
LAGRANGIAN FLOW NETWORKS FOR
CONSERVATION LAWS

Fabricio Arend Torres, Marcello M. Negri, Marco Inversi, Jonathan Aellen & Volker Roth
Department of Mathematics and Computer Science
University of Basel
{fabricio.arendtorres, marcellomassimo.negri,
marco.inversi, jonathan.aellen, volker.roth}@unibas.ch

ABSTRACT

We introduce Lagrangian Flow Networks (LFlows) for modeling fluid densities
and velocities continuously in space and time. By construction, the proposed
LFlows satisfy the continuity equation, a PDE describing mass conservation in
its differential form. Our model is based on the insight that solutions to the con-
tinuity equation can be expressed as time-dependent density transformations via
differentiable and invertible maps. This follows from classical theory of the ex-
istence and uniqueness of Lagrangian flows for smooth vector fields. Hence, we
model fluid densities by transforming a base density with parameterized diffeo-
morphisms conditioned on time. The key benefit compared to methods relying
on numerical ODE solvers or PINNs is that the analytic expression of the veloc-
ity is always consistent with changes in density. Furthermore, we require neither
expensive numerical solvers, nor additional penalties to enforce the PDE. LFlows
show higher predictive accuracy in density modeling tasks compared to competing
models in 2D and 3D, while being computationally efficient. As a real-world ap-
plication, we model bird migration based on sparse weather radar measurements.

1 INTRODUCTION

The development of physics-informed Machine Learning (PI-ML) (Karniadakis et al., 2021) opens
new opportunities to combine the power of modern ML methods with physical constraints that serve
as meaningful regularizers. These constraints might, for example, be available in the form of partial
differential equations (PDEs). Within PI-ML we consider hydrodynamic flow problems governed
by the physical law of mass conservation. This law is described in its local and differential form by
a PDE commonly known as the continuity equation (CE){

∂tρ+∇ · (vρ) = 0 (t,x) ∈ (t0, T)× Ω,

ρ(t0,x) = ρt0(x) x ∈ Ω.
(1)

For any time t ∈ [t0, T) the function ρ(t, ·) can be thought of as the density of parcels advected by
the velocity field v, with initial density ρt0 . Here, [t0, T] × Ω is the space-time domain, which is a
subset of R×Rd. The partial derivative w.r.t. time t is denoted by ∂t and ∇·b = ∇x ·b =

∑d
i=1

∂bi

∂xi

is the spatial divergence of a d dimensional vector field b : [t0, T]× Ω 7→ Rd.

Unlike classical initial value problems, we consider challenging settings where exact boundary and
initial conditions are unknown. That is, the continuous density and velocity fields have to be inferred
from sparse and noisy data. The important physical constraint is that the solution must comply with
the CE in Eq. 1. To this end we propose a neural network based model that fulfills the CE by
construction and provides physically consistent velocity and density fields.

We specifically consider two distinct application settings. In both settings we are restricted to sparse
and noisy measurements. In setting (i) we measure the fluid density ρ and velocity v, without
knowing any additional equations aside from the CE. This occurs for example within the area of
radar ornithology (Chilson et al., 2017), where density and velocity of birds can be inferred from
radar data. Such radar-based measurements are to date the only practical high-throughput data

1

source for birds. The goal is a spatiotemporal estimate of bird migration densities (Nussbaumer
et al., 2019). Since more migration-specific dynamics are unknown, mass conservation is usually
considered as a physical constraint (Nussbaumer et al., 2021; Lippert et al., 2022a;b). In setting
(ii) we exclusively have sparse density observations, but we know additional equations constraining
the velocity. This might, for example, occur in dynamical optimal transport problems. Here, two
densities are to be interpolated while adhering to the CE. Therefore, minimizing the total transport
cost constrains the velocity field. More generally, setting (ii) includes a wide range of compressible
fluids dynamic problems. In both settings we are mainly interested in accurately modeling the
density, with the velocity measurements or additional equations serving as an informative prior. We
provide code at https://github.com/bmda-unibas/LagrangianFlowNetworks.

Main contributions. The main contributions of this paper are as follows:

• We outline a fundamental link between densities modeled by conditional Normalizing
Flows and spatiotemporal density fields that satisfy the CE.

• We leverage this link to introduce models for ill-posed hydrodynamic flow problems that
always satisfy the CE by construction, coined Lagrangian Flow Networks (LFlows). We
do so without requiring an explicit representation of the initial density.

• We provide a way to calculate the velocity without inverting the conditional Normalizing
Flow, enabling the use of flexible bijective layers with otherwise costly inverses.

• We assess LFlows in multiple application settings and show better predictive performance
than existing methods while staying computationally feasible and physically consistent.

2 RELATED WORK

Neural Networks for Conservation Laws. Physics-informed neural networks (PINNs) (Raissi
et al., 2019) enforce PDEs in neural networks by introducing an additional PDE-loss that penalizes
pointwise deviations from the PDE. The PDE-loss is enforced on collocation points that are sampled
in the signal domain. The accuracy of PINNs is thus limited by the amount (and distribution) of
collocation points, as well as the dimension of the signal domain. For conservation laws, recent
improvements in PINNs use more sophisticated sampling approaches (Arend Torres et al., 2022), or
introduce domain decompositions (Jagtap et al., 2020). Although this alleviates scaling problems,
the fundamental limitation due to the number of collocation points (or subdomains) still remains.

In contrast, Richter-Powell et al. (2022) propose a parameterization of neural networks that enforces
mass conservation by design, which we refer to as divergence-free Neural Networks (DFNNs).
Solutions to the CE in Eq. 1 are represented as divergence-free (d + 1) dimensional vector field
b = (ρ, ρv) with an augmented (d+ 1) dimensional input space s = (t,x):

∂ρ

∂t
+∇x · (ρv) =

d+1∑
i=1

∂bi
∂si

= ∇s ·
(

ρ
ρv

)
= ∇s · b = 0. (2)

The generalization of divergence-free vector fields to higher dimensions is achieved through the
concept of differential forms. The resulting parameterization, however, heavily relies on expensive
higher-order automatic differentiation, posing limitations in terms of scalability.

Concurrent to our work, Li et al. (2023) (TIPF) proposes the use of Lagrangian flow maps to model
continuous probability flows that fulfill the CE. Unlike LFlows, TIPF considers well-posed PDE
settings with known initial conditions. Specifically, they focus on Fokker-Planck equations and
Wasserstein gradient flows by additionally introducing an unbiased self-consistency loss. In contrast,
we consider ill-posed data-assimilation for physical problems with sparse and noisy data where
initial conditions are unknown. Additionally, LFlows stand out as they don’t require the inversion
of bijective layers for computing the velocity, allowing for more expressive bijections.

Deep operator learning (Lu et al., 2019; Li et al., 2020) was proposed as a general approach to learn
dynamics from dense observations. In these settings, the PDE is not provided, but has to be learned
from large amounts of dense data often provided through simulations. As such, it is not applicable to
our setting with spatially sparse data obtained at irregular time steps. Further notable mentions are
Lagrangian and Hamiltonian neural networks (Cranmer et al., 2020; Greydanus et al., 2019), which
can learn conservation laws from observed trajectories of individual particles.

2

https://github.com/bmda-unibas/LagrangianFlowNetworks

Data assimilation with the Adjoint. The adjoint method (Cacuci, 1981a;b; Pontryagin, 1987)
allows to differentiate through numerical solvers by integrating adjoint equations backward in time.
By minimizing an objective function, it is then possible to infer the initial conditions and parameters
of a dynamical system from data. Within adjoint methods, the well-established semi-Lagrangian
data assimilation (SLDA) approach is the closest one conceptually to our model and setting (Robert,
1982; Staniforth & Côté, 1991; Diamantakis & Magnusson, 2016). SLDA is widely used for for
integrating transport equations into atmospheric models (Diamantakis, 2013; Hersbach et al., 2020).
It is based on the Lagrangian form of the CE, which can be written as an ODE:[

x(0, z)
ln ρ(0, z)

]
=

[
z
ln ρ0(z)

]
,

d

dt

[
x(t, z)

ln ρ(t,x(t, z))

]
=

[
v(t,x(t, z))

−∇ · v(t,x(t, z))

]
, (3)

where z ∈ Rd, v : [t0, T) × Rd 7→ Rd, t ∈ (t0, T). Given the initial position z and (log-) density
ln ρ0(z) of the parcel, the ODE describes their temporal evolution according to the CE. The density
at the departure points (i.e. the initial time) is represented by an interpolated mesh. The data-loss for
the density is computed by mapping observations backwards in time with Eq. 3 and then comparing
it to the interpolated initial density.

An efficient autograd implementation of the adjoint method was presented by Chen et al. (2018). The
implementation enables black-box differentiation for numerically solved ODEs, and further allows
to specify the dynamics of ODEs with a neural network. The introduced Continuous Normalizing
Flows can be regarded as a special case of the SLDA that propagates probability densities and models
the velocity with a neural network, while fixing the density at the departure points. A limiting factor
of neural adjoint based methods is their computational cost, since input derivatives of the velocity
v are repeatedly evaluated for every step of the solver. Furthermore, dynamics given by neural
networks can become stiff during training. To avoid these issues Biloš et al. (2021) propose time-
dependent bijections instead of neural ODEs for modeling time series data.

(Conditional) Normalizing Flows Normalizing Flows (NFs) are a general approach to warping
a simple probability distribution into a more complex target distribution via invertible and differ-
entiable transformations, i.e. diffeomorphisms. Let R ∈ Rd be a random variable with a known
density function R ∼ pR(r) and let Y = T (R), where T is a diffeomorphism with trainable pa-
rameters. With a change of variables the probability density of Y can be expressed in terms of the
base density pR, the map T , and its Jacobian:

pY (y) = pR(T −1
(y))

∣∣det JT −1
(y)
∣∣. (4)

NFs usually rely on transformations for which the Jacobian determinant can be efficiently and easily
calculated. A parameterization for conditional distributions pY (y|c) can be obtained by additionally
conditioning the parameters of T on another variable c through a hypernetwork (Ha et al., 2017).
This is commonly called a conditional Normalizing Flow (Atanov et al., 2019; Kobyzev et al., 2020).
For a review of NFs, we refer to Kobyzev et al. (2020) and Papamakarios et al. (2021).

3 LAGRANGIAN FLOW NETWORKS

We first present some key results of the classical theory of Lagrangian flows for smooth vector fields.
These provide us a framework for evolving densities and velocities that always fulfill the CE. We
then propose parameterizations that result in simple expressions for the velocity and density. The
resulting LFlow models densities and velocities by building upon conditional Normalizing Flows.

3.1 FLOW MAPS AND THE CONTINUITY EQUATION

The Lagrangian view describes fluids from the perspective of moving fluid parcels, i.e. infinitesimal
volumes with constant mass. From this point of view the CE states that density changes of the fluid
are described by volume changes of parcels. That is, spatial contraction increases the density of a
parcel, and expansion decreases it. In order to compute the density of any parcel, we then only need
to know its initial density, and how much its volume was distorted.

More formally, let xt0 denote the initial position of a parcel at time t0. In addition, let Xt : Ω 7→ Ω
for a fixed t ∈ [t0, T] be a diffeomorphism that maps xt0 to the parcel position at time t:

Xt(xt0) = xt, (5)

3

Figure 1: Illustration of the transformations and involved fields for modeling the temporal evolution
of a 2D density with LFlows. The red lines indicate trajectories of fluid parcels.

with Xt0 being the identity map. That is, Xt provides the continuous trajectory of the parcel
xt0 . We further assume basic regularity of Xt and X−1

t such as smoothness and globally bounded
derivatives. Since Xt provides the trajectory of a parcel, the velocity of a given parcel at position xt

and time t follows naturally. First, the parcel is mapped back to its initial position with X−1
t . The

velocity is then the change in position along its trajectory with respect to time t:

v(t,x) =
∂Xt

∂t

(
X

−1

t (x)
)
. (6)

Following classical Cauchy Lipschitz theory, it is known that such a map Xt is the unique flow map
of v starting at time t0. Specifically, for any x ∈ Ω the curve t 7→ Xt(x) is the unique solution to
the Cauchy Problem {

∂tXt (x) = v (t,Xt(x)) t ∈ [t0, T),

Xt0(x) = x.
(7)

A more complete statement is given in A.1.1 Theorem 1, and we refer to Hartman (2002) for an
extensive description of the theory of ordinary differential equations.

With the velocity given by Eq. 6, we further need to define a density to describe a fluid. Let ρt0 :
Ω 7→ R+ be the (known) initial fluid density at time t0. We can then define the time-evolved density
as a transformation of ρt0 using the change of variables formula:

ρ(t,x) = ρt0

(
X

−1

t (x)
)
|det JX−1

t (x)|. (8)

Given the velocity in Eq. 6 and a smooth ρt0 , Eq. 8 is a solution to the continuity equation (see
A.1.1 Theorem 2). Proofs for this statement vary significantly in their complexity and depend on
the regularity assumptions for the velocity. That is, they range from classical theory to current
mathematical research. For the sake of completeness, we provide precise statements, assumptions
and proofs in the Appendix Section A.1. The appended proofs are based on the well-established
classical theory for the existence and uniqueness of Lagrangian flows for smooth vector fields and
we refer to Ambrosio & Crippa (2008) for basic and advanced results.

3.2 LAGRANGIAN FLOW NETWORKS

We can now exploit the derived connection between the CE and time-evolving diffeomorphisms to
model densities and velocities that satisfy the CE by construction. Instead of directly parameterizing
both Xt and ρt0 (as in Li et al. (2023)), we model the density at each time ρt, including ρt0 , as a
transformation of a simple fixed density ρbase. This requires only one time-conditioned bijection Φt.
We call the resulting model Lagrangian Flow Networks (LFlows), which we illustrate in Figure 1.

Let Φt : Ω 7→ Rd be a learnable diffeomorphism with t ∈ [t0, T]. We propose to parameterize Xt

as the composition
X̂t(x) = Φ

−1

t (Φt0(x)) . (9)

4

In practice, we implement Φt as an invertible neural network with its parameters conditioned on
time. We further define the initial density as a transformation of a simple base density:

ρ̂t0(x) = ρbase

(
Φt0(x)

) ∣∣det JΦt0

(
x
)∣∣ . (10)

The base density ρbase : Rd 7→ R+ is an unnormalized probability density:
ρbase(z) = c · N (0, I), (11)

where c ∈ R+ is the total mass of the system and a freely learnable parameter.

We now substitute Xt in Eq. 8 with the parameterized X̂t from Eq. 9. We further substitute the
density ρt0 with the parameterized ρ̂t0 (Eq. 10). The modeled density then simplifies to

ρ̂(t,x) = ρ̂t0

(
X̂

−1

t (x)
)

|det JX̂−1

t (x)| = ρbase

(
Φt(x)

) ∣∣det JΦt

(
x
)∣∣ . (12)

We refer to the Appendix A.2.1 for the intermediate steps. Note that the resulting expression co-
incides with the change of variable formula for probability densities in Eq. 4. This allows us to
elegantly model the evolving density through a conditional normalizing flow with unnormalized
base density ρbase and bijective layers conditioned on time Φt.

The parameterization of Xt with X̂t in Eq. 6 also results in a simple expression for the velocity:

v̂(t,x) =
∂X̂t

∂t

(
X̂

−1

t (x)
)
= −

(
JΦt

(
x
))−1 ∂Φt

∂t
(x) . (13)

We provide the explicit steps for arriving at Eq. 13 in the Appendix A.2.2. Note that in order to
evaluate ρ̂ and v̂ we now require only the forward map Φt, but not its inverse. This proves useful
for layers with expensive inverses, or if the inverse is unknown. An illustration that unifies the
Lagrangian view and the provided parameterization of LFlows is given in Figure 1.

Limitations. LFlows model fluid densities and velocities by transforming a base density with
bijective layers. As such, similar limitations as for Normalizing Flows apply. If the target density
has disconnected modes, the base density must have the same number of disconnected modes due to
topological constraints (Papamakarios et al., 2021). If not, the space in between disconnected modes
will be covered by a small but non-zero density. Furthermore, LFlows are limited by the expressive
power of the bijective layers. Even though state-of-the-art bijective layers are highly flexible, each
layer might still be limited in terms of the number of modes that can be modeled (Liao & He, 2021).

4 IMPLEMENTATION

To implement LFlow as outlined in Section 3, we require conditional bijective layers. That is, the
diffeomorphism Φt required for Eq. 12 and Eq. 13 has to be conditioned on time t. To allow for
a flexible parameterization, we first embed t into a higher-dimensional space with an embedding
network and then condition the bijections on this embedding, i.e. Φt := Φ(x; fΘ(t)) with fΘ :
[t0, T] 7→ Rk. The k-dimensional embedding is shared between the individual layers. A high-level
visualization of the network architecture is provided in the Appendix Figure A.6. We implement
fΘ(t) as MLPs with residual skip connections and swish activations (Elfwing et al., 2018).

We implement flexible Φ(x; fΘ(t)) with Lipschitz-constrained invertible densenets (Perugachi-Diaz
et al., 2021), which have free-form Jacobians. For a conditional variant of these layers we pass
the embedding fΘ(t) as an additional input. That is, each invertible densenet layer is a function
g(x, t) = x + h(x, fΘ(t)) with h : Rd+k 7→ Rd and Lip(h) < 1. The activations of h are
sinusoidal s(x) = sin(ωx)/ω with ω ∈ R+, where the division by ω ensures Lip(s) = 1. Invertible
densenets provide numerical inversion via fixed-point iterations. In addition to densenet blocks,
we employ (unconditional) intermediate activation normalizations (Kingma & Dhariwal, 2018) and
(conditional) SVD layers. The orthogonal components of the SVD layers are parameterized by
conditional Householder reflections.

Normalization Constant. In all our settings the total mass, i.e. the normalization constant c in
Eq. 11, is not known. Therefore, we treat c as a freely learnable hyperparameter, which we initialize
based on a validation set. We further encourage solutions with a small total mass c during training
with the penalty Lmass = wc · c, where wc ∈ R≥0 is a hyperparameter. In practice, this penalty
discourages learning significant densities in areas where there are no measurements.

5

Groundtruth LFlow SLDA DFNN PINN

t=
0

.0
0

t=
0

.5
0

t=
1

.2
0

0.0

0.1

0.2

0.3

0.4

LF
lo

w

S
LD

A

D
FN

N

P
IN

N

0.25

0.50

0.75

1.00

D
e
n
si

ty
 R

2

2D

LF
lo

w

S
LD

A

D
FN

N

P
IN

N

3D

LF
lo

w

S
LD

A

P
IN

N

0.0

0.2

0.4

sM
A

P
E
 C

o
n
si

st
e
n
cy

LF
lo

w

S
LD

A

P
IN

N

Figure 2: Evaluation of the predicted density on the xy-plane with z = 0 for different methods.
Arrows indicate velocity, except for the DFNNs, where the normalized flux is shown. The lower left
plot shows the spatial splitting into train (green), validation (yellow), and test (purple) subsets.

Baseline Models. For implementation details of all competing methods, we refer to the Appendix
Section A.3 and provided code.

5 EXPERIMENTS

We showcase LFlows for two distinct settings. In setting (i), density and velocity are observed, but
no equations are available (Section 5.1 and 5.3). In setting (ii) only the density is observed but further
equations for the velocity are known (Section 5.2). For details on the data, architecture, and code
for each experiment, we refer to the Appendix A.4 to A.6 and the supplementary material. We will
compare LFlows with methods that enforce the CE through different means, namely divergence-free
neural networks (DFNNs), physics-informed neural networks (PINNs), and semi-Lagrangian data
assimilation (SLDA). For details on the implementation we refer to the Appendix A.3.

Numerical Evaluation of Physical Consistency. Physical consistency in terms of the CE implies
that the predicted density at any time coincides with the initial density transformed forward in time
by the learned velocity field. An inconsistent model would imply that the predicted velocity field
fundamentally disagrees with the predicted density movements. This would make any downstream
interpretation of the two learned fields futile. We quantitatively evaluate this potential inconsistency
in the following experiments. We compare the predicted density ρ̂model(t,x) with the numerical
solution of the IVP defined by ρ̂model(t0,x), v̂model(t,x), and Eq. 3. We evaluate the symmetric
mean absolute percentage error sMAPE = 1

n

∑n
i=1

|ρ̂model(ti,xi)−ρ̂ODE(ti,xi)|
|ρ̂model(ti,xi)|+|ρ̂ODE(ti,xi)| that ranges from 0 to 1.

5.1 SIMULATED FLUID FLOW

For a synthetic example of setting (i) we simulate densities in 2D and 3D over time by trans-
forming a mixture of four unnormalized Gaussians. We parameterize time-dependent bijections
in t ∈ [0, 1.2],Ω = (−4, 4)d, which provide us analytical forms for the densities and velocities.
During training, only sub-regions of the domain Ω are observed. The dynamics in 3D are similar
to the 2D setting, with the xy-velocity being the same for all z values and the z velocity being 0.
The only added difficulty is a higher-dimensional domain. We limit all models to the computing
resources of a NVIDIA Titan X Pascal, and optimize based on the explained variance1 (R2) of the
density on the validation set. For the PINN this resulted in 216 collocation points. We do not include
consistency results for DFNNs due to numerical instabilities. As DFNNs only provide access to
the flux F̂ , the velocity v̂ = F̂ /ρ̂ becomes numerically unstable in low-density regions, which are
abundant in this experiment.

1R2 = 1− MSE(yobs,ŷ)
V ar(yobs)

≤ 1 with R2 = 1 indicating a perfect reconstruction.

6

Results for 10 random seeds are provided in Figure 2. In addition, snapshots of the 3D prediction
for z = 0 are shown. All methods aside from the PINN have a low consistency sMAPE on the order
of 1e-4 or lower. This is expected, as LFlows enforce the CE by construction. Furthermore, SLDA
computes the density similarly to our numerical reference, although with a lower order ODE solver.
Low error tolerances or low-order solvers for SLDA would of course still result in inconsistencies.
Looking at the predictive performance, LFlows show the highest average R2 for the density in both
2D and 3D. While PINNs perform competitively in 2D, they severely degrade in 3D, as the number
of collocation points used (limited by GPU memory) is insufficient to enforce the PDE. This is also
reflected in their increase of the consistency sMAPE in 3D. Finally, DFNNs and SLDA are roughly
comparable in terms of predictive accuracy, with DFNNs being in our experience most prone to
overfitting. We note that small density displacements can already lead to large differences in R2.

5.2 DYNAMICAL OPTIMAL TRANSPORT

As an example of setting (ii), in which no velocity is observed but additional equations dictating
the dynamics are known, we consider dynamical optimal transport problems. Our experimental
setting closely follows Richter-Powell et al. (2022). Specifically, we consider the Benamou-Brenier
formulation of the optimal transport problem between two densities pt0 and pt1 . In this case the
optimal transport map is the solution map Xt of a flow that is defined by the vector field v and
minimizes the following objective:

min
v,ρ

∫ t1

t0

∫
Ω

|v(t,x)|2ρ(t,x) dx dt (14)

subject to the constraints ρ(t0,x) = pt0(x) and ρ(t1,x) = pt1(x). Furthermore, ρ and v are subject
to the continuity equation ∂tρ = −∇ · (ρv).
Both DFNNs and LFlows can solve the minimization problem in Eq. 14 without needing a separate
estimation of ρ. Instead, one fits the densities at t0 and t1 and additionally minimize Eq. 14. How-
ever, to obtain the transport map from the learned velocity field, DFNNs need to numerically solve
the Cauchy problem in Eq. 7. An ODE solver might however struggle due to the numerical instabil-
ity of the DFNNs velocity in low-density regions. In contrast, LFlows elegantly provide an analytical
form for the continuous transport map through the learned bijections, i.e. X̂t(x) = Φ−1

t (Φt0(x)).

LF
lo

w
D

FN
N

D
is

cr
e
te

Circles - Pinwheel

Pinwheel - 8 Gaussians

8 Gaussians - Circles

Estimated W2
2

0.
06

0

0.
06

5

0.
07

0

0.
07

5
0.

08
0.

10
0.

12

0.
22

0

0.
23

0

0.
24

0

0.
25

0

0.
26

0

0.
27

0

0.
14

0.
15

0.
16

0.
17

0.
25

0.
50

Figure 3: Left: Approximations of the 2D optimal transport map with LFlows, DFNN and a discrete
reference. Right: Corresponding estimated Wasserstein distances for different methods for a single
run. The red vertical lines denote the minimum, median, and maximum estimates of 5 runs with a
discrete OT solver. Datasets: Circles ↔ Pinwheel, Pinwheel ↔ 8Gaussians, 8Gaussians ↔ Circles.

We train the models by optimizing

min
ρ̂,v̂

λEp̃0
[|ρ̂(0,x)− p0(x)|] + λEp̃1

[|ρ̂(1,x)− p1(x)|] +
∫ 1

0

∫
Ω

|v̂(t,x)|2ρ̂(t,x) dx dt (15)

7

where data is drawn from p̃i, which is a mixture of pi and a uniform density (for i = 0, 1); λ is a
hyperparameter. At test time we empirically estimate the W 2

2 distance by mapping 5000 samples
of p0 from t = 0 to t = 1. Different to Richter-Powell et al. (2022) we repeat this estimate 50
times. We compare the W 2

2 estimates of (i) LFlows, (ii) DFNNs and (iii) a minimax formulation
of the optimal transport map learned via input convex neural network (Makkuva et al., 2020). For
DFNNs the samples are transported through the estimated velocity with an ODE solver. We further
compare to the W 2

2 estimates of a discrete OT-solver (Bonneel et al., 2011) from the pot library
(Flamary et al., 2021) based on 50000 samples. The λ for LFlows is chosen by matching the W 2

2
distance between the moons and swissroll datasets with the discrete estimate. For DFNNs a λ value
is provided by Richter-Powell et al. (2022). In this experiment we restrict ourselves to methods that
can exactly enforce the CE and thus exclude PINNs.

We considered three different pairs of toy 2D distributions. Figure 3 shows the approximated optimal
transport maps learned with LFlows and the W 2

2 estimates of the different methods. We verified that
the DFNN and the LFlow fit the target densities well, with a test MSEs below 8e-5 for all settings.
We excluded SLDA, as it was unstable and did not consistently result in low errors for the two
target densities. The LFlow estimates of W 2

2 are closest to the range of discrete estimates (Figure
3). In contrast, the minimax model underestimates the distance which is consistent with the results
of Richter-Powell et al. (2022). DFNNs significantly overestimated W 2

2 and we were unable to fully
reproduce results obtained by Richter-Powell et al. (2022). We assume that this is due to the ODE
solver struggling with the unstable velocity calculation in low-density regions.

5.3 MODELING BIRD MIGRATION

As a real-world application for setting (i) we model bird migration within Europe based on weather
radar measurements. The data provided by Nussbaumer et al. (2021) contains estimated bird densi-
ties (birds/km3) and velocities (m/s). Measurements are taken from 37 weather radar stations in
France, Germany, and the Netherlands at up to 5-minute intervals at 200m altitude bins, reaching
up to 5km. The velocity data does not include a z-axis component. We model the bird migration of
3 subsequent nights of April 2018. We assume that the mass is mostly conserved within the three
nights during migration. We test the predictions on radars located in the center of the covered region,
which were excluded during training (see Figure 4). Hyperparameters of all models are selected by
minimizing the density MSE on three nights of March 2018. As a baseline, we compare the re-
sults with a 10-layer multilayer perceptron (MLP) with skip connections, 256 hidden units per layer,
ReLU activations, and Batch normalization. We additionally evaluate the PINN, DFNN, and SLDA.
The PINN has the same general architecture as the MLP but additionally minimizes the penalty
λ · ∥∂tρ̂+∇ · (ρ̂v̂)∥2 evaluated on 100 000 collocation points, where λ ∈ R+ is a hyperparameter.

2018-04-06 00:00:00 2018-04-07 00:00:00 2018-04-08 00:00:00

1

10

20

30

50

90

5°W 0° 5°E 10°E 15°E

42°N

44°N

46°N

48°N

50°N

52°N

54°N

train

test

Figure 4: Snapshots of predicted bird density at three consecutive nights within central Europe. The
2D projection was obtained by integrating over altitudes covered by the radars. Orange lines indicate
2D (xy) projections of 3D trajectories from t0 to t using randomly sampled departure points.

Figure 4 shows snapshots of the vertically integrated density and flux predicted by LFlows. Predic-
tions of the other models are provided in the Appendix A.6.2. Aside from the velocity and density,
LFlows readily provide the trajectories (shown in orange). In practice, experts could compare these
with the migration paths taken by individual birds, which are for example obtained from bird-ringing
studies. We further explore the role of the total mass penalty wc in Appendix A.6.3.

We compare test density errors for each model in Figure 5 (c). Methods enforcing the CE result in
a lower error than the baseline MLP. The consistency sMAPE shows the PINN and MLP lead to

8

inconsistent density and velocity. LFlows, SLDA and DFNNs again have a sMAPE that is on the
order of 1e-4 or lower. Figure 5 (a) and (b) show the pointwise sMAPE for the PINN and LFlow.

While DFNNs and SLDA are nearly competitive with LFlows in terms of the density MSE, they
suffer from high computational costs. SLDA requires to evaluate a neural network many times to
numerically solve the ODE. In addition, SLDA gets slower during training because the dynamics
given by the neural network become more stiff. This is shown by the increasing runtime for each
epoch in Figure 5 (e) and is a known limitation of models of the neural ODE family (Biloš et al.,
2021). DFNNs on the other hand result in huge memory requirements due to the required second
order derivatives. Figure 5 (f) shows the peak memory use in terms of VRAM for varying minibatch
sizes of the models. In practice, high memory requirements result in small minibatch sizes, which
ultimately lead to a slower training and inference pipeline (Shallue et al., 2018). The high peak
memory and runtime of PINNs is due to the large amount of collocation points.

(c
)

(d
)

0 100 200 300
0

20

40

60

S
e
co

n
d
s/

E
p
o
ch

Training Epoch

Minibatch Size
256 1024 2048 3072

0

10

20

30

Pe
a
k

M
e
m

o
ry

 (
G

B
)

(e
)

(f
)

sMAPE of Consistency

0 0.25 0.5 0.75 1

PINN
0° 5°E 10°E

42°N

44°N

46°N

48°N

50°N

52°N

LFlow
0° 5°E 10°E

42°N

44°N

46°N

48°N

50°N

52°N

(b
)

MSE of log1p Density
0.4 0.6 0.8 1.0

LFlow

SLDA

DFNN

PINN

MLP

sMAPE of Consistency
0.0 0.2 0.4 0.6

LFlow

SLDA

DFNN

PINN

MLP

(a
)

Figure 5: Results of the bird migration experiment. (a) Consistency sMAPE of PINNs and (b)
LFlows at a fixed time (2018-04-08 00:00). (c) Test MSE of the (log1p) density and (d) consistency
sMAPE evaluated at multiple timesteps. (e) Time per training epoch during training and (f) peak
memory usage during training in GB VRAM for varying minibatch sizes.

6 CONCLUSION

We introduced LFlows for modeling densities and velocities that adhere to the continuity equation
by construction. We did so by establishing a link between time-conditioned diffeomorphisms and
Lagrangian solution maps for the continuity equation. The resulting parameterization allows us to
elegantly model time evolving densities with a single time-conditioned Normalizing Flow. Further-
more, we can calculate the velocity without inverting the conditional bijections, allowing the use of
expressive bijective layers. We showed that LFlows can be applied to settings where we have sparse
data on both density and velocity, and to settings where we have no data on velocity, but instead
enforce additional equations.

In terms of density prediction LFlows outperform all competing models on both synthetic and real
experiments. Different to methods like PINNs, which weakly enforce the continuity equation,
LFlows always provide physically consistent predictions. In addition, LFlows avoid scaling lim-
itations of DFNNs (peak memory usage) and neural adjoint based methods (training time). For
downstream tasks, LFlows directly provide Lagrangian maps without the need for additional numer-
ical solvers. In dynamical optimal transport settings, LFlows directly provide the analytic expression
of the transport map. When modeling bird migration, the Lagrangian maps provide access to trajec-
tories, which could be compared to migration paths obtained from different data modalities.

9

7 REPRODUCIBILITY STATEMENT

We provide general information on our implementation of LFlows, DFNNs, SLDA and PINNs in
Section 4 and in the Appendix A.3. For each experiment we provide further details in the Appendix
A.4 to A.6, where we state the layers, settings, and computational ressources (GPU) used. We
also describe how we generated the introduced synthetic dataset. For the real-world bird-migration
dataset we provided references for accessing the data, as well as information on the preprocessing in
the Appendix A.6. The supplementary material contains code for all experiments and models. The
readme.md file lists the random seeds used for experiments and plots. The selected hyperparam-
eters for each experiment are provided. The code further includes the generation of the synthetic
datasets, as well as automated scripts for downloading and preprocessing the bird-migration data. A
cleaned anaconda environment file for reproducing the python environment is provided.

We furthermore provide access to the used conditional bijective layers in a separate python package
called Flow Conductor2. This package includes conditional i-DenseNets with sinusoidal activations,
as well as the conditional SVD layers.

REFERENCES

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 2623–2631, 2019.

Luigi Ambrosio and Gianluca Crippa. Existence, uniqueness, stability and differentiability proper-
ties of the flow associated to weakly differentiable vector fields. In Transport equations and multi-
D hyperbolic conservation laws, volume 5 of Lect. Notes Unione Mat. Ital., pp. 3–57. Springer,
Berlin, 2008. doi: 10.1007/978-3-540-76781-7\ 1.

Fabricio Arend Torres, Marcello Massimo Negri, Monika Nagy-Huber, Maxim Samarin, and Volker
Roth. Mesh-free eulerian physics-informed neural networks. arXiv preprint arXiv:2206.01545,
2022.

Andrei Atanov, Alexandra Volokhova, Arsenii Ashukha, Ivan Sosnovik, and Dmitry Vetrov. Semi-
conditional normalizing flows for semi-supervised learning. arXiv preprint arXiv:1905.00505,
2019.

Marin Biloš, Johanna Sommer, Syama Sundar Rangapuram, Tim Januschowski, and Stephan
Günnemann. Neural flows: Efficient alternative to neural odes. Advances in neural informa-
tion processing systems, 34:21325–21337, 2021.

Nicolas Bonneel, Michiel Van De Panne, Sylvain Paris, and Wolfgang Heidrich. Displacement
interpolation using lagrangian mass transport. In Proceedings of the 2011 SIGGRAPH Asia con-
ference, pp. 1–12, 2011.

Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext.
Springer, New York, 2011. ISBN 978-0-387-70913-0.

Dan G Cacuci. Sensitivity theory for nonlinear systems. i. nonlinear functional analysis approach.
Journal of Mathematical Physics, 22(12):2794–2802, 1981a.

Dan G Cacuci. Sensitivity theory for nonlinear systems. ii. extensions to additional classes of re-
sponses. Journal of Mathematical Physics, 22(12):2803–2812, 1981b.

Ricky T. Q. Chen. torchdiffeq, 2018. URL https://github.com/rtqichen/
torchdiffeq.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Ricky TQ Chen, Brandon Amos, and Maximilian Nickel. Neural spatio-temporal point processes.
In International Conference on Learning Representations, 2020.
2https://github.com/FabricioArendTorres/FlowConductor

10

https://github.com/rtqichen/torchdiffeq
https://github.com/rtqichen/torchdiffeq
https://github.com/FabricioArendTorres/FlowConductor

Phillip B Chilson, Phillip M Stepanian, and Jeffrey F Kelly. Radar aeroecology. Aeroecology, pp.
277–309, 2017.

Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley Ho.
Lagrangian neural networks. arXiv preprint arXiv:2003.04630, 2020.

Michail Diamantakis. The semi-lagrangian technique in atmospheric modelling: current status and
future challenges. In ECMWF Seminar in numerical methods for atmosphere and ocean mod-
elling, pp. 183–200, 2013.

Michail Diamantakis and Linus Magnusson. Sensitivity of the ecmwf model to semi-lagrangian
departure point iterations. Monthly Weather Review, 144(9):3233–3250, 2016.

Adriaan M Dokter, Felix Liechti, Herbert Stark, Laurent Delobbe, Pierre Tabary, and Iwan Holle-
man. Bird migration flight altitudes studied by a network of operational weather radars. Journal
of the Royal Society Interface, 8(54):30–43, 2011.

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. nflows: normalizing flows
in PyTorch, November 2020. URL https://doi.org/10.5281/zenodo.4296287.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural networks, 107:3–11, 2018.

Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z Alaya, Aurélie Boisbunon, Stanis-
las Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, et al. Pot: Python
optimal transport. The Journal of Machine Learning Research, 22(1):3571–3578, 2021.

Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, and David Duvenaud. Ffjord: Free-form
continuous dynamics for scalable reversible generative models. In International Conference on
Learning Representations, 2019.

Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. Advances
in neural information processing systems, 32, 2019.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. In International Conference on
Learning Representations, 2017.

Philip Hartman. Ordinary differential equations, volume 38 of Classics in Applied Mathemat-
ics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. ISBN
0-89871-510-5. doi: 10.1137/1.9780898719222. Corrected reprint of the second (1982) edition
[Birkhäuser, Boston, MA; MR0658490 (83e:34002)], With a foreword by Peter Bates.

Hans Hersbach, Bill Bell, Paul Berrisford, Shoji Hirahara, András Horányi, Joaquı́n Muñoz-Sabater,
Julien Nicolas, Carole Peubey, Raluca Radu, Dinand Schepers, et al. The era5 global reanalysis.
Quarterly Journal of the Royal Meteorological Society, 146(730):1999–2049, 2020.

Ameya D Jagtap, Ehsan Kharazmi, and George Em Karniadakis. Conservative physics-informed
neural networks on discrete domains for conservation laws: Applications to forward and inverse
problems. Computer Methods in Applied Mechanics and Engineering, 365:113028, 2020.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 con-
volutions. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/
paper/2018/file/d139db6a236200b21cc7f752979132d0-Paper.pdf.

Ivan Kobyzev, Simon JD Prince, and Marcus A Brubaker. Normalizing flows: An introduction and
review of current methods. IEEE transactions on pattern analysis and machine intelligence, 43
(11):3964–3979, 2020.

11

https://doi.org/10.5281/zenodo.4296287
https://proceedings.neurips.cc/paper_files/paper/2018/file/d139db6a236200b21cc7f752979132d0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/d139db6a236200b21cc7f752979132d0-Paper.pdf

Lingxiao Li, Samuel Hurault, and Justin Solomon. Self-consistent velocity matching of probability
flows. arXiv preprint arXiv:2301.13737, 2023.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020.

Huadong Liao and Jiawei He. Jacobian determinant of normalizing flows, 2021.

Fiona Lippert, Bart Kranstauber, Patrick D Forré, and E Emiel van Loon. Learning to predict
spatiotemporal movement dynamics from weather radar networks. Methods in Ecology and Evo-
lution, 13(12):2811–2826, 2022a.

Fiona Lippert, Bart Kranstauber, E. Emiel van Loon, and Patrick Forré. Physics-informed inference
of aerial animal movements from weather radar data. In NeurIPS 2022 AI for Science: Progress
and Promises, 2022b.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for iden-
tifying differential equations based on the universal approximation theorem of operators. arXiv
preprint arXiv:1910.03193, 2019.

Ashok Makkuva, Amirhossein Taghvaei, Sewoong Oh, and Jason Lee. Optimal transport mapping
via input convex neural networks. In International Conference on Machine Learning, pp. 6672–
6681. PMLR, 2020.

Raphaël Nussbaumer, Lionel Benoit, Grégoire Mariethoz, Felix Liechti, Silke Bauer, and Baptiste
Schmid. A geostatistical approach to estimate high resolution nocturnal bird migration densities
from a weather radar network. Remote Sensing, 11(19):2233, 2019.

Raphaël Nussbaumer, Silke Bauer, Lionel Benoit, Grégoire Mariethoz, Felix Liechti, and Baptiste
Schmid. Quantifying year-round nocturnal bird migration with a fluid dynamics model. Journal
of the Royal Society Interface, 18(179):20210194, 2021.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lak-
shminarayanan. Normalizing flows for probabilistic modeling and inference. The Journal of
Machine Learning Research, 22(1):2617–2680, 2021.

Yura Perugachi-Diaz, Jakub Tomczak, and Sandjai Bhulai. Invertible densenets with concatenated
lipswish. Advances in Neural Information Processing Systems, 34:17246–17257, 2021.

Lev Semenovich Pontryagin. Mathematical theory of optimal processes. CRC press, 1987.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Jack Richter-Powell, Yaron Lipman, and Ricky TQ Chen. Neural conservation laws: A divergence-
free perspective. In Advances in Neural Information Processing Systems, 2022.

Andre Robert. A semi-lagrangian and semi-implicit numerical integration scheme for the primitive
meteorological equations. Journal of the Meteorological Society of Japan. Ser. II, 60(1):319–325,
1982.

Christopher J Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, and
George E Dahl. Measuring the effects of data parallelism on neural network training. arXiv
preprint arXiv:1811.03600, 2018.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in Neural Information
Processing Systems, 33:7462–7473, 2020.

Andrew Staniforth and Jean Côté. Semi-lagrangian integration schemes for atmospheric models—a
review. Monthly weather review, 119(9):2206–2223, 1991.

12

A APPENDIX

A.1 THEORETICAL BACKGROUND

In this section we provide proofs and theoretical background for the method in Section 3. While the
underlying theory is well established, we were unable to find a single source that concisely contained
all required statements written in an accessible and directly citeable manner. Section A.1.1 contains
the statements we rely on in Section 3. The proofs for these theorems are provided in Sections A.1.2
to A.1.4

A.1.1 TIME DEPENDENT BIJECTIONS AND THE CONTINUITY EQUATION

Theorem 1 provides us a velocity field given time-dependent bijections. Theorem 2 links the push-
forward of the density to the solution of the continuity equation defined by an initial density and the
velocity given by Theorem 1.

Theorem 1. Let 0 ≤ t0 < T and let Ω ⊂ Rd be a convex open set. Let X : [t0, T] × Ω → Ω be
a family of maps such that Xt : Ω → Ω is a bijection for any t ∈ [t0, T] and Xt0(x) = x for any
x ∈ Ω. Assume that X and X−1 are C∞([t0, T]× Ω;Ω) with globally bounded derivatives.

Then, the velocity field v(t,x) = ∂Xt

∂t

(
X−1

t (x)
)

is C∞. In particular, v satisfies the assumptions of
the Cauchy–Lipschitz Theorem 3 and X is the unique flow map of v starting at time t0. Specifically,
for any x ∈ Ω the curve t 7→ Xt(x) is the unique solution to the Cauchy Problem{

∂tXt (x) = v (t,Xt(x)) t ∈ [t0, T),

Xt0(x) = x
(16)

Proof. See Appendix Section A.1.3.

Theorem 2. Let Ω, T, t0,X be as in Theorem 1. Given an initial density ρt0 ∈ L1(Ω), we define

ρ(t,x) = ρt0(X
−1
t (x))|det JX−1

t (x)|. (17)

Then ρ(t,x) is a distributional solution to the continuity equation in Eq. 1 according to Definition
1, i.e. the following condition is satisfied for any test function ϕ ∈ C∞

c ([t0, T)× Ω):∫ T

t0

∫
Ω

(∂tϕ+ v · ∇ϕ)ρ dx dt = −
∫
Ω

ρt0(x)ϕ(t0,x) dx. (18)

Moreover, if ρt0 ∈ C∞(Ω), then ρ ∈ C∞([t0, T)×Ω) and ρ is a point-wise solution to the continuity
equation Eq. 1. If we assume in addition that ρt0(x) > 0 for any x ∈ Ω, then the same holds for
ρ(t,x) for any (t,x) ∈ [t0, T)×Ω and ρ satisfies the log-density formula of the continuity equation

d

dt
log(ρ(t,Xt(x))) = −∇ · v(t,Xt(x)). (19)

Proof. See Appendix Section A.1.2 and A.1.4.

A.1.2 THE FLOW ASSOCIATED TO A LIPSCHITZ VECTOR FIELD

We recall the setting of the classical Cauchy–Lipschitz Theorem. For simplicity, let Ω ⊂ Rd be a
convex open set. Given 0 ≤ t0 < T , let v : [t0, T]×Ω → Rd be a bounded vector field. We say that
v is Lipschitz continuous in space uniformly in time if there exists a constant L > 0 such that

|v(t,x)− v(t,y)| ≤ L|x− y| ∀t ∈ [t0, T] ∀x,y ∈ Ω. (20)

Throughout this section, we consider maps X : [t0, T]× Ω → Ω with the following properties:

• for any x ∈ Ω the map t 7→ Xt(x) is C1([t0, T]) with uniform bounds, namely there exists
a constant M > 0 such that

|∂tXt(x)| ≤ M ∀t ∈ [t0, T] ∀x ∈ Ω; (21)

13

• for any t ∈ [t0, T] the map x 7→ ∂tXt(x) is Lipschitz with uniform bounds, namely there
exists a constant L > 0 such that

|∂tXt(x)− ∂tXt(y)| ≤ L|x− y| ∀t ∈ [t0, T] ∀x,y ∈ Ω; (22)

• for any t ∈ [t0, T] the map x 7→ Xt(x) is a bilipschitz transformation of Ω uniformly in
time, namely Xt is a bijection of Ω and there exists a constant C > 0 such that

C−1|x− y| ≤ |Xt(x)−Xt(y)| ≤ C|x− y| ∀x,y ∈ Ω ∀t ∈ [t0, T]. (23)

We state the Cauchy–Lipschitz Theorem in the case of Rd and for the forward flow. We refer to
Hartman (2002) for an extensive description of the theory of ordinary differential equations, as well
as any book in basic differential calculus.
Theorem 3. Given T > 0 and t0 ∈ [0, T), let v : [t0, T] × Rd → Rd be a bounded vector field
that satisfies Eq. 20 for some constant L > 0. For any x ∈ Rd there exists a unique trajectory
t 7→ Xt(x) solving the Cauchy problem{

∂tXt (x) = v (Xt(x), t) t ∈ [t0, T),

Xt0(x) = x
(24)

in the integral sense. The map X : [t0, T) × Rd → Rd is the flow of v starting at time t0 and it
satisfies Eq. 21, Eq. 22, Eq. 23.
Remark 1. Under the assumptions of Theorem 3, we point out that the maps Xt,X

−1
t are Lipschitz

continuous for any time. Thus, given a time slice t ∈ [t0, T), we infer that Xt,X
−1
t are differen-

tiable almost everywhere in Rd. Hence, the Jacobian matrices JXt(x), JX
−1
t (x) are well defined

for almost every x ∈ Rd and we have that

JXt(X
−1
t (x)) = [JX−1

t (x)]−1 for almost every x ∈ Rd.

Moreover, there exists a constant M > 0 such that
|JXt(x)|+ |JX−1

t (x)| ≤ M for almost every x ∈ Rd.

Here, |·| is a given matrix norm (recall that all norms are equivalent in finite dimensional vector
spaces). We point out that the uniqueness part of Theorem 3 and the regularity properties of the
flow, as well as the existence of the Jacobian matrix, extend to Lipschitz vector field defined on a
general convex domain Ω, as soon as we assume that the trajectories do not touch the boundary of
Ω. In this case, we get that the flow map is a bilipschitz transformation of Ω for any time slice.

A.1.3 VELOCITIES FROM 1-PARAMETER GROUPS OF DIFFEOMORPHISM

Theorem 1 is a particular case of the following more general result. For simplicity, we consider
convex domains.
Theorem 4. Let 0 ≤ t0 < T , let Ω ⊂ Rd be a convex open set and let X : [t0, T] × Ω → Ω
be a family of maps on Ω such that Xt0(x) = x for any x ∈ Ω. Assume that X satisfies Eq. 21,
Eq. 22 and Eq. 23. Then, the velocity field v(t,x) = ∂Xt

∂t

(
X−1

t (x)
)

satisfies the assumptions of
the Cauchy–Lipschitz Theorem 3 and X is the unique flow map of v starting at time t0. Specifically,
for any x ∈ Ω the curve t 7→ Xt(x) is the unique solution to the Cauchy problem Eq. 16.

The reader might note that Theorem 4 is the inverse of Theorem 3. Indeed, given a map X satisfying
all the properties of a flow map, it is natural to ask whether we can find a velocity field v within the
Cauchy–Lipschitz framework whose flow starting at time t0 is X .

Proof of Theorem 1. Given (t,x) ∈ [t0, T)× Ω, we define

v(t,x) = lim
h→0

Xt+h(X
−1
t (x))−Xt(X

−1
t (x))

h
= ∂tXt(X

−1
t (x)). (25)

Since the map s 7→ Xs(X
−1
t (x)) is C1([t0, T]) by assumption for any x ∈ Ω, the velocity field v

is well defined. Moreover, by Eq. 25, the curve t 7→ Xt(x) solves the Cauchy problem Eq. 24 with
v given by Eq. 25. We study the regularity of v to ensure that X is the unique flow associated to
v starting at time t0. To begin, we remark that v is uniformly bounded by Eq. 21. Moreover, since
X−1

t , ∂tXt are Lipschitz maps for any time slice t ∈ [t0, T] by Eq. 22 and Eq. 23, we infer that v
satisfies Eq. 20. Thus, v satisfies the assumptions of Theorem 3. In particular, X is the unique flow
starting at time t0 of the vector field v.

14

A.1.4 THE CONTINUITY EQUATION

Let Ω ⊂ Rd be an open set, let T > 0 and t0 ∈ [0, T). Given a vector field v : [t0, T]×Ω → Rd, we
shall consider the continuity equation Eq. 1 on (t0, T) × Ω with initial condition ρt0 . To deal with
irregular vector fields and densities, we consider solutions to Eq. 1 in the sense of distributions. We
refer to Ambrosio & Crippa (2008) for some basic and advanced results on the theory of continuity
equation.

Definition 1. Let Ω ⊂ Rd be an open set and 0 ≤ t0 < T . Let v ∈ L∞([t0, T]×Ω;Rd) be a vector
field and let ρt0 ∈ L1(Ω). We say that ρ ∈ L∞([t0, T];L

1(Ω)) is a distributional solution to Eq. 1
if the following condition is satisfied for any test function ϕ ∈ C∞

c ([t0, T)× Ω):∫ T

t0

∫
Ω

(∂tϕ+ v · ∇ϕ)ρ dx dt = −
∫
Ω

ρt0(x)ϕ(t0, x) dx. (26)

Remark 2. We point out that Definition 1 is well posed without differentiability assumptions on
v, ρ. However, if v, ρ are C1 functions in time and space and ρt0 is a continuous function, after
integrating by parts the left hand side of Eq. 26, for any test function ϕ ∈ C∞

c ([t0, T) × Ω) we
obtain that∫ T

t0

∫
Ω

(∂tρ+∇ · (vρ))ϕdx dt+

∫
Ω

ρ(t0,x)ϕ(t0, x) dx =

∫
Ω

ρt0(x)ϕ(t0,x) dx.

Since ∂tρ + ∇ · (vρ) is a continuous function, by the so-called Fundamental Lemma of Calculus
of Variations (see Brezis (2011), for instance) we infer that ∂tρ + ∇ · (vρ) = 0 for any (t,x) ∈
(t0, T) × Ω and ρt0(x) = ρ(t0,x) for any x ∈ Ω, thus recovering the pointwise formulation of
Eq. 1.

Solving the Continuity Equation. The proof of the first part of Theorem 2 is a corollary of the
following general statement.

Theorem 5. Let Ω ⊂ Rd be an open set and let 0 ≤ t0 < T . Let v : [t0, T] × Ω → Rd be a
globally bounded velocity field that satisfies Eq. 20. Assume that the flow of v starting at time t0,
denoted by X , is well defined in [t0, T]×Ω and that Xt : Ω → Ω is a bilipschitz transformation of
Ω. Letting ρ(x, t) be defined by Eq. 17, then ρ is a distributional solution to the continuity equation
Eq. 1 according to Definition 1.

We remark that, under the assumptions of Theorem 2, the flow map X is given and we build velocity
field v that has X as a unique flow map. Hence, by construction, Ω is invariant under Xt for any
t ∈ [t0, T]. Thus, the assumptions of Theorem 5 are satisfied.

Proof of Theorem 5. By Theorem 3, the flow map X starting at time t0 associated to v is well
defined. Hence, defining ρ by Eq. 17, for any t ∈ [t0, T] we have that ρ(t, ·) is defined almost
everywhere in Rd. We check that ρ is a distributional solution to Eq. 1 according to Definition 1. To
begin, we check that ρ ∈ L∞([t0, T];L

1(Rd)). Indeed, after the change of variables X−1
t (x) = y,

using the Area formula with dy = |det JX−1
t (x)|dx, we have that∫

Ω

|ρ(t,x)| dx =

∫
Ω

|ρt0(X−1
t (x))||det JX−1

t (x)| dx =

∫
Ω

|ρt0(y)| dy.

Therefore, the total mass is preserved along the time evolution. Then, fix a test function ϕ ∈
C∞

c ([t0, T)× Ω) and, performing again the change of variables y = X−1
t (x), we have that∫ T

t0

∫
Ω

[∂tϕ+ v · ∇ϕ]ρ dx dt

=

∫ T

t0

∫
Ω

[∂tϕ(t,x) + v(t,x) · ∇(t,x)ϕ]ρt0(X
−1
t (x))|det JX−1

t (x)| dx dt

=

∫ T

t0

∫
Ω

[∂tϕ(t,Xt(y)) + v(t,Xt(y)) · ∇ϕ(t,Xt(y))]ρt0(y) dy dt.

15

Recalling that Xt is the flow map generated by the velocity field v starting at time t0, the latter is
equal to ∫ T

t0

∫
Ω

[∂tϕ(t,Xt(y)) + ∂tXt(y) · ∇ϕ(t,Xt(y))]ρt0(y) dy dt

=

∫
Ω

ρt0(y)

∫ T

t0

d

dt
ϕ(t,Xt(y)) dt dy,

after using Fubini’s Theorem and the chain rule for the derivatives. Thus, by the Fundamental
Theorem of Calculus, we have that∫

Ω

ρt0(y)

∫ T

t0

d

dt
ϕ(t,Xt(y)) dt dy =

∫
Ω

ρt0(y)[ϕ(T,XT (y))− ϕ(0,Xt0(y))] dy

= −
∫
Ω

ϕ(t0,y)ρt0(y) dy,

since ϕ(T, ·) ≡ 0 and Xt0 is the identity map.

Finally, we are able to conclude the proof of Theorem 2.

Conclusion of the proof of Theorem 2. We discussed the fact that ρ is a pointwise solution to the
continuity equation Eq. 1 in Remark 2. Indeed, by the explicit formula Eq. 17 it is clear that ρ is
C∞([t0, T)×Ω) and that ρ is nonnegative whenever ρt0 is nonnegative. Thus, we check that Eq. 19
is satisfied. Indeed, by the chain rule we have that

d

dt
log(ρ(t,Xt(x))) =

1

ρ(t,Xt(x))

[
∂tρ(t,Xt(x)) +∇ρ(t,Xt(x)) ·

d

dt
Xt(x)

]
=

1

ρ(t,Xt(x))
[∂tρ(t,Xt(x)) +∇ρ(t,Xt(x)) · v(t,Xt(x))]

=
1

ρ(t,Xt(x))

[
∂tρ(t,Xt(x)) +∇ · (v(t,Xt(x))ρ(t,Xt(x)))

− (∇ · v(t,Xt(x)))ρ(t,Xt(x))

]
= −∇ · v(t,Xt(x)),

since ρ satisfies the continuity equation at any point (t,x) ∈ (t0, T)× Ω.

A.2 CALCULATING FOR THE DENSITY AND VELOCITY

In this subsection we explicitly provide the steps to get to Eq. 12 and Eq. 13.

A.2.1 CALCULATING THE DENSITY

We now report explicitly the steps to get to Eq. 12.

Let f and g be diffeomorphisms on Rd, and A and B positive definite matrices. We denote with
J(f)(g(x)) the Jacobian of f evaluated at the point g(x). In the following part we make use of
identities that follow from the chain rule, the inverse function theorem, and properties of the deter-
minant:

J(f ◦ g)(x) = J(f)(g(x)) J(g)(x), (27)

|det J(f)(x)| =
∣∣det J(f−1

)(f(x))
∣∣−1

, (28)

|det(A ·B)| = |det(A)| · |det(B)| . (29)

ρ̂(t,x) = ρ̂t0(X̂
−1

t (x))|det J(X̂−1

t)(x)| (30)

= ρ̂base

(
(Φt0 ◦ X̂

−1

t)(x)
) ∣∣∣det J(Φt0)(X̂

−1

t (x))
∣∣∣ ∣∣∣det J(X̂−1

t)(x)
∣∣∣ (31)

16

ρ̂base

(
(Φt0 ◦ X̂

−1

t)(x)
)
= ρ̂base

(
(Φt0 ◦ Φ

−1

t0 ◦ Φt)(x)
)
= ρ̂base(Φt(x)) (32)

∣∣∣det J(Φt0)(X̂
−1

t (x))
∣∣∣ = ∣∣∣det J(Φt0)

(
(Φ

−1

t0 ◦ Φt)(x)
)∣∣∣ (33)

=
∣∣∣det J(Φ−1

t0)
(
(Φt0 ◦ Φ

−1

t0 ◦ Φt)(x)
)∣∣∣−1

(34)

=
∣∣det J(Φ−1

t0)(Φt(x))
∣∣−1

(35)

∣∣∣det J(X̂−1

t)(x)
∣∣∣ = ∣∣det J(Φ−1

t0 ◦ Φt)(x)
∣∣ (36)

=
∣∣det J(Φ−1

t0)(Φt(x))
∣∣ · |det J(Φt)(x)| (37)

Combing the three terms we get:

ρ̂(t,x) = ρ̂t0(X̂
−1

t (x))|det J(X̂−1

t)(x)| (38)

= ρ̂base(Φt(x))
∣∣det J(Φ−1

t0)(Φt(x))
∣∣−1

·
∣∣det J(Φ−1

t0)(Φt(x))
∣∣︸ ︷︷ ︸

=1

· |det J(Φt)(x)| (39)

= ρ̂base(Φt(x)) |det J(Φt)(x)| (40)

A.2.2 CALCULATING THE VELOCITY WITHOUT INVERTING THE FLOW.

We now report explicitly the steps to get to Eq. 13. Firstly, we show that the velocity can be
expressed in terms of the flow bijection Φt and its inverse Φ−1

t .

v̂(t,x) =
∂X̂t

∂t

(
X̂−1

t (x)
)

(41)

=
∂(Φ−1

t ◦ Φt0)

∂t

(
(Φ

−1

t0 ◦ Φt)(x)
)

(42)

=
∂(Φ−1

t)

∂t

(Φt0 ◦ Φ
−1

t0︸ ︷︷ ︸
=1

◦Φt)(x)

 (43)

=
∂Φ−1

t

∂t

(
Φt(x)

)
(44)

In a second step, the velocity can be written without the need for explicit inversion of the bijective
layer Φt, allowing for efficient computation in practice.

Let Φt and Φ−1

t be the maps from xt to z and vice versa respectively.

Φt(xt) = z, Φ
−1

t (z) = xt (45)

Clearly, Φt

(
Φ−1

t (z)
)
= z and z does not depend on time, i.e. d

dtz = 0. We can now explicitly
compute the total derivative and find a formulation for the velocity that requires inverting a Jacobian
instead of inverting the map Φt.

d

dt

(
Φt

(
Φ−1

t (z)
))

=
d

dt
z = 0 (46)

⇒ ∂Φt

∂t

(=xt︷ ︸︸ ︷
Φ−1

t (z)
)
+

=JΦt(xt)︷ ︸︸ ︷
∂Φt

∂xt

(
Φ−1

t (z)
) ∂Φ−1

t

∂t

(Φt(xt)︷︸︸︷
z

)
= 0 (47)

⇒ ∂Φ−1

t

∂t

(
Φt(xt)

)
= −[JΦt(xt)]

−1 ∂Φt

∂t
(xt) (48)

17

A.3 IMPLEMENTATION

This section provides high-level descriptions of the implementations of the models used in all exper-
iments. For details on experiment-specific implementations, we refer to the corresponding sections
A.4 to A.6.

LFlows. Our code for LFlows is based on the nflows library for bijective neural networks (Durkan
et al., 2020). We extended nflows by providing a range of additional (conditional) transformations,
such as invertible densenets, in addition to the modifications required for the LFlows. The code is
provided as supplementary material.

Figure A.6: General Architecture used for the conditional bijective layers based on embedding
networks. Dotted lines indicate the inverse direction).

SLDA. We represent the density ρt0 at the departure time t0 with a bilinear interpolation of a
learnable equi-distant mesh in 2D or 3D. We parameterize the velocity with a neural network with
smooth activation functions. In 2D settings, we evaluate the divergence in Eq. 3 exactly via autograd,
whereas we stochasticly estimate it in 3D during training (Grathwohl et al., 2019). To solve multiple
ODEs with differing start times, in parallel we leverage the rescaling trick discussed in Appendix F
of Chen et al. (2020). In all settings we use a Dormand-Prince solver of order 5 with absolute and
relative tolerance of 1e-5. The adjoint is computed with the torchdiffeq library (Chen, 2018).

DFNNs We rely on the vector-based parameterization of DFNNs given in Section 7.1 of Richter-
Powell et al. (2022), which ensures non-negative densities.

PINNs. We implement standard PINNs without additional resampling schemes or loss terms, and
use either ReLu (Section 5.1) or sinusoidal activations (Sitzmann et al., 2020) (Section 5.3). The
collocation points are resampled each training iteration with quasi-random Sobol sequences.

A.4 EXPERIMENT: SIMULATED FLUID FLOW

Data Generation. We generate the data by defining a Lagrangian flow map for an initial unnor-
malized Gaussian mixture density. The initial density of the simulated problem is based on a mixture
of 4 independent Gaussians arranged around the origin with varying radii and a standard deviation
of 0.1. We defined the density to be restricted to Ω = [−4, 4]d with (ρv)|δΩ = 0:

ρ0(x) =

{∑4
i=1

1
4N (µi, 0.1I) if x ∈ (−4, 4)d

0 else
(49)

The changes in density on the xy axes are simulated by directly parameterizing the Lagrangian
solution map Xt(x0) : (−4, 4)2 7→ (−4, 4)2 for t ∈ [0, 1.2]:

Xt(x0) = 4 · tanh

(
(0.5t+ 1)

4
Arot(t)Ascale(t)

(
4 · atanh(0.25x0) + shift(t)

))
(50)

18

with

Arot(t) =

[
cos(2πt) − sin(2πt)
sin(2πt) cos(2πt)

]
(51)

Ascale(t) =

[
1 + 0.1t 0

0 1 + 0.1t

]
(52)

shift(t) = sin(πt)

[
0.6

−0.6

]
(53)

In 3D, the z component of Xt is always an identity map, limiting the dynamics to the xy axis.

The density and velocity are then given by:

ρ(t,x) = ρ0

(
X−1

t (x)
)
|det JX−1

t (x)| (54)

v(t,x) =
∂Xt

∂t
(X−1

t (x)) (55)

where all involved derivatives are computed using automatic differentiation. Observations are avail-
able at 21 equidistant timesteps in the range [0, 1]. The test data set covers the time range [0, 1.2].
To simulate noisy measurements, additional Gaussian noise is added to the observed velocities and
log densities during training.

A.4.1 TRAINING AND ARCHITECTURE DETAILS

Hyperparameter Optimization. We optimize each model based on the explained variance (R2)
of the density on validation data. Firstly, we manually performed a general architecture selection.
Subsequently, we tuned parameters such as the number of layers, units, learning rate, loss- and
regularization weights with the black-box optimization framework Optuna 3(Akiba et al., 2019),
using the default Tree-structured Parzen Estimator as sampler. We trained the LFlows and PINNs on
a minibatch size of 16384 and the SLDA on a minibatch size of 4096. As the 2nd order derivatives
of the DFNNs require a lot of GPU memory, DFNNs were limited to a minibatch size of 2048. For
the optimized hyperparameters of each model we refer to the provided code in the supplementary
material.

LFlows. For the initial layer we first rescale the domain and then use a atanh bijection for restrict-
ing the domain to [−4, 4]d. For the remaining layers we used blocks consisting of invertible Dense
Nets (i-DenseNet) (Perugachi-Diaz et al., 2021) followed SVD layer conditioned on the embedding.
For the i-DenseNet we rely on sinusoidal activations g(x) = sin(15 ∗ x)/15. Each i-DenseNet
has a depth of 3 and before each block we use an Activation Normalization layer. We enforce the
Lipschitz constant of the i-DenseNet to be 0.97.

DFNNs. The Divergence-Free Neural Networks do not directly provide access to the velocity v,
but only to the flux F = (ρv). Hence, calculating the velocity v = F /ρ in low-density regions
leads to numerical issues. To avoid this, we train DFNNs directly on the flux instead of the velocity.
Furthermore, we require non-negative densities, so we use the parameterization with subharmonic
functions discussed in Section 7.1 of Richter-Powell et al. (2022). As the predicted densities can
still be zero, we train the DFNNs on the MSE of the densities (instead of log densities).

PINNs. To facilitate training of the PINN, we use sinusoidal activation functions as presented by
(Sitzmann et al., 2020). We use a frequency multiplier of ω0 = 12 in the first layer. Collocation
points are sampled within the full domain, uniformly distributed in [0, 1.2]× Ω. Instead of a purely
random sampler, we rely on quasi-random low-discrepancy samples obtained via Sobol Sequences.
In each minibatch, 216 collocation points are sampled. The minimized PDE loss is L(t,x) =
||∂tρ(t,x) +∇ · (ρ(t,x)v(t,x))||2, averaged over the collocation points.

SLDA Relative and absolute tolerances of the solver during hyperparameter optimization were
10−3 and for the final run with the tuned hyperparameters 10−5. Lower tolerances during hyper-
parameter search were not feasible, as they significantly increased the runtime for the problem at

3https://optuna.org/

19

https://optuna.org/

hand. For stable dynamics, the hypernetworks provided by the code of Grathwohl et al. (2019) were
necessary. These hyper networks are conditioned on time and provide a network taking the space
coordinates as input, i.e. vΘ(t)(x) with Θ being the hyper network. Using instead fully connected
layers (that still fulfill the smoothness requirements) led in our experience to difficult dynamics for
the adaptive ODE solvers.

Boundary Conditions. For PINNs, SLDA, and DFNNs the boundary condition ρ(x)v(x)|δΩ = 0
is enforced via an additional penalty on points sampled at the boundary. For LFlows, the boundary
was enforced via a bijection to Ω \ δΩ.

Numerical Evaluation of Physical Consistency We compare the predicted density ρ̂(t,x) with
the numerical solution of the initial value problem uniquely defined by ρ̂(t0,x), v̂(t,x) and Eq. 3.
We obtain the numerical solution with an 8th order Dormand-Prince ODE solver with an absolute
and relative tolerance of 1e-5. We set t0 = 0. For the locations where we evaluate the sMAPE, we
consider 10 equidistant timesteps in [0.1, 1.2]. For each timestep, we first randomly sample locations
in (4, 4)d, and then we randomly subsample 2500 location with groundtruth densities larger than a
threshold of 0.1 in 2D or 0.01 in 3D. With this procedure we avoid regions with near-zero density.

Total Mass Regularization. We penalize the total mass of the system for all methods except
PINNs. For the LFlows and SLDA, we penalize the learnable normalization constant. For the
DFNNs, no equivalent to the normalization constant is available. We instead introduce the penalty
at points sampled on the domain [0, 1.2]× Ω. For PINNs additional regularization is not necessary.
This is due to the side effect of the PDE loss being numerically small for small densities, leading to
an automatic built-in penalty for large total mass.

Computational Resources. Each individual experiment for the synthetic data was run on individ-
ual NVIDIA TITAN X GPUs (12GB VRAM), using 20 CPU cores and 20GB RAM. To speed up
hyperparameter tuning, up to 8 experiments were run in parallel using a SLURM-based compute
cluster.

A.5 EXPERIMENT: DYNAMICAL OPTIMAL TRANSPORT

In Figure A.5 and Figure A.5 interpolated densities are shown for the 8Gaussians↔Circles dataset
and the Pinwheel↔8Gaussians dataset.

LF
lo
w

D
FN

N
D
is
cr
e
te

Figure A.7: Approximations of the 2D optimal transport map for the 8Gaussians↔Circles dataset
with LFlows, DFNNs, and a discrete reference.

A.5.1 EVALUATING THE INTEGRAL

For evaluating the integral required for the objective in Eq. 14, we reuse the code and method
provided by Richter-Powell et al. (2022). The integral is estimated via importance sampling, with
the sampling distribution q(t,x) = q(t)q(x). Samples in time are drawn uniformly with q(t) ∼

20

LF
lo
w

D
FN

N
D
is
cr
e
te

Figure A.8: Approximations of the 2D optimal transport map for the Pinwheel↔8Gaussians dataset
with LFlows, DFNNs, and a discrete reference.

U(t0, t1). Samples in space are drawn from a uniform mixture

q(x) =
1

3
pt0(x) +

1

3
pt1(x) +

1

3
UΩ(x) (56)

with UΩ being the uniform distribution on the domain.

A.5.2 DISCRETE ESTIMATE OF W2

For estimating the W 2
2 distance with a discrete reference method we rely on 50000 samples. In our

setting, more samples lead to convergence issues of the numerical solver.

As the discrete W 2
2 estimate depends on the number of samples n, we explore an increasing number

of samples and repeated runs. For each fixed n we repeat the estimate 10 times with different
seeds and visualize the resulting box plots in A.5.2. We note that the differences with increasing
sample size are comparatively small relative to the differences between the continuous methods in
Section 5.2.

10000 20000 30000 40000 50000
#samples

0.06

0.07

0.08

0.09

0.10

0.11

0.12

Di
sc

re
te

 W
2 2

Es
tim

at
e

Circles - Pinwheel

10000 20000 30000 40000 50000
#samples

0.22

0.23

0.24

0.25

0.26

0.27 Pinwheel - 8 Gaussians

10000 20000 30000 40000 50000
#samples

0.140

0.145

0.150

0.155

0.160

0.165

0.170 8 Gaussians - Circles

Figure A.9: Change of the discrete W 2
2 estimate based on increasing number of samples. Each

boxplot is based on 10 repeated runs with different seeds.

A.5.3 IMPLEMENTATION

LFlows. For LFlows we use 10 blocks of i-DenseNets, each preceded by an Activation Normal-
ization layer. Each i-DenseNet has a depth of 5 with sinusoidal activations g(x) = sin(15 ∗ x)/15.
We enforce the Lipschitz constant of the i-DenseNet to be 0.97. For the embedding of the time
condition we use a residual neural network with 1 hidden layer, swish activations, and 128 hidden
features. The dimension of the time embedding, i.e. the output of the embedding network, is of
dimension 10. The model was trained with the ADAM optimizer for 5000 iterations with a learning
rate of 2e-3 and 2048 data points per iteration.

21

DFNNs. For DFNNs we directly used the experiment code provided by Richter-Powell et al.
(2022). That is, the DFNNS are based on the parameterization with subharmonic functions dis-
cussed in Section 7.1 of Richter-Powell et al. (2022). The 128 mixtures of the subharmonic function
are parameterized with a 4 layer neural network with 96 hidden features and swish activations. A
fixed λ weight of 50 is set for the OT-penalty for all datasets. The DFNN is trained with the ADAM
optimizer and a learning rate of 1e-3 over 10 000 iterations with 256 data points per iteration.

Computational Resources. The experiment was run on individual NVIDIA TITAN X GPUs
(12GB VRAM), using 20 CPU cores and 20GB RAM.

A.6 EXPERIMENT: BIRD MIGRATION

About the data. The data provided by Nussbaumer et al. (2021) is originally based on weather
radar measurements made available by the European Operational Program for Exchange of Weather
Radar Information (EUMETNET/OPERA). The vertical profiles, i.e. density and velocity estimates
at different altitude levels, were provided by the European Network for the Radar surveillance of
Animal Movement (ENRAM), based on vol2bird4, an algorithm for preprocessing raw radar scans.
The raw data consists of volume scans from Doppler radars, measuring reflectivity and radial veloc-
ity of the surroundings. By filtering out biological and environmental scatters, it is possible to retain
scans that mostly contain bird movements. Based on the reflectivity and radial velocity, the average
bird density and velocity within a 15km radius is estimated for multiple altitude bins. For details
about this process, we refer to Dokter et al. (2011). The final density and velocity measurements we
use are openly available5.

Preprocessing. The positions of the radars are given in the WGS84 coordinate reference system.
We project it to the Cartesian reference system ETRS89-extended (EPSG:3035), effectively pro-
jecting longitude/latitude to x and y coordinates given in meters. As an additional preprocessing
step, we excluded velocities that were measured together with a near-zero density. To generate the
data set used in our experiment, we directly concatenated multiple nights and remove the daytime
during which no measurements are available. In the supplementary material we provide code for
downloading and preprocessing the data.

Numerical Evaluation of Physical Consistency We compare the predicted density ρ̂(t,x) with
the numerical solution of the initial value problem uniquely defined by ρ̂(t0,x), v̂(t,x) and Eq. 3.
The time of the earliest available datapoint within the three nights serves as t0. We evaluated the
error at a spatial equidistant grid of sidelength 50 in the xy dimension. The z coordinate is randomly
sampled for each of the grid entries. We evaluate the consistency loss at these xyz coordinates 10
time steps between the start and end of the three selected nights, and average the sMAPE over all
xyzt coordinates. For all models we use a 8th order Dormand-Prince ODE solver with an absolute
and relative tolerance of 1e-5, which is one order higher than the ODE solver used for SLDA. The
MLP has no z-component of the velocity, as no measurements of it are in the data. We thus set
this component of the MLP to zero for computing the numerical ODE solution. The other models
indirectly learn a z-component by enforcing the CE in 3D.

A.6.1 TRAINING AND ARCHITECTURE DETAILS

LFlows. As first layer of the LFlow we use a atanh bijection that constrains Ω to a rectangular
volume that is multiple times larger than the spatial extent of the radar positions. The following
layers consist of 10 blocks of invertible Dense Nets (i-DenseNet) (Perugachi-Diaz et al., 2021),
where we instead use sinusoidal activations g(x) = sin(10 ∗x)/10. Each block has a depth of 5 and
before each block we use an Activation Normalization layer. We enforce the Lipschitz constant of
the i-DenseNet to be 0.97. We use a 2 layer residual network with a width of 128 for embedding the
time before passing it to the i-DenseNet.

We initialized the log of the normalization constant ln(c) with 18.2 and set the weight of the total
mass penalty to 1e-3. We trained for 50 epochs with a minibatch size of 16384 using the ADAM

4https://github.com/adokter/vol2bird
5https://zenodo.org/record/4587338/

22

https://github.com/adokter/vol2bird
https://zenodo.org/record/4587338/

optimizer with a learning rate of 1e-2, a weight decay of 2e-3 and a cosine annealing learning rate
schedule.

SLDA. For the SLDA we represent the initial density with a grid of size 20 × 20 × 20. Values
in between mesh points are evaluated with bilinear interpolation. We parameterize the velocity
network with a hypernetwork as provided by the code of Grathwohl et al. (2019), similar to the
simulated fluid flow experiment. The network consists of 5 layers with 512 hidden features and
swish activations. We trained for 300 epochs with a minibatch size of 16384 using the ADAM
optimizer with a learning rate of 1e-3, a weight decay of 5e-3 and a cosine annealing learning rate
schedule.

DFNN. For the DFNN we use the parameterization for non-negative densities based on subhar-
monic functions (Section 7.1 Richter-Powell et al. (2022)). The model consists of 4 layers with
256 hidden features and Swish activations, which parameterize 64 mixture components for the sub-
harmonic function. We used a minibatch size of 2048 due to memory constraints. The model was
trained for 100 epochs with a cosine annealing learning rate schedule.

MLP. We trained a 10 layer residual neural network with ReLu activations, intermediate batch
normalization and 256 hidden features. The model was trained for 100 epochs with a minibatch
size of 16384 using the ADAM optimizer with a learning rate of 1e-3, a weight decay of 1e-3 and a
cosine annealing learning rate schedule.

PINN. For the PINN we use the same architecture as for the MLP, but with an additional PDE
loss. We use 100 000 collocation points sampled from a quasi-random Sobol sequence and weight
the PDE loss with 7e-4. The PINN was trained for 300 epochs with a minibatch size of 16384 using
the ADAM optimizer with a learning rate of 1e-2, a weight decay of 1e-2, and a cosine annealing
learning rate schedule

Computational Ressources. The experiment was run on an A100 GPU (40GB VRAM), using
20 CPUs and 30GB RAM. Repeated experiments were parallelized on a SLURM-based compute
cluster.

23

A.6.2 PREDICTIONS OF ALL MODELS

D
FN

N
S

LD
A

P
IN

N
M

LP
LF

lo
w

2018-04-07 00:00:00 2018-04-08 00:00:00

2018-04-08 00:00:002018-04-07 00:00:00

10

20

30

50

90

2018-04-08 00:00:002018-04-07 00:00:002018-04-06 00:00:00

2018-04-06 00:00:00

2018-04-06 00:00:00

2018-04-06 00:00:00 2018-04-07 00:00:00 2018-04-08 00:00:00

2018-04-06 00:00:00 2018-04-07 00:00:00 2018-04-08 00:00:00

Figure A.10: Predicted density and normalized velocity integrated over z-axis for all considered
models.

A.6.3 TOTAL MASS PENALTY

To motivate the total mass penalty we showcase its effect on bird migration predictions using LFlows
with varying penalty weights. The different predictions are shown in Figure A.11

24

Without any penalty, the network can freely explain the training data with large amounts of total
mass. This leads to significant and never observed densities outside of the observed region. However,
with an active total mass penalty effectively being a zero prior the network is instead encouraged
to decrease the total mass. The total mass penalty weight allows to explore this aspect of the ill-
posedness of the problem.

2018-04-08 00:00:00 2018-04-08 00:00:00

Without Penalty Penalty weight 1e-2
2018-04-08 00:00:00

Penalty weight 6e-2

Figure A.11: Predictions of the LFlow trained without (left) and with (right) total mass penalty.
While predictions at observed radar stations barely change, the total mass outside of the observed
region is significantly reduced.

The variation in predictions can be further summarized in a single visualization. Similar to before,
we train different models for varying total mass penalty weights. We calculate the relative standard
deviation of the predicted flux (i.e. the product of density and velocity) at each spatial location for a
fixed time. Areas with higher relative standard deviations correspond to areas with largely varying
explanations. Figure A.12 shows the resulting map for a single time frame for the bird migration
setting. The areas which are never observed and are completely dependent on a prior show the
highest variation. Areas closer to the train radar stations (light green points) have a lower variation.

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
ce

rta
in

ty
 (s

td
/m

ea
n)

Figure A.12: Relative standard deviation of predicted flux with varying mass penalties.

25

	Introduction
	Related Work
	Lagrangian Flow Networks
	Flow Maps and the Continuity Equation
	Lagrangian Flow Networks

	Implementation
	Experiments
	Simulated Fluid Flow
	Dynamical Optimal Transport
	Modeling Bird Migration

	Conclusion
	Reproducibility Statement
	Appendix
	Theoretical Background
	Time Dependent Bijections and the Continuity Equation
	The flow associated to a Lipschitz vector field
	Velocities from 1-Parameter Groups of Diffeomorphism
	The continuity equation

	Calculating for the Density and Velocity
	Calculating the Density
	Calculating the Velocity without Inverting the Flow.

	Implementation
	Experiment: Simulated Fluid Flow
	Training and Architecture details

	Experiment: Dynamical Optimal Transport
	Evaluating the Integral
	Discrete estimate of W2
	Implementation

	Experiment: Bird Migration
	Training and Architecture details
	Predictions of all models
	Total Mass Penalty

