
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GENERATIVE VERIFIERS: REWARD MODELING AS
NEXT-TOKEN PREDICTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Verifiers or reward models are often used to enhance the reasoning performance
of large language models (LLMs). A common approach is the Best-of-N method,
where N candidate solutions generated by the LLM are ranked by a verifier, and
the best one is selected. While LLM-based verifiers are typically trained as dis-
criminative classifiers to score solutions, they do not utilize the text generation
capabilities of pretrained LLMs. To overcome this limitation, we instead propose
training verifiers using the ubiquitous next-token prediction objective, jointly on
verification and solution generation. Compared to standard verifiers, such gen-
erative verifiers (GenRM) can benefit from several advantages of LLMs: they
integrate seamlessly with instruction tuning, enable chain-of-thought reasoning,
and can utilize additional test-time compute via majority voting for better ver-
ification. We demonstrate that GenRM outperforms discriminative, DPO veri-
fiers, and LLM-as-a-Judge, resulting in large performance gains with Best-of-N,
namely 5% → 45.3% on algorithmic tasks, 73% → 93.4% on GSM8K, and
28% → 44.6% on easy-to-hard generalization on MATH. Furthermore, we find
that training GenRM with synthetic verification rationales is sufficient to pick out
subtle errors on math problems. Finally, we demonstrate that generative verifiers
scale favorably with model size and inference-time compute.

1 INTRODUCTION

8%

16%

24%

32%

40%

%
 P

ro
bl

em
 S

ol
ve

d
(B

es
t-o

f-3
2)

Algorithmic Reasoning (2 tasks)
 : 5.0% 45.3%

84%

86%

88%

90%

92%

Be
st

-o
f-1

6

Grade-School Math (GSM8K)
 : 73.0% 93.4%

35%

38%

40%

43%

45%

Be
st

-o
f-3

2

Transfer to MATH (GSM-Verifiers)
 : 28.0% 44.6%

LLM-as-a-Judge DPO Discriminative RM GenRM GenRM-CoT

Figure 1: Generative Verifiers outperform standard verification approaches in terms of Best-of-N on rea-
soning tasks, with a fixed generator. Here, ∆ represents the improvement in number of problems solved with
Best-of-N using GenRM-CoT. GenRM-CoT leverages the generation capabilities of LLMs, enabling a fine-
tuned verifier to utilize chain-of-thought verification to detect subtle reasoning errors. For algorithmic tasks,
we report average performance using Gemma-2B on Last Letter Concat (Wei et al., 2022) and BBH Word Sort-
ing (Suzgun et al., 2022). For math reasoning, we train Gemma2-9B verifiers on GSM8K and evaluate their
performance on GSM8K test (middle) and easy-to-hard generalization on MATH500 (Lightman et al., 2023).
For math tasks, LLM-as-a-Judge utilizes Gemini 1.0 Pro, which we used for synthetic verification rationales
for training. For each task, the generated solutions in Best-of-N are the same; the only difference is the verifier.

While large language models (LLMs) demonstrate remarkable capabilities, they often confidently
make logical and factual mistakes (Zhang et al., 2023). These mistakes pose a significant challenge
for reasoning problems, where a single mistake can invalidate the solution. A common strategy to
address this issue is Best-of-N (Charniak and Johnson, 2005; Cobbe et al., 2021): the LLM generates

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Problem: Tim decides to cancel his cable subscription and get streaming services. He gets Netflix for $10
a month. Hulu and Disney Plus normally cost $10 a month each but he saves 20% for bundling. How much
money does he save by cancelling his $60 cable package?

Solution: Tim pays $60 for cable. He gets Netflix for 10 and the bundle of Hulu and Disney Plus costs $10
* 80% = $8. So he pays $10 + $8 = $18 for the bundle. Now he saves $60 - $18 = $42. The answer is 42.

Discriminative RM correctness score: 0.999

GenRM-CoT: Let’s verify step by step. · · ·
Step 3. **The bundle of Hulu and Disney Plus costs $10 * 80% = $8.** (Incorrect)
- Expected Answer: The bundle of Hulu and Disney Plus costs $10 + $10 = $20. With the 20% discount,
the total cost is $20 * 0.8 = $16. · · ·
Verification: Is the answer correct (Yes/No)? No

GenRM-CoT (Majority Voting) score: 0.0015

Figure 2: Example using generative CoT verifier on GSM8K test. LLM-generated solutions often sound
convincing even when they are wrong, making verification a challenging task. Here, the solution is incorrect
because it has ignored the word ‘each’ in the problem. While the discriminative RM fails to recognize this
subtle mistake in the solution, our GenRM-CoT verifier reliably detects the error. This is because GenRM-CoT
was trained with next-token prediction on synthetic chain-of-thought rationales, enabling it to explicitly reason
about the solution. Note that GenRM-CoT refers to CoT reasoning in the verification process (the solutions
typically also contain CoT, but not for verification). The full verification output can be found in Table D.11.

N candidate solutions for a given problem, and a learned reward model, referred to as a “verifier”,
ranks these solutions and picks the most suitable one. The effectiveness of this strategy hinges on
how accurate the verifier is, making it crucial to identify better approaches for training verifiers.

On reasoning domains, LLM-based verifiers are typically trained as discriminative reward mod-
els (RMs) to assign numerical scores to candidate solutions, which is then used to classify them as
correct or incorrect (Cobbe et al., 2021; Lightman et al., 2023; Wang et al., 2023). However, this
scoring approach does not utilize the text-generation capabilities that LLMs are fundamentally de-
signed for. As a result, discriminative RMs miss out on the inherent strengths of generative LLMs,
such as unified instruction tuning (Chung et al., 2022), chain-of-thought (CoT) reasoning (Wei et al.,
2022), and utilizing additional inference-time computation for better performance (Wang et al.,
2022; Brown et al., 2024). While LLM-as-a-Judge (Zheng et al., 2024), which simply prompts
off-the-shelf generative LLMs, also offers the above advantages, it typically underperforms trained
LLMs-based verifiers on reasoning tasks, which we also observe in Figure 1.

In this work, we propose training verifiers with next-token prediction, which we call GenRM, to
leverage the text generation capabilities of LLMs (Figure 2). Concretely, to produce a numerical
score for a solution, the verifier now uses a prompt such as ‘Is the answer correct?’, and represents
the score as the probability of a single text token (e.g., ‘Yes’ or ‘No’). GenRM naturally supports
CoT reasoning (Nye et al., 2021; Wei et al., 2022): it can be trained to reason explicitly by generating
a verbalized rationale before predicting correctness using ‘Yes’ or ‘No’ token (Figure 3), assuming
rationales are available during training. We can further boost verification accuracy of CoT verifiers
using majority-voting (Wang et al., 2022): sampling multiple CoT rationales and calculating the
average score of the ‘Yes’ token across rationales, enabling the use of inference-time compute for
verification. Moreover, GenRM’s next-token prediction training enables unifying solution genera-
tion with verification, which has been difficult with DPO verifiers (Rafailov et al., 2024; Hosseini
et al., 2024), improving verification through positive knowledge transfer from solution generation.

GenRM outperforms discriminative RMs, LLM-as-a-Judge, and self-consistency on algorithmic
string manipulation and math reasoning tasks (Figure 1). Best-of-N performance further improves
with GenRM-CoT that uses majority-voting, nearly matching performance with oracle verifier on
algorithmic tasks. On GSM8K, when using a Gemma2-9B GenRM-CoT verifier on solutions from
Gemini 1.0 Pro, we observe an improvement from 73% → 93.4% in terms of the number of prob-
lems solved, surpassing GPT-4 and Gemini 1.5 Pro. Furthermore, GenRM-CoT trained on grade-
school math problems exhibit easy-to-hard generalization, solving 17% more high-school competi-
tion problems in MATH500 (Lightman et al., 2023) with Best-of-32. Moreover, we find that gen-
erative verifiers scale more favorably than discriminative verifiers as we increase model capacity,
and outperform LLM-as-a-Judge as we scale inference-time compute with majority voting. Overall,
generative verifiers hold significant potential for improving the reasoning capabilities of LLMs.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

“Let’s verify step by step.”

GenRM

Finetuned Verifier
Problem

Solution

“Is the answer correct (Yes/No)?” Yes

No

Other tokens

GenRM-CoT

Finetuned VerifierProblem

Solution

Token Probability

Verification CoT1

…

Verification CoTN

No

Yes

Yes

0.4

0.2

0.9

0.8

Average

r

r

Figure 3: An illustration of generative verifiers, namely GenRM and GenRM-CoT. Given a question and a
candidate solution, GenRM directly finetunes an LLM to answer the question ‘Is the answer correct (Yes/No)?’
via SFT on the next-token response corresponding to either ‘Yes’ or ‘No’. During inference, the verifier score is
obtained by extracting the probability of the ‘Yes’ token (3). In comparison, GenRM-CoT finetunes a LLM to
produce verification chain-of-thought (CoT) rationale before yielding the final Yes/No token. At test-time, we
sample multiple CoT rationales and use majority voting to compute the average probability of ‘Yes’, enabling
GenRM-CoT to utilize additional inference-compute for better verification.

2 PRELIMINARIES

An autoregressive language model generates an output sequence y = (y1, y2, . . . , yT) given a input
context x (e.g., math problem) by predicting tokens one at a time, based on the previously gener-
ated tokens. Assuming that the language model is parameterized by θ, the conditional probability
distribution of generating a sequence y given context x is pθ(y | x) =

∏T
t=1 pθ(yt | x, y<t),

with the convention y<1 = ∅ and y<t = (y1, y2, . . . , yt−1). For ease of notation, we define
pθ(yt | x) := pθ(yt | y<t,x). For a vocabulary size M , the probability of predicting the t-th
token yt, pθ(yt | x), is determined using a softmax with temperature γ on logit scores z of all the to-
kens: pθ(yt | x) = exp(zt/γ)∑M

i=1 exp(zi/γ)
, where zt = logitθ(yt | x,y<t). Higher values of temperature

γ introduce more randomness, while setting τ = 0 corresponds to greedy decoding.

Next-token prediction is the typical approach for pre-training and fine-tuning LLMs. In particular,
supervised fine-tuning (SFT) minimizes the cross-entropy loss between the model’s predicted next
token and the actual target token in a given sequence. Given a dataset D = {(x, y)} of input context
x and target response y, the SFT loss is given by:

LSFT(θ,D) = −E(x,y)∼D

 |y|∑
t=1

log pθ(yt | x,y<t)

 . (1)

Best-of-N is a widely-used approach to improve the reasoning performance of LLMs (Cobbe et al.,
2021; Lightman et al., 2023). Specifically, given a test problem, we sample N candidate solutions
from a generator LLM. These candidates are then scored using a learned verifier or reward model,
and the highest-scoring solution is selected as the final answer. A better verifier increases the chance
of selecting the correct solution, improving test accuracy.

Discriminative Verifiers. The prevalent approach of training verifiers for reasoning domains is to
fine-tune an LLM as a classifier on a dataset of correct and incorrect solutions generated from a
fixed LLM, using the binary cross-entropy loss. To do so, these verifiers directly assign a numerical
score rθ(x,y) ∈ [0, 1] to estimate the probability that a solution y is correct for a problem x. As
such, these verifiers do not utilize the text generation the capabilities of LLMs. Given a reward-
modeling (RM) dataset DRM = Dincorrect

⋃
Dcorrect, we train discriminative RMs as follows:

L(θ,DRM) =− E(x,y+)∼Dcorrect

[
log rθ(x,y

+)
]
− E(x,y−)∼Dincorrect

[
log(1− rθ(x,y

−))
]
,

where rθ(x,y) = sigmoid(zcls), and zcls = logitθ(cls | y,x) (2)

where y+ are correct and y− are incorrect solutions, and cls corresponds to a special vocabulary
token. In this work, we always use a balanced data mixture between correct (Dcorrect) and incor-
rect (Dincorrect) problem-solution pairs.

LLM-as-a-Judge does not finetune a verifier from a pretrained LLM, but simply prompts the LLM
to perform the task of verification or self-critique (Zheng et al., 2024; Bai et al., 2022). LLM-judge
sometimes uses reference-guided grading: the LLM is given a reference solution to compare to.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 GENRM: VERIFICATION AS NEXT-TOKEN PREDICTION

Discriminative LLM-based verifiers (2) do not utilize the text generation capabilities of pretrained
LLMs. To address this issue, we propose training generative verifiers, which we call GenRM, using
standard next-token prediction (1). To do so, GenRM represents solution correctness using the
LLM’s probability distribution over tokens, instead of predicting a separate numerical score. This
keeps the generation abilities of GenRM intact as the verification decision is just another token,
while also enabling several advantages that come for “free” with LLMs, such as unified training for
solution generation and verification, chain-of-thought reasoning, and inference-time computation.

3.1 DIRECT VERIFIER

In its simplest form, GenRM predicts whether a solution is correct using a single ‘Yes’ or ‘No’
token (Figure 3, top). This can be done by maximizing log pθ(‘Yes’ | (x,y+)) for correct solutions
y+ and log pθ(‘No’ | (x,y−)) for incorrect solutions y−. To do so, we minimize the SFT loss in
(1) on the dataset DDirect containing problem-solution pairs and a ‘Yes‘ or ‘No’ verification token:

DDirect = {(x,y+, I), ‘Yes’}
⋃

{(x,y−, I), ‘No’} , I = ‘Is the answer correct (Yes/No)?’

At inference, we use the likelihood of the ‘Yes’ token as the verifier’s score for re-ranking solutions:

rDirect(x,y) = pθ(Yes | x,y, I). (3)

This score takes into account the verifier’s confidence about its correctness prediction, which reduces
the chance of being wrong at test-time when using a binary ‘Yes’ or ‘No’ prediction.

3.2 UNIFYING GENERATION AND VERIFICATION

GenRM seamlessly integrates reward modeling, which distinguishes between correct and incorrect
solutions, with SFT for generating correct solutions. This can be done by simply changing the data
mixture in the SFT loss (1) to include both verification and generation tasks. Given a verification
dataset Dverify, which can be DDirect or DCoT (discussed below) of problems-solution pairs with
correctness tokens (optionally with CoT rationales), GenRM minimizes the loss:

LGenRM(θ,Dverify) = LSFT(θ,Dverify) + λLSFT(θ,Dcorrect) , (4)

where λ > 0 is a hyperparameter that controls the mixture ratio between verification (Dverify) and
generating correct solutions (Dcorrect). This unified training can improve verifier and generation
performance via positive transfer between these two related tasks: how to generate a correct solution,
and whether a solution is correct. By default, we train GenRM verifiers using the unified loss in (4).

3.3 CHAIN-OF-THOUGHT VERIFIERS (GENRM-COT)

Since verification often involves nuanced reasoning, generative verifiers can naturally benefit from
CoT (Wei et al., 2022). Specifically, we can generate intermediate reasoning steps or critique (CoT)
before making a decision about the solution correctness, which may identify subtle reasoning errors
missed by direct verifiers (Figure 3, bottom). To train CoT verifiers, we can minimize the SFT
loss LGenRM on the dataset DCoT containing problem-solution pairs as inputs, and corresponding
verification rationales vCoT appended with a final question I and ‘Yes’ or ‘No’ token as targets:

DCoT = {
(
x,y+, ICoT

)
, (vCoT, I, ‘Yes’)}

⋃
{
(
x,y−, ICoT

)
, (vCoT, I, ‘No’)}

where ICoT =‘Let’s verify step by step.’. Notably, these rationales can either be human or LLM-
generated, both of which we explore in this work. During inference, we first generate a CoT rationale
vCoT from GenRM-CoT and then use the probability of ‘Yes’ for assigning the correctness score:

rCoT(x,y) = pθ(Yes | x,y, ICoT,vCoT, I), where vCoT ∼ pθ(· | x,y, ICoT), (5)

Compared to (3) that only uses the instruction I to produce a score, the above CoT reward addition-
ally conditions on ICoT and self-generated vCoT before getting a score via instruction I.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Inference-time Compute for CoT verifier When sampling verification CoTs, the generative ver-
ifier can use different reasoning paths and yield different correctness probabilities for the same
problem-solution pair. As such, we would like to marginalize out these reasoning paths to select the
most consistent correctness answer (Wang et al., 2022). To do so, we use majority voting where we
first generate K verification CoT rationales, and average the CoT-verifier score for these rationales:

rMajV@K(x,y) =
1

K

K∑
i=1

pθ

(
Yes | x,y, ICoT,v

(i)
CoT, I

)
, where v

(i)
CoT ∼ pθ(· | x,y, ICoT) (6)

Since individual verification rationales from CoT verifiers can have reasoning errors, majority vot-
ing can mitigate the impact of such errors by averaging correctness scores across multiple rationales.
Importantly, this means that GenRM-CoT can leverage additional inference-time compute to im-
prove its accuracy, which discriminative verifiers cannot do. Unless otherwise specified, we report
GenRM-CoT performance based on majority voting with 32 votes, that is, K = 32 in (6).

Synthetic Verification CoT Rationales for Training Verifying LLM solutions with human-
generated rationales can become increasingly expensive and challenging as LLMs surpass human
reasoning abilities. To address this challenge, we explore using synthetically-generated rationales on
GSM8K. One naive approach is to simply use the ‘Let’s verify step by step’ prompt given a problem-
solution pair, and keep the generated rationales only when they accurately verify the correctness of
a solution (Singh et al., 2023; Zelikman et al., 2022). However, such rationales (after filtering based
on final yes/no responses) are still often of poor quality, due to 50% accuracy from random guessing.

To improve the quality of synthetic rationales, we provide a reference solution in addition to the
problem and solution to verify (see Table A.2), making it easier for an LLM to point out any reason-
ing error in the provided solution. This idea is similar to reference-guidance grading (Zheng et al.,
2024). Here, a reference solution could be any model-generated solution that arrives at the correct
final answer. After initial data generation, we then filter the synthetic rationales using their verifica-
tion correctness. Note that we condition on a reference solution only to generate training data, but
do not include it during actual finetuning of the verifier, so that there is no train/test mismatch.

4 EXPERIMENTS

In this section, we evaluate the efficacy of next-token prediction compared to other verification
approaches. To this end, we compare GenRM and standard verifiers on a number of reasoning
tasks to answer the following questions: (1) How does GenRM compare to discriminative verifiers
and other approaches? (2) Does unified training of GenRM improve generation and verification
performance? (3) Can GenRM effectively utilize CoT reasoning to improve its performance? (4)
How does GenRM scale with model size and inference-time compute?

Tasks. We focus on the following tasks and put details about data generation in Appendix A:

• Algorithmic reasoning. We use two difficult string manipulation tasks, namely Last Letter
Concatenation (Wei et al., 2022) and Word Sorting from Big-Bench (Suzgun et al., 2022). We
train verifiers on word lists of length {2,3,4}, and evaluate their generalization on length {5,6}.
Note that this is a case of length generalization for the verification task.

• Math reasoning. We train grade-school math verifiers on the GSM8K dataset from Cobbe et al.
(2021) that popularized test-time verification. We evaluate these verifiers on the GSM8K test set
as well as their easy-to-hard generalization on much harder MATH dataset (Hendrycks et al.,
2021), using the same held-out set of 500 MATH problems as Lightman et al. (2023).

Baselines. We compare GenRM to the following verification approaches:

• Discriminative RM (Cobbe et al., 2021) or ORM is the prevalent approach for training verifiers
for test-time re-ranking on reasoning tasks (§2), and serves as our main baseline.

• LLM-as-a-Judge (Zheng et al., 2024) uses an off-the-shelf pretrained LLM for verification. To
do so, we use a CoT prompt to produce 32 verification rationales that is used for correctness
prediction and pick the majority-vote correctness answer.

• DPO (Rafailov et al., 2024): Following Hosseini et al. (2024), we use this preference optimiza-
tion approach for training verifiers on preference pairs with incorrect and correct solutions.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

1 2 4 8 16 32
Number of Solutions (N)

8%

16%

24%

32%

40%
%

 P
ro

bl
em

 S
ol

ve
d

 (B
es

t-o
f-N

)
 1.5× efficient

Algorithmic Reasoning (2 tasks)

1 2 4 8 16
Number of Solutions (N)

72%

76%

80%

84%

88%

92%
 1.2× efficient

Grade-School Math (GSM8K)

1 2 4 8 16 32
Number of Solutions (N)

28%

32%

36%

40%

44%

 6.4× efficient

Transfer to MATH (GSM-Verifiers)
LLM-as-a-Judge Self-Consistency DPO Discriminative RM GenRM-CoT

Figure 4: Sample-Efficient Scaling with Generative Verifiers. GenRM-CoT outperforms other methods,
especially for length generalization performance on algorithmic tasks (Gemma-2B verifier) and easy-to-hard
generalization on MATH (Gemma2-9B verifiers). Specifically, GenRM-CoT nearly matches the oracle veri-
fier’s Best-of-N performance on algorithmic tasks. On MATH, it matches the Best-of-32 performance from
discriminative verifier using 6.4× fewer solutions.

• Self-consistency (Wang et al., 2022): A simple approach to use test-time compute without veri-
fiers: sample multiple solutions from the LLM generator and pick the most common answer.

Evaluation protocol. Following Cobbe et al. (2021); Lightman et al. (2023), we primarily use Best-
of-N performance in terms of the percentage of problems solved using a fixed generator (§2) with
learned verifiers, and report average accuracy on the test set. We also report test RM accuracy,
which measures whether the verifier accurately classifies incorrect and correct solutions. While
these two metrics are correlated, RM accuracy only evaluates the verifier’s point-wise accuracy,
while Best-of-N evaluates the verifier’s ability to rank solutions for choosing the correct one.

Models & Training Details. For training verifiers, we use open-weights Gemma models (Gemma
Team et al., 2024a;b), specifically Gemma-2B for algorithmic tasks, and Gemma 2B, 7B, and
Gemma-2 9B for GSM8K. For solution generation as well as LLM-as-a-Judge, we use Gemma
2B for algorithmic tasks and Gemini 1.0 Pro (Google et al., 2023) for GSM8K. For verification CoT
rationales, we generate oracle rationales for algorithmic tasks programmatically (Table A.1); for
GSM8K, we generate synthetic rationales using Gemini 1.0 Pro with reference-guided grading (Ta-
ble A.2). See Appendix B for other hyperparameter details.

4.1 GENERATIVE VERIFIERS OUTPERFORM STANDARD VERIFICATION APPROACHES

GenRM outperforms LLM-as-a-Judge and DPO verifiers (Figure 1), while performing comparably
or slightly better than discriminative verifiers (Figure C.1). GenRM-CoT substantially improves the
Best-of-N performance over GenRM. In particular, on the algorithmic tasks with oracle verification
CoTs, GenRM-CoT nearly matches the oracle verifier performance. On GSM8K, GenRM-CoT
consistently outperforms other methods (Figure 4, middle), even though the synthetic CoT rationales
for training may contain errors. Qualitatively, GenRM-CoT is able to detect subtle reasoning errors
that are missed by discriminative or direct GenRM verifiers (see Figure 2, 11, and 12).

Easy-to-Hard Generalization. Without any training on MATH, GenRM-CoT results in a 6.4×
better efficiency than discriminative verifiers as we increase the number of solutions to verify and
surpassing the strong self-consistency baseline (Figure 4, right). While Sun et al. (2024) demon-
strate that discriminative verifiers trained on easy MATH problems can generalize to harder MATH
problems, GenRM-CoT exhibits a much stronger generalization from grade-school math problems
to high-school competition problems in MATH (also see Figure 8, right).

4.2 SYNERGY BETWEEN GENERATION AND VERIFICATION

Unifying solution generation with verification, as done by GenRM using next-token prediction, con-
sistently improves verification performance across all tasks, as illustrated in Figure 5. This improve-
ment is observed for both direct and CoT-based generative verifiers, suggesting that teaching the
verifier to imitate correct solutions generally helps. However, adding too much solution generation
data can decrease verification performance of GenRM (Figure C.2).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

10%

12%

15%

18%

20%

%
 P

ro
bl

em
s S

ol
ve

d
(B

es
t-o

f-3
2)

Last Letter Concat (2B model)

40%

60%

(B
es

t-o
f-3

2)

Word Sorting (2B model)

75%

80%

85%

90%

(B
es

t-o
f-1

6)

GSM8K (7B model)
GenRM (Verification Only) GenRM GenRM-CoT (Verification Only) GenRM-CoT

Figure 5: SFT on correct solutions enhances verification, both for GenRM and GenRM-CoT, across all tasks.
‘Verification Only’ corresponds to verifiers trained only on verification data, by setting λ = 0 in (4). The y-axis
of each figure starts from the pass@1 performance of the base generator for each task.

21 23

Number of Solutions (N)

0%

20%

40%

60%

80%

Be
st

-o
f-N

 (O
ra

cle
 V

er
ifi

er
) Last Letter Concat (= 1/3)

21 23

Number of Solutions (N)

20%

40%

60%

80%
Word Sorting (= 1/3)

21 23

Number of Solutions (N)

70%

80%

90%

GSM8K (= 1/4)

Base LLM SFT (Generation) GenRM-CoT (Verification + Generation)

Figure 6: Unifying generation and verification boosts generation performance compared to SFT on correct
solutions, in terms of Best-of-N with oracle verifier. The improvement is larger on algorithmic tasks, which use
ground-truth verification data, than on GSM8K that relies on synthetic rationales, which may be inaccurate.

1 2 4 8 16 32
Sampled CoT Rationales (K)

80%

85%

90%

95%

%
 G

SM
8K

 P
ro

bl
em

s S
ol

ve
d

(B
es

t-o
f-1

6)

Gemma-2B

1 2 4 8 16 32
Sampled CoT Rationales (K)

Gemma-7B

1 2 4 8 16 32
Sampled CoT Rationales (K)

Gemma-9B
LLM-as-a-Judge (MajVote@K) GenRM-CoT (MajVote@K) GenRM-CoT (Greedy)

Figure 7: Scaling Inference-time Compute for Verification on GSM8K. By posing reward modeling as next-
token prediction, GenRM-CoT can utilize Chain-of-Thought and Majority Voting, to turn additional test-time
compute into higher percentage of problems solved under Best-of-N. Here, the horizontal line corresponds to
performance of GenRM-CoT verifier with greedy decoding in Eq (5).

Incorporating CoT verification data into the generator’s training mix leads to better solution gen-
eration performance for the GenRM-CoT verifier itself, as evidenced in Figure 6 by the improved
Best-of-N scores with the oracle verifier (Pass@N). This suggests that teaching a generator to per-
form CoT verification using next-token prediction can deepen its understanding of the generation
process itself. Overall, unifying solution generation and verification is mutually beneficial.

4.3 SCALING MODEL SIZE AND INFERENCE-TIME COMPUTE

Scaling Test-Time Compute with GenRM-CoT can be done by sampling multiple CoTs and ap-
plying majority voting, as described in Eq (6). As shown in Figure 7, GenRM-CoT verifier’s perfor-
mance scales gracefully with number of votes at test time, under all three Gemma model sizes (2B,
7B, 9B), outperforming greedy decoding performance within 2 votes. Notably, across model scales,
the finetuned GenRM-CoT verifier outperforms LLM-as-a-Judge , which also utilizes the same CoT
approach and number of majority votes, but prompts a more capable Gemini 1.0 Pro model than
Gemma models which we finetune as verifiers.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

2B 7B 9B
Parameter Count (Gemma)

35.0%

40.0%

45.0%

%
 P

ro
bl

em
s S

ol
ve

d
 (B

es
t-o

f-3
2)

MATH: Model Scaling

2B 7B 9B
Parameter Count (Gemma)

67.5%

70.0%

72.5%

75.0%

RM
 A

cc
ur

ac
y

MATH: Model Scaling

1 2 3 4 5
Difficulty Level

20%

40%

60%

80%

%
 P

ro
bl

em
s S

ol
ve

d
(B

es
t-o

f-3
2)

MATH: Difficulty Breakdown

GenRM GenRM-CoT Discriminative RM

Figure 8: Model Scaling for Generative Verifiers. We evaluate MATH performance of Gemma 2B, 7B, and
Gemma2 9B verifiers trained on GSM8K. We observe positive scaling trends for GenRM (direct) and GenRM-
CoT as well as Discriminative RM, both for (Left) Best-of-N performance, and (Middle) RM accuracy on the
test set. Generative verifiers outperform discriminative counterparts in all model regimes. (Right) We also
analyze the percentage of problems solved within each difficulty level on MATH using Gemma-9B verifiers,
and show that GenRM-CoT obtains superior performance across all levels.

1 2 4 8 16
Number of Solutions (N)

80%

90%

%
 P

ro
bl

em
s S

ol
ve

d
(B

es
t-o

f-N
)

GenRM-CoT: Synthetic Rationales

Reference Guidance
No Guidance
Oracle (pass@N)

Figure 9: Quality of synthetic rationales
matter. Using reference guidance for syn-
thetic rationale generation is crucial for
GenRM-CoT to perform well on GSM8K:
91.7% with guidance vs. 87.8% without for
Gemma-7B verifiers.

1 2 4
88%

89%

90%

91%

92%
RM

 A
cc

ur
ac

y
Gemma-7B

1 2 4
Training CoT rationales Per Solution

85%

86%

87%

88%

89%

%
 P

ro
bl

em
s S

ol
ve

d
(B

es
t-o

f-1
6)

Gemma-7B
GSM8K: Scaling Number of Rationales

Figure 10: Quantity of synthetic rationales matter.
Scaling the number of rationales per solution for GenRM-
CoT on GSM8K improves both RM accuracy and Best-
of-N performance. Here, we use fine-tuned Gemma-7B
verifier, with greedy decoding at inference (5).

Scaling model size. In Figure 8, we show that generative verifiers, especially GenRM-CoT, exhibit
better scaling behavior than discriminative RMs, both in terms of reward modeling accuracy and
Best-of-N performance. Intuitively, bigger models are more capable of text generation, allowing
GenRM-CoT finetuning to better tap into its chain-of-thought reasoning ability for verification. Fur-
thermore, these results demonstrate that larger models generalize better using the same data, which
matches what we expect from scaling model parameter counts under the next-token prediction loss.

4.4 SYNTHETIC RATIONALES: QUANTITY AND QUALITY MATTER

Our results on math reasoning tasks indicate that CoT verifiers can outperform discriminative and
direct verifiers without requiring human-written verification rationales, highlighting the potential of
LLM-generated rationales. We find that both the quality and quantity of these synthetic rationales
matter. As shown in Figure 9, using reference-guided grading during rationale generation (§3.3)
significantly improves verification performance. Furthermore, using multiple rationales per solution
also improves performance, as shown in Figure 10. We suspect that this is because model-generated
rationales may contain errors, such that training on multiple rationales per solution can result in an
“ensembling” effect that prevents overfitting to such errors (Zhang et al., 2024).

Importantly, unlike prior work, our results on math reasoning tasks do not require a more capable
model (Ankner et al., 2024; Ye et al., 2024) or humans (McAleese et al., 2024; Saunders et al., 2022)
for generating verification rationales: we use the same model (Gemini 1.0 Pro) to both generate
solutions to verify and synthetic verification rationales for training.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Problem: A line is parameterized by
(
x
y

)
=

(
8
−1

)
+ t

(
2
3

)
. The equation of the line can be expressed

in the form y = mx+ b. Enter the ordered pair (m, b).

Solution: We have x = 8 + 2t and y = −1 + 3t. Solving the first equation for t, we have t = x−8
2

.
Substituting this into the second equation, we get y = −1 + 3

(
x−8
2

)
= 3

2
x− 23

2
. Thus, m = 3

2
and

b = − 23
2

. So, the answer is
(
3

2
,−23

2

)
. Final Answer:

(
3
2
,− 23

2

)
Discriminative RM correctness score: 0.827

GenRM-CoT: Let’s verify step by step. · · ·
Step 3:
Solution: Substituting this into the second equation, we get y = −1 + 3

(
x−8
2

)
= 3

2
x− 23

2
.

Expected Answer: Substituting this into the second equation, we get y = −1 + 3 ∗ (x − 8)/2 =
−1 + (3x− 24)/2 = −1 + (3x/2)− 12 = (3x/2)− 13.
Verification: No
· · ·
Verification: Is the answer correct (Yes/No)? No

GenRM-CoT (Majority Voting) score: 0.438

Figure 11: An example on MATH where GenRM-CoT (trained only on GSM) detects a reasoning error.
The solution made a mistake in simplifying an intermediate step. Both Discriminative RM and GenRM-CoT
models have only been trained on GSM8K. In this case, discriminative RM fails to classify the solution as
incorrect, whereas GenRM-CoT utilizes chain of thoughts to catch this mistake. See Figure D.2 for details.

5 RELATED WORK

Reward models (RMs) and verifiers. Conventionally, RMs and verifiers are trained as discrim-
inative models via binary classification: given a prompt and a corresponding solution or a pair of
solutions), the model is either trained to predict the correctness of the solution (Cobbe et al., 2021;
Lightman et al., 2023; Wang et al., 2023; Uesato et al., 2022; Luo et al., 2024; Yu et al., 2024) or a
preference between the two solutions (Stiennon et al., 2020; Nakano et al., 2021). Concretely, the
RM directly produces a numerical continuous-valued score, which is then plugged into a classifi-
cation objective (2). As such, discriminative verifiers do not utilize the generation capabilities of
LLMs. In contrast to discriminative RMs, GenRM represents the correctness decision using the log
probability of specific tokens, for example ‘Yes’ and ‘No’. Posing verification as generating “yet
another token” allows it to tap better into the generation capabilities of LLMs, by making it straight-
forward to employ CoT reasoning and additional inference-time compute for better verification.

LLM-as-a-Judge. Another line of work that poses verification as next-token prediction simply
prompts off-the-shelf LLMs to act as a verifier when provided with a rubric and a template for grad-
ing (Zheng et al., 2024; Bai et al., 2022; Kim et al., 2023; Ling et al., 2024) or many-shot ICL
examples (Agarwal et al., 2024), but without any specific training for the same. Perhaps unsurpris-
ingly, we find in our experiments that using more powerful LLMs (Gemini 1.0 Pro) as a judge is
worse than our trained GenRM using weaker Gemma models (Figure 1, 7), highlighting the neces-
sity of training generative verifiers. Our generative verifiers also exhibit good out-of-distribution
generalization, which might be due to better calibrated uncertainty estimates from training (Kapoor
et al., 2024). More generally, even the strong proprietary LLMs, such as GPT-4 (Achiam et al.,
2023) and Gemini (Team et al., 2024), fall behind trained RMs on popular leaderboards (Lambert
et al., 2024), and this gap is much larger for reasoning problems.

Using CoTs for reward models. Prior works have also used critiques or CoT to extract prefer-
ence and verification signals using LLM-as-a-Judge (Yuan et al., 2024; Wu et al., 2024; Wang et al.,
2024); in contrast to these works, GenRM utilizes model-generated CoTs directly for training the
verifier. Upon inference, a GenRM-CoT produces its own CoTs, which it then uses to make deci-
sions on correctness, unlike Ye et al. (2024) that simply uses CoTs from a separate highly-capable
LLM. In contrast to prior work that utilizes high-quality data from humans to train critique mod-
els (Saunders et al., 2022) or train discriminative RMs for generating code critiques (McAleese
et al., 2024), we show that GenRM can be trained from purely synthetic, model-generated critiques.
Concurrent work (Ankner et al., 2024) trains an RM to produce response critiques for preference
pairs generated using a much more capable LLM, which are then passed as input into a RM head,
separate from the base LLM. Unlike GenRM which uses next-token prediction, their RM head is

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Problem: Carol spends 4 hours writing a song, half that much time recording it, and 90 minutes editing it.
What percentage of her total work time did she spend editing?

Solution: Half of 4 hours is 2 hours. So the time spent recording is 2 hours. Add the editing time of 90
minutes and the total time for the entire project is 4 + 2 + 1.5 = 7.5 hours. That means she spent (90 / 7.5)
* 100 = 12% of the total time editing. The answer is 12.

Discriminative RM correctness score: 0.841

GenRM-CoT: Let’s verify step by step.
· · ·
Step 3: That means she spent (90 / 7.5) * 100 = 12% of the total time editing.
Expected Answer: Incorrect. The editing time should be in hours, so it should be (1.5 / 7.5) * 100 = 20%.
Verification: Is the answer correct (Yes/No)? No

GenRM-CoT (Majority Voting) score: 0.250

Figure 12: An example where GenRM-CoT catches a subtle mistake that the discriminative verifier is unable
to catch. The candidate solution did not convert 90 minutes into 1.5 hours before dividing it by 7.5. However,
the discriminative verifier was not able to detect this mistake likely because the solution does still appear to
produce a valid-sounding percentage 90/7.5 = 12. Our proposed GenRM-CoT model is able to identify this
mistake using step-by-step generative verification. The full verification output can be found in Table D.10.

trained discriminatively akin to standard RMs. While this approach allows them to leverage CoT, it
does not allow them to unify solution generation and verification as a result of a discriminative RM
head, which GenRM seamlessly enables (Section 4.2). Moreover, their synthetic critiques are not
filtered for correctness, which would lead to poor verification CoTs on reasoning tasks (§3.3).

Unified generation and verification. One of the hallmark properties of GenRM is that the same
generative verifier can be co-trained with a generation objective (4): when given a problem, the
model is trained to produce a solution, whereas when given a problem and a candidate solution, it is
trained to verify this candidate. This is related to DPO (Rafailov et al., 2024) and its application to
learning verifiers in reasoning (Hosseini et al., 2024), which aims to unify generation (policy) and
verification (reward models) by representing the reward implicitly using the logits of a policy and
training the policy with a reward-modeling loss. For reasoning, this type of model tying has been
shown to exhibit erroneous extrapolation and degradation in learned representations, which prior
work has attempted to address with additional techniques (Pang et al., 2024; Setlur et al., 2024; Pal
et al., 2024; Yang et al., 2024). Of these, while Yang et al. (2024) train a reward model with an
auxiliary generative SFT loss, note that this loss is applied on a separate head for regularization
purposes and is discarded after training; unlike GenRM no text is produced when querying the RM.
In addition, compared to DPO, GenRM uses a simpler next-token prediction loss, does not require
a reference policy, and obtains significantly better verification performance (Figure 1, 4).

6 CONCLUSION & FUTURE WORK

In this paper, we have introduced Generative Verifiers (GenRM), which recast verification as next-
token prediction. GenRM is more performant than discriminative verifiers, and unlocks the use of
chain-of-thought reasoning and majority voting for better verification. GenRM also unifies gen-
eration and verification into a single LLM, and demonstrates that such a unification benefits both
generation and verification. Moreover, we show that synthetic model-generated rationales, which
can be error-prone, are sufficient to teach GenRM how to use verification CoT to pick out tricky
errors on math reasoning tasks (see Figure 2, 11, 12, and Appendix D).

The framework of generative verification offers a solid foundation for future work. Promising di-
rections include extending this framework to broader tasks such as coding, alignment, text-to-image
generation (Lin et al., 2024), and open-ended generation (Besta et al., 2024). Furthermore, leverag-
ing process-level supervision (Lightman et al., 2023) and training CoT verifiers with reinforcement
learning (RL) can result in more accurate generative verifiers. Given GenRM’s compatibility with
all the existing tools designed to improve LLMs, exploring enhancements through techniques like
retrieval-augmented generation (Borgeaud et al., 2022), many-shot learning (Agarwal et al., 2024),
multi-staged prompting (Yao et al., 2024), and tool use (Schick et al., 2024) would be interesting.
Finally, incorporating generative verifiers into RL pipelines for LLMs warrants further investigation.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

7 REPRODUCIBILITY STATEMENT

To ensure our work can be easily reproduced, we use open-weights Gemma models (Gemma Team
et al., 2024a;b), and describe our experiment setup thoroughly in §4, with additional details about
data collection and processing in Appendix A and hyperparameters in Appendix B. Since GenRM
relies on next token prediction, no additional code is needed beyond supervised fine-tuning. We have
also anonymously open-sourced our training dataset of synthetic rationales at https://github.
com/gen-agent/genrm-data/.

REFERENCES

J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Altenschmidt,
S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

R. Agarwal, A. Singh, L. M. Zhang, B. Bohnet, S. Chan, A. Anand, Z. Abbas, A. Nova, J. D.
Co-Reyes, E. Chu, et al. Many-shot in-context learning. arXiv preprint arXiv:2404.11018, 2024.

Z. Ankner, M. Paul, B. Cui, J. D. Chang, and P. Ammanabrolu. Critique-out-loud reward models.
arXiv preprint arXiv:2408.11791, 2024.

Y. Bai, S. Kadavath, S. Kundu, A. Askell, J. Kernion, A. Jones, A. Chen, A. Goldie, A. Mirho-
seini, C. McKinnon, et al. Constitutional ai: Harmlessness from ai feedback. arXiv preprint
arXiv:2212.08073, 2022.

M. Besta, L. Paleari, A. Kubicek, P. Nyczyk, R. Gerstenberger, P. Iff, T. Lehmann, H. Niewiadomski,
and T. Hoefler. Checkembed: Effective verification of llm solutions to open-ended tasks. arXiv
preprint arXiv:2406.02524, 2024.

S. Borgeaud, A. Mensch, J. Hoffmann, T. Cai, E. Rutherford, K. Millican, G. B. Van Den Driessche,
J.-B. Lespiau, B. Damoc, A. Clark, et al. Improving language models by retrieving from trillions
of tokens. In International conference on machine learning, pages 2206–2240. PMLR, 2022.

B. Brown, J. Juravsky, R. Ehrlich, R. Clark, Q. V. Le, C. Ré, and A. Mirhoseini. Large language
monkeys: Scaling inference compute with repeated sampling. arXiv preprint arXiv:2407.21787,
2024.

E. Charniak and M. Johnson. Coarse-to-fine n-best parsing and maxent discriminative reranking.
In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics
(ACL’05), pages 173–180, 2005.

H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, Y. Li, X. Wang, M. De-
hghani, S. Brahma, et al. Scaling instruction-finetuned language models. arXiv preprint
arXiv:2210.11416, 2022.

K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek,
J. Hilton, R. Nakano, et al. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

Gemma Team, T. Mesnard, C. Hardin, R. Dadashi, S. Bhupatiraju, S. Pathak, L. Sifre, M. Rivière,
M. S. Kale, J. Love, et al. Gemma: Open models based on gemini research and technology. arXiv
preprint arXiv:2403.08295, 2024a.

Gemma Team, M. Riviere, S. Pathak, P. G. Sessa, C. Hardin, S. Bhupatiraju, L. Hussenot, T. Mes-
nard, B. Shahriari, A. Ramé, et al. Gemma 2: Improving open language models at a practical
size. arXiv preprint arXiv:2408.00118, 2024b.

G. T. Google, R. Anil, S. Borgeaud, Y. Wu, J.-B. Alayrac, J. Yu, R. Soricut, J. Schalkwyk, A. M.
Dai, A. Hauth, et al. Gemini: a family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805, 2023.

D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang, D. Song, and J. Steinhardt. Mea-
suring mathematical problem solving with the math dataset. arXiv preprint arXiv:2103.03874,
2021.

11

https://github.com/gen-agent/genrm-data/
https://github.com/gen-agent/genrm-data/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A. Hosseini, X. Yuan, N. Malkin, A. Courville, A. Sordoni, and R. Agarwal. V-star: Training
verifiers for self-taught reasoners. arXiv preprint arXiv:2402.06457, 2024.

S. Kapoor, N. Gruver, M. Roberts, K. Collins, A. Pal, U. Bhatt, A. Weller, S. Dooley, M. Goldblum,
and A. G. Wilson. Large language models must be taught to know what they don’t know. arXiv
preprint arXiv:2406.08391, 2024.

S. Kim, J. Shin, Y. Cho, J. Jang, S. Longpre, H. Lee, S. Yun, S. Shin, S. Kim, J. Thorne, et al.
Prometheus: Inducing fine-grained evaluation capability in language models. In The Twelfth
International Conference on Learning Representations, 2023.

D. P. Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

N. Lambert, V. Pyatkin, J. Morrison, L. Miranda, B. Y. Lin, K. Chandu, N. Dziri, S. Kumar, T. Zick,
Y. Choi, et al. Rewardbench: Evaluating reward models for language modeling. arXiv preprint
arXiv:2403.13787, 2024.

H. Lightman, V. Kosaraju, Y. Burda, H. Edwards, B. Baker, T. Lee, J. Leike, J. Schulman,
I. Sutskever, and K. Cobbe. Let’s verify step by step. arXiv preprint arXiv:2305.20050, 2023.

Z. Lin, D. Pathak, B. Li, J. Li, X. Xia, G. Neubig, P. Zhang, and D. Ramanan. Evaluating text-to-
visual generation with image-to-text generation. arXiv preprint arXiv:2404.01291, 2024.

Z. Ling, Y. Fang, X. Li, Z. Huang, M. Lee, R. Memisevic, and H. Su. Deductive verification of
chain-of-thought reasoning. Advances in Neural Information Processing Systems, 36, 2024.

I. Loshchilov and F. Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

L. Luo, Y. Liu, R. Liu, S. Phatale, H. Lara, Y. Li, L. Shu, Y. Zhu, L. Meng, J. Sun, et al. Improve
mathematical reasoning in language models by automated process supervision. arXiv preprint
arXiv:2406.06592, 2024.

N. McAleese, R. M. Pokorny, J. F. C. Uribe, E. Nitishinskaya, M. Trebacz, and J. Leike. Llm critics
help catch llm bugs. arXiv preprint arXiv:2407.00215, 2024.

R. Nakano, J. Hilton, S. Balaji, J. Wu, L. Ouyang, C. Kim, C. Hesse, S. Jain, V. Kosaraju, W. Saun-
ders, et al. Webgpt: Browser-assisted question-answering with human feedback. arXiv preprint
arXiv:2112.09332, 2021.

M. Nye, A. J. Andreassen, G. Gur-Ari, H. Michalewski, J. Austin, D. Bieber, D. Dohan,
A. Lewkowycz, M. Bosma, D. Luan, et al. Show your work: Scratchpads for intermediate com-
putation with language models. arXiv preprint arXiv:2112.00114, 2021.

A. Pal, D. Karkhanis, S. Dooley, M. Roberts, S. Naidu, and C. White. Smaug: Fixing failure modes
of preference optimisation with dpo-positive. arXiv preprint arXiv:2402.13228, 2024.

R. Y. Pang, W. Yuan, K. Cho, H. He, S. Sukhbaatar, and J. Weston. Iterative reasoning preference
optimization. arXiv preprint arXiv:2404.19733, 2024.

R. Rafailov, A. Sharma, E. Mitchell, C. D. Manning, S. Ermon, and C. Finn. Direct preference
optimization: Your language model is secretly a reward model. Advances in Neural Information
Processing Systems, 36, 2024.

A. Roberts, H. W. Chung, A. Levskaya, G. Mishra, J. Bradbury, D. Andor, S. Narang, B. Lester,
C. Gaffney, A. Mohiuddin, C. Hawthorne, A. Lewkowycz, A. Salcianu, M. van Zee, J. Austin,
S. Goodman, L. B. Soares, H. Hu, S. Tsvyashchenko, A. Chowdhery, J. Bastings, J. Bulian,
X. Garcia, J. Ni, A. Chen, K. Kenealy, J. H. Clark, S. Lee, D. Garrette, J. Lee-Thorp, C. Raffel,
N. Shazeer, M. Ritter, M. Bosma, A. Passos, J. Maitin-Shepard, N. Fiedel, M. Omernick, B. Saeta,
R. Sepassi, A. Spiridonov, J. Newlan, and A. Gesmundo. Scaling up models and data with t5x
and seqio. arXiv preprint arXiv:2203.17189, 2022. URL https://arxiv.org/abs/
2203.17189.

12

https://arxiv.org/abs/2203.17189
https://arxiv.org/abs/2203.17189

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

W. Saunders, C. Yeh, J. Wu, S. Bills, L. Ouyang, J. Ward, and J. Leike. Self-critiquing models for
assisting human evaluators. arXiv preprint arXiv:2206.05802, 2022.

T. Schick, J. Dwivedi-Yu, R. Dessı̀, R. Raileanu, M. Lomeli, E. Hambro, L. Zettlemoyer, N. Can-
cedda, and T. Scialom. Toolformer: Language models can teach themselves to use tools. Advances
in Neural Information Processing Systems, 36, 2024.

A. Setlur, S. Garg, X. Geng, N. Garg, V. Smith, and A. Kumar. Rl on incorrect synthetic data scales
the efficiency of llm math reasoning by eight-fold. arXiv preprint arXiv:2406.14532, 2024.

A. Singh, J. D. Co-Reyes, R. Agarwal, A. Anand, P. Patil, P. J. Liu, J. Harrison, J. Lee, K. Xu,
A. Parisi, et al. Beyond human data: Scaling self-training for problem-solving with language
models. arXiv preprint arXiv:2312.06585, 2023.

N. Stiennon, L. Ouyang, J. Wu, D. Ziegler, R. Lowe, C. Voss, A. Radford, D. Amodei, and P. F.
Christiano. Learning to summarize with human feedback. Advances in Neural Information Pro-
cessing Systems, 33:3008–3021, 2020.

Z. Sun, L. Yu, Y. Shen, W. Liu, Y. Yang, S. Welleck, and C. Gan. Easy-to-hard generalization:
Scalable alignment beyond human supervision. arXiv preprint arXiv:2403.09472, 2024.

M. Suzgun, N. Scales, N. Schärli, S. Gehrmann, Y. Tay, H. W. Chung, A. Chowdhery, Q. V. Le,
E. H. Chi, D. Zhou, et al. Challenging big-bench tasks and whether chain-of-thought can solve
them. arXiv preprint arXiv:2210.09261, 2022.

G. Team, M. Reid, N. Savinov, D. Teplyashin, T. Lillicrap, J.-b. Alayrac, R. Soricut, A. Lazaridou,
O. Firat, J. Schrittwieser, et al. Gemini 1.5: Unlocking multimodal understanding across millions
of tokens of context. arXiv e-prints, pages arXiv–2403, 2024.

J. Uesato, N. Kushman, R. Kumar, F. Song, N. Siegel, L. Wang, A. Creswell, G. Irving, and I. Hig-
gins. Solving math word problems with process-and outcome-based feedback. arXiv preprint
arXiv:2211.14275, 2022.

P. Wang, L. Li, Z. Shao, R. Xu, D. Dai, Y. Li, D. Chen, Y. Wu, and Z. Sui. Math-shepherd: A label-
free step-by-step verifier for llms in mathematical reasoning. arXiv preprint arXiv:2312.08935,
2023.

T. Wang, I. Kulikov, O. Golovneva, P. Yu, W. Yuan, J. Dwivedi-Yu, R. Y. Pang, M. Fazel-Zarandi,
J. Weston, and X. Li. Self-taught evaluators. arXiv preprint arXiv:2408.02666, 2024.

X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang, A. Chowdhery, and D. Zhou.
Self-consistency improves chain of thought reasoning in language models. arXiv preprint
arXiv:2203.11171, 2022.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou, et al. Chain-of-
thought prompting elicits reasoning in large language models. Advances in neural information
processing systems, 35:24824–24837, 2022.

T. Wu, W. Yuan, O. Golovneva, J. Xu, Y. Tian, J. Jiao, J. Weston, and S. Sukhbaatar. Meta-
rewarding language models: Self-improving alignment with llm-as-a-meta-judge. arXiv preprint
arXiv:2407.19594, 2024.

R. Yang, R. Ding, Y. Lin, H. Zhang, and T. Zhang. Regularizing hidden states enables learning
generalizable reward model for llms. arXiv preprint arXiv:2406.10216, 2024.

S. Yao, D. Yu, J. Zhao, I. Shafran, T. Griffiths, Y. Cao, and K. Narasimhan. Tree of thoughts: Delib-
erate problem solving with large language models. Advances in Neural Information Processing
Systems, 36, 2024.

Z. Ye, F. Greenlee-Scott, M. Bartolo, P. Blunsom, J. A. Campos, and M. Gallé. Improving reward
models with synthetic critiques. arXiv preprint arXiv:2405.20850, 2024.

F. Yu, A. Gao, and B. Wang. Ovm, outcome-supervised value models for planning in mathematical
reasoning. In Findings of the Association for Computational Linguistics: NAACL 2024, pages
858–875, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

W. Yuan, R. Y. Pang, K. Cho, S. Sukhbaatar, J. Xu, and J. Weston. Self-rewarding language models.
arXiv preprint arXiv:2401.10020, 2024.

E. Zelikman, Y. Wu, J. Mu, and N. Goodman. Star: Bootstrapping reasoning with reasoning. Ad-
vances in Neural Information Processing Systems, 35:15476–15488, 2022.

E. Zhang, V. Zhu, N. Saphra, A. Kleiman, B. L. Edelman, M. Tambe, S. M. Kakade, and E. Malach.
Transcendence: Generative models can outperform the experts that train them. arXiv preprint
arXiv:2406.11741, 2024.

Y. Zhang, Y. Li, L. Cui, D. Cai, L. Liu, T. Fu, X. Huang, E. Zhao, Y. Zhang, Y. Chen, et al.
Siren’s song in the ai ocean: a survey on hallucination in large language models. arXiv preprint
arXiv:2309.01219, 2023.

L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. Xing,
et al. Judging llm-as-a-judge with mt-bench and chatbot arena. Advances in Neural Information
Processing Systems, 36, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Appendices
A TRAINING DATA GENERATION FOR VERIFIERS

Problem Solution to Verify
Last Letter
Concatenation

Task: take the last letters of each words
and concatenate them.
Q: Jacob , Vivian

A: Let’s think step by step.
J a c o b -⟩ b (List so far: [b])
V i v i a n -⟩ n (List so far: [b n])
The answer is: b n

Let’s verify step by step.
The given answer is: b , n. The input is: Jacob , Vivian.
Is the length of the final answer the same as the number of input words?
Yes
Is ‘b’ the last letter of ‘J a c o b’? Yes
Is ‘n’ the last letter of ‘V i v i a n’? Yes
Is the final answer correct? Yes
Word Sorting Task: sort a list of words alphabetically.

Q: cell, apple, courage
A: Let’s think step by step.
Identify the alphabetical locations
of 1st letters:
cell -⟩ c: 3. apple -⟩ a: 1. courage
-⟩ c: 3.
We need to sort the numbers: 3, 1,
3
Sorting the numbers: 1 ⟨ 3 = 3
The answer is: apple, courage, cell

Let’s verify step by step.
The given answer is: apple, courage, cell. The input is: cell, apple,
courage.
Does the final answer contain the same words as the original input? Yes
Are ‘a p p l e’, ‘c o u r a g e’ in the correct order? Yes
Are ‘c o u r a g e’, ‘c e l l’ in the correct order? No
Is the answer correct? No

Table A.1: Algorithmic reasoning tasks that we consider. In thes tasks, we can generate ground-truth verifi-
cation chain-of-thoughts as the training data for a generative verifier. Those synthetic tasks help us understand
whether a generative verifier can outperform a discriminative verifier in the ideal scenario where there is no
noise in the verification CoT training data.

• Last Letter Concatenation (Wei et al., 2022): Given a list of words, the task is to concate-
nate the last letters of each word (for instance, “Noah Paul Elisha Rebecca” → “hlaa”).
To generate the training data, for each length {2, 3, 4}, we generate 350 problem queries by
randomly sampling from the set of words in original training set; for each problem query,
we generate 128 attempts from Gemma-2B (Gemma Team et al., 2024a) model. This gives
us a total of about 50K training data points after de-duplication. We train verifiers on
examples of lengths {2, 3, 4} (here the length refers to how many words are in the input
list), and evaluate the verifier performance on length 6. We use the format in Table A.1 to
algorithmically generate ground-truth verification CoT for training.

• Word Sorting (Suzgun et al., 2022): Given a list of words, sort them in alphabetical order.
We train verifiers on a dataset comprised of {2, 3, 4} words in each example, and evaluate
the performance on length 5. For each length, we generate 4096 lists of words as the
problem queries; for each problem, we generate 64 attempts from Gemma-2B. After de-
duplication and filtering out invalid responses, we have a total of about 100K training data
points. We also algorithmically generate ground-truth verification CoT for training (see
Table A.1).

• Grade School Math (Cobbe et al., 2021): We follow the original train/test split and use
1.3K problems for test, 128 problems for validation, and about 7.2K problems for training.
We generate 50 solutions per problem, and randomly sample at max 16 correct solutions
and 16 incorrect solutions per problem as the training set. We evaluate the verifier perfor-
mance on 16 solutions per problem in the test set.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table A.2: We use model-generated rationales as CoT training data on GSM with the above prompt with
Gemini 1.0 Pro. Specifically, we show the model another solution that arrives at the correct answer, which is
privileged information that does not exist at test time. This does not require a more capable model: we use the
same model to generate solutions and synthetic rationales in the training data.

Prompt for Generating Synthetic Rationales for CoT Verifier on GSM
You are a math teacher. Grade the Solution, verifying correctness
step by step. Use Expected Answer to find any erroneous step in the
Solution.
At the end of the Solution verification, when you give your final
grade, write it in the form "Verification: Is the answer correct
(Yes/No)? X", where X is either Yes or No.
Question: {problem}
Solution: {solution}
Expected Answer: {a solution that arrives at the correct answer}

Table A.3: Zero-shot prompt for our LLM-as-a-Judge evaluation results based on Gemini 1.0 Pro.

Prompt for LLM-as-a-Judge on GSM and MATH
You are a math teacher. Grade the Solution, verifying correctness step
by step.
At the end of the Solution verification, when you give your final
grade, write it in the form "Verification: Is the answer correct
(Yes/No)? X", where X is either Yes or No.
Question: {problem}
Solution: {solution}

B HYPER-PARAMETERS FOR VERIFIER TRAINING

For Gemma-based verifiers, we pick the best checkpoint based on validation accuracy of verification
on held out problems and solutions. We always use data balancing between 50% correct solutions
and 50% incorrect solutions in training.

GenRM verifiers After doing a sweep of learning rates (LR), we find that an LR of [2e− 6, 1e−
6, 5e− 7] works well for our tasks considered (with LR=2e− 6 generally being the best). We use a
weight decay of 1e− 2, and do not apply any dropout. We use the Adam optimizer (Kingma, 2014)
with decoupled weight decay (Loshchilov and Hutter, 2017) and a gradient norm clipping of 1.0.
We use a linear warmup of 1000 gradient steps, and a cosine decay schedule that decays to 10% of
the peak learning rate after a decay period. We finetune for 300K steps with a batch size of 64 and a
cosine decay period of 200K, and use seqio (Roberts et al., 2022) library to create data mixtures.

Discriminative RMs We finetune Gemma-based discriminative RMs by using a special token’s
logit for classification. We chose the best performing ORM on our validation sets by launching
a large sweep over learning rates [1e − 7, 5e − 7, 1e − 6, 2e − 6, 3e − 6, 5e − 6], weight decay
[1e− 3, 1e− 2, 1e− 1] and dropouts [1e− 3, 5e− 3, 1e− 2, 0]. We also schedule the learning rate
with a linear ramp up and a cosine decay. Results obtained with learning rate 1e− 7 and dropout=0.

DPO We first finetune Gemma-based generative models using SFT on correct solutions to ob-
tain a reference policy πref, and then initialize from this reference policy to train generator πDPO
with the DPO loss on a dataset of pairs of correct and incorrect solutions. We conduct a hyper-
parameter sweep for both the learning rate (LR) and the β coefficient in DPO loss: for LR we
sweeped [1e − 7, 5e − 7, 1e − 6, 2e − 6] and found 1e − 6 to work best; for β we considered
[0.01, 0.1, 0.5, 1.0, 2.0] and used 0.1. After DPO is trained, instead of using r = log πDPO(solution |
question) − log πref(solution | question) as the score (as defined in DPO’s derivation), we find that
directly the sequence log probability of the final DPO policy log πDPO(solution | question) as the
score (without subtracting the log prob from reference policy) results in better performance in veri-
fication; this finding was also noted in (Hosseini et al., 2024).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

1 2 4 8 16 32
Number of Solutions (N)

6%
12%
18%
24%
30%
36%

%
 P

ro
bl

em
 S

ol
ve

d
 (B

es
t-o

f-N
)

Algorithmic Reasoning (2 tasks)

1 2 4 8 16
Number of Solutions (N)

72%

76%

80%

84%

88%

92%

Grade-School Math (GSM8K)

1 2 4 8 16 32
Number of Solutions (N)

28%

30%

32%

35%

38%

Transfer to MATH (GSM-Verifiers)
DPO Discriminative RM GenRM

Figure C.1: GenRM (without using CoT) performs slightly better or comparable to Discriminative RM across
different tasks, while outperforming DPO verifiers.

0 1/4 1/3 1/2 1
Generation Data Fraction ()

88%

89%

90%

%
 o

f P
ro

bl
em

s S
ol

ve
d

(B
es

t-o
f-1

6)

Impact of on GenRM

Figure C.2: Impact of generation loss coefficient (λ)
on GenRM verifier with Gemma-7B on GSM8K test
results. Adding a solution generation loss (λ > 0) can
further help GenRM, with λ = 1/4 being a good value
for GSM.

8 16 32

85%

86%

87%

88%

89%

RM
 A

cc
ur

ac
y

Gemma-7B

8 16 32
Training Solutions Per Problem

85%

86%

87%

88%

89%

%
 P

ro
bl

em
s S

ol
ve

d
(B

es
t-o

f-1
6)

Gemma-7B
GSM8K: Scaling Number of Solutions

Figure C.3: Data scaling for GenRM-CoT on
GSM8K with Gemma-7B. We observe that both the
RM accuracy and Best-of-N performance improve as
we scale up the number of rationales per solution and
solutions per problem. When adding more solutions,
we use 4 rationales per solution. Here, we compute
GenRM-CoT scores with CoT rationales generated us-
ing greedy decoding, as discussed in (5).

C ADDITIONAL RESULTS

Ablating generation loss weight (λ) in GenRM. Adding too much generation data negatively
impacts verification, while intermediate values yield the best results, as shown in Figure C.2. By
default, all GenRM experiments use unified training for verification with solution generation (4),
with λ = 1/3 for algorithmic tasks and λ = 1/4 for GSM8K.

Data scaling for CoT verifiers. GenRM-CoT shows that the GenRM-CoT performance improves
as we increase the number of solutions per problem from 8 to 32, in terms of RM accuracy and
Best-of-N Accuracy, as shown in Figure C.3.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

48%

50%

52%

55%

57%
%

 P
ro

bl
em

 S
ol

ve
d

(B
es

t-o
f-3

2)

MMLU college_mathematics
 : 47.6% 56.1%

21 23 25

Number of Verification Rationales

48%

50%

52%

55%

57%

Be
st

-o
f-3

2

Inference compute scaling
 for verification

GenRM-CoT Pass@1 Self-Consistency Disc RM

Figure C.4: Transfer to MMLU College Mathematics (GSM Verifiers), using Best-of-32 evaluation, with
solutions generated from Gemini 1.0 Pro. On college-level mathematics, even using a single verification ratio-
nale with GenRM-CoT can outperform Discriminative RM. Best-of-32 based on discriminative RM is 53.0%;
as for GenRM-CoT (using 32 majority votes), Best-of-32 gives 56.1%.

D EXAMPLES VERIFICATION RATIONALES FROM GENRM-COT: GSM8K
TEST AND MATH500

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Example of on Grade School Math
Question: In a 60-item quiz, 40% of the questions are easy, and the rest are equally divided as average and
difficult questions. If Aries is sure to get 75% of the easy questions, and half of the average and difficult
questions correctly, how many points is she sure to get?

Answer: 40% of 60 items are easy questions, so there are 60 * 40 / 100 = 24 easy questions. Aries is sure
to get 75% of those, so she will get 24 * 75 / 100 = 18 easy questions correct. The rest of the questions
are equally divided as average and difficult questions. So, there are (60 - 24) / 2 = 18 average and difficult
questions each. Aries is sure to get half of those correct, so she will get 18 * 50 / 100 = 9 average and difficult
questions correct. In total, she is sure to get 18 + 9 = 27 questions correct. Each question is worth one point,
so she is sure to get 27 points. The answer is 27.

Discriminative RM score: 0.6107

GenRM-CoT: Let’s verify step by step.
b⟩Step 1:⟨/b⟩
40% of 60 items are easy questions, so there are 60 * 40 / 100 = 24 easy questions.
⟨b⟩Expected Answer:⟨/b⟩
40% of 60 = 24 easy questions.
⟨b⟩Verification:⟨/b⟩ Correct

⟨b⟩Step 2:⟨/b⟩
Aries is sure to get 75% of those, so she will get 24 * 75 / 100 = 18 easy questions correct.
⟨b⟩Expected Answer:⟨/b⟩
75% of 24 = 18 easy questions.
⟨b⟩Verification:⟨/b⟩ Correct

⟨b⟩Step 3:⟨/b⟩
The rest of the questions are equally divided as average and difficult questions. So, there are (60 - 24) / 2 =
18 average and difficult questions each.
⟨b⟩Expected Answer:⟨/b⟩
(60 - 24) / 2 = 18 average and difficult questions each.
⟨b⟩Verification:⟨/b⟩ Correct

⟨b⟩Step 4:⟨/b⟩
Aries is sure to get half of those correct, so she will get 18 * 50 / 100 = 9 average and difficult questions
correct.
⟨b⟩Expected Answer:⟨/b⟩
50% of (60 - 24) = 18 average and difficult questions.
⟨b⟩Verification:⟨/b⟩ Erroneous

⟨b⟩Step 5:⟨/b⟩
In total, she is sure to get 18 + 9 = 27 questions correct. Each question is worth one point, so she is sure to
get 27 points. The answer is 27.
⟨b⟩Expected Answer:⟨/b⟩
18 easy + 9 average + 9 difficult = 36 total correct questions.
⟨b⟩Verification:⟨/b⟩ Erroneous

Final Grade:
Verification: Is the answer correct (Yes/No)? No

Gen-RM (Majority Voting) score: 0.1151

Table D.1: GenRM CoT Example 1

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Example of GenRM-CoT on Grade School Math
Question: Sandy wants to lose as much weight as Joey does but needs 4 weeks to lose the same amount of
weight that Joey loses in a single week. If Joey loses 8 pounds in 4 weeks, how many weeks will it take
Sandy to lose the same amount of weight?

Answer: Since Joey loses 8 pounds in 4 weeks, Sandy will take 4 times as long to lose the same amount of
weight. That means she will take 4 * 4 = 16 weeks. The answer is 16.

Discriminative RM score: 0.0399

GenRM-CoT: Let’s verify step by step.
Solution Verification:

Step 1:
Solution: Since Joey loses 8 pounds in 4 weeks, Sandy will take 4 times as long to lose the same amount of
weight.
Expected Answer: We are given that Sandy needs 4 weeks for what Joey does in 1 week. Therefore, we can
multiply the time Joey takes by 4 to find out how much time Sandy will take.

Grade: Correct

Step 2:
Solution: That means she will take 4 * 4 = 16 weeks.
Expected Answer: So, we have 4 * 4 = 16 weeks.

Grade: Correct

Final Grade:
Verification: Is the answer correct (Yes/No)? Yes

Gen-RM (Majority Voting) score: 0.5131

Table D.2: GenRM CoT Example 2

Example of GenRM-CoT on Grade School Math
Question: Rory is retrieving tennis balls from the court after a tennis match. In the first of three sets, he
had to retrieve four more balls than in the second set. In the third set, he retrieved half as many balls as in
the second. He retrieved 19 tennis balls in all. How many tennis balls did he retrieve in the first set of the
match?

Answer: Let the number of balls retrieved in the second set be x. In the first set, he retrieved four more, so he
retrieved x + 4 balls. In the third set, he retrieved half as many, which would be x / 2. Since he retrieved 19
balls in all, we have:

x + x + 4 + x / 2 = 19
3x / 2 + 4 = 19
3x + 8 = 38
3x = 30
x = 10

So, he retrieved 10 balls in the second set. In the first set, he retrieved x + 4 = 10 + 4 = 14 tennis
balls. The answer is 14.

Discriminative RM score: 0.9413

GenRM-CoT: Let’s verify step by step.
(See next page · · ·)

Table D.3: GenRM CoT Example 3

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Example of GenRM-CoT on Grade School Math
· · · Continued
GenRM-CoT: Let’s verify step by step.
Step 1:
Solution: Let the number of balls retrieved in the second set be x.
Expected Answer: Let the number of balls in the second set be x.
Verification: Yes

Step 2:
Solution: In the first set, he retrieved four more, so he retrieved x + 4 balls.
Expected Answer: Then in the first set he had to retrieve x + 4 balls.
Verification: Yes

Step 3:
Solution: In the third set, he retrieved half as many, which would be x / 2.
Expected Answer: In the third set he retrieved half as many as in the second set, that is x/2.
Verification: Yes

Step 4:
Solution: Since he retrieved 19 balls in all, we have:
x + x + 4 + x / 2 = 19
Expected Answer: In all, this should add up to 19. Therefore, x + x + 4 + x/2 = 19.
Verification: Yes

Step 5:
Solution: 3x / 2 + 4 = 19
Expected Answer: Simplifying this equation: 2.5x + 4 = 19
Verification: No

Step 6:
Solution: 3x + 8 = 38
Expected Answer: 2.5x = 15
Verification: No

Step 7:
Solution: 3x = 30
Expected Answer: x = 6
Verification: No

Step 8:
Solution: x = 10
Expected Answer: Therefore, the number of balls in the first set was x + 4 = 6 + 4 = 10.
Verification: No

Final Answer:
Solution: The answer is 14.
Expected Answer: The answer is 10.
Verification: Is the answer correct (Yes/No)? No

Gen-RM (Majority Voting) score: 0.3267

Table D.4: GenRM CoT Example 3 (Continued)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Example of GenRM-CoT on Grade School Math
Question: When the water is cold Ray swims a mile in 16 minutes. When the water is warm Ray swims a
mile in 2 minutes more than twice as long. How much longer does Ray take to swim 3 miles on a hot day
than a cold day?

Answer: When the water is warm Ray swims a mile in 2 minutes more than twice as long as when the water
is cold. This means he takes 2 + 2 * 16 = 2 + 32 = 34 minutes to swim a mile on a hot day.
To swim 3 miles on a hot day he will take 3 * 34 = 102 minutes. On a cold day he takes 16 * 3 = 48 minutes
to swim 3 miles.
The difference in time is 102 - 48 = 54 minutes. The answer is 54.
Discriminative RM score: 0.2452

GenRM-CoT: Let’s verify step by step.
1. ”When the water is warm Ray swims a mile in 2 minutes more than twice as long as when the water is
cold.”
- This step is correct.
2. ”This means he takes 2 + 2 * 16 = 2 + 32 = 34 minutes to swim a mile on a hot day.”
- This step is correct.
3. ”To swim 3 miles on a hot day he will take 3 * 34 = 102 minutes.”
- This step is correct.
4. ”On a cold day he takes 16 * 3 = 48 minutes to swim 3 miles.”
- This step is correct.
5. ”The difference in time is 102 - 48 = 54 minutes.”
- This step is correct.
6. ”The answer is 54.”
- This step is correct.
Expected Answer:
- The expected answer is also 54 minutes.
Verification: Is the answer correct (Yes/No)? Yes

Gen-RM (Majority Voting) score: 0.9963

Table D.5: GenRM CoT Example 4

Example of GenRM-CoT on Grade School Math
Question: The ice cream parlor was offering a deal, buy 2 scoops of ice cream, get 1 scoop free. Each scoop
cost $1.50. If Erin had $6.00, how many scoops of ice cream should she buy?

Answer: Erin had $6.00. First, she should buy 2 scoops of ice cream. Since each scoop costs $1.50, she will
spend 2 * $1.50 = $3.00 on the two scoops. After that, she can get 1 scoop free. Since the third scoop was
free, she will not spend anything on the third scoop. So, she can afford three scoops. The answer is 3.

Discriminative RM score: 0.9973

GenRM-CoT: Let’s verify step by step.
Solution Verification:
Step 1: Erin had $6.00. (Correct)
Step 2: She bought 2 scoops of ice cream at $1.50 each, spending $3.00. (Correct)
Step 3: She received 1 scoop free. (Correct)
Step 4: She can afford three scoops. (Incorrect)
Step 5: The answer is 3. (Incorrect)
Expected Answer:
Step 1: Erin had $6.00. (Correct)
Step 2: She can buy 6/$1.50 = 4 scoops of ice cream. (Correct)
Step 3: She will get 2 free scoops for buying 2. (Correct)
Step 4: She will get a total of 4 + 2 = 6 scoops. (Correct)
Step 5: The answer is 4. (Correct)
Verification: Is the answer correct (Yes/No)? No

Gen-RM (Majority Voting) score: 0.0487

Table D.6: GenRM CoT Example 5

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Example of GenRM-CoT on Grade School Math
Question: Cherrie wants to buy Christmas gifts for her 5 friends. 2 of her friends want 5 gifts and the other
3 friends want 2 gifts for themselves. Cherrie goes ahead and buys them and decides to further surprise
them by getting 10 more random gifts. How many gifts did Cherrie buy in total?

Answer: 2 of her friends want 5 gifts each. So, they want 2 * 5 = 10 gifts. 3 other friends want 2 gifts each.
So, they want 3 * 2 = 6 gifts. Add those 6 gifts to the 10 gifts from the beginning, that’s 16 gifts. Now, Cherrie
decided to buy 10 more gifts, so in total she bought 16 + 10 = 26 gifts. The answer is 26.

Discriminative RM score: 0.1710

GenRM-CoT: Let’s verify step by step.
⟨b⟩Verification:⟨/b⟩

⟨b⟩Step 1:⟨/b⟩
Solution: 2 of her friends want 5 gifts each. So, they want 2 * 5 = 10 gifts.
Expected Answer: Cherrie has 5 friends. 2 of them want 5 gifts, so in total they want 2 * 5 = 10 gifts.

⟨b⟩Verification:⟨/b⟩ This step is correct.

⟨b⟩Step 2:⟨/b⟩
Solution: 3 other friends want 2 gifts each. So, they want 3 * 2 = 6 gifts.
Expected Answer: The other 3 friends want 2 gifts each, so in total they want 3 * 2 = 6 gifts.

⟨b⟩Verification:⟨/b⟩ This step is correct.

⟨b⟩Step 3:⟨/b⟩
Solution: Add those 6 gifts to the 10 gifts from the beginning, that’s 16 gifts.
Expected Answer: So in total, she needs to buy 10 + 6 = 16 gifts for her friends.

⟨b⟩Verification:⟨/b⟩ This step is correct.

⟨b⟩Step 4:⟨/b⟩
Solution: Now, Cherrie decided to buy 10 more gifts, so in total she bought 16 + 10 = 26 gifts.
Expected Answer: On top of that, she wants to get 10 more random gifts. Therefore, in total she needs to buy
16 + 10 = 26 gifts.

⟨b⟩Verification:⟨/b⟩ This step is correct.

⟨b⟩Final Grade:⟨/b⟩
Verification: Is the answer correct (Yes/No)? Yes

Gen-RM (Majority Voting) score: 0.8017

Table D.7: GenRM CoT Example 6

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Example of GenRM-CoT on Grade School Math
Question: Juan wants to add croissants to his bakery menu. It takes 1/4 pound of butter to make 1 dozen
croissants. He wants to start with making 4 dozen a day for a week. How many pounds of butter will he
need to make these croissants?

Answer: 1 dozen is equal to 12 croissants. He wants to make 4 dozen a day, which is 4 * 12 = 48 croissants.
He wants to make this number of croissants for a week, which is 7 days. That means in total he needs to make
48 * 7 = 336 croissants. It takes 1/4 pound of butter to make 1 dozen croissants. So in total he will need 336 /
12 = 28 pounds of butter. The answer is 28.

Discriminative RM score: 0.9999

GenRM-CoT: Let’s verify step by step.
Solution Verification

Step 1: 1 dozen is equal to 12 croissants.
Expected Answer: Correct.

Step 2: He wants to make 4 dozen a day, which is 4 * 12 = 48 croissants.
Expected Answer: Correct.

Step 3: He wants to make this number of croissants for a week, which is 7 days. That means in total he needs
to make 48 * 7 = 336 croissants.
Expected Answer: Correct.

Step 4: It takes 1/4 pound of butter to make 1 dozen croissants. So in total he will need 336 / 12 = 28 pounds
of butter.
Expected Answer: Incorrect. The correct calculation should be 336 / 12 * 1/4 = 7 pounds of butter.

Verification: Is the answer correct (Yes/No)? No

Gen-RM (Majority Voting) score: 0.0000

Table D.8: GenRM CoT Example 7

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Example of GenRM-CoT on Grade School Math
Question: Susan earns $5 every 10 minutes for an online task she does. If she works between 8 a.m. and 11
a.m. and pauses in between for half an hour, how much money does she earn for the online task?

Answer: It is from 8 am to 11 am, which is 3 hours. However, she pauses for 30 minutes or half an hour. So
she works for 2.5 hours. Every 10 minutes, she earns $5. The number of 10-minute periods in 2.5 hours can
be found by dividing 2.5 by 1/10. That is 2.5 / (1/10) = 25. She earns $5 every 10 minutes. So in 25 periods,
she earns 25 * $5 = $125. The answer is $125.

Discriminative RM score: 0.9920

GenRM-CoT: Let’s verify step by step.

Step 1:
Solution: It is from 8 am to 11 am, which is 3 hours.
Expected Answer: It is from 8 am to 11 am, which is 3 hours.

Verification: The step is correct.

Step 2:
Solution: However, she pauses for 30 minutes or half an hour. So she works for 2.5 hours.
Expected Answer: She pauses for half an hour, which is 1/2 hour. This means she works for 3 - 1/2 = 2.5 hours.

Verification: The step is correct.

Step 3:
Solution: Every 10 minutes, she earns $5. The number of 10-minute periods in 2.5 hours can be found by
dividing 2.5 by 1/10. That is 2.5 / (1/10) = 25.
Expected Answer: Since she earns $5 every 10 minutes, we can find the number of 10-minute periods in 2.5
hours using the formula 2.5 * 60 / 10 = 15.

Verification: The step is incorrect. The correct number of 10-minute periods should be 15, not 25.

Step 4:
Solution: She earns $5 every 10 minutes. So in 25 periods, she earns 25 * $5 = $125. The answer is $125.
Expected Answer: Now we can find the amount she earns by multiplying the number of periods by the
amount she earns each period: 15 * $5 = $75. The answer is $75.

Verification: The step is incorrect. The amount she earns should be $75, not $125.

Final Grade:
Verification: Is the answer correct (Yes/No)? No

Gen-RM (Majority Voting) score: 0.3926

Table D.9: GenRM CoT Example 8

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Example of GenRM-CoT on Grade School Math
Question: Carol spends 4 hours writing a song, half that much time recording it, and 90 minutes editing it.
What percentage of her total work time did she spend editing?

Answer: Half of 4 hours is 2 hours. So the time spent recording is 2 hours. Add the editing time of 90 minutes
and the total time for the entire project is 4 + 2 + 1.5 = 7.5 hours. That means she spent (90 / 7.5) * 100 =
12% of the total time editing. The answer is 12.

Discriminative RM score: 0.8414

GenRM-CoT: Let’s verify step by step.
Verification:

Step 1: Half of 4 hours is 2 hours.
Expected Answer: Correct.

Step 2: Add the editing time of 90 minutes and the total time for the entire project is 4 + 2 + 1.5 = 7.5 hours.
Expected Answer: Incorrect. The editing time should be converted to hours first: 90 minutes = 90 / 60 = 1.5
hours. Then, the total time is 4 + 2 + 1.5 = 7.5 hours.

Step 3: That means she spent (90 / 7.5) * 100 = 12% of the total time editing.
Expected Answer: Incorrect. The editing time should be in hours, so it should be (1.5 / 7.5) * 100 = 20%.

Verification: Is the answer correct (Yes/No)? No

Gen-RM (Majority Voting) score: 0.2498

Table D.10: GenRM CoT Example 9

Example of GenRM-CoT on Grade School Math
Question: Tim decides to cancel his cable subscription and get streaming services. He gets Netflix for $10
a month. Hulu and Disney Plus normally cost $10 a month each but he saves 20% for bundling. How much
money does he save by cancelling his $60 cable package?

Answer: Tim pays $60 for cable. He gets Netflix for$10 and the bundle of Hulu and Disney Plus costs $10 *
80% = $8. So he pays $10 + $8 = $18 for Netflix and the bundle. Now he saves $60 - $18 = $42 compared to
the cable package. The answer is 42.

Discriminative RM score: 0.9999

GenRM-CoT: Let’s verify step by step.
Verification:

1. **Tim pays $60 for cable.** (Correct)

2. **He gets Netflix for $10.** (Correct)

3. **The bundle of Hulu and Disney Plus costs $10 * 80% = $8.** (Incorrect)
- Expected Answer: The bundle of Hulu and Disney Plus costs $10 + $10 = $20. With the 20% discount, the
total cost is $20 * 0.8 = $16.

4. **So he pays $10 + $8 = $18 for Netflix and the bundle.** (Incorrect)
- Expected Answer: So he pays $10 + $16 = $26 for Netflix and the bundle.

5. **Now he saves $60 - $18 = $42 compared to the cable package.** (Incorrect)
- Expected Answer: Now he saves $60 - $26 = $34 compared to the cable package.

Verification: Is the answer correct (Yes/No)? No

Gen-RM (Majority Voting) score: 0.0015

Table D.11: GenRM CoT Example 10

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Example of GenRM-CoT on Grade School Math
Problem: Digimon had its 20th anniversary. When it came out John was twice as old as Jim. If John is 28
now how old is Jim?
Solution: Let Jim’s age be x when Digimon came out. That means John’s age is 2x when Digimon came out.

20 years ago, John’s age was 2x - 20 (current age - 20 years) and Jim’s age was x - 20 (current age -
20 years).

We know that 2x - 20 = 28 (since John’s current age is 28)

2x = 48
x = 24

So, when Digimon came out, Jim was 24. Since it’s been 20 years, Jim is now 24 + 20 = 44 years
old.
The answer is 44.

Discriminative RM score: 0.9778

GenRM-CoT: Let’s verify step by step.
Solution Verification:

1. Let Jim’s age be x when Digimon came out. That means John’s age is 2x when Digimon came
out. (Correct)

2. 20 years ago, John’s age was 2x - 20 (current age - 20 years) and Jim’s age was x - 20 (current
age - 20 years). (Correct)

3. We know that 2x - 20 = 28 (since John’s current age is 28) (Correct)

4. 2x = 48 (Correct)

5. x = 24 (Correct)

6. So, when Digimon came out, Jim was 24. Since it’s been 20 years, Jim is now 24 + 20 = 44 years
old. (Incorrect)

Expected Answer:

Since John was twice as old as Jim when Digimon came out 20 years ago, and John is 28 now, we
can calculate Jim’s age. Let Jim’s age 20 years ago be x. Then we know that 2x = 28 - 20 = 8, so x = 4.
Therefore, Jim’s age now is 4 + 20 = 24. The answer is 24.

Erroneous Step in the Solution:

The erroneous step in the Solution is step 6, where it concludes that Jim is 44 years old now. Accord-
ing to the Expected Answer, Jim should be 24 years old now.

Verification: Is the answer correct (Yes/No)? No

Gen-RM (Majority Voting) score: 0.0000

Figure D.1: GenRM CoT Example 11

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Problem: A line is parameterized by (
x
y

)
=

(
8
−1

)
+ t

(
2
3

)
.

The equation of the line can be expressed in the form y = mx+ b. Enter the ordered pair (m, b).

Solution: We have x = 8 + 2t and y = −1 + 3t. Solving the first equation for t, we have t = x−8
2

.
Substituting this into the second equation, we get y = −1 + 3

(
x−8
2

)
= 3

2
x − 23

2
. Thus, m = 3

2
and

b = − 23
2

. So, the answer is
(
3

2
,−23

2

)
. Final Answer:

(
3
2
,− 23

2

)
Discriminative RM correctness score: 0.8272

GenRM-CoT: Let’s verify step by step.
Verification:

Step 1:
Solution: We have x = 8 + 2t and y = −1 + 3t.
Expected Answer: The equation of the line in matrix form is(

x
y

)
=

(
8
−1

)
+ t

(
2
3

)
.

This means that the line can be expressed as x = 8 + 2t, y = -1 + 3t.
Verification: Yes

Step 2:
Solution: Solving the first equation for t, we have t = x−8

2
.

Expected Answer: Solving the first equation for t, we have t = (x - 8) / 2.
Verification: Yes

Step 3:
Solution: Substituting this into the second equation, we get y = −1 + 3

(
x−8
2

)
= 3

2
x− 23

2
.

Expected Answer: Substituting this into the second equation, we get y = -1 + 3 * (x - 8) / 2 = -1 + (3x - 24)
/ 2 = -1 + (3x / 2) - 12 = (3x / 2) - 13.
Verification: No

Step 4:
Solution: Thus, m = 3

2
and b = − 23

2
. So, the answer is

(
3
2
,− 23

2

)
.

Expected Answer: The equation of the line in the form y = mx + b is therefore y = (3 / 2)x - 13. The answer
is (3/2,−13) .
Verification: No

Verification: Is the answer correct (Yes/No)? No

GenRM-CoT (Majority Voting) score: 0.4375

Figure D.2: MATH (Transfer from GSM): GenRM-CoT Example 1

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Problem: What is
√
53 in simplest radical form?

Solution: √
53 =

√
49 + 4

=
√
49 +

√
4

= 7 + 2 = 9

Final Answer: 9

Discriminative RM correctness score: 0.5974

GenRM-CoT: Let’s verify step by step.
Step 1:
Solution: √

53 =
√
49 + 4

Expected Answer:
√
53 is a prime number so it cannot be simplified further.

Verification:
The solution incorrectly breaks down 53 into 49 and 4.

√
53 is a prime number, so it cannot be simplified

further.

Step 2:
Solution:

=
√
49 +

√
4

Expected Answer:
√
53 is a prime number so it cannot be simplified further.

Verification:
Since Step 1 was incorrect, this step is also incorrect.

Step 3:
Solution:

= 7 + 2 = 9

Expected Answer:
√
53 is a prime number so it cannot be simplified further.

Verification:
Since Step 1 was incorrect, this step is also incorrect.

Final Grade:
Verification: Is the answer correct (Yes/No)? No

GenRM-CoT (Majority Voting) score: 0.157

Figure D.3: MATH (Transfer from GSM): GenRM-CoT Example 2

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Problem: Simplify:
√

2.52−0.72

2.7−2.5
.

Solution:
√
2.52 − 0.72

2.7− 2.5
=

√
(2.5)2 − (0.7)2

2.7− 2.5

=

√
2.52 − 0.72

0.2

=
|2.5− 0.7|

0.2

=
1.8

0.2
= 9 .

Final Answer: 9

Discriminative RM correctness score: 0.9993

GenRM-CoT: Let’s verify step by step.
Step 1:
Solution:

√
2.52 − 0.72

2.7− 2.5
=

√
(2.5)2 − (0.7)2

2.7− 2.5

Expected Answer:
√
2.52 − 0.72

2.7− 2.5
=

√
(2.5)2 − (0.7)2

2.7− 2.5
=

√
6.25− 0.49

0.2

Verification: Yes
Step 2:
Solution:

=

√
2.52 − 0.72

0.2

Expected Answer:

=

√
6.25− 0.49

0.2

Verification: Yes
Step 3:
Solution:

=
|2.5− 0.7|

0.2

Expected Answer:

=

√
5.76

0.2

Verification: No
Step 4:
Solution:

=
1.8

0.2

Expected Answer:

=
2.4

0.2

Verification: No
Step 5:
Solution: = 9 .
Expected Answer: = 12
Verification: No
Verification: Is the answer correct (Yes/No)? No

GenRM-CoT (Majority Voting) score: 0.1233

Figure D.4: MATH (Transfer from GSM): GenRM-CoT Example 3

30

	Introduction
	Preliminaries
	GenRM: Verification as Next-Token Prediction
	Direct Verifier
	Unifying Generation and Verification
	Chain-of-Thought Verifiers (GenRM-CoT)

	Experiments
	Generative Verifiers Outperform Standard Verification Approaches
	Synergy Between Generation and Verification
	Scaling Model Size and Inference-time Compute
	Synthetic Rationales: Quantity and Quality Matter

	Related Work
	Conclusion & Future Work
	Reproducibility Statement
	Training Data Generation for Verifiers
	Hyper-parameters for Verifier Training
	Additional Results
	Examples Verification rationales from GenRM-CoT: GSM8K Test and MATH500

