objectives such as limiting the deviation of the current design
from the initial structure may be difficult to control via compositional constraints. In these scenarios,
a reasonable choice is to discard the results of the previous action rather than trying to correct them.

As above, we start by including the environment state:

RosettaScripts environment state

The RosettaScripts environment successfully executed your action:

**Step Number:*x*x 3
**Action Name:** rotamer_change
**Results: *x*

- Sequence:

GLU,GLU,GLU,GLU, ARG,GLN, THR, ILE, TRP,THR, ILE, VAL, ,PHE,LEU, ILE, THR,LEU, SER, ILE, VAL,
LEU,ASN,PRO,ASN,LEU, SER, THR, THR,GLN, ILE,ILE,LEU,ILE,LEU,ALA,ALA,LEU, ALA,
ALA,TRP,THR,MET,LYS,VAL,LEU,GLN, VAL, ASP,LEU,LEU,GLN,ILE,ILE,ILE,TYR,LEU,
LEU,LEU,LEU,PHE,GLN,GLN, TYR,LEU, ASN,GLU,GLU,GLN,LEU,LYS,TYR,VAL,LEU, TRP,
VAL,LEU,LEU,VAL,MET,TYR,ALA,TRP,MET,GLN, SER

- Rosetta energy terms:

fa_atr: -559.659 (+7.489)
fa_rep: 67.266 (+0.513)
fa_sol: 292.881 (-22.337)
fa_intra_sol_xover4: 15.324 (-1.029)
1k_ball_wtd: -14.919 (-0.022)
fa_intra_rep: 1.303 (+0.078)
fa_elec: -159.300 (+10.382)
pro_close: 0.130 (-0.099)
hbond_sr_bb: -63.255 (+0.998)
hbond_lr_bb: -1.682 (+0.126)
hbond_bb_sc: -17.451 (-0.883)
hbond_sc: -8.091 (+3.396)
dslf_fa13: 0.000 (+0.000)
rama_prepro: -11.106 (+3.629)
omega: 6.524 (+0.961)

fa_dun: 82.443 (-22.875)
p_aa_pp: -16.877 (-1.241)

43



yhh_planarity: 0.002 (-0.014)

ref: 67.262 (+35.126)

aspartimide_penalty: 0.000 (+0.000)

total energy: -319.203 (+14.199)

- Composition penalty:

before design: 150.000, after design: 0.000 (-150.000)

- Structure:

RMSD to initial structure: 0.638 (R)

RMSD to ESMFold predicted structure: 9.040 (&), CA pLDDT: 0.661 (0-1)
Cavity volume: 16.841 (&%)

Radius of gyration: 12.585 ()

1070

1071 The reasoning of the agent is as follows:

Agent Rosetta’s reasoning trace to choose the next action

Review of design brief and last action:

- The goal is to design a side chain sequence with minimal glycines, high
stability (low energy), and structural fidelity to the initial backbone.

- The last rotamer_change (step 3) eliminated almost all glycines and produced a
diverse, realistic sequence.

- Composition: The glycine content is zero, which is ideal. The penalty for
composition dropped to zero, confirming the sequence meets the
compositional constraints.

- Energy: The total energy rose slightly relative to previous designs and is
less favorable than in earlier steps (-319 vs. -333), with increases in
repulsion, solvation, and reference energy, but the energy is still quite
low and reasonable.

- Structure: RMSD to initial backbone remains low (0.638 R). However, RMSD to
the ESMFold prediction increased to 9.04 & (from 2.3 & in step 2 and “4 &
in step 1), and CA pLDDT dropped slightly. This suggests the structure is
less ESMFold-predictable/stable than before. Cavity volume is moderate

(16.8 k%), but not excessive.

Summary :

- What went well: Glycine elimination and compositional goal met. Sequence is
realistic with a good mix of hydrophobics and polar/charged residues.
Backbone RMSD to initial structure is still low.

- What went wrong: RMSD to ESMFold prediction increased significantly; the
design is less in agreement with ESMFold, suggesting a loss of
’designability’ or stability. Total energy worsened compared to the best
previous step.

- Next steps: We need to recover the stability and ESMFold compatibility from
step 2, while maintaining low glycine content. Step 2 had a good energy,
low RMSDs, and a cavity volume of 20.5 83, but may have had more glycines
than desired.

Plan:

- Go back to step 2 (where RMSD to ESMFold and energy were best), and design
again with a milder glycine penalty (to allow a small number of glycines if
needed for tight turns), and slightly decrease hydrophobic drive to avoid
destabilizing the fold. Also, introduce a penalty to avoid excessive cavity
volume.

Action:
- Use go_back_to_step to revert to step 2.

1072

1073 Indeed, the agent reflects on the current design, and recognizes a significant increase in distance
1074 to ESMFold predicted structure and drop in pLDDT. Since these changes suggest an overall less

44



1075 stable conformation, the agent chooses to revert to the previous step. Since this action does not
1076  require specialized RosettaScripts documentation, we omit the reasoning step after seeing the minimal
1077 formatting instructions given to the agent to fit the general multi-turn framework.

s H Figures

1079 In this section, we include experimental results omitted from the main text for the sake of conciseness.

0.925
S
S 08 g 0900 ® —100
.87 >
© designlengtn | © ©87° 8
506 — 49 residues | Q 0.850 S _1so
g —— S0residues | S o
. a 0.825 ®
= 04 —— 51 residues > 2
= —— 60 residues | © 0.800 2 500
- & S —————— N
02 60 residues 0775
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Total number of design steps Total number of design steps Total number of design steps

I
=)
o

e
S

Best TM score
) o
o ©
Best Co pLDDT
o o o
0 0 ©
s & 8
Best Rosetta energy
Loy
> u
s o

°
N
a

12 4 8 16 12 4 8 16 12 4 8 16
Number of trajectories Number of trajectories Number of trajectories

(a) Backbone conformations with lengths between 40 and 60 residues.

F 0:90 % °

Best Rosetta energy
o
NN e e
S 2 o o u
& 8 & 3 &

Best TM score
o o o
~ © ©

Best C, pLDDT

o o o
3 ® ®
& 3 &

0.6
12 4 8 16 12 4 8 16 12 4 8 16
Number of trajectories Number of trajectories Number of trajectories
0.90 0
095 | 7 =}
— o 0.88 —~ =50
S 090 ] ®
0.86 >
® ® 2 -100
9 085 E 0.84 d I th Q
esign leng ~150
§ 0.80 3 082 — 62 residues o
= ) —earesives [ S 00
Z 075 S 0.80 — 66 residues 9~
—— 68 residues o
0.70 0.78 —— 70 residues @€ -250 | <
0 5 10 15 20 0 5 10 15 20 [ 5 10 15 20
Total number of design steps Total number of design steps Total number of design steps

(b) Backbone conformations with lengths between 60 and 80 residues.

0
—_—
0s | pemm——————| o
=
S 09 S ® -100
® ® 0.8 /_\— 5
< 5 2
S 0.8 8 design length S —200
2 207 — 85 residues o
s < — 85 residues =1
F o7 S — 86 residues 9 _300
. 0.6 —— 96 residues g
- —— 97 residues
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Total number of design steps Total number of design steps Total number of design steps
0
0.90
3
@ 09 &5 085 3 -100
5 c
I 39 0.80 :
2
= £ _
Zos & 075 g —200
o <]
3 % 070 &
207 @ 3 —300
0.65 3
0.60 -400
12 4 8 16 12 4 8 16 12 4 8 16
Number of trajectories Number of trajectories Number of trajectories

(c) Backbone conformations with lengths between 80 and 100 residues.

Figure H.1: Quality of designs generated by Agent Rosetta as a function of number of trajectories in
best-of-n sampling (top row) and number of steps in each design trajectory (bottom row).

45



(d) Backbone conformations with lengths between 100 and 120 residues.

50 residues 60 residues 49 residues 60 residues
1.0 1.0 1.0 1.0
R -~
. 08 | . doetpoto, ., . 0.8 . b ! . 0.8 Faty
5 0.6 5 0.6 5 0.6 A 506 : *
S S S S
@ 3 P 2 a
= 04 s 04 = 04 = 04 4
F F F F
02 0.2 ke 02 0.2
»: - ok
00 Lo 00 Lo 0.0 00 Lx
0 0 0 0
& _so g 50 3 -s50 & 50
g 2 2 2
] b | § -100 & & -100
£ -100 Wrisga | 2 g0 g
9 A I -150 9 2 -150
2 agx | @ & -150 2
-150 2Kk —-200 -200
; ‘vﬁ
0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0
Ca pLDDT Ca pLDDT Ca pLDDT Ca pLDDT
(a) Backbone conformations with lengths between 40 and 60 residues.
66 residues 68 residues 64 residues 70 residues
1.0 1.0 oy 1.0 o 1.0
Ak AR
P % T
0.8 0.8 i 1* 0.8 PAL 0.8 o
o o Yy @ il o s
5 0.6 5 0.6 et 5 0.6 4 Rl S5 0.6 »
S S S ¢ S
@ 7 . % oA 7
= 04 = 04 - = 04 . * = 04
S F F YK S
0.2 0.2 0.2 v 0.2
. o, o Aks ° Sheex v
0.0 0.0 0.0 0.0
0 0 0 0
*
> -50 > —50 > -50 >
8 8 8 8
2 -100 g -100 g 100 g -100
o 7 7 * o
£ -150 g0 £ 150 £
£ e | B it g g —200
w o 0 2 ) ] 0
& -200 o Sl IR '&:. 2 -200 g
o -250 L od
-250 XX SR _250
-300
04 06 08 10 04 06 08 10 04 06 08 10 04 06 08 10
Ca pLDDT Ca pLDDT Ca pLDDT Ca pLDDT
(b) Backbone conformations with lengths between 60 and 80 residues.
96 residues 97 residues 86 residues 85 residues
1.0 1.0 1.0 1.0
0.8 ey, o 0.8 0.8 ) 0.8
o W e K o o W e g
c 0.6 o2 K o 0.6 o 0.6 o 0.6
S S S S
n o ) * a
= 04 = 04 = 04 = 04
= = = =
0.2 0.2 0.2 0.2
* .
0.0 0.0 0.0 0.0
0 0 0 0
*
8 -100 g & -100 & -100 8 -100
7 ﬂ) v Qo
H & & 5
© —200 il ] -200 & -200 £ -200
@ A ] © ©
8 _s00 : L I 2 2
< VR % -4 @ -300 -4 _300
AR o R
-400
04 06 08 10 04 06 08 10 04 06 08 10 04 06 08 10
Ca pLDDT Ca pLDDT Ca pLDDT Ca pLDDT
(c) Backbone conformations with lengths between 80 and 100 residues.
120 residues 118 residues 104 residues 102 residues
1.0 1.0 T 1.0 T 1.0
e * R i
% *- s
0.8 0.8 iy 0.8 % % 0.8 %
3 @ . © * 3 *
506 506 506 506 .
S S " S S
H % % % H
= 04 = 04 = 04 P s = 04
a = Pen o k = f.5° =
0.2 2 0.2 Phode 0.2 v, N 0.2
0.0 0.0 0.0 0.0
0 0 0 0
= -100
5100 5 3 -100 & -100
2 200 2 —200 g g
H & @ -200 9 _200
© © © ©
g o §7° g 300 P g
] 2 a - SEE | @ -300
2 -400 2 —400 2 * = | o
S
-500 -500 -400 AR atn 400
0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0 0.4 0. 0.8 1.0 0.4 0.6 0.8 1.0
Ca pLDDT C, pLDDT Ca pLDDT Ca pLDDT

Figure H.2: Comparison of the distribution of designs generated with Agent Rosetta and Protein-
MPNN for the remaining designs not included in the main text of the manuscript.

46



	Introduction
	Agent Rosetta
	Results
	Prompting can fail to generate specialized code
	Scaling inference-time compute improves design quality
	Comparing Agent Rosetta designs with those produced by ProteinMPNN

	Conclusions
	Related works
	Prompts
	System prompt
	Multi-turn interaction prompts
	Design brief

	Environment state
	Actions
	Rotamer change
	Backbone change

	Error correction
	Wrong compositional penalty blocks
	TaskOperations syntax
	Removing offending lines

	Simplified composition penalty blocks syntax
	Example reasoning traces
	rotamer_change action
	backbone_change action
	go_back_to action

	Figures

