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ABSTRACT

Verifiers or reward models are often used to enhance the reasoning performance
of large language models (LLMs). A common approach is the Best-of-N method,
where N candidate solutions generated by the LLM are ranked by a verifier, and
the best one is selected. While LLM-based verifiers are typically trained as dis-
criminative classifiers to score solutions, they do not utilize the text generation
capabilities of pretrained LLMs. To overcome this limitation, we instead propose
training verifiers using the ubiquitous next-token prediction objective, jointly on
verification and solution generation. Compared to standard verifiers, such gen-
erative verifiers (GenRM) can benefit from several advantages of LLMs: they
integrate seamlessly with instruction tuning, enable chain-of-thought reasoning,
and can utilize additional test-time compute via majority voting for better ver-
ification. We demonstrate that GenRM outperforms discriminative, DPO veri-
fiers, and LLM-as-a-Judge, resulting in large performance gains with Best-of-N,
namely 5% → 45.3% on algorithmic tasks, 73% → 93.4% on GSM8K, and
28% → 44.6% on easy-to-hard generalization on MATH. Furthermore, we find
that training GenRM with synthetic verification rationales is sufficient to pick out
subtle errors on math problems. Finally, we demonstrate that generative verifiers
scale favorably with model size and inference-time compute.

1 INTRODUCTION
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Figure 1: Generative Verifiers outperform standard verification approaches in terms of Best-of-N on rea-
soning tasks, with a fixed generator. Here, ∆ represents the improvement in number of problems solved with
Best-of-N using GenRM-CoT. GenRM-CoT leverages the generation capabilities of LLMs, enabling a fine-
tuned verifier to utilize chain-of-thought verification to detect subtle reasoning errors. For algorithmic tasks,
we report average performance using Gemma-2B on Last Letter Concat (Wei et al., 2022) and BBH Word Sort-
ing (Suzgun et al., 2022). For math reasoning, we train Gemma2-9B verifiers on GSM8K and evaluate their
performance on GSM8K test (middle) and easy-to-hard generalization on MATH500 (Lightman et al., 2023).
For math tasks, LLM-as-a-Judge utilizes Gemini 1.0 Pro, which we used for synthetic verification rationales
for training. For each task, the generated solutions in Best-of-N are the same; the only difference is the verifier.

While large language models (LLMs) demonstrate remarkable capabilities, they often confidently
make logical and factual mistakes (Zhang et al., 2023). These mistakes pose a significant challenge
for reasoning problems, where a single mistake can invalidate the solution. A common strategy to
address this issue is Best-of-N (Charniak and Johnson, 2005; Cobbe et al., 2021): the LLM generates
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Problem: Tim decides to cancel his cable subscription and get streaming services. He gets Netflix for $10
a month. Hulu and Disney Plus normally cost $10 a month each but he saves 20% for bundling. How much
money does he save by cancelling his $60 cable package?

Solution: Tim pays $60 for cable. He gets Netflix for 10 and the bundle of Hulu and Disney Plus costs $10
* 80% = $8. So he pays $10 + $8 = $18 for the bundle. Now he saves $60 - $18 = $42. The answer is 42.

Discriminative RM correctness score: 0.999

GenRM-CoT: Let’s verify step by step. · · ·
Step 3. **The bundle of Hulu and Disney Plus costs $10 * 80% = $8.** (Incorrect)
- Expected Answer: The bundle of Hulu and Disney Plus costs $10 + $10 = $20. With the 20% discount,
the total cost is $20 * 0.8 = $16. · · ·
Verification: Is the answer correct (Yes/No)? No

GenRM-CoT (Majority Voting) score: 0.0015

Figure 2: Example using generative CoT verifier on GSM8K test. LLM-generated solutions often sound
convincing even when they are wrong, making verification a challenging task. Here, the solution is incorrect
because it has ignored the word ‘each’ in the problem. While the discriminative RM fails to recognize this
subtle mistake in the solution, our GenRM-CoT verifier reliably detects the error. This is because GenRM-CoT
was trained with next-token prediction on synthetic chain-of-thought rationales, enabling it to explicitly reason
about the solution. Note that GenRM-CoT refers to CoT reasoning in the verification process (the solutions
typically also contain CoT, but not for verification). The full verification output can be found in Table D.11.

N candidate solutions for a given problem, and a learned reward model, referred to as a “verifier”,
ranks these solutions and picks the most suitable one. The effectiveness of this strategy hinges on
how accurate the verifier is, making it crucial to identify better approaches for training verifiers.

On reasoning domains, LLM-based verifiers are typically trained as discriminative reward mod-
els (RMs) to assign numerical scores to candidate solutions, which is then used to classify them as
correct or incorrect (Cobbe et al., 2021; Lightman et al., 2023; Wang et al., 2023). However, this
scoring approach does not utilize the text-generation capabilities that LLMs are fundamentally de-
signed for. As a result, discriminative RMs miss out on the inherent strengths of generative LLMs,
such as unified instruction tuning (Chung et al., 2022), chain-of-thought (CoT) reasoning (Wei et al.,
2022), and utilizing additional inference-time computation for better performance (Wang et al.,
2022; Brown et al., 2024). While LLM-as-a-Judge (Zheng et al., 2024), which simply prompts
off-the-shelf generative LLMs, also offers the above advantages, it typically underperforms trained
LLMs-based verifiers on reasoning tasks, which we also observe in Figure 1.

In this work, we propose training verifiers with next-token prediction, which we call GenRM, to
leverage the text generation capabilities of LLMs (Figure 2). Concretely, to produce a numerical
score for a solution, the verifier now uses a prompt such as ‘Is the answer correct?’, and represents
the score as the probability of a single text token (e.g., ‘Yes’ or ‘No’). GenRM naturally supports
CoT reasoning (Nye et al., 2021; Wei et al., 2022): it can be trained to reason explicitly by generating
a verbalized rationale before predicting correctness using ‘Yes’ or ‘No’ token (Figure 3), assuming
rationales are available during training. We can further boost verification accuracy of CoT verifiers
using majority-voting (Wang et al., 2022): sampling multiple CoT rationales and calculating the
average score of the ‘Yes’ token across rationales, enabling the use of inference-time compute for
verification. Moreover, GenRM’s next-token prediction training enables unifying solution genera-
tion with verification, which has been difficult with DPO verifiers (Rafailov et al., 2024; Hosseini
et al., 2024), improving verification through positive knowledge transfer from solution generation.

GenRM outperforms discriminative RMs, LLM-as-a-Judge, and self-consistency on algorithmic
string manipulation and math reasoning tasks (Figure 1). Best-of-N performance further improves
with GenRM-CoT that uses majority-voting, nearly matching performance with oracle verifier on
algorithmic tasks. On GSM8K, when using a Gemma2-9B GenRM-CoT verifier on solutions from
Gemini 1.0 Pro, we observe an improvement from 73% → 93.4% in terms of the number of prob-
lems solved, surpassing GPT-4 and Gemini 1.5 Pro. Furthermore, GenRM-CoT trained on grade-
school math problems exhibit easy-to-hard generalization, solving 17% more high-school competi-
tion problems in MATH500 (Lightman et al., 2023) with Best-of-32. Moreover, we find that gen-
erative verifiers scale more favorably than discriminative verifiers as we increase model capacity,
and outperform LLM-as-a-Judge as we scale inference-time compute with majority voting. Overall,
generative verifiers hold significant potential for improving the reasoning capabilities of LLMs.
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Figure 3: An illustration of generative verifiers, namely GenRM and GenRM-CoT. Given a question and a
candidate solution, GenRM directly finetunes an LLM to answer the question ‘Is the answer correct (Yes/No)?’
via SFT on the next-token response corresponding to either ‘Yes’ or ‘No’. During inference, the verifier score is
obtained by extracting the probability of the ‘Yes’ token (3). In comparison, GenRM-CoT finetunes a LLM to
produce verification chain-of-thought (CoT) rationale before yielding the final Yes/No token. At test-time, we
sample multiple CoT rationales and use majority voting to compute the average probability of ‘Yes’, enabling
GenRM-CoT to utilize additional inference-compute for better verification.

2 PRELIMINARIES

An autoregressive language model generates an output sequence y = (y1, y2, . . . , yT ) given a input
context x (e.g., math problem) by predicting tokens one at a time, based on the previously gener-
ated tokens. Assuming that the language model is parameterized by θ, the conditional probability
distribution of generating a sequence y given context x is pθ(y | x) =

∏T
t=1 pθ(yt | x, y<t),

with the convention y<1 = ∅ and y<t = (y1, y2, . . . , yt−1). For ease of notation, we define
pθ(yt | x) := pθ(yt | y<t,x). For a vocabulary size M , the probability of predicting the t-th
token yt, pθ(yt | x), is determined using a softmax with temperature γ on logit scores z of all the to-
kens: pθ(yt | x) = exp(zt/γ)∑M

i=1 exp(zi/γ)
, where zt = logitθ(yt | x,y<t). Higher values of temperature

γ introduce more randomness, while setting τ = 0 corresponds to greedy decoding.

Next-token prediction is the typical approach for pre-training and fine-tuning LLMs. In particular,
supervised fine-tuning (SFT) minimizes the cross-entropy loss between the model’s predicted next
token and the actual target token in a given sequence. Given a dataset D = {(x, y)} of input context
x and target response y, the SFT loss is given by:

LSFT(θ,D) = −E(x,y)∼D

 |y|∑
t=1

log pθ(yt | x,y<t)

 . (1)

Best-of-N is a widely-used approach to improve the reasoning performance of LLMs (Cobbe et al.,
2021; Lightman et al., 2023). Specifically, given a test problem, we sample N candidate solutions
from a generator LLM. These candidates are then scored using a learned verifier or reward model,
and the highest-scoring solution is selected as the final answer. A better verifier increases the chance
of selecting the correct solution, improving test accuracy.

Discriminative Verifiers. The prevalent approach of training verifiers for reasoning domains is to
fine-tune an LLM as a classifier on a dataset of correct and incorrect solutions generated from a
fixed LLM, using the binary cross-entropy loss. To do so, these verifiers directly assign a numerical
score rθ(x,y) ∈ [0, 1] to estimate the probability that a solution y is correct for a problem x. As
such, these verifiers do not utilize the text generation the capabilities of LLMs. Given a reward-
modeling (RM) dataset DRM = Dincorrect

⋃
Dcorrect, we train discriminative RMs as follows:

L(θ,DRM ) =− E(x,y+)∼Dcorrect

[
log rθ(x,y

+)
]
− E(x,y−)∼Dincorrect

[
log(1− rθ(x,y

−))
]
,

where rθ(x,y) = sigmoid(zcls), and zcls = logitθ(cls | y,x) (2)

where y+ are correct and y− are incorrect solutions, and cls corresponds to a special vocabulary
token. In this work, we always use a balanced data mixture between correct (Dcorrect) and incor-
rect (Dincorrect) problem-solution pairs.

LLM-as-a-Judge does not finetune a verifier from a pretrained LLM, but simply prompts the LLM
to perform the task of verification or self-critique (Zheng et al., 2024; Bai et al., 2022). LLM-judge
sometimes uses reference-guided grading: the LLM is given a reference solution to compare to.
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3 GENRM: VERIFICATION AS NEXT-TOKEN PREDICTION

Discriminative LLM-based verifiers (2) do not utilize the text generation capabilities of pretrained
LLMs. To address this issue, we propose training generative verifiers, which we call GenRM, using
standard next-token prediction (1). To do so, GenRM represents solution correctness using the
LLM’s probability distribution over tokens, instead of predicting a separate numerical score. This
keeps the generation abilities of GenRM intact as the verification decision is just another token,
while also enabling several advantages that come for “free” with LLMs, such as unified training for
solution generation and verification, chain-of-thought reasoning, and inference-time computation.

3.1 DIRECT VERIFIER

In its simplest form, GenRM predicts whether a solution is correct using a single ‘Yes’ or ‘No’
token (Figure 3, top). This can be done by maximizing log pθ(‘Yes’ | (x,y+)) for correct solutions
y+ and log pθ(‘No’ | (x,y−)) for incorrect solutions y−. To do so, we minimize the SFT loss in
(1) on the dataset DDirect containing problem-solution pairs and a ‘Yes‘ or ‘No’ verification token:

DDirect = {(x,y+, I), ‘Yes’}
⋃

{(x,y−, I), ‘No’} , I = ‘Is the answer correct (Yes/No)?’

At inference, we use the likelihood of the ‘Yes’ token as the verifier’s score for re-ranking solutions:

rDirect(x,y) = pθ(Yes | x,y, I). (3)

This score takes into account the verifier’s confidence about its correctness prediction, which reduces
the chance of being wrong at test-time when using a binary ‘Yes’ or ‘No’ prediction.

3.2 UNIFYING GENERATION AND VERIFICATION

GenRM seamlessly integrates reward modeling, which distinguishes between correct and incorrect
solutions, with SFT for generating correct solutions. This can be done by simply changing the data
mixture in the SFT loss (1) to include both verification and generation tasks. Given a verification
dataset Dverify, which can be DDirect or DCoT (discussed below) of problems-solution pairs with
correctness tokens (optionally with CoT rationales), GenRM minimizes the loss:

LGenRM(θ,Dverify) = LSFT(θ,Dverify) + λLSFT(θ,Dcorrect) , (4)

where λ > 0 is a hyperparameter that controls the mixture ratio between verification (Dverify) and
generating correct solutions (Dcorrect). This unified training can improve verifier and generation
performance via positive transfer between these two related tasks: how to generate a correct solution,
and whether a solution is correct. By default, we train GenRM verifiers using the unified loss in (4).

3.3 CHAIN-OF-THOUGHT VERIFIERS (GENRM-COT)

Since verification often involves nuanced reasoning, generative verifiers can naturally benefit from
CoT (Wei et al., 2022). Specifically, we can generate intermediate reasoning steps or critique (CoT)
before making a decision about the solution correctness, which may identify subtle reasoning errors
missed by direct verifiers (Figure 3, bottom). To train CoT verifiers, we can minimize the SFT
loss LGenRM on the dataset DCoT containing problem-solution pairs as inputs, and corresponding
verification rationales vCoT appended with a final question I and ‘Yes’ or ‘No’ token as targets:

DCoT = {
(
x,y+, ICoT

)
, (vCoT, I, ‘Yes’)}

⋃
{
(
x,y−, ICoT

)
, (vCoT, I, ‘No’)}

where ICoT =‘Let’s verify step by step.’. Notably, these rationales can either be human or LLM-
generated, both of which we explore in this work. During inference, we first generate a CoT rationale
vCoT from GenRM-CoT and then use the probability of ‘Yes’ for assigning the correctness score:

rCoT(x,y) = pθ(Yes | x,y, ICoT,vCoT, I), where vCoT ∼ pθ(· | x,y, ICoT), (5)

Compared to (3) that only uses the instruction I to produce a score, the above CoT reward addition-
ally conditions on ICoT and self-generated vCoT before getting a score via instruction I.
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Inference-time Compute for CoT verifier When sampling verification CoTs, the generative ver-
ifier can use different reasoning paths and yield different correctness probabilities for the same
problem-solution pair. As such, we would like to marginalize out these reasoning paths to select the
most consistent correctness answer (Wang et al., 2022). To do so, we use majority voting where we
first generate K verification CoT rationales, and average the CoT-verifier score for these rationales:

rMajV@K(x,y) =
1

K

K∑
i=1

pθ

(
Yes | x,y, ICoT,v

(i)
CoT, I

)
, where v

(i)
CoT ∼ pθ(· | x,y, ICoT) (6)

Since individual verification rationales from CoT verifiers can have reasoning errors, majority vot-
ing can mitigate the impact of such errors by averaging correctness scores across multiple rationales.
Importantly, this means that GenRM-CoT can leverage additional inference-time compute to im-
prove its accuracy, which discriminative verifiers cannot do. Unless otherwise specified, we report
GenRM-CoT performance based on majority voting with 32 votes, that is, K = 32 in (6).

Synthetic Verification CoT Rationales for Training Verifying LLM solutions with human-
generated rationales can become increasingly expensive and challenging as LLMs surpass human
reasoning abilities. To address this challenge, we explore using synthetically-generated rationales on
GSM8K. One naive approach is to simply use the ‘Let’s verify step by step’ prompt given a problem-
solution pair, and keep the generated rationales only when they accurately verify the correctness of
a solution (Singh et al., 2023; Zelikman et al., 2022). However, such rationales (after filtering based
on final yes/no responses) are still often of poor quality, due to 50% accuracy from random guessing.

To improve the quality of synthetic rationales, we provide a reference solution in addition to the
problem and solution to verify (see Table A.2), making it easier for an LLM to point out any reason-
ing error in the provided solution. This idea is similar to reference-guidance grading (Zheng et al.,
2024). Here, a reference solution could be any model-generated solution that arrives at the correct
final answer. After initial data generation, we then filter the synthetic rationales using their verifica-
tion correctness. Note that we condition on a reference solution only to generate training data, but
do not include it during actual finetuning of the verifier, so that there is no train/test mismatch.

4 EXPERIMENTS

In this section, we evaluate the efficacy of next-token prediction compared to other verification
approaches. To this end, we compare GenRM and standard verifiers on a number of reasoning
tasks to answer the following questions: (1) How does GenRM compare to discriminative verifiers
and other approaches? (2) Does unified training of GenRM improve generation and verification
performance? (3) Can GenRM effectively utilize CoT reasoning to improve its performance? (4)
How does GenRM scale with model size and inference-time compute?

Tasks. We focus on the following tasks and put details about data generation in Appendix A:

• Algorithmic reasoning. We use two difficult string manipulation tasks, namely Last Letter
Concatenation (Wei et al., 2022) and Word Sorting from Big-Bench (Suzgun et al., 2022). We
train verifiers on word lists of length {2,3,4}, and evaluate their generalization on length {5,6}.
Note that this is a case of length generalization for the verification task.

• Math reasoning. We train grade-school math verifiers on the GSM8K dataset from Cobbe et al.
(2021) that popularized test-time verification. We evaluate these verifiers on the GSM8K test set
as well as their easy-to-hard generalization on much harder MATH dataset (Hendrycks et al.,
2021), using the same held-out set of 500 MATH problems as Lightman et al. (2023).

Baselines. We compare GenRM to the following verification approaches:

• Discriminative RM (Cobbe et al., 2021) or ORM is the prevalent approach for training verifiers
for test-time re-ranking on reasoning tasks (§2), and serves as our main baseline.

• LLM-as-a-Judge (Zheng et al., 2024) uses an off-the-shelf pretrained LLM for verification. To
do so, we use a CoT prompt to produce 32 verification rationales that is used for correctness
prediction and pick the majority-vote correctness answer.

• DPO (Rafailov et al., 2024): Following Hosseini et al. (2024), we use this preference optimiza-
tion approach for training verifiers on preference pairs with incorrect and correct solutions.
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Figure 4: Sample-Efficient Scaling with Generative Verifiers. GenRM-CoT outperforms other methods,
especially for length generalization performance on algorithmic tasks (Gemma-2B verifier) and easy-to-hard
generalization on MATH (Gemma2-9B verifiers). Specifically, GenRM-CoT nearly matches the oracle veri-
fier’s Best-of-N performance on algorithmic tasks. On MATH, it matches the Best-of-32 performance from
discriminative verifier using 6.4× fewer solutions.

• Self-consistency (Wang et al., 2022): A simple approach to use test-time compute without veri-
fiers: sample multiple solutions from the LLM generator and pick the most common answer.

Evaluation protocol. Following Cobbe et al. (2021); Lightman et al. (2023), we primarily use Best-
of-N performance in terms of the percentage of problems solved using a fixed generator (§2) with
learned verifiers, and report average accuracy on the test set. We also report test RM accuracy,
which measures whether the verifier accurately classifies incorrect and correct solutions. While
these two metrics are correlated, RM accuracy only evaluates the verifier’s point-wise accuracy,
while Best-of-N evaluates the verifier’s ability to rank solutions for choosing the correct one.

Models & Training Details. For training verifiers, we use open-weights Gemma models (Gemma
Team et al., 2024a;b), specifically Gemma-2B for algorithmic tasks, and Gemma 2B, 7B, and
Gemma-2 9B for GSM8K. For solution generation as well as LLM-as-a-Judge, we use Gemma
2B for algorithmic tasks and Gemini 1.0 Pro (Google et al., 2023) for GSM8K. For verification CoT
rationales, we generate oracle rationales for algorithmic tasks programmatically (Table A.1); for
GSM8K, we generate synthetic rationales using Gemini 1.0 Pro with reference-guided grading (Ta-
ble A.2). See Appendix B for other hyperparameter details.

4.1 GENERATIVE VERIFIERS OUTPERFORM STANDARD VERIFICATION APPROACHES

GenRM outperforms LLM-as-a-Judge and DPO verifiers (Figure 1), while performing comparably
or slightly better than discriminative verifiers (Figure C.1). GenRM-CoT substantially improves the
Best-of-N performance over GenRM. In particular, on the algorithmic tasks with oracle verification
CoTs, GenRM-CoT nearly matches the oracle verifier performance. On GSM8K, GenRM-CoT
consistently outperforms other methods (Figure 4, middle), even though the synthetic CoT rationales
for training may contain errors. Qualitatively, GenRM-CoT is able to detect subtle reasoning errors
that are missed by discriminative or direct GenRM verifiers (see Figure 2, 11, and 12).

Easy-to-Hard Generalization. Without any training on MATH, GenRM-CoT results in a 6.4×
better efficiency than discriminative verifiers as we increase the number of solutions to verify and
surpassing the strong self-consistency baseline (Figure 4, right). While Sun et al. (2024) demon-
strate that discriminative verifiers trained on easy MATH problems can generalize to harder MATH
problems, GenRM-CoT exhibits a much stronger generalization from grade-school math problems
to high-school competition problems in MATH (also see Figure 8, right).

4.2 SYNERGY BETWEEN GENERATION AND VERIFICATION

Unifying solution generation with verification, as done by GenRM using next-token prediction, con-
sistently improves verification performance across all tasks, as illustrated in Figure 5. This improve-
ment is observed for both direct and CoT-based generative verifiers, suggesting that teaching the
verifier to imitate correct solutions generally helps. However, adding too much solution generation
data can decrease verification performance of GenRM (Figure C.2).
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solutions, in terms of Best-of-N with oracle verifier. The improvement is larger on algorithmic tasks, which use
ground-truth verification data, than on GSM8K that relies on synthetic rationales, which may be inaccurate.
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Figure 7: Scaling Inference-time Compute for Verification on GSM8K. By posing reward modeling as next-
token prediction, GenRM-CoT can utilize Chain-of-Thought and Majority Voting, to turn additional test-time
compute into higher percentage of problems solved under Best-of-N. Here, the horizontal line corresponds to
performance of GenRM-CoT verifier with greedy decoding in Eq (5).

Incorporating CoT verification data into the generator’s training mix leads to better solution gen-
eration performance for the GenRM-CoT verifier itself, as evidenced in Figure 6 by the improved
Best-of-N scores with the oracle verifier (Pass@N). This suggests that teaching a generator to per-
form CoT verification using next-token prediction can deepen its understanding of the generation
process itself. Overall, unifying solution generation and verification is mutually beneficial.

4.3 SCALING MODEL SIZE AND INFERENCE-TIME COMPUTE

Scaling Test-Time Compute with GenRM-CoT can be done by sampling multiple CoTs and ap-
plying majority voting, as described in Eq (6). As shown in Figure 7, GenRM-CoT verifier’s perfor-
mance scales gracefully with number of votes at test time, under all three Gemma model sizes (2B,
7B, 9B), outperforming greedy decoding performance within 2 votes. Notably, across model scales,
the finetuned GenRM-CoT verifier outperforms LLM-as-a-Judge , which also utilizes the same CoT
approach and number of majority votes, but prompts a more capable Gemini 1.0 Pro model than
Gemma models which we finetune as verifiers.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

2B 7B 9B
Parameter Count (Gemma)

35.0%

40.0%

45.0%

%
 P

ro
bl

em
s S

ol
ve

d 
 (B

es
t-o

f-3
2)

MATH: Model Scaling

2B 7B 9B
Parameter Count (Gemma)

67.5%

70.0%

72.5%

75.0%

RM
 A

cc
ur

ac
y

MATH: Model Scaling

1 2 3 4 5
Difficulty Level

20%

40%

60%

80%

%
 P

ro
bl

em
s S

ol
ve

d
(B

es
t-o

f-3
2)

MATH: Difficulty Breakdown

GenRM GenRM-CoT Discriminative RM

Figure 8: Model Scaling for Generative Verifiers. We evaluate MATH performance of Gemma 2B, 7B, and
Gemma2 9B verifiers trained on GSM8K. We observe positive scaling trends for GenRM (direct) and GenRM-
CoT as well as Discriminative RM, both for (Left) Best-of-N performance, and (Middle) RM accuracy on the
test set. Generative verifiers outperform discriminative counterparts in all model regimes. (Right) We also
analyze the percentage of problems solved within each difficulty level on MATH using Gemma-9B verifiers,
and show that GenRM-CoT obtains superior performance across all levels.
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Figure 10: Quantity of synthetic rationales matter.
Scaling the number of rationales per solution for GenRM-
CoT on GSM8K improves both RM accuracy and Best-
of-N performance. Here, we use fine-tuned Gemma-7B
verifier, with greedy decoding at inference (5).

Scaling model size. In Figure 8, we show that generative verifiers, especially GenRM-CoT, exhibit
better scaling behavior than discriminative RMs, both in terms of reward modeling accuracy and
Best-of-N performance. Intuitively, bigger models are more capable of text generation, allowing
GenRM-CoT finetuning to better tap into its chain-of-thought reasoning ability for verification. Fur-
thermore, these results demonstrate that larger models generalize better using the same data, which
matches what we expect from scaling model parameter counts under the next-token prediction loss.

4.4 SYNTHETIC RATIONALES: QUANTITY AND QUALITY MATTER

Our results on math reasoning tasks indicate that CoT verifiers can outperform discriminative and
direct verifiers without requiring human-written verification rationales, highlighting the potential of
LLM-generated rationales. We find that both the quality and quantity of these synthetic rationales
matter. As shown in Figure 9, using reference-guided grading during rationale generation (§3.3)
significantly improves verification performance. Furthermore, using multiple rationales per solution
also improves performance, as shown in Figure 10. We suspect that this is because model-generated
rationales may contain errors, such that training on multiple rationales per solution can result in an
“ensembling” effect that prevents overfitting to such errors (Zhang et al., 2024).

Importantly, unlike prior work, our results on math reasoning tasks do not require a more capable
model (Ankner et al., 2024; Ye et al., 2024) or humans (McAleese et al., 2024; Saunders et al., 2022)
for generating verification rationales: we use the same model (Gemini 1.0 Pro) to both generate
solutions to verify and synthetic verification rationales for training.
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Problem: A line is parameterized by
(
x
y

)
=

(
8
−1

)
+ t

(
2
3

)
. The equation of the line can be expressed

in the form y = mx+ b. Enter the ordered pair (m, b).

Solution: We have x = 8 + 2t and y = −1 + 3t. Solving the first equation for t, we have t = x−8
2

.
Substituting this into the second equation, we get y = −1 + 3

(
x−8
2

)
= 3

2
x− 23

2
. Thus, m = 3

2
and

b = − 23
2

. So, the answer is
(
3

2
,−23

2

)
. Final Answer:

(
3
2
,− 23

2

)
Discriminative RM correctness score: 0.827

GenRM-CoT: Let’s verify step by step. · · ·
**Step 3:**
Solution: Substituting this into the second equation, we get y = −1 + 3

(
x−8
2

)
= 3

2
x− 23

2
.

Expected Answer: Substituting this into the second equation, we get y = −1 + 3 ∗ (x − 8)/2 =
−1 + (3x− 24)/2 = −1 + (3x/2)− 12 = (3x/2)− 13.
**Verification:** No
· · ·
Verification: Is the answer correct (Yes/No)? No

GenRM-CoT (Majority Voting) score: 0.438

Figure 11: An example on MATH where GenRM-CoT (trained only on GSM) detects a reasoning error.
The solution made a mistake in simplifying an intermediate step. Both Discriminative RM and GenRM-CoT
models have only been trained on GSM8K. In this case, discriminative RM fails to classify the solution as
incorrect, whereas GenRM-CoT utilizes chain of thoughts to catch this mistake. See Figure D.2 for details.

5 RELATED WORK

Reward models (RMs) and verifiers. Conventionally, RMs and verifiers are trained as discrim-
inative models via binary classification: given a prompt and a corresponding solution or a pair of
solutions), the model is either trained to predict the correctness of the solution (Cobbe et al., 2021;
Lightman et al., 2023; Wang et al., 2023; Uesato et al., 2022; Luo et al., 2024; Yu et al., 2024) or a
preference between the two solutions (Stiennon et al., 2020; Nakano et al., 2021). Concretely, the
RM directly produces a numerical continuous-valued score, which is then plugged into a classifi-
cation objective (2). As such, discriminative verifiers do not utilize the generation capabilities of
LLMs. In contrast to discriminative RMs, GenRM represents the correctness decision using the log
probability of specific tokens, for example ‘Yes’ and ‘No’. Posing verification as generating “yet
another token” allows it to tap better into the generation capabilities of LLMs, by making it straight-
forward to employ CoT reasoning and additional inference-time compute for better verification.

LLM-as-a-Judge. Another line of work that poses verification as next-token prediction simply
prompts off-the-shelf LLMs to act as a verifier when provided with a rubric and a template for grad-
ing (Zheng et al., 2024; Bai et al., 2022; Kim et al., 2023; Ling et al., 2024) or many-shot ICL
examples (Agarwal et al., 2024), but without any specific training for the same. Perhaps unsurpris-
ingly, we find in our experiments that using more powerful LLMs (Gemini 1.0 Pro) as a judge is
worse than our trained GenRM using weaker Gemma models (Figure 1, 7), highlighting the neces-
sity of training generative verifiers. Our generative verifiers also exhibit good out-of-distribution
generalization, which might be due to better calibrated uncertainty estimates from training (Kapoor
et al., 2024). More generally, even the strong proprietary LLMs, such as GPT-4 (Achiam et al.,
2023) and Gemini (Team et al., 2024), fall behind trained RMs on popular leaderboards (Lambert
et al., 2024), and this gap is much larger for reasoning problems.

Using CoTs for reward models. Prior works have also used critiques or CoT to extract prefer-
ence and verification signals using LLM-as-a-Judge (Yuan et al., 2024; Wu et al., 2024; Wang et al.,
2024); in contrast to these works, GenRM utilizes model-generated CoTs directly for training the
verifier. Upon inference, a GenRM-CoT produces its own CoTs, which it then uses to make deci-
sions on correctness, unlike Ye et al. (2024) that simply uses CoTs from a separate highly-capable
LLM. In contrast to prior work that utilizes high-quality data from humans to train critique mod-
els (Saunders et al., 2022) or train discriminative RMs for generating code critiques (McAleese
et al., 2024), we show that GenRM can be trained from purely synthetic, model-generated critiques.
Concurrent work (Ankner et al., 2024) trains an RM to produce response critiques for preference
pairs generated using a much more capable LLM, which are then passed as input into a RM head,
separate from the base LLM. Unlike GenRM which uses next-token prediction, their RM head is
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Problem: Carol spends 4 hours writing a song, half that much time recording it, and 90 minutes editing it.
What percentage of her total work time did she spend editing?

Solution: Half of 4 hours is 2 hours. So the time spent recording is 2 hours. Add the editing time of 90
minutes and the total time for the entire project is 4 + 2 + 1.5 = 7.5 hours. That means she spent (90 / 7.5)
* 100 = 12% of the total time editing. The answer is 12.

Discriminative RM correctness score: 0.841

GenRM-CoT: Let’s verify step by step.
· · ·
Step 3: That means she spent (90 / 7.5) * 100 = 12% of the total time editing.
Expected Answer: Incorrect. The editing time should be in hours, so it should be (1.5 / 7.5) * 100 = 20%.
Verification: Is the answer correct (Yes/No)? No

GenRM-CoT (Majority Voting) score: 0.250

Figure 12: An example where GenRM-CoT catches a subtle mistake that the discriminative verifier is unable
to catch. The candidate solution did not convert 90 minutes into 1.5 hours before dividing it by 7.5. However,
the discriminative verifier was not able to detect this mistake likely because the solution does still appear to
produce a valid-sounding percentage 90/7.5 = 12. Our proposed GenRM-CoT model is able to identify this
mistake using step-by-step generative verification. The full verification output can be found in Table D.10.

trained discriminatively akin to standard RMs. While this approach allows them to leverage CoT, it
does not allow them to unify solution generation and verification as a result of a discriminative RM
head, which GenRM seamlessly enables (Section 4.2). Moreover, their synthetic critiques are not
filtered for correctness, which would lead to poor verification CoTs on reasoning tasks (§3.3).

Unified generation and verification. One of the hallmark properties of GenRM is that the same
generative verifier can be co-trained with a generation objective (4): when given a problem, the
model is trained to produce a solution, whereas when given a problem and a candidate solution, it is
trained to verify this candidate. This is related to DPO (Rafailov et al., 2024) and its application to
learning verifiers in reasoning (Hosseini et al., 2024), which aims to unify generation (policy) and
verification (reward models) by representing the reward implicitly using the logits of a policy and
training the policy with a reward-modeling loss. For reasoning, this type of model tying has been
shown to exhibit erroneous extrapolation and degradation in learned representations, which prior
work has attempted to address with additional techniques (Pang et al., 2024; Setlur et al., 2024; Pal
et al., 2024; Yang et al., 2024). Of these, while Yang et al. (2024) train a reward model with an
auxiliary generative SFT loss, note that this loss is applied on a separate head for regularization
purposes and is discarded after training; unlike GenRM no text is produced when querying the RM.
In addition, compared to DPO, GenRM uses a simpler next-token prediction loss, does not require
a reference policy, and obtains significantly better verification performance (Figure 1, 4).

6 CONCLUSION & FUTURE WORK

In this paper, we have introduced Generative Verifiers (GenRM), which recast verification as next-
token prediction. GenRM is more performant than discriminative verifiers, and unlocks the use of
chain-of-thought reasoning and majority voting for better verification. GenRM also unifies gen-
eration and verification into a single LLM, and demonstrates that such a unification benefits both
generation and verification. Moreover, we show that synthetic model-generated rationales, which
can be error-prone, are sufficient to teach GenRM how to use verification CoT to pick out tricky
errors on math reasoning tasks (see Figure 2, 11, 12, and Appendix D).

The framework of generative verification offers a solid foundation for future work. Promising di-
rections include extending this framework to broader tasks such as coding, alignment, text-to-image
generation (Lin et al., 2024), and open-ended generation (Besta et al., 2024). Furthermore, leverag-
ing process-level supervision (Lightman et al., 2023) and training CoT verifiers with reinforcement
learning (RL) can result in more accurate generative verifiers. Given GenRM’s compatibility with
all the existing tools designed to improve LLMs, exploring enhancements through techniques like
retrieval-augmented generation (Borgeaud et al., 2022), many-shot learning (Agarwal et al., 2024),
multi-staged prompting (Yao et al., 2024), and tool use (Schick et al., 2024) would be interesting.
Finally, incorporating generative verifiers into RL pipelines for LLMs warrants further investigation.
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7 REPRODUCIBILITY STATEMENT

To ensure our work can be easily reproduced, we use open-weights Gemma models (Gemma Team
et al., 2024a;b), and describe our experiment setup thoroughly in §4, with additional details about
data collection and processing in Appendix A and hyperparameters in Appendix B. Since GenRM
relies on next token prediction, no additional code is needed beyond supervised fine-tuning. We have
also anonymously open-sourced our training dataset of synthetic rationales at https://github.
com/gen-agent/genrm-data/.
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Appendices
A TRAINING DATA GENERATION FOR VERIFIERS

Problem Solution to Verify
Last Letter
Concatenation

Task: take the last letters of each words
and concatenate them.
Q: Jacob , Vivian

A: Let’s think step by step.
J a c o b -⟩ b (List so far: [b])
V i v i a n -⟩ n (List so far: [b n])
The answer is: b n

Let’s verify step by step.
The given answer is: b , n. The input is: Jacob , Vivian.
Is the length of the final answer the same as the number of input words?
Yes
Is ‘b’ the last letter of ‘J a c o b’? Yes
Is ‘n’ the last letter of ‘V i v i a n’? Yes
Is the final answer correct? Yes
Word Sorting Task: sort a list of words alphabetically.

Q: cell, apple, courage
A: Let’s think step by step.
Identify the alphabetical locations
of 1st letters:
cell -⟩ c: 3. apple -⟩ a: 1. courage
-⟩ c: 3.
We need to sort the numbers: 3, 1,
3
Sorting the numbers: 1 ⟨ 3 = 3
The answer is: apple, courage, cell

Let’s verify step by step.
The given answer is: apple, courage, cell. The input is: cell, apple,
courage.
Does the final answer contain the same words as the original input? Yes
Are ‘a p p l e’, ‘c o u r a g e’ in the correct order? Yes
Are ‘c o u r a g e’, ‘c e l l’ in the correct order? No
Is the answer correct? No

Table A.1: Algorithmic reasoning tasks that we consider. In thes tasks, we can generate ground-truth verifi-
cation chain-of-thoughts as the training data for a generative verifier. Those synthetic tasks help us understand
whether a generative verifier can outperform a discriminative verifier in the ideal scenario where there is no
noise in the verification CoT training data.

• Last Letter Concatenation (Wei et al., 2022): Given a list of words, the task is to concate-
nate the last letters of each word (for instance, “Noah Paul Elisha Rebecca” → “hlaa”).
To generate the training data, for each length {2, 3, 4}, we generate 350 problem queries by
randomly sampling from the set of words in original training set; for each problem query,
we generate 128 attempts from Gemma-2B (Gemma Team et al., 2024a) model. This gives
us a total of about 50K training data points after de-duplication. We train verifiers on
examples of lengths {2, 3, 4} (here the length refers to how many words are in the input
list), and evaluate the verifier performance on length 6. We use the format in Table A.1 to
algorithmically generate ground-truth verification CoT for training.

• Word Sorting (Suzgun et al., 2022): Given a list of words, sort them in alphabetical order.
We train verifiers on a dataset comprised of {2, 3, 4} words in each example, and evaluate
the performance on length 5. For each length, we generate 4096 lists of words as the
problem queries; for each problem, we generate 64 attempts from Gemma-2B. After de-
duplication and filtering out invalid responses, we have a total of about 100K training data
points. We also algorithmically generate ground-truth verification CoT for training (see
Table A.1).

• Grade School Math (Cobbe et al., 2021): We follow the original train/test split and use
1.3K problems for test, 128 problems for validation, and about 7.2K problems for training.
We generate 50 solutions per problem, and randomly sample at max 16 correct solutions
and 16 incorrect solutions per problem as the training set. We evaluate the verifier perfor-
mance on 16 solutions per problem in the test set.
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Table A.2: We use model-generated rationales as CoT training data on GSM with the above prompt with
Gemini 1.0 Pro. Specifically, we show the model another solution that arrives at the correct answer, which is
privileged information that does not exist at test time. This does not require a more capable model: we use the
same model to generate solutions and synthetic rationales in the training data.

Prompt for Generating Synthetic Rationales for CoT Verifier on GSM
You are a math teacher. Grade the Solution, verifying correctness
step by step. Use Expected Answer to find any erroneous step in the
Solution.
At the end of the Solution verification, when you give your final
grade, write it in the form "Verification: Is the answer correct
(Yes/No)? X", where X is either Yes or No.
Question: {problem}
Solution: {solution}
Expected Answer: {a solution that arrives at the correct answer}

Table A.3: Zero-shot prompt for our LLM-as-a-Judge evaluation results based on Gemini 1.0 Pro.

Prompt for LLM-as-a-Judge on GSM and MATH
You are a math teacher. Grade the Solution, verifying correctness step
by step.
At the end of the Solution verification, when you give your final
grade, write it in the form "Verification: Is the answer correct
(Yes/No)? X", where X is either Yes or No.
Question: {problem}
Solution: {solution}

B HYPER-PARAMETERS FOR VERIFIER TRAINING

For Gemma-based verifiers, we pick the best checkpoint based on validation accuracy of verification
on held out problems and solutions. We always use data balancing between 50% correct solutions
and 50% incorrect solutions in training.

GenRM verifiers After doing a sweep of learning rates (LR), we find that an LR of [2e− 6, 1e−
6, 5e− 7] works well for our tasks considered (with LR=2e− 6 generally being the best). We use a
weight decay of 1e− 2, and do not apply any dropout. We use the Adam optimizer (Kingma, 2014)
with decoupled weight decay (Loshchilov and Hutter, 2017) and a gradient norm clipping of 1.0.
We use a linear warmup of 1000 gradient steps, and a cosine decay schedule that decays to 10% of
the peak learning rate after a decay period. We finetune for 300K steps with a batch size of 64 and a
cosine decay period of 200K, and use seqio (Roberts et al., 2022) library to create data mixtures.

Discriminative RMs We finetune Gemma-based discriminative RMs by using a special token’s
logit for classification. We chose the best performing ORM on our validation sets by launching
a large sweep over learning rates [1e − 7, 5e − 7, 1e − 6, 2e − 6, 3e − 6, 5e − 6], weight decay
[1e− 3, 1e− 2, 1e− 1] and dropouts [1e− 3, 5e− 3, 1e− 2, 0]. We also schedule the learning rate
with a linear ramp up and a cosine decay. Results obtained with learning rate 1e− 7 and dropout=0.

DPO We first finetune Gemma-based generative models using SFT on correct solutions to ob-
tain a reference policy πref, and then initialize from this reference policy to train generator πDPO
with the DPO loss on a dataset of pairs of correct and incorrect solutions. We conduct a hyper-
parameter sweep for both the learning rate (LR) and the β coefficient in DPO loss: for LR we
sweeped [1e − 7, 5e − 7, 1e − 6, 2e − 6] and found 1e − 6 to work best; for β we considered
[0.01, 0.1, 0.5, 1.0, 2.0] and used 0.1. After DPO is trained, instead of using r = log πDPO(solution |
question) − log πref(solution | question) as the score (as defined in DPO’s derivation), we find that
directly the sequence log probability of the final DPO policy log πDPO(solution | question) as the
score (without subtracting the log prob from reference policy) results in better performance in veri-
fication; this finding was also noted in (Hosseini et al., 2024).
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Figure C.1: GenRM (without using CoT) performs slightly better or comparable to Discriminative RM across
different tasks, while outperforming DPO verifiers.
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Figure C.2: Impact of generation loss coefficient (λ)
on GenRM verifier with Gemma-7B on GSM8K test
results. Adding a solution generation loss (λ > 0) can
further help GenRM, with λ = 1/4 being a good value
for GSM.
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Figure C.3: Data scaling for GenRM-CoT on
GSM8K with Gemma-7B. We observe that both the
RM accuracy and Best-of-N performance improve as
we scale up the number of rationales per solution and
solutions per problem. When adding more solutions,
we use 4 rationales per solution. Here, we compute
GenRM-CoT scores with CoT rationales generated us-
ing greedy decoding, as discussed in (5).

C ADDITIONAL RESULTS

Ablating generation loss weight (λ) in GenRM. Adding too much generation data negatively
impacts verification, while intermediate values yield the best results, as shown in Figure C.2. By
default, all GenRM experiments use unified training for verification with solution generation (4),
with λ = 1/3 for algorithmic tasks and λ = 1/4 for GSM8K.

Data scaling for CoT verifiers. GenRM-CoT shows that the GenRM-CoT performance improves
as we increase the number of solutions per problem from 8 to 32, in terms of RM accuracy and
Best-of-N Accuracy, as shown in Figure C.3.
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Figure C.4: Transfer to MMLU College Mathematics (GSM Verifiers), using Best-of-32 evaluation, with
solutions generated from Gemini 1.0 Pro. On college-level mathematics, even using a single verification ratio-
nale with GenRM-CoT can outperform Discriminative RM. Best-of-32 based on discriminative RM is 53.0%;
as for GenRM-CoT (using 32 majority votes), Best-of-32 gives 56.1%.

D EXAMPLES VERIFICATION RATIONALES FROM GENRM-COT: GSM8K
TEST AND MATH500
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Example of on Grade School Math
Question: In a 60-item quiz, 40% of the questions are easy, and the rest are equally divided as average and
difficult questions. If Aries is sure to get 75% of the easy questions, and half of the average and difficult
questions correctly, how many points is she sure to get?

Answer: 40% of 60 items are easy questions, so there are 60 * 40 / 100 = 24 easy questions. Aries is sure
to get 75% of those, so she will get 24 * 75 / 100 = 18 easy questions correct. The rest of the questions
are equally divided as average and difficult questions. So, there are (60 - 24) / 2 = 18 average and difficult
questions each. Aries is sure to get half of those correct, so she will get 18 * 50 / 100 = 9 average and difficult
questions correct. In total, she is sure to get 18 + 9 = 27 questions correct. Each question is worth one point,
so she is sure to get 27 points. The answer is 27.

Discriminative RM score: 0.6107

GenRM-CoT: Let’s verify step by step.
b⟩Step 1:⟨/b⟩
40% of 60 items are easy questions, so there are 60 * 40 / 100 = 24 easy questions.
⟨b⟩Expected Answer:⟨/b⟩
40% of 60 = 24 easy questions.
⟨b⟩Verification:⟨/b⟩ Correct

⟨b⟩Step 2:⟨/b⟩
Aries is sure to get 75% of those, so she will get 24 * 75 / 100 = 18 easy questions correct.
⟨b⟩Expected Answer:⟨/b⟩
75% of 24 = 18 easy questions.
⟨b⟩Verification:⟨/b⟩ Correct

⟨b⟩Step 3:⟨/b⟩
The rest of the questions are equally divided as average and difficult questions. So, there are (60 - 24) / 2 =
18 average and difficult questions each.
⟨b⟩Expected Answer:⟨/b⟩
(60 - 24) / 2 = 18 average and difficult questions each.
⟨b⟩Verification:⟨/b⟩ Correct

⟨b⟩Step 4:⟨/b⟩
Aries is sure to get half of those correct, so she will get 18 * 50 / 100 = 9 average and difficult questions
correct.
⟨b⟩Expected Answer:⟨/b⟩
50% of (60 - 24) = 18 average and difficult questions.
⟨b⟩Verification:⟨/b⟩ Erroneous

⟨b⟩Step 5:⟨/b⟩
In total, she is sure to get 18 + 9 = 27 questions correct. Each question is worth one point, so she is sure to
get 27 points. The answer is 27.
⟨b⟩Expected Answer:⟨/b⟩
18 easy + 9 average + 9 difficult = 36 total correct questions.
⟨b⟩Verification:⟨/b⟩ Erroneous

Final Grade:
Verification: Is the answer correct (Yes/No)? No

Gen-RM (Majority Voting) score: 0.1151

Table D.1: GenRM CoT Example 1
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Example of GenRM-CoT on Grade School Math
Question: Sandy wants to lose as much weight as Joey does but needs 4 weeks to lose the same amount of
weight that Joey loses in a single week. If Joey loses 8 pounds in 4 weeks, how many weeks will it take
Sandy to lose the same amount of weight?

Answer: Since Joey loses 8 pounds in 4 weeks, Sandy will take 4 times as long to lose the same amount of
weight. That means she will take 4 * 4 = 16 weeks. The answer is 16.

Discriminative RM score: 0.0399

GenRM-CoT: Let’s verify step by step.
**Solution Verification:**

**Step 1:**
Solution: Since Joey loses 8 pounds in 4 weeks, Sandy will take 4 times as long to lose the same amount of
weight.
Expected Answer: We are given that Sandy needs 4 weeks for what Joey does in 1 week. Therefore, we can
multiply the time Joey takes by 4 to find out how much time Sandy will take.

**Grade:** Correct

**Step 2:**
Solution: That means she will take 4 * 4 = 16 weeks.
Expected Answer: So, we have 4 * 4 = 16 weeks.

**Grade:** Correct

**Final Grade:**
Verification: Is the answer correct (Yes/No)? Yes

Gen-RM (Majority Voting) score: 0.5131

Table D.2: GenRM CoT Example 2

Example of GenRM-CoT on Grade School Math
Question: Rory is retrieving tennis balls from the court after a tennis match. In the first of three sets, he
had to retrieve four more balls than in the second set. In the third set, he retrieved half as many balls as in
the second. He retrieved 19 tennis balls in all. How many tennis balls did he retrieve in the first set of the
match?

Answer: Let the number of balls retrieved in the second set be x. In the first set, he retrieved four more, so he
retrieved x + 4 balls. In the third set, he retrieved half as many, which would be x / 2. Since he retrieved 19
balls in all, we have:

x + x + 4 + x / 2 = 19
3x / 2 + 4 = 19
3x + 8 = 38
3x = 30
x = 10

So, he retrieved 10 balls in the second set. In the first set, he retrieved x + 4 = 10 + 4 = 14 tennis
balls. The answer is 14.

Discriminative RM score: 0.9413

GenRM-CoT: Let’s verify step by step.
(See next page · · · )

Table D.3: GenRM CoT Example 3
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Example of GenRM-CoT on Grade School Math
· · · Continued
GenRM-CoT: Let’s verify step by step.
Step 1:
Solution: Let the number of balls retrieved in the second set be x.
Expected Answer: Let the number of balls in the second set be x.
Verification: Yes

Step 2:
Solution: In the first set, he retrieved four more, so he retrieved x + 4 balls.
Expected Answer: Then in the first set he had to retrieve x + 4 balls.
Verification: Yes

Step 3:
Solution: In the third set, he retrieved half as many, which would be x / 2.
Expected Answer: In the third set he retrieved half as many as in the second set, that is x/2.
Verification: Yes

Step 4:
Solution: Since he retrieved 19 balls in all, we have:
x + x + 4 + x / 2 = 19
Expected Answer: In all, this should add up to 19. Therefore, x + x + 4 + x/2 = 19.
Verification: Yes

Step 5:
Solution: 3x / 2 + 4 = 19
Expected Answer: Simplifying this equation: 2.5x + 4 = 19
Verification: No

Step 6:
Solution: 3x + 8 = 38
Expected Answer: 2.5x = 15
Verification: No

Step 7:
Solution: 3x = 30
Expected Answer: x = 6
Verification: No

Step 8:
Solution: x = 10
Expected Answer: Therefore, the number of balls in the first set was x + 4 = 6 + 4 = 10.
Verification: No

Final Answer:
Solution: The answer is 14.
Expected Answer: The answer is 10.
Verification: Is the answer correct (Yes/No)? No

Gen-RM (Majority Voting) score: 0.3267

Table D.4: GenRM CoT Example 3 (Continued)
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1135
1136
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1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
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1158
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1160
1161
1162
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1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
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1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Example of GenRM-CoT on Grade School Math
Question: When the water is cold Ray swims a mile in 16 minutes. When the water is warm Ray swims a
mile in 2 minutes more than twice as long. How much longer does Ray take to swim 3 miles on a hot day
than a cold day?

Answer: When the water is warm Ray swims a mile in 2 minutes more than twice as long as when the water
is cold. This means he takes 2 + 2 * 16 = 2 + 32 = 34 minutes to swim a mile on a hot day.
To swim 3 miles on a hot day he will take 3 * 34 = 102 minutes. On a cold day he takes 16 * 3 = 48 minutes
to swim 3 miles.
The difference in time is 102 - 48 = 54 minutes. The answer is 54.
Discriminative RM score: 0.2452

GenRM-CoT: Let’s verify step by step.
1. ”When the water is warm Ray swims a mile in 2 minutes more than twice as long as when the water is
cold.”
- This step is correct.
2. ”This means he takes 2 + 2 * 16 = 2 + 32 = 34 minutes to swim a mile on a hot day.”
- This step is correct.
3. ”To swim 3 miles on a hot day he will take 3 * 34 = 102 minutes.”
- This step is correct.
4. ”On a cold day he takes 16 * 3 = 48 minutes to swim 3 miles.”
- This step is correct.
5. ”The difference in time is 102 - 48 = 54 minutes.”
- This step is correct.
6. ”The answer is 54.”
- This step is correct.
**Expected Answer:**
- The expected answer is also 54 minutes.
Verification: Is the answer correct (Yes/No)? Yes

Gen-RM (Majority Voting) score: 0.9963

Table D.5: GenRM CoT Example 4

Example of GenRM-CoT on Grade School Math
Question: The ice cream parlor was offering a deal, buy 2 scoops of ice cream, get 1 scoop free. Each scoop
cost $1.50. If Erin had $6.00, how many scoops of ice cream should she buy?

Answer: Erin had $6.00. First, she should buy 2 scoops of ice cream. Since each scoop costs $1.50, she will
spend 2 * $1.50 = $3.00 on the two scoops. After that, she can get 1 scoop free. Since the third scoop was
free, she will not spend anything on the third scoop. So, she can afford three scoops. The answer is 3.

Discriminative RM score: 0.9973

GenRM-CoT: Let’s verify step by step.
**Solution Verification:**
Step 1: Erin had $6.00. (Correct)
Step 2: She bought 2 scoops of ice cream at $1.50 each, spending $3.00. (Correct)
Step 3: She received 1 scoop free. (Correct)
Step 4: She can afford three scoops. (Incorrect)
Step 5: The answer is 3. (Incorrect)
**Expected Answer:**
Step 1: Erin had $6.00. (Correct)
Step 2: She can buy 6/$1.50 = 4 scoops of ice cream. (Correct)
Step 3: She will get 2 free scoops for buying 2. (Correct)
Step 4: She will get a total of 4 + 2 = 6 scoops. (Correct)
Step 5: The answer is 4. (Correct)
Verification: Is the answer correct (Yes/No)? No

Gen-RM (Majority Voting) score: 0.0487

Table D.6: GenRM CoT Example 5
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1189
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1193
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1195
1196
1197
1198
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1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Example of GenRM-CoT on Grade School Math
Question: Cherrie wants to buy Christmas gifts for her 5 friends. 2 of her friends want 5 gifts and the other
3 friends want 2 gifts for themselves. Cherrie goes ahead and buys them and decides to further surprise
them by getting 10 more random gifts. How many gifts did Cherrie buy in total?

Answer: 2 of her friends want 5 gifts each. So, they want 2 * 5 = 10 gifts. 3 other friends want 2 gifts each.
So, they want 3 * 2 = 6 gifts. Add those 6 gifts to the 10 gifts from the beginning, that’s 16 gifts. Now, Cherrie
decided to buy 10 more gifts, so in total she bought 16 + 10 = 26 gifts. The answer is 26.

Discriminative RM score: 0.1710

GenRM-CoT: Let’s verify step by step.
⟨b⟩Verification:⟨/b⟩

⟨b⟩Step 1:⟨/b⟩
Solution: 2 of her friends want 5 gifts each. So, they want 2 * 5 = 10 gifts.
Expected Answer: Cherrie has 5 friends. 2 of them want 5 gifts, so in total they want 2 * 5 = 10 gifts.

⟨b⟩Verification:⟨/b⟩ This step is correct.

⟨b⟩Step 2:⟨/b⟩
Solution: 3 other friends want 2 gifts each. So, they want 3 * 2 = 6 gifts.
Expected Answer: The other 3 friends want 2 gifts each, so in total they want 3 * 2 = 6 gifts.

⟨b⟩Verification:⟨/b⟩ This step is correct.

⟨b⟩Step 3:⟨/b⟩
Solution: Add those 6 gifts to the 10 gifts from the beginning, that’s 16 gifts.
Expected Answer: So in total, she needs to buy 10 + 6 = 16 gifts for her friends.

⟨b⟩Verification:⟨/b⟩ This step is correct.

⟨b⟩Step 4:⟨/b⟩
Solution: Now, Cherrie decided to buy 10 more gifts, so in total she bought 16 + 10 = 26 gifts.
Expected Answer: On top of that, she wants to get 10 more random gifts. Therefore, in total she needs to buy
16 + 10 = 26 gifts.

⟨b⟩Verification:⟨/b⟩ This step is correct.

⟨b⟩Final Grade:⟨/b⟩
Verification: Is the answer correct (Yes/No)? Yes

Gen-RM (Majority Voting) score: 0.8017

Table D.7: GenRM CoT Example 6
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Under review as a conference paper at ICLR 2025

Example of GenRM-CoT on Grade School Math
Question: Juan wants to add croissants to his bakery menu. It takes 1/4 pound of butter to make 1 dozen
croissants. He wants to start with making 4 dozen a day for a week. How many pounds of butter will he
need to make these croissants?

Answer: 1 dozen is equal to 12 croissants. He wants to make 4 dozen a day, which is 4 * 12 = 48 croissants.
He wants to make this number of croissants for a week, which is 7 days. That means in total he needs to make
48 * 7 = 336 croissants. It takes 1/4 pound of butter to make 1 dozen croissants. So in total he will need 336 /
12 = 28 pounds of butter. The answer is 28.

Discriminative RM score: 0.9999

GenRM-CoT: Let’s verify step by step.
**Solution Verification**

Step 1: 1 dozen is equal to 12 croissants.
Expected Answer: Correct.

Step 2: He wants to make 4 dozen a day, which is 4 * 12 = 48 croissants.
Expected Answer: Correct.

Step 3: He wants to make this number of croissants for a week, which is 7 days. That means in total he needs
to make 48 * 7 = 336 croissants.
Expected Answer: Correct.

Step 4: It takes 1/4 pound of butter to make 1 dozen croissants. So in total he will need 336 / 12 = 28 pounds
of butter.
Expected Answer: Incorrect. The correct calculation should be 336 / 12 * 1/4 = 7 pounds of butter.

Verification: Is the answer correct (Yes/No)? No

Gen-RM (Majority Voting) score: 0.0000

Table D.8: GenRM CoT Example 7
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Under review as a conference paper at ICLR 2025

Example of GenRM-CoT on Grade School Math
Question: Susan earns $5 every 10 minutes for an online task she does. If she works between 8 a.m. and 11
a.m. and pauses in between for half an hour, how much money does she earn for the online task?

Answer: It is from 8 am to 11 am, which is 3 hours. However, she pauses for 30 minutes or half an hour. So
she works for 2.5 hours. Every 10 minutes, she earns $5. The number of 10-minute periods in 2.5 hours can
be found by dividing 2.5 by 1/10. That is 2.5 / (1/10) = 25. She earns $5 every 10 minutes. So in 25 periods,
she earns 25 * $5 = $125. The answer is $125.

Discriminative RM score: 0.9920

GenRM-CoT: Let’s verify step by step.

**Step 1:**
Solution: It is from 8 am to 11 am, which is 3 hours.
Expected Answer: It is from 8 am to 11 am, which is 3 hours.

**Verification:** The step is correct.

**Step 2:**
Solution: However, she pauses for 30 minutes or half an hour. So she works for 2.5 hours.
Expected Answer: She pauses for half an hour, which is 1/2 hour. This means she works for 3 - 1/2 = 2.5 hours.

**Verification:** The step is correct.

**Step 3:**
Solution: Every 10 minutes, she earns $5. The number of 10-minute periods in 2.5 hours can be found by
dividing 2.5 by 1/10. That is 2.5 / (1/10) = 25.
Expected Answer: Since she earns $5 every 10 minutes, we can find the number of 10-minute periods in 2.5
hours using the formula 2.5 * 60 / 10 = 15.

**Verification:** The step is incorrect. The correct number of 10-minute periods should be 15, not 25.

**Step 4:**
Solution: She earns $5 every 10 minutes. So in 25 periods, she earns 25 * $5 = $125. The answer is $125.
Expected Answer: Now we can find the amount she earns by multiplying the number of periods by the
amount she earns each period: 15 * $5 = $75. The answer is $75.

**Verification:** The step is incorrect. The amount she earns should be $75, not $125.

**Final Grade:**
Verification: Is the answer correct (Yes/No)? No

Gen-RM (Majority Voting) score: 0.3926

Table D.9: GenRM CoT Example 8
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Under review as a conference paper at ICLR 2025

Example of GenRM-CoT on Grade School Math
Question: Carol spends 4 hours writing a song, half that much time recording it, and 90 minutes editing it.
What percentage of her total work time did she spend editing?

Answer: Half of 4 hours is 2 hours. So the time spent recording is 2 hours. Add the editing time of 90 minutes
and the total time for the entire project is 4 + 2 + 1.5 = 7.5 hours. That means she spent (90 / 7.5) * 100 =
12% of the total time editing. The answer is 12.

Discriminative RM score: 0.8414

GenRM-CoT: Let’s verify step by step.
**Verification:**

Step 1: Half of 4 hours is 2 hours.
Expected Answer: Correct.

Step 2: Add the editing time of 90 minutes and the total time for the entire project is 4 + 2 + 1.5 = 7.5 hours.
Expected Answer: Incorrect. The editing time should be converted to hours first: 90 minutes = 90 / 60 = 1.5
hours. Then, the total time is 4 + 2 + 1.5 = 7.5 hours.

Step 3: That means she spent (90 / 7.5) * 100 = 12% of the total time editing.
Expected Answer: Incorrect. The editing time should be in hours, so it should be (1.5 / 7.5) * 100 = 20%.

Verification: Is the answer correct (Yes/No)? No

Gen-RM (Majority Voting) score: 0.2498

Table D.10: GenRM CoT Example 9

Example of GenRM-CoT on Grade School Math
Question: Tim decides to cancel his cable subscription and get streaming services. He gets Netflix for $10
a month. Hulu and Disney Plus normally cost $10 a month each but he saves 20% for bundling. How much
money does he save by cancelling his $60 cable package?

Answer: Tim pays $60 for cable. He gets Netflix for$10 and the bundle of Hulu and Disney Plus costs $10 *
80% = $8. So he pays $10 + $8 = $18 for Netflix and the bundle. Now he saves $60 - $18 = $42 compared to
the cable package. The answer is 42.

Discriminative RM score: 0.9999

GenRM-CoT: Let’s verify step by step.
**Verification:**

1. **Tim pays $60 for cable.** (Correct)

2. **He gets Netflix for $10.** (Correct)

3. **The bundle of Hulu and Disney Plus costs $10 * 80% = $8.** (Incorrect)
- Expected Answer: The bundle of Hulu and Disney Plus costs $10 + $10 = $20. With the 20% discount, the
total cost is $20 * 0.8 = $16.

4. **So he pays $10 + $8 = $18 for Netflix and the bundle.** (Incorrect)
- Expected Answer: So he pays $10 + $16 = $26 for Netflix and the bundle.

5. **Now he saves $60 - $18 = $42 compared to the cable package.** (Incorrect)
- Expected Answer: Now he saves $60 - $26 = $34 compared to the cable package.

Verification: Is the answer correct (Yes/No)? No

Gen-RM (Majority Voting) score: 0.0015

Table D.11: GenRM CoT Example 10
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Under review as a conference paper at ICLR 2025

Example of GenRM-CoT on Grade School Math
Problem: Digimon had its 20th anniversary. When it came out John was twice as old as Jim. If John is 28
now how old is Jim?
Solution: Let Jim’s age be x when Digimon came out. That means John’s age is 2x when Digimon came out.

20 years ago, John’s age was 2x - 20 (current age - 20 years) and Jim’s age was x - 20 (current age -
20 years).

We know that 2x - 20 = 28 (since John’s current age is 28)

2x = 48
x = 24

So, when Digimon came out, Jim was 24. Since it’s been 20 years, Jim is now 24 + 20 = 44 years
old.
The answer is 44.

Discriminative RM score: 0.9778

GenRM-CoT: Let’s verify step by step.
**Solution Verification:**

1. Let Jim’s age be x when Digimon came out. That means John’s age is 2x when Digimon came
out. (Correct)

2. 20 years ago, John’s age was 2x - 20 (current age - 20 years) and Jim’s age was x - 20 (current
age - 20 years). (Correct)

3. We know that 2x - 20 = 28 (since John’s current age is 28) (Correct)

4. 2x = 48 (Correct)

5. x = 24 (Correct)

6. So, when Digimon came out, Jim was 24. Since it’s been 20 years, Jim is now 24 + 20 = 44 years
old. (Incorrect)

**Expected Answer:**

Since John was twice as old as Jim when Digimon came out 20 years ago, and John is 28 now, we
can calculate Jim’s age. Let Jim’s age 20 years ago be x. Then we know that 2x = 28 - 20 = 8, so x = 4.
Therefore, Jim’s age now is 4 + 20 = 24. The answer is 24.

**Erroneous Step in the Solution:**

The erroneous step in the Solution is step 6, where it concludes that Jim is 44 years old now. Accord-
ing to the Expected Answer, Jim should be 24 years old now.

Verification: Is the answer correct (Yes/No)? No

Gen-RM (Majority Voting) score: 0.0000

Figure D.1: GenRM CoT Example 11
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Under review as a conference paper at ICLR 2025

Problem: A line is parameterized by (
x
y

)
=

(
8
−1

)
+ t

(
2
3

)
.

The equation of the line can be expressed in the form y = mx+ b. Enter the ordered pair (m, b).

Solution: We have x = 8 + 2t and y = −1 + 3t. Solving the first equation for t, we have t = x−8
2

.
Substituting this into the second equation, we get y = −1 + 3

(
x−8
2

)
= 3

2
x − 23

2
. Thus, m = 3

2
and

b = − 23
2

. So, the answer is
(
3

2
,−23

2

)
. Final Answer:

(
3
2
,− 23

2

)
Discriminative RM correctness score: 0.8272

GenRM-CoT: Let’s verify step by step.
**Verification:**

**Step 1:**
Solution: We have x = 8 + 2t and y = −1 + 3t.
Expected Answer: The equation of the line in matrix form is(

x
y

)
=

(
8
−1

)
+ t

(
2
3

)
.

This means that the line can be expressed as x = 8 + 2t, y = -1 + 3t.
**Verification:** Yes

**Step 2:**
Solution: Solving the first equation for t, we have t = x−8

2
.

Expected Answer: Solving the first equation for t, we have t = (x - 8) / 2.
**Verification:** Yes

**Step 3:**
Solution: Substituting this into the second equation, we get y = −1 + 3

(
x−8
2

)
= 3

2
x− 23

2
.

Expected Answer: Substituting this into the second equation, we get y = -1 + 3 * (x - 8) / 2 = -1 + (3x - 24)
/ 2 = -1 + (3x / 2) - 12 = (3x / 2) - 13.
**Verification:** No

**Step 4:**
Solution: Thus, m = 3

2
and b = − 23

2
. So, the answer is

(
3
2
,− 23

2

)
.

Expected Answer: The equation of the line in the form y = mx + b is therefore y = (3 / 2)x - 13. The answer
is (3/2,−13) .
**Verification:** No

Verification: Is the answer correct (Yes/No)? No

GenRM-CoT (Majority Voting) score: 0.4375

Figure D.2: MATH (Transfer from GSM): GenRM-CoT Example 1
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Under review as a conference paper at ICLR 2025

Problem: What is
√
53 in simplest radical form?

Solution: √
53 =

√
49 + 4

=
√
49 +

√
4

= 7 + 2 = 9

Final Answer: 9

Discriminative RM correctness score: 0.5974

GenRM-CoT: Let’s verify step by step.
**Step 1:**
Solution: √

53 =
√
49 + 4

Expected Answer:
√
53 is a prime number so it cannot be simplified further.

**Verification:**
The solution incorrectly breaks down 53 into 49 and 4.

√
53 is a prime number, so it cannot be simplified

further.

**Step 2:**
Solution:

=
√
49 +

√
4

Expected Answer:
√
53 is a prime number so it cannot be simplified further.

**Verification:**
Since Step 1 was incorrect, this step is also incorrect.

**Step 3:**
Solution:

= 7 + 2 = 9

Expected Answer:
√
53 is a prime number so it cannot be simplified further.

**Verification:**
Since Step 1 was incorrect, this step is also incorrect.

**Final Grade:**
Verification: Is the answer correct (Yes/No)? No

GenRM-CoT (Majority Voting) score: 0.157

Figure D.3: MATH (Transfer from GSM): GenRM-CoT Example 2
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Under review as a conference paper at ICLR 2025

Problem: Simplify:
√

2.52−0.72

2.7−2.5
.

Solution:
√
2.52 − 0.72

2.7− 2.5
=

√
(2.5)2 − (0.7)2

2.7− 2.5

=

√
2.52 − 0.72

0.2

=
|2.5− 0.7|

0.2

=
1.8

0.2
= 9 .

Final Answer: 9

Discriminative RM correctness score: 0.9993

GenRM-CoT: Let’s verify step by step.
**Step 1:**
Solution:

√
2.52 − 0.72

2.7− 2.5
=

√
(2.5)2 − (0.7)2

2.7− 2.5

Expected Answer:
√
2.52 − 0.72

2.7− 2.5
=

√
(2.5)2 − (0.7)2

2.7− 2.5
=

√
6.25− 0.49

0.2

Verification: Yes
**Step 2:**
Solution:

=

√
2.52 − 0.72

0.2

Expected Answer:

=

√
6.25− 0.49

0.2

Verification: Yes
**Step 3:**
Solution:

=
|2.5− 0.7|

0.2

Expected Answer:

=

√
5.76

0.2

Verification: No
**Step 4:**
Solution:

=
1.8

0.2

Expected Answer:

=
2.4

0.2

Verification: No
**Step 5:**
Solution: = 9 .
Expected Answer: = 12
Verification: No
Verification: Is the answer correct (Yes/No)? No

GenRM-CoT (Majority Voting) score: 0.1233

Figure D.4: MATH (Transfer from GSM): GenRM-CoT Example 3
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