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1 Introduction and Motivation

Length of Stay (LoS) is a central metric in healthcare, reflecting both the clinical
progress of patients and the efficiency of resource allocation. While LoS prediction
has been widely studied in acute hospital care, its application in rehabilitation
settings remains limited. Exploring LoS is particularly important in rehabilitation,
where stays are typically much longer than in acute hospital care, making efficient
management crucial to optimize resources and improve patient flow.

This study was conducted at the Centre National de Rééducation Fonction-
nelle et Réadaptation (CNRFR – Rehazenter) in Luxembourg, a specialized
rehabilitation center caring for neurological and traumatological patients. The
motivation was twofold: to explore the feasibility of applying Machine Learn-
ing (ML) methods for LoS prediction in rehabilitation and to evaluate their
potential impact on clinical decision-making and operational management at the
Rehazenter.

2 Methodology

The study relied on anonymized data from 1,674 rehabilitation stays, including 667
neurological and 1,007 traumatological cases. The dataset comprised demographic,
clinical, and functional features such as age, sex, comorbidities, diagnosis codes
from International Classification of Diseases (ICD), Functional Independence
Measure (FIM) scores, and other rehabilitation-specific variables.

To address the strong right-skewness of LoS, log transformations and sample
weighting strategies were applied. A range of regression algorithms were com-
pared, including Multiple Linear Regression (MLR) and tree-based models such
as Random Forest (RF), eXtreme Gradient Boosting (XGBoost), Categorical
Boosting (CatBoost) and Cubist. Models were selected with a 5-fold grid search
methodology using R2. To ensure interpretability, SHapley Additive exPlanations
(SHAP) were used to identify the most influential features in the predictions.

3 Results

The results show that tree-based ensemble methods clearly outperformed linear
models in both cohorts. The best results were achieved with CatBoost and RF,



with R2 values of 0.51 in the traumatological group and 0.25 in the neurological
group, while MLR consistently underperformed. The most influential predictors
of LoS were FIM scores at admission and the number of chronic diseases. In
neurological patients, some comorbidities, socio-economic and psychosocial factors
were particularly important, while in traumatological patients, only clinical
features were significant. SHAP analysis reinforced these findings by providing
transparent explanations of the predictions, highlighting the main drivers of short
or long stays.

4 Implications

These findings demonstrate the feasibility of applying ML for LoS prediction
in rehabilitation and highlight the potential of such models for integration
into clinical workflows. For clinicians, predictive models could support discharge
planning and enhance communication with patients and their families by providing
realistic expectations regarding the expected duration of stays. For managers,
they could offer valuable support for optimizing bed management and allocating
resources more effectively, particularly, for the waiting list of the CNRFR –
Rehazenter and optimize the bed occupancy rate, which was 93% in 2024. The
findings allows also managers to support therapists in organizing their workflows
by helping them anticipate patient trajectories and adjust rehabilitation programs
accordingly. Beyond the institutional level, such optimizations can also contribute
to reducing healthcare expenditures borne by the Caisse Nationale de Santé
(CNS), thereby supporting sustainability at the national level.

5 Conclusion and Future Work

This thesis shows that ML-based LoS prediction in rehabilitation is both feasible
and valuable, although predictive power remains modest given the complexity of
rehabilitation care. The work also underscores the importance of high-quality
and structured data for improving model accuracy and ensuring generalizability.

Future work should aim to expand the dataset through multi-center collabo-
rations and larger cohorts, improve the granularity of information by integrating
temporal FIM trajectories and psychosocial variables, and investigate the poten-
tial of more advanced models such as Neural Network (NN) or hybrid approaches.
Finally, developing decision support tools that embed these predictive models into
clinical practice could significantly enhance both patient care and the efficiency
of healthcare management.
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