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Abstract

Eigenvalue problems are among the most impor-
tant topics in many scientific disciplines. With the
recent surge and development of machine learn-
ing, neural eigenvalue methods have attracted
significant attention as a forward pass of infer-
ence requires only a tiny fraction of the computa-
tion time compared to traditional solvers. How-
ever, a key limitation is the requirement for large
amounts of labeled data in training, including
operators and their corresponding eigenvalues.
To tackle this limitation, we propose a novel
method, named Sorting Chebyshev Subspace
Filter (SCSF), which significantly accelerates
eigenvalue data generation by leveraging similar-
ities between operators—a factor overlooked by
all existing methods. Specifically, SCSF employs
truncated fast Fourier transform (FFT) sorting to
group operators with similar eigenvalue distribu-
tions and constructs a Chebyshev subspace filter
that leverages eigenpairs from previously solved
problems to assist in solving subsequent ones, re-
ducing redundant computations. To the best of our
knowledge, SCSF is the first method to accelerate
eigenvalue data generation. Experimental results
show that SCSF achieves up to a 6× speedup
compared to various numerical solvers.

1. Introduction
Solving eigenvalue problems is an important challenge in
fields such as quantum physics (Pfau et al., 2023), electro-
magnetism (Augenstein et al., 2023), and structural mechan-
ics (Wen et al., 2022). Traditional numerical solvers, such
as the Krylov-Schur algorithm (Stewart, 2002), often suffer
from prohibitively high computational costs when tackling
complex problems. To overcome these computational chal-
lenges, recent advancements in deep learning (Schütt et al.,
2017; Li et al., 2020; Luo et al.) have demonstrated remark-
able success as one forward pass only necessitates a tiny
fraction of the computation time compared to numerical
solvers, often in milliseconds.

Despite their success, data-driven approaches face a funda-
mental limitation: the reliance on labeled datasets. Training
neural networks require large-scale labeled data, which is
often generated using computationally expensive traditional
methods. For example, the QM9 dataset (Ramakrishnan
et al., 2014) contains 1.34 × 105 molecular data points,
each produced by solving Hamiltonian operator eigenvalue
problems. These calculations typically employ traditional al-
gorithms such as the Krylov-Schur method (Stewart, 2002),
whose computational costs can escalate dramatically with
increasing problem complexity, like finer grid resolutions
or higher accuracy requirements. This scalability issue rep-
resents a significant bottleneck for generating the labeled
data needed to train deep learning models. Furthermore,
the diversity of scientific problems leads to the need for a
unique dataset for each scenario, which further intensifies
this challenge of computational intractability. As a result,
the high computational expense of generating eigenvalue
data severely limits the practical application of deep learning
approaches (Zhang et al., 2023).

In particular, the dataset generation process typically in-
volves six key steps, as illustrated in the flowchart in Fig-
ure 1. Among these steps, the computation of eigenvalues
of matrices is the most computationally demanding (step
4), accounting for 95% of the total processing cost (Hughes,
2012). Existing data generation methods typically compute
the eigenvalues of each matrix in the dataset independently.
However, the operators in the dataset often share similar-
ities, as they describe related physical phenomena, which
can largely simplify and accelerate the eigenvalue-solving
process. Existing approaches, however, fail to leverage
these similarities, leading to significant computational re-
dundancy. Previous works (Wang et al., 2024; Dong et al.,
2024) on solving PDE datasets have demonstrated the poten-
tial of leveraging similarity to significantly reduce the time
required for dataset generation. However, effectively ex-
ploiting matrix similarity to accelerate eigenvalue problem
solving for datasets remains a significant challenge.

To address this challenge, we introduce a novel data genera-
tion approach, named Sorting Chebyshev Subspace Filter
(SCSF). SCSF is designed to leverage the approximate
eigenpairs of close problems to reduce redundant computa-
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Figure 1: Generation process of the eigenvalue dataset: 1.
Generate a set of random problem parameters. 2. Derive the
corresponding operators based on these parameters. 3. Con-
vert the operators into matrices using discretization methods.
4. Independently solve for the matrix eigenvalues using nu-
merical solvers. 5. Obtain the matrix eigenpairs, converting
them into the operator eigenpairs. 6. Assemble the dataset.

tions in the eigenvalue solving process, thereby accelerating
dataset generation. Specifically, in the initial stages, SCSF
employs a sorting algorithm based on truncated Fast Fourier
transform (FFT), which arranges these operators efficiently,
enhancing the adjacent correlation between them and laying
the groundwork for sequential solving. Then, SCSF acceler-
ates the convergence of iterations and significantly reduces
computation times by constructing a Chebyshev subspace
filter, which solves the problem aided by the eigenpairs iden-
tified from previous problem solutions. The core design of
SCSF is to identify and exploit the close spectral distribu-
tions and invariant subspaces within these eigenvalue prob-
lems. SCSF coordinates the sequential resolution of these
systems rather than treating them as discrete entities. This
improved approach not only alleviates the computational de-
mands of eigenvalue solutions but also significantly speeds
up the generation of training data for related data-driven
algorithms. We summarize our contributions as follow:

• To the best of our knowledge, SCSF is the first method
to accelerate the eigenvalue data generation.

• By using truncated FFT sorting and the Chebyshev sub-
space filtered iteration, we introduce a novel approach
that solves the operator problem sequentially.

• Comprehensive experiments demonstrate that SCSF
substantially reduces the computational cost of eigen-
value dataset generation. As demonstrated in Figure 2,
our method achieves up to a 6× speedup compared to
state-of-the-art solvers.

2. Related work
2.1. Eigenvalue Datasets and Neural Eigenvalue

Methods

Eigenvalue datasets are prevalent in neural eigenvalue meth-
ods. In quantum chemistry research, eigenvalue algorithms
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Figure 2: Results of average computation times across vari-
ous algorithms based on the number of eigenpairs solving.

are commonly used to determine key molecular features,
such as orbital energy levels (Kittel & McEuen, 2018).
These features, which form the basis of the datasets, are
obtained by solving the eigenvalues of Hamiltonian op-
erators (Helgaker et al., 2013). Notable datasets in this
domain include QM7 (Blum & Reymond, 2009), QM9 (Ra-
makrishnan et al., 2014), ANI-1 (Smith et al., 2017),
MD17 (Chmiela et al., 2017). These datasets have been
widely used to train and validate neural eigenvalue meth-
ods (Schütt et al., 2017; Bartók et al., 2017; Rupp et al.,
2012), thereby advancing tasks in molecular property pre-
diction and materials design. Besides, Luo et al. accelerates
the solution of linear equations by predicting the eigenfunc-
tions of differential operators, which requires a dataset of
eigenfunctions for training.

2.2. Data Generation for Eigenvalue Algorithms

Training data-driven algorithms require a large amount
of labeled eigenvalue data. Typically, the generation of
these high-precision data is obtained by traditional algo-
rithms. In the field of computational mathematics, solving
operator eigenvalue problems often involves utilizing var-
ious discretization methods such as finite difference meth-
ods (FDM) (Strikwerda, 2004), finite element methods
(FEM) (Hughes, 2012; Johnson, 2012). These discretization
methods transform operator eigenvalue problems into matrix
eigenvalue problems, which are then solved using the corre-
sponding matrix algorithms. For larger matrices, the Krylov-
Schur algorithm (Stewart, 2002), Jacobi-Davidson (Sleijpen
& Van der Vorst, 2000), and locally optimal block precondi-
tioned conjugate gradient (LOBPCG) (Knyazev, 2001) are
among the most frequently employed algorithms (Golub &
Van Loan, 2013).

Nonetheless, traditional methods were not designed for
dataset generation, resulting in high computational costs,
which have become a significant barrier to the advancement
of data-driven approaches (Zhang et al., 2023; Hao et al.,
2022). Recent data augmentation research (Brandstetter
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et al., 2022; Liu et al., 2023) has led to the development of
methods that preserve symmetries and conservation laws,
enhancing model generalization and data efficiency. Wang
et al. (2024); Dong et al. (2024) report acceleration in the
process of solving linear equations, thereby speeding up the
generation of PDE datasets. However, these improvements
largely focus on neural networks or the rapid solution of lin-
ear equation-based PDEs, without discussing optimizations
in the generation of eigenvalue datasets.

2.3. Chebyshev Filter Technique

The Chebyshev filter technique originates from polynomial
approximation theory, where the core concept involves us-
ing Chebyshev polynomials to accelerate the convergence
of eigenvalues (Zhou & Saad, 2007). This technique con-
structs a polynomial filter that selectively amplifies spectral
components in a specified interval, thereby speeding up the
solution of specific eigenvalues. This technique is partic-
ularly effective in dealing with sequence eigenvalue prob-
lems (Saad, 2011; Zhou et al., 2006a) and has been applied
in various contexts, such as stability analysis in electronic
structure (Pieper et al., 2016; Banerjee et al., 2016) and
quantum chemical computations (Mohr et al., 2017; Zhou
et al., 2014; 2006b). To further adapt this technique to the
generation of operator eigenvalue datasets, we have devel-
oped a specialized sorting algorithm that transforms dataset
generation into a sequential solving problem. Throughout
the solving process, eigenpairs obtained from previous solu-
tions are used to construct Chebyshev filters, accelerating
subsequent solutions.

3. Preliminaries
3.1. Discretization of Eigenvalue Problem

Our main focus is on solving matrix eigenvalues, the most
time-consuming part of data generation. As depicted in
Figure 1, these problems are typically solved by using nu-
merical discretization methods such as FDM (Strikwerda,
2004; LeVeque, 2002). These discretization techniques em-
bed the infinite-dimensional Hilbert space of operators into
an appropriate finite-dimensional space, thereby transform-
ing operator problems into matrix problems. We provide
a simple example to clarify the discussed processes. A
detailed account of the equation assembly process can be
found in Appendix A. Specifically, we discuss using FDM
to solve the eigenvalue problem of the two-dimensional
Poisson operator, transforming it into a matrix eigenvalue
problem:

k(x, y)∇2u(x, y) = λu(x, y). (1)

We map the problem onto a 2× 2 grid (i.e., Nx = Ny = 2
and ∆x = ∆y), where both the variable ui,j and the coeffi-
cients ki,j follow a row-major order. This setup facilitates

the derivation of the matrix eigenvalue equation:

k1,1 0 0 0
0 k1,2 0 0
0 0 k2,1 0
0 0 0 k2,2



−4 1 1 0
1 −4 0 1
1 0 −4 1
0 1 1 −4



u1,1
u1,2
u2,1
u2,2

 = λ


u1,1
u1,2
u2,1
u2,2

 .

(2)

By employing various methods to generate the parameter
matrices P ,

P =

[
k11 k12
k21 k22

]
. (3)

Such as utilizing Gaussian random fields (GRF) or truncated
polynomials, we can derive Poisson operators characterized
by distinct parameters.

Typically, training a neural network requires 103 to 105

data (Lu et al., 2019). Such a multitude of eigenvalue sys-
tems, derived from the same distribution of operators, natu-
rally exhibit a highly similarity (Soodhalter et al., 2020). It
is precisely this similarity that is key to the effective accel-
eration of SCSF. We can conceptualize this as the task of
solving a sequential series of matrix eigenvalue problems:

A(i)v
(i)
j = λ

(i)
j v

(i)
j , j = 1, · · · , L; i = 1, 2, · · · , (4)

where the matrix A(i) ∈ Cn×n, the eigenvector v
(i)
j ∈

Cn and the eigenvalue λ
(i)
j ∈ C vary depending on the

operator. We define the eigenpairs as (Λ(i), V (i)), with
Λ(i) = diag(λ(i)

1 , . . . , λ
(i)
L ) and V (i) = [v

(i)
1 | · · · |v(i)L ].

3.2. The Chebyshev Polynomials and Chebyshev Filter

Chebyshev filtered subspace iteration is closely related to
Chebyshev orthogonal polynomials (Mason & Handscomb,
2002; Rivlin, 2020). Chebyshev polynomials are widely
used due to their strong approximation capabilities. The
Chebyshev polynomials Cm(t) of degree m are defined on
the interval [−1, 1] and are expressed as

Cm(t) = cos(m cos−1(t)), |t| ≤ 1. (5)

Cm(t) commonly referred to as the Chebyshev polynomial
of the first kind, satisfies the following recurrence relation:

Cm+1(t) = 2tCm(t)− Cm−1(t). (6)

For a Hermitian matrix A ∈ Cn×n and vectors Y0 ∈ Cn×k,
we use the three-term recurrence relation that defines Cheby-
shev polynomials in vector form:

Cm+1(Y0) = 2ACm(Y0)− Cm−1(Y0), (7)

Cm(Y0) ≡ Cm(A)Y0. (8)

The computation of Cm(Y0) and the Chebyshev filter is
described in Algorithm 1. Let A′ denote the previously
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solved related matrix, with (λ′
i, v

′
i) in ascending order, and

{λ′
2, . . . , λ

′
n} ∈ [α, β]. In Algorithm 1, the parameter λ is

typically approximated by λ′
1, while c = α+β

2 and e = β−α
2

represent the center and half-width of the interval [α, β],
providing estimates for the spectral distribution of A.

Algorithm 1: Chebyshev Filter (Berljafa et al., 2015)

Input: Matrix A ∈ Cn×n, vectors Y0 ∈ Cn×k sorted
according to ascending degree specification
m = (m1, . . . ,mk) ∈ Nk, and parameters
λ, c, e ∈ R.

Output: Filtered vectors Ym = Cm(Y0), where each
vector Ym,j is filtered with a Chebyshev
polynomial of degree mj .

1 A = (A− cIn)/e;
2 σ1 = e/(λ− c);
3 Y1 = σ1AY0;
4 s = argmin

j=1,...,k
mj ̸= 1;

5 for i = 1, . . . ,mk − 1 do
6 σi+1 = 1/(2/σ1 − σi);
7 Yi+1,1:s−1 = Yi,1:s−1;
8 Yi+1,s:k = 2σi+1AYi,s:k − σi+1σiYi,s:k;
9 s = argmin

j=1,...,k
mj ̸= i+ 1;

4. Method
In this section, we introduce our novel method, named Sort-
ing Chebyshev Subspace Filter (SCSF), a fast data gen-
eration approach that improves the efficiency of solving
eigenvalue problems by leveraging intrinsic spectral correla-
tions among operators. SCSF incorporates two key compo-
nents: (1) a truncated Fast Fourier Transform (FFT)-based
approach for efficiently sorting operator eigenvalue samples
and (2) the Chebyshev filtered subspace iteration (ChFSI)
employed for sequential solving. By integrating these com-
ponents, SCSF enables effective utilization of prior spectral
information, accelerating the eigenvalue data generation.

We first introduce the sorting algorithm that leverages the
spectral similarities and provides the time complexity anal-
ysis in Section 4.1 . Then we give an introduction to the
Chebyshev filtered subspace iteration in Section 4.2. Figure
3 shows the overview of our SCSF. Generally, the truncated
FFT sorting algorithm ensures that successive matrices in
the sequence exhibit close relations. Then ordered sequence
enables the Chebyshev filtered subspace iteration (ChFSI)
to effectively utilize prior information, thereby accelerating
the solution process.

4.1. The Sorting Algorithm

To benefit the successive solving sequence of the eigenvalue
problem, we need the sorting algorithm that pulls matrices
with similar spectral properties, like frequency series, close
enough in the solving sequence, so that eigenvalue solving
of the current matrix in sequence can be easily boosted by
the last solving. A naive sorting strategy is a greedy sort
that uses the similarity of spectral properties between two
matrices, like frequency as the distance. And by repeatedly
fetching without reservation from the remaining matrix in
the data pool, we can re-organize the solving sequence so
that the successive solving can benefit from the re-ordered
sequence.

Algorithm 2: The Truncated FFT Sorting Algorithm
Input: Sequence of eigenvalue problems to be solved

A(i) ∈ Cn×n, corresponding parameter matrix
P (i) ∈ Cp×p, i = 1, 2, · · · , N and k is the
truncation threshold for low frequencies.

Output: Sequence for eigenvalue problems seqmat.
1 Initialize the list with sequence seq0 = {1, 2, · · · , N},

seqmat is an empty list;
2 Set i0 = 1 as the starting point. And remove 1 from

seq0 and append 1 to seqmat;
3 for i = 1, · · · , N do
4 Let P (i)

low = Trunck
(
FFT(P (i))

)
. Perform

truncated FFT on matrix P (i) to extract
low-frequency information, and P

(i)
low ∈ Ck×k;

5 for i = 1, · · · , N − 1 do
6 Refresh dis and set it to a large number, e.g., 1000;
7 for each j in seq0 do
8 disj = the Frobenius norm of the difference

between P
(i0)
low and P

(j)
low;

9 if disj<dis then
10 dis = disj and jmin = j;
11 Remove jmin from seq0 and append jmin to

seqmat and set i0 = jmin;
12 Get the sequence for eigenvalue problems seqmat;

However, the core computational cost of such a naive sorting
algorithm arises from repeatedly calculating the distances
between different matrices A, which is directly related to
the matrix dimension—that is, the resolution of operators.
Recalling Section 3.1, our eigenvalue problem, the matrix
A, is generated from the parameter matrix P (Lu et al.,
2022; Li et al., 2020). Existing works (Holmes, 2012; Li
et al., 2020) have shown that the key variables that affect
operators stem from the low-frequency components of the
parameter matrices P , while high-frequency components
often represent noise or irrelevant data. Based on this insight,
to reduce computational overhead during sorting, we first
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Figure 3: Algorithm Flow Diagram: a. Generation of operators to be solved. b. Discretization of operators into matrixes. c.
Apply SCSF algorithm to sort matrixes, obtaining a sequence with strong correlations. d. Other algorithms independently
solve the eigenvalue problems from step b. d1, d2, d3. SCSF algorithm utilizes Chebyshev subspace iterations to sequentially
solve the eigenvalue problems. e. Assembly of eigenvalue pairs into a dataset. f. Amplification of the interval of interest
through spectral transformation. g. Replacement of initial subspaces with previously solved invariant subspaces.

perform truncated FFT on the parameter matrices to extract
the low-frequency information before sorting. We then sort
by comparing the distances between these low-frequency
components.

As shown in Algorithm 2, suppose we have N eigenvalue
problems, the parameter matrices P (i) ∈ Cp×p, and the
low-frequency truncated matrices P (i)

low ∈ Ck×k. The com-
putational complexity of directly using a greedy algorithm
is O(N2p2). Our sorting algorithm’s complexity consists
of two main parts: 1. FFT Computation: The complexity of
FFT is O(p2 log p) per matrix. For N matrices, this totals
O(Np2 log p). 2. Greedy Sorting: The subsequent greedy
sorting algorithm has a complexity of O(N2k2).

Overall, the total complexity is O(N2k2 + Np2 log p).
Since k ≪ p and p ≪ N , our sorting algorithm effec-
tively reduces computational cost compared to the naive
greedy algorithm.

4.2. Chebyshev Filtered Subspace Iteration

In a series of eigenvalue problems, inherent correlations of-
ten exist between successive systems. We hypothesize that
leveraging the eigenpairs (Λ(i−1), V (i−1)) of the previous
problem A(i−1) can accelerate the iterative convergence of
the subsequent system A(i), thereby significantly enhancing
computational performance. For various types of operators,
the resulting eigenvalue problems produce matrices with
distinct structural characteristics. These unique matrix struc-
tures align well with the ChFSI method (Manteuffel, 1977;
Saad, 2011; Winkelmann et al., 2019; Berljafa et al., 2015).

To verify the effectiveness of our algorithm, we focus on
the most common scenario in eigenvalue problems where
the operator is self-adjoint; in this case, the corresponding
matrix A is Hermitian.

Algorithm 3 outlines the process of ChFSI for solving the
i-th eigenvalue problem A(i) (i > 1) where L eigenvalues
are required. The initial approximate invariant subspace
V (i−1) and spectral distribution Λ(i−1) are derived from the
eigenvectors and eigenvalues of the previous problem A(i−1)

in the sequence. The parameter m denotes the polynomial
degree in the filter function, typically chosen between 10 and
15. For the first eigenvalue problem A(1) in the sequence,
the initial iterative subspace Ṽ0 and initial spectrum Λ̃0 are
randomly generated.

Specifically, ChFSI begins by estimating the upper bound
of the eigenvalue spectrum (line 3) using a few Lanczos
iterations and known approximate eigenvalues (Zhou & Li,
2011; Saad, 2011). This estimate aids in constructing the
subsequent filter function. In line 5, the Chebyshev filter
is applied using the vector form of Chebyshev polynomi-
als; details can be found in the Preliminaries section 3.2.
After the Chebyshev filtering step, the vector block Ṽ0 span-
ning the invariant subspace may become linearly dependent.
To prevent this, orthonormalization is performed (line
6) using QR decomposition based on Householder reflec-
tors. Line 7 computes the Rayleigh quotient of matrix
A(i) using the orthonormalized Ṽ0, projecting the eigen-
value problem onto a subspace that approximates the de-
sired eigenspace. In line 8, 9, the reduced eigenvalue
problem is diagonalized, and the computed eigenvectors
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are projected back to the original problem. At the end of
the Rayleigh-Ritz step, residuals of the computed eigenvec-
tors are calculated; converged eigenpairs are locked, and
non-converged vectors are set to be filtered again (line
10). For each non-converged vector, the optimal degree of
the polynomial filter is updated (line 11) based on its
residual and approximate eigenvalue.

Algorithm 3: Chebyshev Filtered Subspace Iteration

Input: Eigenvalue problem A(i), eigenpairs
(Λ(i−1), V (i−1)) of the previous eigenvalue
problem A(i−1) where
Λ(i−1) = diag(λ(i−1)

1 . . . λ
(i−1)
L ). Initial filter

degree m0.
Output: Wanted eigenpairs (Λ(i), V (i)).

1 Initialize empty arrays/matrices (Λ̃, Ṽ ), set
Λ̃0 = Λ(i−1), and Ṽ0 = V (i−1);

2 Set the filter degrees
(m1, . . . ,mL) = (m0, . . . ,m0) =: m;

3 Estimate the largest eigenvalue via Lanczos iteration;
4 repeat
5 Apply Chebyshev filter: Ṽ0 = Cm(Ṽ0);
6 Perform QR orthonormalization on [Ṽ |Ṽ0];
7 Compute Rayleigh quotient G = Ṽ †

0 A
(i)Ṽ0;

8 Solve the reduced problem GW = W Λ̃0;
9 Update Ṽ0 = Ṽ0W ;

10 Lock converged eigenpairs into (Λ̃, Ṽ );
11 Update filter degrees (m1, . . . ,mk) = m;
12 until the number of converged eigenpairs ≥ L;
13 Return eigenpairs (Λ(i), V (i)) = (Λ̃, Ṽ ) ;

Assuming m is the degree of the polynomial, n is the di-
mension of the matrix A, and f is the number of vectors
being filtered, the computational complexity per iteration
comprises: 1. Chebyshev Filter: O(mnf) 2. QR Factoriza-
tion: O(nf2) 3. Rayleigh-Ritz Procedure: O(nf2 + f3) 4.
Residuals Check: O(nf) . Since m ≫ 1, the Chebyshev
filtering step is the most computationally intensive.

The acceleration effectiveness of the Chebyshev filtered sub-
space iteration heavily depends on selecting approximate
invariant subspaces and eigenvalues that promote rapid con-
vergence in subsequent iterations. Proper sorting amplifies
their impact, reducing the number of iterations required.
This underscores the critical importance of the sorting algo-
rithm in our method.

5. Experiment
5.1. Experimental Settings

To comprehensively assess the performance of our model,
denoted as SCSF, against other algorithms, we conducted

extensive experiments, each simulating the generation of
an operator eigenvalue dataset. We primarily compared
the average computation times across different numbers of
eigenvalues solved and various matrix sizes. These tests
encompassed three distinct datasets and four mainstream
eigenvalue solving algorithms, with SCSF consistently de-
livering commendable results. The detailed data is available
in the Appendix C.1.

Baseline. As previously mentioned, our focus revolves
around the eigenvalue problem of matrices derived from self-
adjoint differential operators, typically consisting of large
sparse Hermitian matrices. We benchmarked against the fol-
lowing mainstream algorithms implemented in professional
libraries: 1. Eigsh from SciPy (implicitly restarted Lanczos
method) (Virtanen et al., 2020; Lehoucq et al., 1998), 2.
Locally optimal block preconditioned conjugate gradient
(LOBPCG) algorithm from SLEPc (Knyazev, 2001; Her-
nandez et al., 2009), 3. Krylov-Schur (KS) algorithm from
SLEPc (Stewart, 2002), 4. Jacobi-Davidson (JD) algorithm
from SLEPc (Sleijpen & Van der Vorst, 2000). For detailed
information, please refer to Appendix B.1.

Datasets. To explore the adaptability of the algorithm across
different matrix types, we delved into three distinct operator
eigenvalue problem challenges: 1. Generalized Poisson op-
erator; 2. Second-order elliptic partial differential operator;
3. Helmholtz operator. For a thorough description of the
datasets and their generation, please refer to Appendix B.2.

All experiments focus on computing the smallest L eigenval-
ues in absolute value and their corresponding eigenvectors,
which are indicative of the operator eigenvalues and eigen-
functions. For the runtime environment and experimental
parameters, refer to Appendix B.3 and B.4. The hyperpa-
rameter analysis experiments and the time distribution of
each part of SCSF can be found in Appendix C.4 and C.3.

5.2. Main Experiment

Table 1 showcases selected experimental data. From this ta-
ble, we can infer several conclusions: Firstly, across all tests,
our SCSF algorithm consistently maintained the lowest
computation times. The most significant improvements ap-
peared in the Helmholtz dataset, where SCSF demonstrated
speedups of 8×, 20×, 6×, and 95× compared to Eigsh,
LOBPCG, KS, and JD algorithms, respectively. These re-
sults confirm that SCSF effectively reduces inherent redun-
dancies in sequential eigenvalue problems, substantially
accelerating dataset generation.

Secondly, as the number of eigenvalues L solved per matrix
increases, the speed advantage of SCSF over other algo-
rithms becomes more pronounced. For instance, on the
second-order elliptic operator dataset, when solving for 200
eigenvalues, SCSF is 2.5 times faster than the Krylov-Schur

6



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Table 1: Comparison of average computation times (in sec-
onds) for eigenvalue problems using various algorithms.
The first row lists different algorithms, the first column de-
tails the datasets including matrix dimensions and solution
precisions, and the second column shows the number of
eigenvalues L computed for each matrix. The best algo-
rithm is in bold. The symbol ’-’ denotes data not recorded
due to excessive computation times.

Dataset L Eigsh LOBPCG KS JD SCSF

Poisson 200 14.20 73.03 23.76 270.2 12.85
2500 300 26.27 151.5 45.95 920.8 25.61
1e-12 400 36.86 265.3 72.32 2691 33.91
Ellipse 200 41.82 139.2 61.77 414.3 24.08
4900 300 62.47 264.1 110.5 1446 29.88
1e-10 400 87.19 459.7 188.7 3386 34.60
Helmholtz 200 151.7 129.9 98.34 489.6 31.31
6400 400 253.5 460.4 283.0 3829 40.52
1e-8 600 398.8 1031 329.6 - 51.32

method and 5.5 times faster at 400 eigenvalues. This ef-
ficiency stems from SCSF inheriting approximate invari-
ant subspaces from previous solutions, effectively lever-
aging available information to expand the initial search
space. Consequently, SCSF requires minimal additional
iterations as L increases, resulting in modest computation
time growth.

Thirdly, the performance disparity across different datasets
is significant. For example, on the generalized Poisson
operator dataset, SCSF is only about 10% faster than Eigsh,
yet it leads by 4-7 times on the Helmholtz dataset. This
difference can be attributed to the numerical properties of
different operators and the matrix assembly formats, which
directly influence algorithmic performance.

Furthermore, the impact of the matrix dimension is signifi-
cant. We conducted supplementary experiments, with the
data available in the Appendix C.2. The results are shown
in Figure 4, SCSF performs noticeably better as matrix di-
mensions increase. Below the matrix dimension of 3600,
SCSF and Eigsh show comparable efficiency. However,
beyond 5000, SCSF significantly outperforms Eigsh and
other algorithms. This phenomenon is analyzed from the
matrix approximation of operators. For a fixed operator, its
eigenvalues and eigenfunctions are fixed. Different matrix
dimensions represent embedding the operator in different
finite-dimensional linear spaces. For a fixed number of
eigenvalues L, larger matrices more accurately approximate
the true eigenvalues (the smallest L eigenvalues by abso-
lute value) of the operator. In other words, larger matrix
dimensions result in fewer errors and noise in the computed
eigenvalues, allowing for a clearer demonstration of the
similarities between operators. Consequently, larger matrix
dimensions allow SCSF to better exploit the similarities,

3000 4000 5000 6000 7000 8000 9000 10000
Matrix Dimension

101

102

103

Ti
m

e 
(s

)

Scipy eigsh
Slepc LOBPCG
Slepc KS
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SCSF (ours)

Figure 4: Plot of average computation time versus matrix
dimension for solving 400 eigenvalues with a precision of
1e− 12 on the generalized Poisson operator dataset.

yielding superior performance.

5.3. Efficacy of Chebyshev Subspace Filter

To analyze the efficacy of the Chebyshev Subspace Filter,
we conducted the following experiments. After sorting,
the initial vector or subspace for the existing algorithms
was set to the eigenvectors from the previous problem. We
compared the computational time across different methods.
The experiments were conducted on the Helmholtz operator
dataset, with a matrix dimension of 6400 and a solution
accuracy of 1e− 8. The results are shown in Table 2.

First, the computation time for SCSF in all experiments was
minimal, clearly demonstrating the efficacy of the Cheby-
shev subspace filter. This also highlights that the Chebyshev
subspace filter is the optimal choice for leveraging problem
similarity to reduce redundancy.

Second, modifying the initial setup had varying impacts
on different algorithms. 1. LOBPCG: showed significant
acceleration. Its underlying logic is similar to SCSF, both
relying on iterative optimization of the subspace to solve
the problem. The initial subspace has a considerable impact
on the solution. 2. Eigsh and KS were almost unaffected.
These methods start with an initial vector and solve the
problem through Krylov iteration. In other words, problem
similarity only impacts a vector, with little effect on the
overall time. 3. JD showed a performance decline. This is
because its performance is sensitive to the size of the initial
subspace. Our modification altered the default dimension of
the initial subspace.

5.4. Efficacy of Sorting Algorithms

We analyze the performance of the sorting algorithm module
from two perspectives: 1. Comparing the performance of
SCSF algorithm with and without the use of ’sorting’ as
shown in Table 3. 2. Evaluating the effectiveness of different
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Table 2: Impact of initial setup modifications on average computation time (in seconds) for different algorithms. ’*’ denotes
the modified initial subspace version. The first-row lists algorithms, and the first column shows the number of eigenvalues L
computed. The best algorithm is in bold, and ’-’ indicates unrecorded data due to excessive computation time.

L Eigsh Eigsh* LOBPCG LOBPCG* KS KS* JD JD* SCSF (ours)
200 151.7 150.2 129.9 95.9 98.34 100.6 489.6 760.1 31.31
300 208.8 206.3 270.1 199.8 179.9 185.2 1803 3101 38.67
400 253.5 249.1 460.4 362.1 283.0 292.2 3829 6374 40.52
500 324.6 315.3 717.3 573.7 314.2 317.4 - - 46.70
600 398.8 394.7 1031 866.0 329.6 335.7 - - 51.32

Table 3: Performance comparison of SCSF with and without sorting. The first column lists the number of eigenvalues
L computed, while subsequent columns display average computation times, average iteration counts, total Flop counts,
and filter Flop counts. Experiments used the matrix dimension of 2500 and precision 1e− 12 on the generalized Poisson
operator dataset.

L
Time (s) Iteration Flops Filter Flops

nosort sort nosort sort nosort sort nosort sort
20 8.248 2.971 19.70 9.880 519.7 298.4 485.8 280.8
100 14.18 9.891 18.77 35.38 1984 2332 1798 1970
200 18.45 12.85 36.30 33.67 4459 3944 3654 3192
300 34.59 25.61 47.50 39.18 8967 7544 6985 5702
400 42.60 33.91 47.43 45.18 12022 11182 9087 8338

Table 4: Comparison of average computation times (in sec-
onds) for different sorting algorithms, with the first column
indicating dataset size. Experiments used the matrix dimen-
sion of 6400 on the Helmholtz dataset.

Size Greedy Truncated FFT Sort (ours)
Total FFT Greedy Total

102 0.114 0.0016 0.0147 0.0163
103 7.328 0.0164 1.421 1.438
104 592.7 0.1658 150.9 151.1

sorting algorithms as detailed in Tables 4 and 5.

Firstly, Table 3 indicates that incorporating sorting can en-
hance SCSF computation speed to 1.3 to 2.8 times, reduce
the number of iterations by 5% to 50%, and decrease total
Flops by 7% to 43%. The optimization effect of sorting is
more pronounced with smaller numbers of solutions (L).
This is because when L is large, the inherited subspace
already contains most of the necessary correlation informa-
tion, diminishing the impact of sorting. Moreover, the Flops
in the Filter component constitute over 70% of SCSF’s com-
putational load. A detailed time analysis of different aspects
of SCSF can be found in Appendix C.3.

Secondly, as shown in Table 4, our designed truncated FFT
sorting algorithm incurs significantly lower time overhead
compared to the complete greedy sorting in SKR (Wang
et al., 2024), with its benefits becoming more pronounced

Table 5: Comparison of average computation times (in sec-
onds) and iteration counts for different sorting algorithms
using SCSF. Experiments used the matrix dimension of
6400 on the Helmholtz dataset, precision 1e− 8, and target-
ing 400 eigenvalues.

Nosort Greedy Ours
Time (s) 66.66 40.52 40.52
Iteration 10.4 5.5 5.5

as dataset size increases. In the truncated FFT sorting al-
gorithm, the FFT contributes minimally to computational
overhead but significantly reduces the time required for sub-
sequent greedy sorting. Table 5 shows SCSF solution times
for matrices sorted using either greedy or truncated FFT
sorting are nearly identical, highlighting its effectiveness.

6. Conclusions
In this paper, we introduced SCSF algorithm. To the best of
our knowledge, this is the first method to accelerate eigen-
value dataset generation by reducing computational redun-
dancy in the associated matrix eigenvalue problems. The
proposed SCSF algorithm significantly reduces the compu-
tational overhead of eigenvalue dataset generation, thereby
addressing a major obstacle to the application of neural
networks in scientific computing.
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A. From Differential Operator to Matrix Eigenvalue Problem: An Example
A.1. Overview

The general methodology for solving the eigenvalue problems of differential operators numerically, employing techniques
such as Finite Difference Method (FDM), Finite Element Method (FEM), and Spectral Method, can be delineated through
the following pivotal steps (Strikwerda, 2004; Hughes, 2012; Johnson, 2012; LeVeque, 2002):

1. Mesh Generation: This step involves dividing the domain, over which the differential operator is defined, into a discrete
grid. The grid could be composed of various shapes, including squares, triangles, or more complex forms depending on the
problem’s geometry.

2. Operator Discretization: The differential operator is transformed into its discrete counterpart. Essentially, this maps the
operator from an infinite-dimensional Hilbert space to a finite-dimensional representation.

3. Matrix Assembly: In this phase, the discretized operator is represented in a matrix form. For linear differential operators,
this involves creating a system of matrix eigenvalue problems. For nonlinear operators, iterative methods akin to Newton’s
iteration are employed, transforming the problem into a sequence of matrix eigenvalue problems.

4. Applying Boundary Conditions: This involves discretizing and applying boundary conditions specific to the differential
operator in question, which are then incorporated into the matrix system.

5. Solving the Matrix Eigenvalue Problem: This stage, often the most computationally intensive, entails solving the matrix
for its eigenvalues and eigenvectors, which correspond to the eigenvalues and eigenfunctions of the original differential
operator.

6. Obtaining the Numerical Solution: The final step involves mapping the obtained numerical solutions back onto the
original domain, analyzing them for accuracy and stability, and interpreting them in the context of the initial problem.

A.2. Example

To illustrate how the FDM can transform the wave equation into a system of matrix eigenvalue problems, let’s consider a
concrete and straightforward example. Assume we aim to solve a one-dimensional wave equation’s operator eigenvalue
problem, expressed as

−d2u

dx2
= λu, (9)

over the interval [0, L]. The boundary conditions are u(0) = u(L) = 0, signifying fixed-end conditions. In this context,
u(x) denotes the eigenfunction, and λ represents the eigenvalue.

1. Mesh Generation: Using the central difference quotient, we divide the interval [0, L] into N + 1 evenly spaced points,
including the endpoints. The distance between adjacent points is denoted as ∆x = L

N .

2. Operator Discretization: This step involves formulating the difference equation. At each interior node, which excludes
the endpoints and totals N − 1 points, we apply a central difference approximation for the second derivative, represented as

d2u

dx2
≈ u(xi+1)− 2u(xi) + u(xi−1)

(∆x)2
(10)

3. Matrix Assembly: In this phase, the discretized operator is represented in a matrix form. Following the approximation, we
construct the matrix A, an N − 1×N − 1 tridiagonal matrix, crucial for the computations. The matrix A is constructed as:

A =
1

(∆x)2


−2 1 0 · · · 0
1 −2 1 · · · 0
0 1 −2 · · · 0
...

...
...

. . .
...

0 0 0 · · · −2

 (11)

4. Applying Boundary Conditions: For the wave equation with boundary conditions u(0) = u(L) = 0, these fixed-end
conditions are integrated into the matrix equation. In the FDM framework, the values at the endpoints (u0 and uN ) are zero,
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directly reflecting the boundary conditions. The impact of these conditions is encapsulated in the matrix A, affecting the
entries related to u1 and uN−1 (the grid points adjacent to the boundaries). The tridiagonal matrix A incorporates these
boundary conditions, ensuring that the computed eigenfunctions satisfy u(0) = u(L) = 0.

5. Solving the Matrix Eigenvalue Problem: The final computational step involves solving the matrix eigenvalue problem,
expressed as Au = λu. This includes determining the eigenvalues λ and corresponding eigenvectors u, which are discrete
approximations of the eigenfunctions of the original differential equation.

6. Obtaining the Numerical Solution: By solving the eigenvalue problem, we obtain numerical solutions that approximate
the behavior of the original differential equation. These solutions reveal the eigenvalues and eigenvectors and provide
insights into the physical phenomena modeled by the equation.

B. Details of Experimental Setup
B.1. Baseline

The baseline algorithms were implemented using the following numerical computing libraries:

• Eigsh: A SciPy (v1.14.1) implementation wrapping ARPACK’s SSEUPD and DSEUPD functions, which compute
eigenvalues and eigenvectors using the Implicitly Restarted Lanczos Method. Default parameters were used.

• Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG): Implemented in SLEPc (v3.21.1) with default
parameters.

• Krylov-Schur (KS): Implemented in SLEPc (v3.21.1) with default parameters.

• Jacobi-Davidson (JD): Implemented in SLEPc (v3.21.1). The implementation uses ’bcgsl’ as the linear equation solver,
’bjacobi’ as the preconditioner, and sets the linear equation solving precision to 1e-5.

B.2. Dataset

1. Generalized Poisson Operator

We consider two-dimensional generalized Poisson operators, which can be described by the following equation (Li et al.,
2020; Rahman et al., 2022; Kovachki et al., 2021; Lu et al., 2022):

−∇ · (K(x, y)∇h(x, y)) = λh(x, y),

In our experiment, K(x, y) is derived using the Gaussian Random Field (GRF) method. We convert these operators into
matrices using the central difference scheme of FDM. The parameters inherent to the GRF serve as the foundation for our
sort scheme.

2. Second-Order Elliptic Partial Differential Operator

We consider general two-dimensional second-order elliptic partial differential operators, which are frequently described by
the following generic form (Evans, 2022; Bers et al., 1964):

Lu ≡ a11uxx + a12uxy + a22uyy + a1ux + a2uy + a0u = λu,

where a0, a1, a2, a11, a12, a22 are constants, and f represents the source term, depending on x, y. The variables u, ux, uy

are the dependent variable and its partial derivatives. The equation is classified as elliptic if 4a11a22 > a212.

In our experiments, a11, a22, a1, a2, a0 are uniformly sampled within the range (−1, 1), while the coupling term a12 is
sampled within (−0.01, 0.01). We then select equations that satisfy the elliptic condition to form our dataset. We convert
these operators into matrices using the central difference scheme of FDM. The coefficients a0, a1, a2, a11, a12, a22 serve as
the foundation for our sort scheme.

3. Helmholtz Operator

We consider two-dimensional Helmholtz operators, which can be described by the following equation (Zhang et al., 2022):

∇ · (p(x, y)∇u(x, y)) + k2(x, y) = λu(x, y),
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Physical Contexts in which the Helmholtz operator appears: 1. Acoustics; 2. Electromagnetism; 3. Quantum Mechanics.

In Helmholtz operators, k is the wavenumber, related to the frequency of the wave and the properties of the medium in
which the wave is propagating. In our experiment, p(x, y) and k(x, y) are derived using the GRF method. The parameters
inherent to the GRF serve as the foundation for our sort scheme.

B.3. Environment

To ensure consistency in our evaluations, all comparative experiments were conducted under uniform computing environ-
ments. Specifically, the environments used are detailed as follows:

• Platform: Docker version 4.33.1 (windows 11)

• Operating System: Ubuntu 22.04.3 LTS

• Processor: CPU AMD Ryzen 9 8945HS w, clocked at 4.00 GHz

B.4. Experimental Parameter Configuration

All baseline methods were implemented using their default parameters from respective libraries.

For SCSF, the following configurations were adopted:

• The size of the inherited subspace varies according to the number of eigenvalues to be computed. Specifically, when
calculating 20, 100, 200, 300, and 400 eigenvalues, the corresponding subspace sizes are set to 4, 20, 40, 60, and 80,
respectively.

• The filter degree parameter m is consistently set to 20 across all experiments.

C. Experimental Data and Supplementary Experiments
C.1. Main Experimental Data

As shown in Tables 7, 6, 8, SCSF showed the best performance among all tested configurations

Table 6: Comparison of average computation times (in seconds) for eigenvalue problems using various algorithms on
generalized Poisson operator dataset. The first row lists different algorithms, and the first column shows the number of
eigenvalues L computed for each matrix. Matrix Dimension = 4900, Precision = 1e− 10.

L Eigsh LOBPCG KS JD SCSF (ours)
150 9.15 46.8 14.9 138 7.95
200 14.2 73.0 23.8 270 12.9
250 19.8 109 34.3 553 19.0
300 26.3 152 45.6 921 25.7
350 31.5 203 58.4 1732 29.8
400 36.9 265 72.3 2691 33.9
450 42.8 342 87.3 3708 38.3
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Table 7: Comparison of average computation times (in seconds) for eigenvalue problems using various algorithms on
second-order elliptic operator dataset. The first row lists different algorithms, and the first column shows the number of
eigenvalues L computed for each matrix. Matrix Dimension = 2500, Precision = 1e− 12.

L Eigsh LOBPCG KS JD SCSF (ours)
150 31.35 91.80 40.65 214.80 19.62
200 41.82 139.20 61.77 414.30 24.08
250 52.17 197.04 84.65 861.44 28.00
300 62.47 264.10 110.50 1446.00 29.88
350 74.59 355.18 147.01 2324.88 31.52
400 87.19 459.70 188.70 3386.00 34.60
450 100.28 577.67 235.56 4629.38 40.05

Table 8: Comparison of average computation times (in seconds) for eigenvalue problems using various algorithms on
Helmholtz operator dataset. The first row lists different algorithms, and the first column shows the number of eigenvalues L
computed for each matrix. Matrix Dimension = 6400, Precision = 1e− 8. The symbol ’-’ denotes data not recorded due to
excessive computation times.

L Eigsh LOBPCG KS JD SCSF (ours)
200 151.70 129.90 98.34 489.60 31.31
300 190.84 273.08 192.88 1601.08 37.78
400 253.50 460.40 283.00 3829.00 40.52
500 344.60 720.33 310.21 - 47.41
600 398.80 1031.00 329.60 - 51.32

C.2. Analysis of the Influence of Matrix Dimension

Table 9: Comparison of different algorithms’ computation time (in seconds) for varying matrix dimensions using the
generalized Poisson operator dataset. Results show average computation times for solving 400 eigenvalues with a precision
of 1e− 12.

Matrix Dimension Eigsh LOBPCG KS JD SCSF (ours)
2500 36.86 265.30 72.32 2691.00 33.91
3600 66.41 387.20 116.50 2990.00 65.41
4225 89.13 467.74 151.36 3548.13 70.79
4900 121.90 546.20 187.80 3886.00 74.23
5625 186.21 691.83 251.19 - 85.11
6400 282.80 860.00 337.70 - 93.86
8100 707.95 1412.54 707.95 - 114.82
10000 3162.28 2511.89 1995.26 - 158.49

As demonstrated in Table 9, the impact of matrix dimension on algorithm performance reveals several key insights. For
matrices below dimension 3600, SCSF and Eigsh show comparable efficiency. However, SCSF’s advantages become
increasingly pronounced as matrix dimensions grow larger. At dimension 10000, SCSF achieves remarkable speedups: 20x
faster than Eigsh, 16x faster than LOBPCG, and 13x faster than KS. This scaling behavior can be attributed to how larger
matrix dimensions result in fewer errors and noise in the computed eigenvalues, allowing SCSF to better exploit similarities
between problems. Additionally, the JD algorithm becomes computationally intractable at and above dimension 5625, while
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SCSF maintains stable performance scaling even at high dimensions.

C.3. Analysis of Computational Times for SCSF Components

Table 10: Analysis of Computational Times (in seconds) for SCSF Components

All Lanczos (line3) Filter (line 5) QR (line 6) RR (line 7) Resid (line 8, 9) Sort
9.89e+0 4.04e-2 7.41e+0 3.12e-1 9.76e-1 7.95e-1 1.51e-2

We conducted a statistical analysis of the average time consumption for each component of the SCSF algorithm on the
generalized Poisson operator dataset, with a matrix dimension of 2500 and the number of eigenvalues to be solved set to
100. The results are presented in Table 10. The notation ”line x” within parentheses corresponds to line x in Algorithm 3,
”ALL” denotes the total time consumption, and ”sort” represents the average time required by the sorting algorithm. It is
evident that the filtering process accounts for over 70% of the total time consumption, which aligns with our theoretical
analysis in Section 4.2.

C.4. Analysis of Hyperparameters

Table 11: Average Computational Times (in seconds) of SCSF under Different Degree Parameters m.

Deg 12 16 20 24 28 32 36 40

Time (s) 43.92 39.79 40.52 40.64 40.85 41.13 41.19 43.50

We investigated the impact of different degree parameters m on the performance of SCSF. As shown in Table 11, the
experiments were conducted on the Helmholtz operator dataset with a matrix dimension of 6400, a solution accuracy of 1e-8,
400 eigenvalues to be solved, and an inherited subspace size of 80. The degree parameter m, as described in Algorithm 3,
primarily controls the order of the Chebyshev polynomial. The results indicate that varying m within the range of 12 to 40
has a minimal effect on the computation time of SCSF. Therefore, as long as m is chosen within a reasonable range, its
specific value does not significantly influence the performance. In the main experiments of this paper, m is fixed at 20.

Table 12: Average Computational Times (in seconds) of SCSF under Different Subspace Dimension.

Dim 50 60 70 80 90 100 110 120

Time (s) 43.28 44.35 42.43 40.52 39.65 37.43 38.28 38.58

We examine the influence of different inherited subspace sizes on the performance of SCSF. As presented in Table 12, the
experiments are conducted on the Helmholtz operator dataset with a matrix dimension of 6400, a solution accuracy of 1e-8,
400 eigenvalues to be computed, and a degree parameter m set to 20.

The results demonstrate that as the inherited subspace size increases, the computation time of SCSF initially decreases and
then rises, reaching its minimum around a size of 100. The reduction in computation time at the front end is attributed to
the enriched initial subspace with more available information as the inherited subspace grows. Conversely, the increase in
computation time at the back end is due to the significantly higher overhead of performing Chebyshev filtering with a larger
inherited subspace.

Overall, as long as the inherited subspace size is set within a reasonable range, its impact on SCSF remains minimal. In our
experiments, we consistently set the inherited subspace size to 20% of the number of eigenvalues to be computed.
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