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Abstract

Molecular Relational Learning (MRL) aims to understand interactions between
molecular pairs, playing a critical role in advancing biochemical research. With the
recent development of large language models (LLMs), a growing number of studies
have explored the integration of MRL with LLMs and achieved promising results.
However, the increasing availability of diverse LLMs and molecular structure
encoders has significantly expanded the model space, presenting major challenges
for benchmarking. Currently, there is no LLM framework that supports both
flexible molecular input formats and dynamic architectural switching. To address
these challenges, reduce redundant coding, and ensure fair model comparison, we
propose ModulLM, a framework designed to support flexible LLM-based model
construction and diverse molecular representations. ModuLLM provides a rich
suite of modular components, including 8 types of 2D molecular graph encoders,
11 types of 3D molecular conformation encoders, 7 types of interaction layers,
and 7 mainstream LLM backbones. Owing to its highly flexible model assembly
mechanism, ModuLLM enables the dynamic construction of over 50,000 distinct
model configurations. In addition, we provide comprehensive results to demonstrate
the effectiveness of ModuLLM in supporting LLM-based MRL tasks. ModuLM is
available at https://github.com/ssjjjhw/ModulM.

1 Introduction

Molecular Relational Learning (MRL) [36], which aims to understand the interactions between
molecular pairs, has garnered growing attention due to its wide-ranging applications across various
scientific domains [55]. For example, drug-drug interactions (DDIs) are vital for understanding
the effects of concurrent drug use, which can inform strategies to prevent adverse drug reactions
and ensure patient safety [42], while solute-solvent interactions (SSIs) are fundamental to solution
chemistry and are pivotal in the design and optimization of chemical processes [66, 8, 10]. However,
the exhaustive experimental validation of these interactions is notoriously time-consuming and costly.

In recent years, large language models (LLMs) have emerged as a promising new paradigm in MRL
research due to their powerful capabilities in knowledge integration and reasoning. Compared with
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traditional methods, LLMs can more efficiently process and understand complex interactions between
molecules, significantly improving modeling performance and generalizability. A growing body
of research has focused on LLM-based MRL frameworks [52, 29, 17], leveraging the strengths of
LLMs to achieve strong results on MRL tasks. For instance, ReactionT5[57] proposed a text-based
pretrained LLLM tailored for MRL tasks, while MolTC[17] further advanced this line of research by
integrating multimodal data and incorporating 2D molecular graphs for improved performance. These
developments highlight the research value and application potential of LLMs in MRL. However, with
the emergence of an increasing number of encoding methods and backbone models [51, 28, 70, 87,
76, 64, 65, 24], it is now possible to adopt more flexible strategies to recombine components and
build more novel model architectures. However, this flexibility introduces new challenges for the
benchmarking and evaluation of LLM-based MRL models.

Lack of diverse input support: Molecular structures can typically be represented in various forms,
such as 1D SMILES strings, 2D molecular graphs, and 3D molecular conformations; however, most
existing models support only a single representation modality, commonly 1D SMILES[33, 22, 75]
or 2D graphs[20, 59, 9, 12], which limits their ability to fully capture the complexity of molecular
interactions and may result in the loss of critical structural information. In the field of LLMs, MRL
models that accept 3D molecular structure inputs remain extremely rare, despite the fact that specific
3D conformations are often essential for accurately modeling chemical phenomena, for instance, in
small-molecule binding to target proteins[72]. These issues highlight the importance of a unified
framework that can accommodate 1D, 2D, and 3D molecular inputs to enable more comprehensive,
flexible, and accurate molecular relational learning across a wide range of task scenarios.

Lack of Flexible Architectures: Current LLM-based MRL models often adopt relatively rigid
architectures. For example, ReactionT5 [57] uses a unified model to encode both SMILES sequences
and molecular property descriptions, while MoITC [17] employs graph neural networks (GNNs) to
encode molecular graphs. Although these methods achieve performance improvements, they are still
somewhat limited by their encoding strategies. In the non-LLM MRL domain, many more effective
encoding strategies have been developed, such as MMGNN [11], which employs interpretable GNNs
to extract key subgraphs for solvation free energy prediction, and Uni-Mol [84], which introduces
pre-trained SE(3) Transformer models specifically designed for molecular data. However, integrating
these encoding methods into existing LLM frameworks remains a challenge. Furthermore, most
current LLM-based models overlook the modeling of molecular interaction features. These challenges
highlight the importance of developing a model framework that can seamlessly combine diverse
encoding modules while effectively incorporating molecular interaction information.

To this end, we propose ModuLLM, a unified and extensible framework designed to overcome
the limitations of existing LLM-based MRL approaches. ModuLM provides a highly flexible
model construction mechanism that supports a wide range of molecular input formats, multimodal
integration strategies, and diverse prompt designs. The framework accepts molecular representations
in the form of 1D SMILES, 2D molecular graphs and 3D conformations. It includes 8 types of
2D molecular graph encoders, 11 types of molecular conformation encoders, 7 types of interaction
feature encoders, and 7 mainstream LLM backbones, along with specially designed prompt templates
for integrating different types of molecular features. To enhance usability and extensibility, ModuLM
adopts a modular interface design that allows users to flexibly assemble and extend models, supports
incremental pretraining, and is capable of handling complex molecular interaction modeling tasks.
ModulLM can generate over 50,000 distinct model configurations. We conduct comprehensive
benchmark experiments on tasks such as DDI, SSI and CSI. The results demonstrate that ModuLM
performs remarkably well in constructing, evaluating, and comparing LLM-based MRL models.
These findings highlight ModuLLM’s strong potential to advance the development of MRL models
and provide valuable insights into molecular interaction mechanisms.

2 Related Work

Molecular Relational Learning: MRL is critical for drug research, with machine learning offering
a scalable alternative to costly experimental validation [37]. Early methods focused on GNNs [33,
82, 78, 18, 71], such as Nyamabo et al.’s substructure-level interaction model using GAT and co-
attention [83], and Lee et al.’s CGIB [36], which applies the information bottleneck to extract key
substructures. LLM-based methods have gained momentum. For instance, ReactionT5 [53] enhances
molecular understanding by integrating chemical structures with natural language. MolTC [17]



further advances this direction by combining 2D molecular graph features with chain-of-thought
reasoning to support complex molecular inference.

LLMs in the Molecular Domain: LLMs have been widely applied in 1D, 2D, and 3D molecular
pattern learning [5]. For 1D, methods like MolT5 [14] and KV-PLM [77] tokenize SMILES strings for
representation learning. In 2D, approaches such as Text2Mol [16], MolCA [45], and DrugChat [40]
integrate molecular graphs with text encoders or LLMs. For 3D, MolLM [62] and 3D-MoLM [39]
incorporate spatial relationships via attention mechanisms and 3D encoders. In addition, LLMs have
also found applications in MRL, such as ReactionT5 [57] and MolTC [17], which utilize multimodal
data, including molecular graphs (2D), chemical properties, and SMILES (1D), for MRL.

Deep Learning Frameworks Specialized for MRL: DeepPurpose is a user-friendly deep learning
library for drug-target interaction prediction. It supports customized model training with 15 compound
and protein encoders and over 50 neural architectures [27]. FlexMol is another toolkit designed
for MRL, offering a variety of encoders and interaction layers that support sequence-based and
graph-based representations of drugs and proteins [61].

3 ModulLM
In this section, we introduce ModuLM following the model training workflow for LLM-based MRL.

3.1 Framework
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Figure 1: Overview of the ModuLM framework.

ModulM is an LLM framework designed for MRL, with the overall architecture illustrated in
Figure 1. It supports three types of molecular text inputs and accommodates a variety of molecular
inputs across 1D, 2D, and 3D modalities. The framework provides eight 2D molecular graph encoders,
eleven 3D molecular conformation encoders, and incorporates seven feature interaction designs. It
also supports evaluation across multiple task types.

3.2 Post Pretraining

To strengthen the domain-specific capabilities of LLMs in chemistry, we begin with incremental
pretraining to better adapt them for MRL tasks. In ModuLM, we conduct a survey of various



Table 1: Text settings for different pretraining methods.

Molecular Interaction-based Pretraining

The first molecule has a SMILES representation of <SMILESO0>, which suggests certain structural
characteristics and chemical functionalities. Based on its structure, it may exhibit the property
[Property0], such as high solubility, bioactivity, or specific binding affinity. On the other hand,
the second molecule is represented by the SMILES string <SMILES1>, and analysis of its structure
indicates it may exhibit the property [Property1], potentially contributing to its pharmacokinetic
behavior or molecular interaction profile.

Substructure-based Pretraining

The molecule has a SMILES representation of <SMTTLESO0>, which encodes its atomic connectivity
and overall molecular structure. It contains notable substructures such as <substructe0> and
<substructel>, both of which are known to play significant roles in determining the molecule’s
physicochemical and biological properties. Based on the presence of these functional groups or struc-
tural motifs, the molecule is likely to exhibit the properties [Property0] and [Propertyl],
which may influence its reactivity, solubility, or interaction with biological targets.

authoritative biochemical databases, such as PubChem' and DrugBank [32], collecting a large
amount of molecular property description texts. We then provide three distinct pretraining strategies:
Molecular Interaction-based pretraining, Substructure-based pretraining and Structure Similarity-
guided Grouping pretraining.

Molecular Interaction-based Pretraining is based on the pretraining method proposed by
MoITC [17]. Its pretraining text setup is shown in the Table 1. Considering that molecular in-
teraction tasks typically involve two different molecules, MolTC integrates the textual representations
of both molecules and inputs them jointly during pretraining, enabling the LLLM to develop prior
knowledge in the form of molecular pairs.

Substructure-based Pretraining adopts a pretraining text setup as shown in the Table 1, enabling the
LLM to learn more fine-grained information within molecules. This allows the LLM to make more
accurate judgments based on the potential substructures of different molecules, thereby enhancing its
generalization ability when encountering previously unseen molecules and improving performance
on downstream tasks.

Structure Similarity-guided Grouping Pretraining combines substructure-based pretraining with
a grouping strategy based on structural similarity. Molecules with similar structures are grouped
together and input as a group during pretraining, thereby enhancing the LLM’s understanding of this
class of molecules. This method shares the same prompt configuration as the substructure-based
pretraining approach, differing in the ordering of the input.

It is worth noting that if you use the Q-former approach for aligning textual and molecular data,
additional pretraining will be required. The specific pretraining process can be selected based on your
needs. Here, we provide MoITC’s [17] methods for aligning molecules with text and molecular data.

3.3 Fine-tuning
3.3.1 Input Data

To transform raw molecules into meaningful representations, ModuLM first performs preprocessing
followed by encoding. The preprocessing stage includes tasks such as tokenization, normalization,
feature extraction, fingerprint generation, molecular graph construction, and molecular conformation
generation. The encoding stage is responsible for dynamically constructing the input features for the
LLM. In this stage, the preprocessed data is processed to generate embeddings that can be utilized by
subsequent network layers. The following will present the specific procedures and methods used by
ModulLM to encode different types of data.

1D Representations of Molecules: The commonly used molecular representations for MRL in
current LLMs are typically SMILES and SelfIES [35]. However, SMILES representations may have
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difficulties clearly expressing certain molecular structures. Therefore, for MRL tasks, we recommend
using SelfIES. Nonetheless, to provide a more comprehensive benchmarking framework for previous
LLM-based approaches, we include both molecular text encoding methods here, and additionally
incorporate SMARTS. For 1D representations of molecules, the encoding method depends on the
specific LLM used.

2D Molecular Graph Representation: Since 1D molecular representations often fail to capture the
structural information of molecules, it is common in MRL tasks to incorporate multimodal molecular
structure information. In non-LLM research areas, molecular graph representation is the most widely
used approach. In most tasks, molecular graphs help models better understand molecular structures,
thereby enhancing MRL performance. We provide a variety of methods as shown in the Table 2.

3D Molecular Conformation Representation: In most MRL tasks, 2D molecular graphs are suffi-
cient for the model to make effective judgments. However, in certain specialized tasks, it is necessary
to incorporate the 3D spatial information of molecules to accurately determine intermolecular interac-
tions. This is an aspect that current LLM-based MRL models have largely overlooked. In ModuLM,
we address this limitation by providing various 3D structure encoding methods to support more
advanced molecular relation learning. The encoding methods are listed in the Table 2.

Interaction: In current LLM-based MRL model designs, the explicit modeling of molecular interac-
tion relationships is often overlooked. In ModuLLM, we address this issue by introducing specially
designed prompts and interaction layers to incorporate interaction information into the LLM. The
Interaction Layer is another key building block of the MRL model. These layers serve two main func-
tions: capturing and modeling the relationships between different molecular entities, and integrating
multiple embeddings of the same entity to form a more comprehensive feature representation. The
Interaction Layer can accept encoded inputs from different molecules, enabling the construction of
more complex model architectures. In ModuLLM, the interaction designs we provide are shown in
Table 2.

Table 2: Encoding methods for different data formats
Encoder Type Methods

2D Graph GCN [34], MPNN [22], GAT [68], NeuralFP [13], AttentiveFP
[73], GIN [74], GraphSAGE[25], CoATGIN[80]

3D Conformation EGNN [58], 3D-GeoFormer [86], SE3Transformer [19], PaiNN
[59], GVP [30], GearNet [81], DimeNet++ [21], SchNet [60],
SphereNet [44], G-SphereNet[46], Uni-mol [85]

Interaction Bilinear Attention[2], Self Attention[67], Cross Attention[54],
Highway[87], Gated Fusion[47], Bilinear Fusion[41], Mean

3.3.2 Alignment

Since data from different modalities typically exist in distinct semantic spaces, it is necessary to
perform alignment before feeding them into the LLM. Currently, two common approaches are used:
employing a lightweight MLP [43] or using a Q-former [38]. In the ModuLM framework we provide,
both alignment methods are supported. It is worth noting that when using a Q-former, it is typically
involved during the pretraining stage to enable better alignment performance.

3.3.3 Backbone

Existing LLM-based MRL models often adopt different backbone architectures, and there has been
no systematic investigation into the MRL performance across different LLM backbones. In ModuLM,
we provide a streamlined method for switching backbones. We have surveyed and integrated a range
of mainstream LLMs and offer simple interfaces for replacement, enabling easier comparison of
performance differences across various types and scales of LLMs under a unified experimental setup.
Here, we provide two types of prompts: direct inference and chain-of-thought-based reasoning. The
specific prompt designs are detailed in the Appendix A.3.5.



3.4 Evaluation Metrics

ModulLM supports multiple default metrics, aligning with the TDC standard for molecular relational
learning[26]. Users can specify the metrics in the Trainer for early stopping and testing. These
metrics include various regression metrics (Mean Squared Error (MSE), Root-Mean Squared Error
(RMSE), Mean Absolute Error (MAE), Coefficient of Determination (R?), Pearson Correlation
Coefficient (PCC), Spearman Correlation Coefficient), binary classification metrics (Area Under
Receiver Operating Characteristic Curve (AUC-ROC), Area Under the Precision-Recall Curve (PR-
AUC), Range LogAUC, Accuracy Metrics, Precision, Recall, F1 Score.

3.5 Supporting Datasets

ModulLM is compatible with all MRL datasets that conform to our specified format. These datasets
typically consist of three components: molecular entity one, molecular entity two, and a label. We
provide utility functions to facilitate the loading of datasets in this format. In addition, ModuLM
includes a wide range of built-in datasets from various domains, such as Drugbank (Version 5.0.3),
ZhangDDI [79], ChChMiner [88], DeepDDI [56], TWOSIDES [63], Chromophore [31], MNSol
[48], CompSol [50], Abraham [23], CombiSolv [69], FreeSolv [49], and CombiSolv-QM [69]. For
more details, please refer to the Appendix A.2.

4 Experiments

We conduct validation experiments on MRL tasks using ModuLLM to demonstrate the framework’s
capability in supporting a wide range of experiments, comparisons, and analyses. The following
sections present the results for DDI tasks, showcasing the impact of different inputs and encoders on
the performance of LLMs in MRL. More experimental details are provided in the Appendix A.5.

4.1 Experimental Setup

Table 3: Experimental Settings on DDI Datasets

Experiment No. Backbone Encoder Interaction Input Feature

1.1 Galactica-1.3B - - Mg

1.2 Galactica-1.3B GIN - ms +myg
1.3 Galactica-1.3B GIN Cross Attention ms +my
1.4 Galactica-1.3B Uni-mol - ms + me
1.5 Galactica-6.7B MPNN Gated Fusion mg +my
1.6 DeepSeek-1.5B - - mg

1.7 DeepSeek-1.5B GIN - mg +my
1.8 DeepSeek-1.5B Uni-mol - ms + me
1.9 DeepSeek-7B 3D-GeoFormer Highway mg + me
1.10 DeepSeek-14B Uni-mol - ms + Mme
1.11 DeepSeek-14B GAT Self Attention ms + my
1.12 LLaMA-1B - - Mg

1.13 LLaMA-1B CoATGIN - ms +my
1.14 LLaMA-1B EGNN Gated Fusion ms + me
1.15 LLaMA-13B SchNet Bilinear Attention ms + Me

Note: m, = molecular sequence, m, = molecular graph, m. = molecular conformation. ’-’
indicates that no method is applied.

Given the flexibility of ModuLM, which enables a large number of potential model combinations, the
goal of this section is not to exhaustively explore the entire model space. Instead, we select several
model combinations as examples to demonstrate ModuLM’s robust capabilities in constructing
and evaluating diverse model architectures across various datasets and performance metrics. It is
worth noting that for different backbones, we adopt a unified pretraining strategy. The experimental
backbones presented in the main text are LLMs pretrained based on the Structure Similarity-guided
Grouping pretraining approach.



During the evaluation phase on downstream tasks, we utilized the same datasets used in the MolTC
framework [17] for evaluating MRL tasks, including DrugBank (Version 5.0.3), ZhangDDI [79],
ChChMiner [88], DeepDDI [56], TWOSIDES [63], Chromophore [31], MNSol [48], CompSol
[50], Abraham [23], CombiSolv [69], FreeSolv [49], and CombiSolv-QM [69]. We further process
these datasets using RDKit by generating multiple conformations for each molecule, aiming to
explore the performance of ModuLLM on 3D conformation-based LLM-driven MRL tasks. Based on
ModulLM, we construct 15 models, as detailed in Table 3, and compare them with five state-of-the-art
LLM-based models for MRL tasks: Galactica, ChemT5 [6], MolT5, MolCA [45], and MolTC [17].

For the DDI, SSI and CSI datasets, we randomly split the data into training, validation, and testing
sets in a ratio of 7:2:1. Each experiment was repeated five times to mitigate the effects of randomness,
and the average results were reported. All experiments were conducted using eight NVIDIA A100
80G GPUs. For more specific training details, please refer to the Appendix A.5.

4.2 Experimental Results and Analysis

Table 4: Performance on DDI Datasets

Experiment AUC-ROC Accuracy AUC-ROC Accuracy AUC-ROC Accuracy
(ChChMiner) (ChChMiner) (ZhangDDI) (ZhangDDI) (DeepDDI) (DeepDDI)

Chem T5[7]  0.867 &+ 0.012 0.814 £ 0.009 0.889 £ 0.017 0.751 £ 0.021 0.856 £ 0.012 0.784 £0.013
MoICA[45]  0.924 £ 0.006 0.901 £ 0.009 0.895 £ 0.006 0.745 £ 0.010 0.878 £0.014 0.841 £0.015

MolT5[15] 0.914 + 0.019 0.862 + 0.022 0.901 £ 0.011 0.802 £ 0.015 0.907 £0.014 0.870 £0.016
MoITC[17] 0.964 £ 0.008 0.957 £ 0.006 0.941 + 0.006 0.896 £ 0.008 0.977 £ 0.013 0.956 £ 0.011
1.1 0.933 £ 0.011 0.924 + 0.009 0.912 £ 0.008 0.854 £ 0.004 0.899 £ 0.010 0.855 £ 0.009
12 0.956 + 0.008 0.943 + 0.009 0.930 + 0.006 0.872 £ 0.009 0.924 + 0.008 0.887 £ 0.008
13 0.960 + 0.010 0.954 + 0.006 0.933 £ 0.007 0.891 + 0.004 0.939 £ 0.007 0.904 £ 0.008
1.4 0.955 + 0.005 0.949 + 0.008 0.936 £ 0.014 0.901 £ 0.010 0.956 £ 0.008 0.919 £ 0.007
1.5 0.940 + 0.009 0.932 + 0.008 0.921 £ 0.008 0.866 + 0.005 0.948 £ 0.009 0.912 £ 0.006
1.6 0.936 £ 0.010 0.930 £ 0.011 0.920 + 0.009 0.860 + 0.008 0.906 + 0.008 0.872 £ 0.008
1.7 0.957 + 0.008 0.953 £ 0.010 0.934 + 0.006 0.889 + 0.004 0.958 £ 0.007 0.942 £ 0.007
1.8 0.966 + 0.007 0.964 + 0.005 0.938 £ 0.005 0.907 + 0.006 0.972 £ 0.009 0.959 £ 0.010
1.9 0.944 £ 0.010 0.935 £ 0.009 0.925 + 0.005 0.870 £ 0.003 0.955 £ 0.008 0.930 £ 0.007
1.10 0.931 £ 0.012 0.918 £ 0.010 0.916 + 0.009 0.861 £ 0.011 0.943 £0.010 0.915 £ 0.008
1.11 0.935 + 0.007 0.921 £0.012 0.906 + 0.009 0.855 £ 0.008 0.936 £ 0.009 0.908 £ 0.007
1.12 0.925 +0.013 0.911 £ 0.011 0.901 + 0.008 0.852 £ 0.006 0.895 £0.010 0.850 £ 0.009
1.13 0.945 £ 0.009 0.937 £ 0.008 0.925 £ 0.007 0.870 £ 0.006 0.935 £ 0.008 0.904 £ 0.008
1.14 0.951 + 0.007 0.946 + 0.011 0.928 £ 0.004 0.875 £ 0.005 0.946 £ 0.007 0.918 £ 0.006
1.15 0.915 + 0.016 0.896 + 0.013 0.913 + 0.008 0.860 + 0.002 0.928 £ 0.011 0.897 £ 0.008

Table 5: Performance on SSI Datasets

Experiment MAE RMSE MAE RMSE MAE RMSE
(FreeSolv) (FreeSolv) (CompSol) (CompSol) (CombiSolv) (CombiSolv)

Chem T5[7]  0.923 £ 0.022 1.511 4+ 0.043 0.611 £ 0.017 0.766 £ 0.032 0.840 £ 0.040 1.294 4+ 0.043
MolICA[45]  0.761 £ 0.034 1.303 & 0.039 0.505 + 0.036 0.726 £ 0.040 0.771 £ 0.033 1.130 + 0.027
MolT5[15] 0.733 + 0.047 1.135 £ 0.059 0.496 + 0.028 0.708 £ 0.020 0.677 £ 0.024 1.066 + 0.027
MolTC[17] 0.533 £ 0.018 0.726 + 0.022 0.244 £ 0.018 0.356 £ 0.022 0.237 £ 0.019 0.465 £ 0.022

0.710 £ 0.021 1.120 £ 0.030 0.472 £ 0.024 0.665 £ 0.028 0.615 £ 0.026 0.984 £ 0.032
0.570 £ 0.020 0.910 £ 0.028 0.384 £ 0.022 0.540 £ 0.025 0.568 £ 0.023 0.930 £ 0.030
0.556 £ 0.018 0.840 £ 0.025 0.366 + 0.021 0.522 + 0.024 0.487 £ 0.021 0.820 + 0.027
0.534 £0.017 0.808 £ 0.024 0.347 £ 0.020 0.501 £ 0.023 0.447 £ 0.020 0.780 £ 0.026
0.580 £ 0.016 0.972 £ 0.023 0.403 £ 0.019 0.575 £ 0.021 0.579 £0.019 0.898 £ 0.025
0.685 £ 0.015 1.086 + 0.022 0.451 £ 0.018 0.643 £ 0.020 0.602 £+ 0.018 0.945 £ 0.024
0.550 + 0.014 0.749 + 0.021 0.271 £ 0.017 0.415 £ 0.019 0.289 £ 0.017 0.515 £ 0.023
0.510 £ 0.013 0.698 + 0.020 0.191 £ 0.016 0.298 + 0.018 0.190 + 0.016 0.388 + 0.022
0.555 +0.014 0.825 + 0.021 0.335 £ 0.017 0.490 £ 0.019 0.393 £ 0.017 0.595 £ 0.023
0.605 + 0.015 0.850 + 0.022 0.443 £ 0.018 0.598 £ 0.020 0.548 £ 0.018 0.864 + 0.024
0.590 + 0.016 0.876 + 0.023 0.458 £ 0.019 0.601 £ 0.021 0.556 £ 0.019 0.839 £ 0.025
0.745 + 0.017 1.091 £ 0.024 0.514 £ 0.020 0.692 £ 0.022 0.687 £ 0.020 1.008 + 0.026
0.605 + 0.016 0.880 + 0.023 0.374 £ 0.019 0.530 £ 0.021 0.538 £0.019 0.820 £ 0.025
0.580 + 0.015 0.887 £ 0.022 0.360 £ 0.018 0.515 £ 0.020 0.460 £ 0.018 0.790 £ 0.024
0.630 + 0.018 0.910 £ 0.025 0.450 £ 0.021 0.633 £ 0.023 0.567 £ 0.021 0.892 £ 0.027
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Table 4 and Table 5 show the experimental results of commonly used MRL LLMs, as well as their
performance under our experimental settings. It is worth noting that in our experimental setup, we
adopt a direct inference approach using LLMs without employing chain-of-thought reasoning. In
our setup, we design models with different backbones, input formats, and encoders. Due to space
limitations, additional experimental results are presented in the Appendix A.5.6.



Impact of Input Data and Encoders: We use the settings {1.1, 1.2, 1.4}, {1.6, 1.7, 1.8}, and {1.12,
1.13} to evaluate ModuLM’s ability to analyze and integrate different inputs and encoder layers
within LLMs. The results in the table indicate that integrating multimodal information, such as 2D
molecular graphs and 3D molecular conformations, can indeed enhance model performance. Notably,
models that incorporate 3D molecular conformation information achieve the best results.

Impact of Interaction Layers: We use the configurations {1.3, 1.5, 1.9, 1.11, 1.14, 1.15} to evaluate
ModulLM’s ability to analyze the effect of feature interaction layers. We first conduct experiments
with various non-interaction designs. The analysis shows that adding interaction layers consistently
improves model performance to some extent. This confirms the importance of interaction layers in
LLM-based MRL models. However, existing LLM comparisons generally ignore multi-molecular
interaction information. ModuLM enables multi-dimensional analysis, which helps better assess the
impact of different types of multimodal information on model performance.

Impact of Different Backbones: Existing LLM-based MRL tasks generally lack systematic evalu-
ation across different backbones. However, thoroughly testing LLMs under various experimental
configurations requires significant time and resources. ModuLLM offers a framework for efficient and
rapid evaluation. As shown in Table 4 and Table 5, we conduct experiments using different backbones.
Among them, models from the DeepSeek series often achieve better performance. Interestingly, our
results reveal that larger model sizes do not necessarily lead to better performance in MRL tasks. This
may be because larger LLMs possess stronger generalization ability, which can limit task-specific
adaptation during fine-tuning. In contrast, smaller LLMs adapt better during fine-tuning, leading to
stronger task specialization in MRL scenarios.

4.3 Custom Model Design and Evaluation

This section demonstrates how users can leverage ModuLM to extend, construct, and analyze more
complex models. Figure 2 presents an overview of the newly proposed model architecture. This
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Figure 2: An overview of the custom model designed using ModuLM.

design builds upon the best-performing configuration identified in Experiment 1.8, which utilizes 3D
molecular conformations, employs Uni-Mol as the encoder, and adopts DeepSeek-1.5B as the LLM
backbone. In this enhanced version, we further refined the encoder and the dual-molecule interaction
mechanism, and incorporated CoT prompting strategy to boost the model’s reasoning capabilities.

To simulate practical scenarios in which users may wish to combine predefined encoders with custom
modules, we reimplement the molecular encoder as a user-defined component and integrate it with
other existing encoder modules to construct a complete, functional model. Specifically, we redesign
the representation of atom-level data encoded by Uni-Mol by calculating the attention weights of each



atom to all other atoms within the conformation. These weights are then used to reaggregate the atom
features, and the mean of the weighted features serves as the new conformation-level representation.
The full model construction process based on ModulLM is detailed in Appendix A.4.

We retained the experimental settings described in Section 4.1 and conducted ablation studies to reflect
real-world use cases of ModuLLM. In these experiments, w/o M-Encoder refers to the exclusion of the
customized encoder, w/o Interaction indicates the removal of the molecule interaction design, and
w/o CoT represents the absence of the chain-of-thought reasoning mechanism. The full experimental
results are reported in Table 6, while the outcomes of the ablation studies are summarized in Table 7.

Table 6: Performance of Custom Model on DDI and SSI Datasets

Experiment Accuracy Accuracy Accuracy RMSE RMSE RMSE
(ChChMiner) (ZhangDDI) (DeepDDI) (FreeSolv) (CompSol) (CombiSolv)
1.7 0.953 £ 0.010 0.889 £ 0.004 0.942 £ 0.007 0.749 £ 0.021 0.415 £ 0.019 0.515 £0.023
1.8 0.964 + 0.005 0.907 £ 0.006 0.959 £+ 0.010 0.698 + 0.020 0.298 £ 0.018 0.388 £+ 0.022

Custom Model ~ 0.968 + 0.006 0.911 £ 0.006 0.964 + 0.008 0.680 + 0.019 0.288 + 0.013 0.359 + 0.013

Table 7: Results of the Ablation Study on DDI and SSI Datasets

Experiment Accuracy Accuracy Accuracy RMSE RMSE RMSE
(ChChMiner) (ZhangDDI) (DeepDDI) (FreeSolv) (CompSol) (CombiSolv)

w/o M-Encoder  0.962 & 0.007 0.905 £ 0.005 0.959 + 0.007 0.700 £ 0.019 0.299 £ 0.017 0.370 £ 0.020
w/o Interaction ~ 0.955 & 0.008 0.896 + 0.006 0.950 + 0.007 0.705 £ 0.018 0.317 £0.016 0.388 £+ 0.019
w/o CoT 0.959 £ 0.006 0.901 £ 0.006 0.956 + 0.008 0.732 £ 0.020 0.335 £0.018 0.382 £ 0.021
Full Model 0.968 + 0.006 0.911 £ 0.006 0.964 + 0.008 0.680 + 0.019 0.288 + 0.013 0.359 + 0.013

Through the above experiments, we validated ModuLM’s strong capability in supporting user-defined
models. Users can define custom encoders following our provided protocol and flexibly integrate
them with other encoders and interaction layers as modular components. The customized model
involves a more complex configuration, including user-defined blocks and additional operations such
as stacking and flattening the outputs of ModuLM components. Moreover, with ModuLM’s dynamic
model construction mechanism, users can easily adjust the model structure to perform ablation
studies. As shown in Table 6 both the CoT reasoning prompt and the interaction layer contribute to
performance improvements. Additionally, our custom encoder module, which incorporates internal
interaction mechanisms, also enhances model performance.

5 Conclusion

We propose ModulLM, a framework that supports the dynamic construction of LLM-based MRL
models to address benchmarking challenges in LLM-driven molecular relational learning. ModuLM
accommodates multiple molecular input formats and enables the flexible assembly of diverse model
architectures, facilitating robust and scalable experimentation. The framework simplifies model
development and standardizes the evaluation process across different architectures, ensuring fair
and consistent benchmarking. By providing a flexible and modular platform, ModuLLM not only
advances research in the MRL field but also lays the foundation for cross-disciplinary collaboration
and innovation, with broad applications in areas such as drug design and molecular interaction
analysis, helping researchers accelerate critical biomedical discoveries.

Limitations: The benchmark experiments presented in this paper demonstrate the capabilities of
the ModuLM framework in constructing and comparing various model architectures, yet they do not
cover all possible model combinations. Our primary goal is to highlight ModuLM’s advantages in
enabling flexible model construction and efficient model comparison, showcasing its adaptability and
effectiveness across diverse model architectures. While the current experiments provide valuable
insights into the functionality and potential of the framework, a comprehensive exploration of all
possible model combinations is beyond the scope of this study and is intended as a key direction
for future research. We encourage the research community to further investigate the performance of
different configurations using our framework, thus promoting the diversity and innovation of model
architectures.

Future Work: In the future, we will continue to maintain and expand the components within the
ModulLM framework to further enhance its flexibility and applicability. Specifically, we will focus
on introducing additional types of encoders, interaction layers, and evaluation metrics, while also



expanding support for a broader range of LLMs to improve the generalizability and scalability of the
framework. At the same time, we will deepen ModuLM’s application in molecular relational learning
tasks, particularly in areas such as drug discovery and protein interaction analysis. We expect that
through continuous iteration and optimization, ModuLM will become a powerful tool for advancing
molecular relational learning and interdisciplinary research, providing flexible and efficient technical
support for future scientific endeavors.
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A Appendix

A.1 General Information

A.1.1 Links

The code for ModulLM is currently available in our code repository https://github.com/
ssjjjhw/ModulM. The repository provides reproduction scripts for the best-performing model,
and if you wish to reproduce other experiments conducted in this paper, please refer to the Ap-
pendix A 4.

A.1.2 Licenses

The ModulLM is under the CC BY 4.0. We, the authors, bear all responsibility in case of violation of
rights.

A.2 Details of Datasets

In ModuLLM, we provide diverse datasets for DDI, SSI, and CSI tasks to comprehensively evaluate
ModuLM’s flexibility and generalizability. An overview of the datasets is provided in Table 8.

Table 8: Data statistics.

Task Dataset gt G? Pairs
ZhangDDI 548 548 48,548
ChChMiner 1322 1322 48,514
DDI DeepDDI - - 192,284
TWOSIDES 555 555 3,576,513
MNSol 372 86 2,275
FreeSolv 560 1 560
SST CompSol 442 259 3,548
Abraham 1038 122 6,091
CombiSolv 1,368 291 10,145
CombiSolv-QM 11,029 284 1,000,000
CSI Chromophore 7,016 365 20,236

ZhangDDI [79]. This dataset consists of 548 drugs with 48,548 labeled drug—drug interactions
(DDIs). It integrates multiple drug similarity measures, such as chemical structure and target-based
similarities, to enable similarity-aware DDI prediction. Due to its comprehensive annotation and focus
on similarity information, ZhangDDI is widely used as a benchmark for evaluating similarity-based
computational methods in drug interaction prediction.

ChChMiner [88]. ChChMiner provides a curated collection of 1,322 drugs and 48,514 interactions
derived from FDA-approved labels and peer-reviewed literature. Emphasizing clinically validated
DDIs, it serves as a reliable dataset for real-world risk assessment and pharmacovigilance studies. Its
focus on verified clinical data makes it particularly valuable for safety-critical applications.

DeepDDI [56]. Comprising 192,284 labeled DDIs annotated with side effect profiles, DeepDDI
leverages data from DrugBank to support multi-label classification of adverse drug interactions. This
dataset enables models to predict not only the presence of interactions but also the specific adverse
effects, thereby providing richer supervision for deep learning models in pharmacology.

TWOSIDES [63]. TWOSIDES features 555 drugs with over 3.5 million reported interactions encom-
passing 1,318 distinct interaction types. Extracted from FDA adverse event reporting systems, it offers
a large-scale resource for investigating long-tail and rare DDI patterns. This dataset is instrumental
for exploring subtle and complex interaction effects in post-market drug safety monitoring.

Chromophore [31]. This dataset includes 20,236 chromophore—solvent pairs with experimentally
measured optical properties such as absorption wavelength, emission wavelength, and excited-state
lifetime. Unreliable or outlier data entries have been rigorously filtered, and log-normalization is
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applied to reduce skewness in target distributions. Chromophore enables in-depth studies of solvent
effects on photophysical behavior at the molecular level.

MNSol [48]. MNSol contains 3,037 records of solvation or transfer free energies covering 790 solutes
and 92 solvents. The dataset has been filtered to 2,275 high-quality solute—solvent combinations
consistent with established benchmarks, providing a robust resource for training and evaluating
solvation energy prediction models in computational chemistry.

FreeSolv [49]. FreeSolv offers 643 hydration free energy measurements of small molecules in
aqueous solution, of which 560 experimental entries are retained after quality control. It serves
as a standard benchmark for predicting aqueous solvation properties, critical for understanding
solute—solvent interactions relevant to drug design and molecular biology.

CompSol [50]. CompSol focuses on 3,548 solute—solvent pairs emphasizing the role of hydrogen
bonding in solvation energy. By targeting molecular interactions specifically related to hydrogen
bonds, this dataset provides a fine-grained benchmark to evaluate models’ ability to capture solvent
effects driven by directional intermolecular forces.

Abraham [23]. Based on Abraham’s linear solvation energy relationships, this dataset compiles
6,091 solute—solvent combinations from 1,038 solutes and 122 solvents. It supports solvent effect
modeling through well-established physicochemical parameters, making it suitable for studies on
quantitative structure—property relationships (QSPR) and solvent screening.

CombiSolv [69]. CombiSolv integrates four benchmark datasets — MNSol, FreeSolv, CompSol,
and Abraham — into a comprehensive collection of 10,145 solute—solvent pairs. This unified dataset
facilitates broader generalization and benchmarking of molecular solvation models across diverse
chemical spaces and experimental conditions.

CombiSolv-QM [69]. CombiSolv-QM extends CombiSolv by including 1 million solute—solvent
pairs generated via quantum mechanical (QM) simulations. This large-scale synthetic dataset enables
the evaluation of model robustness and scalability, providing a valuable resource for training models
that generalize well to chemically diverse and complex molecular systems.

A.3 Details of ModuLLM Components

A.3.1 2D Graph Encoders

GCN [34]. Graph Convolutional Network introduces a spectral-based graph convolution operation by
approximating localized filters with a normalized graph Laplacian. This enables efficient aggregation
of neighboring node features, allowing semi-supervised learning directly on graph-structured data.
GCN’s simple yet powerful layer design laid foundational groundwork for many subsequent graph
neural network models by balancing computational efficiency and expressiveness.

MPNN [22]. Message Passing Neural Network generalizes the idea of graph convolutions by
explicitly learning both the message functions exchanged between nodes and the update functions
that revise node states. This flexible framework supports incorporation of domain-specific knowledge,
allowing improved molecular property predictions by capturing complex interactions through iterative
message passing.

GAT [68]. Graph Attention Network innovatively applies self-attention mechanisms on graph
neighborhoods, enabling the model to assign adaptive importance weights to different neighbors
during embedding updates. This attention mechanism enhances the capacity to learn from irregular
and heterogeneous graph structures, improving representation quality without requiring explicit graph
preprocessing.

NeuralFP [13]. Neural Fingerprints pioneer end-to-end learning of molecular fingerprints using graph
convolutional layers. Unlike handcrafted descriptors, this method automatically extracts relevant
chemical features for property prediction tasks, showing superior performance and adaptability across
diverse molecular datasets.

AttentiveFP [73]. Attentive Fingerprint leverages attention mechanisms at both atom and substructure
levels, allowing the model to focus selectively on chemically important regions. This hierarchical
attention not only improves prediction accuracy but also enhances interpretability, making it valuable
for QSAR modeling and drug discovery.
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GIN [74]. Graph Isomorphism Network achieves maximum discriminative power among GNNs
by using injective neighborhood aggregation functions. This theoretical guarantee enables GIN to
distinguish graph structures as effectively as the Weisfeiler-Lehman graph isomorphism test, pushing
forward the limits of GNN expressiveness.

GraphSAGE [25]. Graph Sample and AggregatE introduces an inductive learning framework that
samples and aggregates neighborhood features to generate node embeddings. This scalable approach
enables GNNs to handle large, evolving graphs efficiently, supporting applications where graphs are
dynamic or partially observed.

CoATGIN [80]. CoATGIN innovatively combines convolutional aggregation with attention mech-
anisms, capturing both local subgraph motifs and global graph contexts in molecular graphs. This
hybrid approach enhances molecular representation quality by balancing locality and global aware-
ness, beneficial for tasks requiring nuanced structural understanding.

A.3.2 3D Conformation Encoders

EGNN [58]. Equivariant Graph Neural Network maintains equivariance to Euclidean transformations
by jointly updating node features and their spatial coordinates. This design allows effective modeling
of 3D molecular geometry without sacrificing rotational or translational invariance, crucial for
accurate physical property predictions.

3D-GeoFormer [86]. 3D-GeoFormer employs geometric transformers to model spatial relationships
in molecular structures, leveraging attention mechanisms adapted for 3D spatial data. This enables
capturing long-range dependencies and complex geometric interactions, advancing 3D molecular
representation learning beyond local neighborhoods.

SE(3)-Transformer [19]. SE(3)-Transformer integrates tensor field networks to ensure full SE(3)
equivariance, allowing seamless handling of rotations and translations in 3D space. This makes
it particularly suitable for modeling complex molecular and protein structures where geometric
consistency under transformations is critical.

PaiNN [59]. PaiNN achieves rotational equivariance by explicitly separating scalar and vector features
within its message-passing framework. This distinction enables precise modeling of directional
physical quantities such as forces and energies, leading to state-of-the-art accuracy in quantum
chemistry tasks.

GVP [30]. Geometric Vector Perceptrons combine scalar and vector features through specialized ge-
ometric transformations, enabling effective encoding of molecular structures in 3D. GVP generalizes
across various 3D molecular graphs and shows strong performance on both structural and functional
prediction tasks.

GearNet [81]. GearNet builds hierarchical molecular representations by integrating multi-scale
structural and sequential information, capturing both local atomic details and broader biological
context. This approach enhances model capability across different biological levels, supporting tasks
like protein structure prediction and interaction analysis.

DimeNet++ [21]. DimeNet++ improves directional message passing by explicitly encoding angular
and directional information between atoms. Its architecture achieves higher accuracy and efficiency
compared to its predecessor, effectively modeling molecular interactions that depend on precise
geometric orientations.

SchNet [60]. SchNet introduces continuous-filter convolutional layers to model quantum interactions
in molecular systems. Its end-to-end differentiable framework enables accurate predictions of
atomic-level properties by capturing spatial correlations without requiring predefined features.

SphereNet [44]. SphereNet encodes spherical coordinates such as angles and radial distances to better
capture 3D molecular geometry. This precise geometric encoding leads to improved performance on
quantum property prediction tasks by more faithfully representing spatial relations.

G-SphereNet [46]. G-SphereNet extends SphereNet by incorporating an autoregressive generative
process for molecular conformations, enabling both accurate representation and generation of com-
plex 3D structures. This combination supports downstream applications in molecular design and
simulation.
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Uni-Mol [85]. Uni-Mol unifies pretraining and finetuning in 3D molecular representation learning
via a transformer-based architecture. Its spatially aware design supports a wide variety of downstream
tasks, improving generalization by leveraging large-scale molecular conformations during pretraining.

GeoMFormer [4]. GeoMFormer proposes a general transformer framework tailored to capture
geometric relationships within molecular structures. By effectively modeling 3D spatial interactions,
it improves the expressiveness and transferability of molecular representations across diverse tasks.

GotenNet [1]. GotenNet rethinks geometric message passing by designing an efficient 3D equivariant
graph neural network that significantly reduces computational cost while maintaining or improving
predictive accuracy. Its novel architectural choices enable scalable and effective modeling of complex
molecular geometries.

A.3.3 Interaction Layers

Bilinear Attention [2]. The Bilinear Attention Network (BAN) layer captures interactions be-
tween 2D feature sets through bilinear transformations, followed by attention pooling and batch
normalization.

Self Attention [67]. Self-attention mechanisms allow a feature set to focus on its own elements,
enabling models to capture relationships within the same source of data.

Cross Attention [54]. Cross-attention captures interactions between two distinct feature sets by
applying attention mechanisms that focus on cross-source dependencies.

Highway [87]. The Highway mechanism combines 1D features through gated layers, allowing
information to flow selectively by controlling the gates.

Gated Fusion [47]. Gated fusion combines 1D features from two sources by applying gated
transformations, producing a unified representation that captures the interactions between them.

Bilinear Fusion [41]. Bilinear Fusion combines 1D features using a bilinear transformation and
ReLU activation, capturing multiplicative interactions to enhance feature representation.

Mean. The Mean method combines feature sets by averaging their values.

A.3.4 Backbones

In ModuLLM, we provide seven popular LLMs: DeepSeek-1.5B, DeepSeek-7B, DeepSeek-14B [3],
LLaMA-1B, LLaMA-13B [65], Galactica-1.3B, and Galactica-6.7B [64].

DeepSeek. The DeepSeek-1.5B, DeepSeek-7B, and DeepSeek-14B models are derived from the
Qwen-2.5 series, which were originally licensed under the Apache 2.0 License, and have now been
fine-tuned with 800k samples curated using DeepSeek-R1.

LLama. LLama 1B incorporated logits from the LLama 3.1 8B and 70B models during the pretraining
stage, using the outputs (logits) from these larger models as token-level targets. Knowledge distillation
was applied after pruning to recover performance. LLama-13B was pretrained on 2 trillion tokens of
data from publicly available sources and fine-tuned on publicly available instruction datasets, along
with over one million new human-annotated examples, making it a general-purpose LLM.

Galactica. Galactica-1.3B and Galactica-6.7B are large language models developed by Meta for
scientific research and knowledge-intensive tasks. These models are designed to assist with tasks in
fields like scientific literature, research summarization, and computational biology.

A.3.5 Prompts

In the main text, we mentioned the two prompts involved in our experiments: Direct and Chain-of-
Thought-based reasoning. The prompt design is shown in the Table 9.

A.4 Example Usage of ModuLM
This section demonstrates how to construct example models from the main text using ModuLM. In

ModulLM, we provide a configuration method based on a JSON file. In the modules we offer, users
only need to modify the corresponding parameters. It is worth noting that some of the parameters
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Table 9: Prompts settings.

Direct Reasoning for Qualitative Tasks

The first molecule <SMILESO> and the second molecule <SMILES1> are expected to interact with
each other, potentially forming a molecular complex or influencing each other’s properties.
CoT-based Reasoning for Qualitative Tasks

The first molecule <SMILESO> is likely to exhibit [Property0], while the second molecule
<SMILES1> is likely to exhibit [Propertyl]. Hence, the first drug molecule may alter the
therapeutic effects of the second drug molecule. Therefore, they are likely to interact with each other.

Direct Reasoning for Quantitative Tasks

The solvation Gibbs free energy between the first molecule <SMILESO> and the second molecule
<SMILES1> is 4.6232.

CoT-based Reasoning for Quantitative Tasks
The first molecule <SMILESO> is likely to exhibit [Property0], while the second molecule
<SMILES1> is likely to exhibit [Property1]. Therefore, their solvation Gibbs free energy is
likely to fall between 4.0 and 4.5, with a precise value potentially being 4.6232.

below are included solely to demonstrate the comprehensiveness of our framework; if the goal is
simply to use it, most hyperparameters do not need to be changed.

A4.1 Loading the Dataset

Taking the DeepDDI dataset loading as an example, the path to the dataset is defined using the
root parameter. To accelerate data loading, the num_workers parameter is used to enable
multi-threaded data processing. Additionally, the use_3d flag controls whether to incorporate 3D
molecular conformational data as input. This allows users to flexibly switch between 2D and 3D
molecular representations depending on the task requirements and available structural information.

"root": "data/DDI/DeepDDI/",
"num_workers": 5,
"use_3d":true

A.4.2 Initializing Encoder

In this setup, we utilize the Uni-Mol model as our 3D molecular conformation encoder. The
specific encoder is selected by setting the graph3d parameter accordingly. To fine-tune its behavior
and architecture, we provide a dedicated configuration file that defines key hyperparameters such
as the number of layers, embedding dimensions, attention mechanisms, and dropout rates. This
modular design allows for flexible customization and seamless integration into various molecular
representation learning tasks.

"graph3d": "unimol",
"con_activation_dropout": 0.0,
"con_activation_£fn": "gelu",
"con_attention_dropout": 0.1,
"con_delta_pair_repr_norm_loss": -1.0,
"con_dropout": 0.1,

"con_emb_dropout": 0.1,
"con_encoder_attention_heads": 64,

"con_encoder_embed_dim": 512,
"con_encoder_ffn_embed_dim": 2048,
"con_encoder_layers": 15,
"con_max_atoms": 256,
"con_max_seq_len": 512
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It is important to note that in order to build the example model provided in the main text, we need to
make further modifications and extensions to the Uni-Mol model. Once the code has been extended,
we can simply place it in the specified directory and continue managing and calling it through the
config file.

A4.3 Configuring LLM

Here, the mode specifies the model’s mode, whether it is pretraining or fine-tuning. The backbone
parameter indicates the LLM to be used, while min_len and max_1len define the minimum and
maximum lengths of the generated text. Additional details and parameters for LLM-based text
generation are provided in our code repository; this section highlights only a few key settings as
examples.

{ "mode":"ft",
"backbone": "DeepSeek-1.5B",
"min_len": 10,
"max_len": 40

A.4.4 Training the Model

After constructing the model, we can fine-tune it by configuring the appropriate LoRA file. To make
it easier for others to fine-tune using our framework, we provide the LoRA parameter configuration
for model training here.

{

"base_model_name_or_path": null,

"bias": "none",
"fan_in_fan_out": false,
"inference_mode": false,
"init_lora_weights": true,

"lora_alpha": 32,

"lora_dropout": 0.1,

"target_modules": ["g proj", "v_proj", "out_proj", "fcl", "fc2"],
"peft_type": "LORA",

LR 16,

"modules_to_save": null,

"task_type": "CAUSAL_LM"

The specific batch size and number of training epochs are also configured in a unified manner. Here,
the batch_size specifies the number of samples processed in each training step, which in this
case is set to 12. The max_epochs defines the total number of training iterations over the entire
dataset, set here to 20 epochs. The save_every_n_epochs parameter indicates that the model’s
state will be saved every 5 epochs. The scheduler field specifies the learning rate scheduling
strategy—1linear_warmup_cosine_lr gradually increases the learning rate during a warm-up
period, then decays it following a cosine curve. The seed ensures reproducibility of training results
by fixing randomness. warmup_lr and warmup_steps define the initial learning rate and the
number of steps over which it will warm up, respectively. Lastly, weight_decay is used as a
regularization technique to prevent overfitting by penalizing large weights during optimization.

"batch_size": 12,

"max_epochs": "30",
"save_every_n_epochs": 5,
"scheduler": linear_warmup_cosine_lr,
"seed": 42,

"warmup_lr": le-06,

"warmup_steps": 1000,

"weight_decay": "0.05"
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A.5 More experimental details

A.5.1 Details of Experimental Setup

In this section, we provide a more detailed description of the experimental data and testing configura-
tions used in the main text.

Training Epochs. At the beginning of each experiment, we initiate incremental pretraining by
running 5 epochs on the collected pretraining dataset. During the subsequent fine-tuning stage, the
number of training epochs is task-dependent. Specifically, for the DDI task, we fine-tune the model
for 50 epochs. For SSI datasets containing more than 3000 molecular pairs, we adopt a two-stage
fine-tuning strategy: first, the model is fine-tuned on the CombiSolv-QM dataset for 100 epochs,
followed by an additional 30 epochs on the target dataset. In contrast, for SSI datasets with fewer
than 3000 molecular pairs, the fine-tuning stage is shortened to 20 epochs. Notably, both pretraining
and fine-tuning phases share the same optimizer and learning rate scheduling configurations, as
described in the following section. It is worth noting that during training, we did not employ an early
stopping strategy. Instead, we saved the model’s performance on both the validation and test sets
after each epoch to facilitate more thorough analysis. When reporting the results, we selected the test
set performance corresponding to the epoch with the best validation set performance for evaluation.

Training Strategy. We employ the AdamW optimizer with a weight decay coefficient of 0.05
to mitigate overfitting and stabilize training. The learning rate is governed by a linear warm-up
followed by cosine decay schedule, which helps accelerate convergence in the early stages and
enables refined optimization during the later phases. To further enhance efficiency and reduce training
overhead, we adopt Low-Rank Adaptation (LoRA), implemented using the OpenDelta and PEFT
libraries. The rank parameter of LoRA is set to = 16. For models in the DeepSeek series, LoRA is
applied to the following modules: [q_proj, k_proj, v_proj, o_proj, gate_proj,
up_proj, down_proj]. Forthe LLaMA and Galactica models, LoRA is instead integrated into
[g_proj, v_proj, out_proj, fcl, fc2].

A.5.2 The Impact of Post Pretraining

Table 10: Performance of different Post Pretraining Stragedy.

Experiment Accuracy Accuracy Accuracy RMSE RMSE RMSE
(ChChMiner) (ZhangDDI) (DeepDDI) (FreeSolv) (CompSol) (CombiSolv)
Molecular Interaction-based ~ 0.962 4 0.007 0.911 £ 0.006 0.954 £+ 0.008 0.682 £+ 0.017 0.301 £ 0.016 0.374 £ 0.019
Substructure-based 0.961 £ 0.007 0.908 + 0.006 0.956 + 0.007 0.692 & 0.017 0.295 £+ 0.017 0.372 £ 0.019

Structure Similarity-guided ~ 0.966 + 0.004 0.914 £ 0.005 0.961 £ 0.008 0.676 £ 0.020 0.292 4 0.018 0.367 & 0.022

In the main text, we integrated three incremental pretraining methods to help the model better
acquire domain knowledge relevant to molecular relational learning. To evaluate the impact of these
pretraining strategies on model performance, we conducted a series of tests. Specifically, we selected
the best-performing model from the main text as the evaluation baseline. Since conducting zero-shot
evaluations using pure textual input can lead to unreliable or unreportable results on certain datasets,
we opted to retain the fine-tuning process and only replace the pretraining strategy during testing. It
is important to note that our experiments in the main text have already demonstrated that DeepSeek
consistently outperforms other models under the same pretraining settings. Therefore, we conduct all
evaluations here using the DeepSeek-1.5B model. The results are shown in Table 10.

A.5.3 Specialized Encoder Analysis

To better compare the performance differences introduced by various encoders, we standardize all
other configurations and only replace the encoder components for analysis. The experimental setup
follows a similar design to that used in the main body, employing an MLP for modality alignment and
using DeepSeek-1.5B as the backbone LLM. It is important to emphasize that the main contribution
of this work is to provide a fair, flexible, and extensible benchmark framework for MRL. Given the
combinatorial complexity of possible encoder and architecture choices, our focus is on evaluation
rather than theoretical analysis. We believe that performance differences stemming from specific
encoders or architectures should be thoroughly analyzed and justified by the authors of the respective
methods. As mentioned in the main text, 3D molecular conformations contain richer structural
information; therefore, to aid readers in gaining a deeper understanding of the MRL task, we provide
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a brief comparative discussion of Uni-Mol and GotenNet as representative examples to highlight
structural design differences and their potential impact on performance. Overall performance is
shown in Table 11.

Table 11: Overall Performance of different Encoders.

Experiment Accuracy Accuracy Accuracy RMSE RMSE RMSE
(ChChMiner) (ZhangDDI) (DeepDDI) (FreeSolv) (CompSol) (CombiSolv)

Uni-Mol 0.959 £0.010 0.903 £ 0.004 0.952 £ 0.007 0.690 £ 0.021 0.310 £0.019 0.387 £ 0.023
GotenNet 0.966 + 0.004 0.914 + 0.005 0.961 + 0.008 0.676 £ 0.020 0.292 £0.018 0.367 £ 0.022

GotenNet outperforms Uni-Mol primarily due to its innovative design in modeling three-dimensional
geometric information. Firstly, GotenNet employs an efficient and refined geometric message-
passing mechanism that captures spatial relationships and angular dependencies within molecules
more accurately, enabling a more comprehensive understanding of molecular structural complex-
ity. Secondly, while maintaining SE(3) equivariance, GotenNet optimizes computational effi-
ciency by reducing redundant calculations, thereby improving both training and inference speed
without compromising representational capacity. Moreover, GotenNet places greater emphasis
on multi-scale feature integration, combining local details with global conformational informa-
tion, which enhances its generalization ability across various molecular property prediction tasks.
In contrast, although Uni-Mol also utilizes a

transformer-based 3D encoding strategy, its han- Table 12: Efficiency of different encoders.
dling of geometric information is comparatively
coarser and incurs higher computational costs,  Model Uni-Mol GotenNet

limiting the model’s scalability and performance
improvements. Therefore, through structural in-
novations and efficiency optimizations, Goten-
Net achieves a deeper understanding of 3D molecular information, leading to superior performance.
The detailed computational efficiency can be found in Table 12. Here, we use the average number of
samples processed per second on a single GPU as the evaluation metric.

Rate 2.74 it/s 2.66 it/s

Table 13: Performance of different encoders on molecules of varying sizes.
Experiment 344 566 628 730 1846

Uni-Mol 0.879 £ 0.012 0.863 = 0.014 0.852 +0.019 0.833 +0.020 0.739 + 0.022
GotenNet 0.891 £+ 0.010 0.884 +0.013 0.873 +£0.018 0.845 +0.019 0.752 £ 0.021

To further validate whether the performance differences between GotenNet and Uni-Mol across
molecules of varying sizes align with their respective architectural designs, we conducted additional
experiments. We combined ZhangDDI, ChChDDI, DeepDDI, and TWOSIDES into a large aggregated
dataset, grouping the samples by molecular mass with 20,000 samples per group. Here, AM denotes
the average molecular mass within each group. Accuracy was used as the evaluation metric. For
detailed performance results, please refer to the Table 13.

A.5.4 Computational Efficiency Analysis

To better compare the differences in computational efficiency brought by various backbones, encoding
methods, and encoders, we conducted a more systematic time efficiency comparison following a
similar approach as described above. The detailed results are shown in Table 15. To better highlight
the differences, we selectively tested a subset of configurations presented in the main text. The details
are shown in Table 14.

From the Table 15, we can observe that the primary factor affecting computational efficiency across
different model configurations is the choice of backbone. Larger backbones significantly increase the
computational cost. The second key factor is modality fusion—integrating more modalities increases
processing complexity, thereby reducing efficiency. Notably, when using Q-former for alignment,
the performance overhead becomes especially pronounced due to the large number of trainable
parameters typically involved. For example, in configuration 1.16*, where all modalities are fused
and Q-former is used for alignment, the processing rate drops to a very low level. Therefore, this
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Table 14: Experimental Settings on DDI Datasets

Experiment No. Backbone Encoder Interaction Input Feature

1.2 Galactica-1.3B GIN - mg +my

1.3 Galactica-1.3B GIN Cross Attention mg +my

1.6 DeepSeek-1.5B - - My

1.7 DeepSeek-1.5B GIN - ms+mg

1.8 DeepSeek-1.5B GotenNet - mg + me

1.10 DeepSeek-14B GotenNet - mg +me

1.16 DeepSeek-1.5B GIN+GotenNet - Mg + Mg + M

Note: m, = molecular sequence, m, = molecular graph, m. = molecular conformation. ’-’
indicates that no method is applied.

Table 15: Efficiency of different encoders. * indicates the use of Q-former for alignment.
Model 1.2 1.3 1.6 1.7 1.7* 1.8 1.8% 1.10 1.16 1.16*
Rate 3.16it/s 3.10it/s 4.22it/s 3.38it/s 298it/s 2.66it/s 2.28it/s 1.22it/s 2.0l1it/s 1.111it/s

table is intended to help users of our framework make informed decisions about model configurations,
enabling a balanced trade-off between computational efficiency and model performance.

A.5.5 Impact of Molecular Dataset

Meanwhile, to facilitate the exploration of model adaptability across different dataset scales and
molecular sizes under various configurations, we first conducted experiments by grouping molecules
based on their sizes, following a similar approach as described above. Additionally, we performed
experiments using sampled subsets of varying scales from the ZhangDDI dataset for comparative
analysis. Detailed experimental results can be found in Tables 16 and 17.

Table 16: Model performance variation with respect to molecular size, using Accuracy as the
evaluation metric.
Model 12 13 1.6 1.7 1.7% 1.8 1.8% 1.10 1.16

334 0868(014) 0.874(012 0855(019) 0.879%01m) 0881 o5y 0.892(014) 0.890(015) 0.860 013 0.851(,
566  0.851(015 0.863014) 0843015y 0.864(016) 0869 015y 0.872(016) 0.865 017 0.845 014y 0.837
628 0825015 0.842015) 0818 017) 0.838(o1s) 0840 016y 0.845(015 0.832(016) 0.820 015 0.812(
(.017) ( (.014) (
(.017) ( (:009) (

730 0.790(01s) 0.804.017) 0.780(019) 0812017 0815014y 0.822(013 0.809
1846 0.701(019) 0.714 o1y 0717012 0.754(010) 0.747(.

The data presented in the table clearly indicate that, regardless of the model combinations employed,
the capability to process large molecules falls short of expectations. This limitation is not unique to
our approach; it is a common challenge observed across existing multimodal molecular representation
models. The sheer size of large molecules not only leads to a significant decrease in computational
efficiency but also introduces an overwhelming amount of complex information. Current encoding
models struggle to effectively manage this complexity. In the context of LLMs, our methodology
involves simply concatenating the molecular text modality with its corresponding multimodal data
before feeding it into the LLM for inference. This approach aligns with the prevailing standard for
multimodal LLMs. However, when the multimodal data cannot be encoded effectively, it may actually
disrupt or confuse the LLM’s decision-making process. Additionally, the excessively long molecular
expressions associated with large molecules themselves pose further challenges, negatively impacting
the LLM’s ability to generate accurate predictions. Overall, these factors highlight fundamental
bottlenecks in scaling current models to handle large molecular structures effectively.

Due to the limitations of multimodal models, we are unable to perform zero-shot testing on them,
which would lead to a complete collapse in model performance. Based on the data above, we
observe that when training with LLMs, an insufficient amount of data often prevents the model
from learning meaningful representations. This issue becomes even more pronounced in multimodal
LLMs. Without exposing the model to enough diverse molecular examples from different modalities
during training, the LLM is unable to accurately understand or infer the underlying semantics of
the encoded information. In our experiments, we found that when using a zero-shot setting—i.e.,
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Table 17: Model performance variation with respect to datasets size, using Accuracy as the evaluation
metric.
Size 12 1.3 1.6 1.7 1.7% 1.8 1.8% 1.10 1.16

1000 064501 0650013 0.641 012 0673011y 0675015 0.703(012) 0.687(015) 0681014y 0.697 014,
5000 0698015 0.704( 013 0.687(o1sy 0721012y 0.726(01a) 074505 073501y 0.728(01s)  0.742( 1)
10000 0.772( 1) 0779 p12) 0761 013 0793(012) 0.799( 014y 0.818(01s) 0808 pus)  0.802( 012 0815 ous)
20000 0.796( 014y 0.802(012) 0.786(01s) 0817(q12) 0.820( 013 0.842(012) 0835013 0.828 012 0.840 o)
50000 0.866(017) 0.870(014) 0.841(009) 0.886(.017) 0.881( 015 0.902(013) 0.897(017) 0.860(.013) 0.892(012)

directly testing the model without any prior training on our specific data—the LLM occasionally
produced incoherent or grammatically incorrect outputs, indicating a lack of grounding in the input
structure. Such behavior is clearly undesirable. However, as shown in the table, when the training
data size is controlled and kept roughly consistent across settings, the relative ranking of model
configurations in terms of performance remains largely unchanged. This suggests that the key
differences between models lie not only in how much data they are exposed to, but also in how
effectively their encoders are able to communicate molecular information to the LLM. In other words,
a model’s ability to maintain performance across varying data sizes reflects the encoder’s competence
in shaping representations that are both interpretable and informative to the LLM.

A.5.6 More Experimental Results

Due to space limitations in the main text, we present additional experimental results here, with the

experimental setup consistent with the one described in the main text.

Table 18: More Results of DDI Datasets

Experiment AUC-ROC Accuracy AUC-ROC Accuracy
(Drugbank) (Drugbank) (TWOSIDES) (TWOSIDES)
Chem T5[7] 0.921 £ 0.010 0.859 £ 0.013 0.906 + 0.015 0.856 + 0.022
MolCA[45] 0.934 +£0.018 0.898 + 0.010 0.942 +0.014 0.907 + 0.015
MolT5[15] 0.930 £ 0.016 0.904 + 0.018 0.940 £+ 0.013 0.929 + 0.017
MolTC[17] 0.978 + 0.006 0.951 + 0.005 0.980 £ 0.005 0.970 £ 0.007
1.1 0.933 £ 0.011 0.891 + 0.012 0.912 + 0.017 0.877 £ 0.014
1.2 0.945 + 0.010 0.922 + 0.011 0.957 + 0.009 0.923 + 0.009
1.3 0.950 + 0.009 0.935 £ 0.010 0.950 + 0.008 0.926 + 0.008
14 0.955 £+ 0.008 0.938 + 0.009 0.946 + 0.007 0.935 + 0.008
1.5 0.946 + 0.010 0.931 £ 0.010 0.951 £+ 0.008 0.918 + 0.008
1.6 0.938 £ 0.016 0.901 + 0.012 0.920 + 0.017 0.893 + 0.018
1.7 0.963 + 0.007 0.944 + 0.007 0.970 + 0.006 0.952 + 0.006
1.8 0.975 + 0.006 0.950 + 0.006 0.982 + 0.005 0.975 4+ 0.005
1.9 0.950 + 0.008 0.937 + 0.008 0.971 £ 0.006 0.949 + 0.006
1.10 0.940 + 0.010 0.926 + 0.010 0.961 + 0.007 0.938 + 0.007
1.11 0.920 £+ 0.014 0.886 £ 0.010 0.907 £ 0.021 0.855 £+ 0.020
1.12 0.935 +£0.011 0.920 + 0.010 0.945 +0.012 0.911 £+ 0.008
1.13 0.947 + 0.008 0.933 + 0.009 0.953 +£0.013 0.923 £+ 0.009
1.14 0.952 + 0.007 0.931 + 0.009 0.959 +0.012 0.932 £+ 0.010
1.15 0.935 £ 0.019 0.877 £ 0.020 0.927 £ 0.010 0.894 + 0.011
1.16 0.971 £+ 0.008 0.948 + 0.004 0.984 + 0.007 0.978 + 0.003
Custom Model  0.982 + 0.010 0.956 + 0.007 0.986 + 0.007 0.980 + 0.009

The results presented in Table 19 and Table 18 are largely consistent with those reported in the main
text, reaffirming the trends observed across different configurations. Notably, the introduction of
additional modality information consistently yields substantial improvements in model performance,
highlighting the effectiveness of leveraging multimodal signals in enhancing representation learning
and generalization. In contrast, architectural modifications that increase model complexity—such
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Table 19: More Results of SSI Datasets

Experiment MAE RMSE MAE RMSE
(MNSol) (MNSol) (Abraham) (Abraham)

Chem T5[7] 0.537 + 0.092 1.011 £ 0.083 0.621 +0.027 0.918 +0.032
MolCA[45] 0.511 £0.034 0.956 £ 0.049 0.580 + 0.026 0.910 + 0.032
MolT5[15] 0.466 + 0.067 0.867 + 0.069 0.544 £+ 0.028 0.833 £+ 0.029
MolTC[17] 0.354 £ 0.018 0.625 + 0.023 0.211 £0.018 0.390 + 0.021
1.1 0.510 £+ 0.051 0.971 + 0.063 0.572 +£0.024 0.865 + 0.030
1.2 0.451 £ 0.042 0.890 + 0.028 0.524 + 0.022 0.813 + 0.027
1.3 0.436 +£0.018 0.877 4+ 0.027 0.496 + 0.024 0.804 + 0.029
1.4 0.410 £ 0.017 0.808 £ 0.024 0.447 £ 0.020 0.681 + 0.023
1.5 0.506 + 0.036 0.944 + 0.043 0.522 + 0.030 0.787 £+ 0.031
1.6 0.502 + 0.045 0.936 + 0.052 0.591 £+ 0.028 0.863 + 0.025
1.7 0.386 + 0.034 0.727 +0.035 0.394 + 0.026 0.512 +£0.029
1.8 0.343 £+ 0.017 0.618 £+ 0.024 0.204 £+ 0.017 0.408 £ 0.021
1.9 0.488 + 0.029 0.834 + 0.031 0.416 £+ 0.027 0.562 + 0.029
1.10 0.501 £+ 0.030 0.851 £+ 0.032 0.456 +£0.018 0.618 £+ 0.022
1.11 0.499 £+ 0.016 0.859 4+ 0.023 0.437 +0.021 0.620 + 0.030
1.12 0.550 £ 0.047 1.118 £ 0.064 0.614 £+ 0.029 0.933 + 0.030
1.13 0.475 £+ 0.036 0.878 + 0.033 0.511 £0.019 0.764 + 0.021
1.14 0.461 +0.021 0.818 + 0.027 0.489 + 0.020 0.713 £ 0.021
1.15 0.597 4+ 0.031 0.864 4+ 0.035 0.422 +0.021 0.683 £+ 0.023
1.16 0.352 £+ 0.020 0.625 £0.018 0.201 £ 0.015 0.389 + 0.017
Custom Model ~ 0.340 £ 0.011 0.601 £ 0.010 0.199 + 0.008 0.379 + 0.011

as altering internal modules or adding more parameters—do lead to moderate performance gains.
However, these improvements are generally less pronounced compared to those achieved through the
integration of new modalities. This suggests that the diversity and complementarity of multimodal
data play a more critical role than mere architectural sophistication in driving performance gains.

In addition to the DDI and SSI datasets, we further evaluate our framework on the CSI dataset to
demonstrate its comprehensiveness and scalability. It is worth noting that the performance of models
under different configurations on the CSI dataset varies significantly. To facilitate a more intuitive
comparison of the performance across different settings, we report the best-performing configuration
for each backbone. The results are summarized in the Table 20. Note that the three datasets in the
CSI domain are all derived by splitting the Chromophore dataset.

Table 20: Performance on CSI Datasets

Experiment MAE RMSE MAE RMSE MAE RMSE
(Absorption) (Absorption) (Emission) (Emission) (Lifetime) (Lifetime)
MolTC[17] 17.55 +1.83 29.10 £ 2.15 20.22 + 191 34.17 £ 2.02 0.911 £ 0.052 1.213 +0.092
1.4 18.67 £2.01 31.33 £2.47 22.37 £2.01 36.71 £2.93 1.011 £ 0.061 1.502 £ 0.103
1.8 16.71 £ 1.82 28.67 £ 1.99 19.08 + 1.89 38.00 + 1.87 0.943 + 0.054 1.119 + 0.077
1.14 19.01 +2.01 3246 +£2.92 21.84 £1.96 37.56 £3.02 1.009 £ 0.060 1.711 £ 0.095
Custom Model 15.42 + 1.53 27.65 + 191 17.11 + 1.68 31.55 + 1.60 0.929 + 0.064 1.123 £ 0.082

From the data in the Table above, we can clearly analyze the performance differences of various
models under different experimental settings. Leveraging the usability and extensibility of ModuLM,
we can implement and compare a wider range of LLM-based MRL models, thereby gaining insights
into how model design impacts performance.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In this paper, we propose a model framework that supports faster and easier
construction of LLM-based molecular representation learning (MRL) models, and we outline
our main contributions and scope in the Abstract and Introduction sections (see Abstract
and Introduction).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In this work, we systematically discuss the limitations of our research and
outline directions for future work (See Conclusion Section).

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: This paper does not include experimental results related to theoretical aspects.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the code necessary for replicating the studies described in this
paper via an anonymous link, and we detail the experimental setup for the replication in the
article itself (See Experiments and Appendix).

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: For the datasets disclosed in the article, we have provided information regarding
their sources and origins (See Appendix).

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: we have specified all the training and test details (e.g., data splits, hyperpa
rameters) necessary to understand the results (See Appendix).

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In this paper, we have reported the standard deviation of the experiments (See
Experiments).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In this paper, we provide detailed information about the experimental resources,
including GPU configurations used in our studies (See Experiments).

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The study presented in this paper conforms to the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have provided the societal impacts of the work (See Introduction and
Conclusion).

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper does not address issues related to this aspect.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All creators and original owners of the assets used in our paper, such as code,
data, and models, have been properly credited. We have explicitly mentioned the licenses

and terms of use for each asset and have ensured full compliance with these terms throughout
our research.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The research presented in this paper is not concerned with new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve experiments or research related to human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not address potential risks incurred by study participants.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: This paper provides a detailed description of the usage of LLMs in this work
(See ModulLM section).

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
L.LM) for what should or should not be described.
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