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Abstract

Data augmentation is an effective way to di-001
versify corpora in machine translation, but002
previous methods may introduce semantic in-003
consistency between original and augmented004
data because of irreversible operations and ran-005
dom subword sampling procedures. To gen-006
erate both symbolically diverse and semanti-007
cally consistent augmentation data, we pro-008
pose Deterministic Reversible Data Augmenta-009
tion (DRDA), a simple but effective data aug-010
mentation method for neural machine trans-011
lation. DRDA adopts deterministic segmen-012
tations and reversible operations to generate013
multi-granularity subword representations and014
pulls them closer together with multi-view015
techniques. With no extra corpora or model016
changes required, DRDA outperforms strong017
baselines on several translation tasks with a018
clear margin (up to 4.3 BLEU gain over Trans-019
former) and exhibits good robustness in noisy,020
low-resource, and cross-domain datasets. 1021

1 Introduction022

Recent neural machine translation (NMT) models023

have led to dramatic improvements in translation024

quality. However, the powerful learning and mem-025

orizing ability of these models also leads to poor026

generalization and vulnerability to small perturba-027

tions like misspelling and paraphrasing (Belinkov028

and Bisk, 2017; Cheng et al., 2020).029

A common solution to perturbation vulnerabil-030

ity is data augmentation (Sennrich et al., 2016b;031

Cheng et al., 2016), which is to create massive032

virtual training data with diverse symbolic repre-033

sentations under the premise of ensuring seman-034

tic consistency (Cheng et al., 2019, 2020). Sym-035

bolic diversity emphasizes that original and aug-036

mented data should differ significantly in token se-037

quences, and semantic consistency requires that the038

two should be semantically similar. Previous data039

1The code will be released at Anonymous Link.

augmentation methods employ irreversible substi- 040

tutions, like direct dropping or replacing discrete 041

tokens to generate diverse data (Figure 1 A). De- 042

spite being able to improve data diversity, these 043

augmentation operations are not reversible, and 044

will inevitably introduce semantic loss to original 045

texts, thus compromising the semantic consistency 046

between original and augmented data. 047

Yet another way to generate diverse augmenta- 048

tion data without employing irreversible operations 049

is subword regularization (Kudo, 2018; Provilkov 050

et al., 2020). Subword regularization adopts ran- 051

dom segmentations to sample subwords probabilis- 052

tically thus generating diverse data. These methods 053

are reversible because of the inherent reversibility 054

of segmentations. However, due to the random sam- 055

pling procedure of segmentation, they may adopt 056

inappropriate subword segmentations (e.g., "sup 057

erm ark et" in Figure 1 B). These sub-optimal 058

segmentations may result in semantic perturbations 059

and do damage to semantic consistency. 060

To summarize, previous methods have difficulty 061

in completely retaining the semantics from corrup- 062

tion when diversifying the texts because of irre- 063

versible augmentation operations and probabilistic 064

subword sampling. 065

To generate symbolically diverse and semanti- 066

cally consistent data, we propose Deterministic Re- 067

versible Data Augmentation (DRDA), a simple but 068

effective augmentation approach. DRDA augments 069

source sentences with their token representations 070

in different granularities as shown in Figure 1 C. 071

These representations are symbolically diverse, but 072

also syntactically correct and semantically com- 073

plete thanks to the reversible and deterministic seg- 074

mentations in the multi-granularity segmentation 075

process. To make full use of the semantic iden- 076

tity among all multi-granularity representations 077

of one sentence, we also leverage the multi-view 078

techniques in training to pull these representations 079

closer together. 080
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Figure 1: Subword piece sequences generated by previous data augmentation (A), subword regularization (B), and
multi-granularity segmentation (C) representing the same source sentence. 2 denotes an empty subword (a zero
vector). Previous data augmentation methods result in semantic loss (red texts), subword regularization may sample
inappropriate subwords (yellow texts), while multi-granularity segmentation generates symbolically diverse and
semantically consistent augmentation data (green texts).

We conduct extensive experiments of different081

languages and scales and find that DRDA gains con-082

sistent improvements over strong baselines with083

clear margins. To further understand the factors084

that make DRDA work, we conduct insightful anal-085

yses of the effects DRDA imposed on semantic086

consistency, subword frequency, and subword se-087

mantic composition. We combine the empirical and088

theoretical verification of the consistency and of-089

fer a subword-level explanation of the mechanism090

of multi-granularity segmentations and multi-view091

techniques.092

Our contributions are summarized as follows:093

• We propose DRDA that exclusively employs094

deterministic reversible operations to generate095

diverse augmentation data without introduc-096

ing semantic noise.097

• We conduct extensive experiments and verify098

the high effectiveness of DRDA.099

• To investigate the factors that make DRDA100

work, we combine empirical and theoretical101

analyses and offer insightful explanations.102

2 Related Work103

Augmentation methods Data augmentation can104

be categorized into back-translation like meth-105

ods (Sennrich et al., 2016b; Edunov et al., 2018;106

Nguyen et al., 2020) and token substitution meth-107

ods. DRDA is an instance of the latter category.108

Several substitution methods uniformly select109

a word or token in a sentence and perform dele-110

tion or substitution (Zhang et al., 2020; Shen et al.,111

2020; Wang et al., 2018b; Norouzi et al., 2016; Gao112

et al., 2022). Cheng et al. (2019, 2020) constrained113

the substitution of a word in a small subset of syn-114

onyms, thus improving the semantics consistency.115

Kambhatla et al. (2022b) viewed the original cor-116

pus as plain text and applies a rotation encryption117

as data augmentation. Unlike previous methods, 118

introducing multi-granularity takes advantage of 119

the reversible nature of segmentation and causes 120

no semantic loss. 121

Subword regularization The de-facto subword 122

method, BPE (Sennrich et al., 2016c), still suf- 123

fers from sub-optimality (Bostrom and Durrett, 124

2020). To overcome this sub-optimality, several 125

subword regularization approaches are proposed. 126

Kudo (2018) and Provilkov et al. (2020) presented 127

subword regularization by modelling segmentation 128

ambiguity. Wang et al. (2021) integrated BPE 129

and BPE-Drop by enforcing the consistency us- 130

ing multi-view subword regularization, Wu et al. 131

(2020) and Kambhatla et al. (2022a) combined 132

BPE in SentencePiece and subword-nmt 133

together to obtain regularization effects. DRDA is 134

distinct from all the random sampling segmenta- 135

tion methods, as the augmentation data is generated 136

deterministically. The determinism helps alleviate 137

less reasonable segmentation, while achieving reg- 138

ularization effects as well. 139

In addition, other researches put efforts into tak- 140

ing advantage of multi-granularity representations, 141

which can also be viewed as a subword regulariza- 142

tion. Li et al. (2020) and Gao et al. (2020) adopted 143

word lattice and convolutions of different kernel 144

sizes respectively, Chen et al. (2018) and Li et al. 145

(2022) combined levels of representation scales, 146

Hao et al. (2019) modified self-attention module to 147

introduce phrase modeling. Unlike these methods, 148

DRDA requires no modification to model architec- 149

tures and can be applied to universal tasks. 150

3 Background: Subword Segmentation 151

Subword segmentation models the probability of 152

token sequence x = x1, x2, ..., xm given a source 153
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sentence s. Previous deterministic subword seg-154

mentations choose the most probable sample:155

x∗ = argmax
x

Pseg(x|s; p)

= argmax
x∈Vp

Pseg(x|s),
(1)156

where p is the size of the vocabulary (a set of157

subword candidates), and each token xi (i ∈158

{1, 2, ...,m}) is selected from vocabulary Vp.159

For example, Byte Pair Encoding (BPE) assigns160

P (x̂|s; p) = 1 when x̂ is obtained from the greedy161

merge process (Sennrich et al., 2016c).162

To generate different segmentations for one163

word, subword regularization methods draw a seg-164

mentation from the segmentation distribution prob-165

abilistically:166

x ∼ Pseg(x|s; p). (2)167

For example, Kudo (2018) makes use of a uni-168

gram language model to sample segmentations on,169

and Provilkov et al. (2020) randomly interrupts the170

BPE merging process to generate multiple segmen-171

tations.172

4 Deterministic Reversible Data173

Augmentation174

Previous data augmentation and subword regular-175

ization approaches take irreversible operation (like176

discrete token substitution) and probabilistic seg-177

mentation sampling, which may introduce seman-178

tic loss or inappropriate subwords, thus affecting179

the semantic consistency. Our objective is to en-180

sure the semantic consistency between original and181

augmented data when generating diverse data.182

We propose DRDA to generate augmenta-183

tion data without introducing semantic perturba-184

tions. DRDA augments original data with multi-185

granularity segmentations, and pulls representa-186

tions of one sentence closer with multi-view learn-187

ing. Furthermore, we propose a dynamic selection188

technique to automatically choose an appropriate189

granularity in inference.190

4.1 Multi-Granularity Segmentations191

DRDA constructs symbolically diverse and seman-192

tically consistent augmentation data with multi-193

granularity segmentations. The point is that multi-194

granularity subword segmentation is a reversible195

process that completely retains semantic informa-196

tion, and is a deterministic process that always197

Figure 2: Illustration of the overall framework of DRDA.
A source sentence is segmented into different granulari-
ties, and every generated token sequence will go through
the model, obtaining a hypothesis distribution respec-
tively. The agreement loss (blue segmented lines) will
be computed between hypothesis distributions, and the
negative likelihood loss (green dotted lines) will be com-
puted between each distribution and the target.

chooses the most probable and appropriate sub- 198

word segmentation policy. 199

Formally, given a prime vocabulary size p and 200

a set of augmented vocabulary sizes {qi}ki=1, for a 201

source-target translation pair sample (s, t), a prime 202

source sequence xpri, a target sequence y and a set 203

of augmented source sequences {xaugi}ki=1 can be 204

generated: 205

xpri = argmax
x∈Vp

P (x|s), (3) 206
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207
xaugi = argmax

x∈Vqi

P (x|s), (4)208

209
y = argmax

y′∈Vp

P (y′|t). (5)210

Figure 2 depicts the model architecture and train-211

ing loss on a English→Germany sample. Given212

p = 12000, q1 = 1000, and q2 = 6000, an English213

sentence is segmented with different vocabularies,214

generating three token sequences with different215

granularities.216

Note that according to the greedy property of217

BPE, a short vocabulary is a prefix of a long vocab-218

ulary, as long as they are obtained from the same219

corpus. As a result, introducing different granulari-220

ties with BPE will not lead to a larger vocabulary,221

thus avoiding an increase in parameter size. An ex-222

ample is shown in Figure 2, where three embedding223

matrices E12000, E6000 and E1000 are overlapped,224

and a smaller embedding is a prefix of a larger225

embedding.226

4.2 Multi-view Learning227

Moreover, to make the translation model learn228

from different segmentation granularities, we uti-229

lize the multi-view learning loss function (Wang230

et al., 2021; Kambhatla et al., 2022b) and pull dif-231

ferent representations closer together:232

L = LNLL(P (y|xpri; θ))︸ ︷︷ ︸
prime source loss

+
1

k

k∑
i=1

LNLL(P (y|xaugi ; θ))︸ ︷︷ ︸
augmented source loss

+
α

k

k∑
i=1

Ldist(P (y|xpri; θ), P (y|xaugi ; θ))︸ ︷︷ ︸
agreement loss

,

(6)233

where LNLL is the negative likelihood loss in ma-234

chine translation, Ldist is the symmetric Kullback-235

Leibler divergence (Kambhatla et al., 2022b).236

The first two terms of Equation 6 (prime source237

loss and augmented source loss) compute the trans-238

lation loss for source and augmented sentences239

respectively, and the third term (agreement loss)240

pulls the prediction distributions of different source241

inputs together.242

As shown in Figure 2, output probability distri-243

butions for all granularities are used to compute the244

loss, where the blue segmented lines refer to the245

agreement loss between different granularities, and 246

green dotted lines refer to the negative likelihood 247

loss between the prediction and the target. 248

4.3 Dynamic Selection of Granularity in 249

Inference 250

DRDA employs multiple segmentations in differ- 251

ent granularities, so the selection of the granularity 252

used in inference becomes a concern. To automati- 253

cally choose a suitable vocabulary size when infer- 254

ring, we also propose a simplified but granularity- 255

focused version of n-best decoding (Kudo, 2018) 256

to dynamically select the segmentation granularity 257

in inferring step. 258

Given the set of all prime and augmented vocabu- 259

lary sizes {p, q1, q2, · · · , qk} and an input sentence 260

s, a series of (x,y) pairs can be generated, where 261

each (x,y) pair represents a source-target token 262

sequence pair in a certain granularity. 263

The estimated most probable segmentation and 264

translation pair corresponds to the (x,y) pair that 265

maximizes the following score: 266

score(x,y) = logP (y|x)/|y|, (7) 267

where |y| is the length of y. 268

5 Experiments 269

We evaluate DRDA with translation tasks in dif- 270

ferent language pairs and translation directions 271

to show its universal property regardless of lan- 272

guage features. We also conduct experiments on 273

extremely low resources and noisy scenarios to 274

show the robustness of DRDA.2 275

5.1 Experimental Setup 276

WMT IWSLT TED
En → De En ↔ (De, Fr, Zh, Es) En ↔ Sk

train 4.5M 160k, 236k, 235k, 183k 61k
valid 3000 7283, 9487, 9428, 5593 2271
test 3003 6750, 1455, 1459, 1305 2445

Table 1: Overviews of datasets and corresponding sizes.

Datasets and preprocessing Our experiments 277

are conducted on different datasets, as detailed in 278

Table 1. We experiment on a low resource setting 279

with IWSLT datasets, including IWSLT14 En↔De, 280

En↔Es, and IWSLT17 En↔Zh, En↔Fr. We use 281

2Further setup details about dataset split, preprocessing,
models, and evaluation are listed in Appendix A.
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Model IWSLT WMT
En→De De→En En→Fr Fr→En En→Zh Zh→En En→Es Es→En En→De

Transformer 29.03 35.26 37.57 37.29 22.38 21.29 39.92 41.86 27.08

DRDA 30.84‡ 37.90‡ 38.77‡ 38.55† 23.36† 22.64† 41.99‡ 43.90‡ 27.41†
DRDA dyn. 30.92‡ 37.95‡ 38.75† 38.52† 23.32† 22.90† 42.07‡ 44.08‡ 27.45†

Table 2: BLEU on IWSLT and WMT. Statistical significance over Transformer is indicated by † (p < 0.05) and ‡
(p < 0.001). Significance is computed via bootstrapping (Koehn, 2004) using compare-mt (Neubig et al., 2019).

larger WMT14 En→De as a high-resource scenario282

dataset. The performance in extremely low re-283

source scenarios is explored with the TED En↔Sk284

dataset. Following previous work (Vaswani et al.,285

2017), we lowercase words in IWSLT En↔De,286

while keeping other datasets cased.3287

Models We build models on top of Transformer288

(Vaswani et al., 2017) with Fairseq toolkit289

(Ott et al., 2019). We use a Base Transformer290

model transformer_wmt_en_de for WMT,291

and transformer_iwslt_de_en for others.292

Hyperparameters in training and inferring293

We use sentencepiece (Kudo and Richardson,294

2018) to perform tokenization and BPE segmenta-295

tion. The BPE encoding model is learned jointly296

on the source and target sides except for IWSLT297

En↔Zh. Unless otherwise stated, we use two vo-298

cabulary tables (on prime vocabulary and one aug-299

mented vocabulary), and their vocabulary sizes fol-300

low Table 3. Detailed analysis of the vocabulary301

sizes and the number of augmented vocabularies302

will be shown in Section 6.1. The weight of agree-303

ment loss α is set to 5 unless otherwise stated.304

WMT IWSLT TED

DRDA pri 32k 10k 8k
DRDA aug 16k 5k 4k

others 32k 10k 8k

Table 3: Prime and augmented vocabulary sizes used in
DRDA, and vocabulary sizes used in other methods.

Evaluation We evaluate the performance of305

NMT systems using BLEU. To compare with306

previous work (Vaswani et al., 2017; Kamb-307

hatla et al., 2022b), we apply multi-bleu with308

multi_bleu.perl 4 for IWSLT En↔De,309

3En, De, Fr, Zh, Es, Sk stand for English, German, French,
Chinese, Spanish, and Slovak respectively.

4mosesdecoder/scripts/generic/multi-bleu.perl

WMT En→De, and TED En↔Sk. For WMT 310

En→De dataset, we additionally apply compound 311

splitting5. All other datasets are evaluated with 312

SacreBLEU6. 313

5.2 Main Result 314

We present the results of DRDA on IWSLT and 315

WMT translation tasks in Table 2. We can see that 316

DRDA consistently outperforms the Transformer 317

with a clear margin on all translation tasks. More- 318

over, models inferred with the dynamic granularity 319

selection obtain a modest improvement in DRDA. 320

Model En→De De→En

Transformer 29.03 35.26

WordDrop 29.21 35.60
SwitchOut 29.00 35.90
RAML 29.70 35.99
DataDiverse 30.47 37.00
BPE-Drop 30.16 36.54
SubwordReg 29.46 36.14
R-Drop 30.45 37.40
MVR 30.44 37.47
CipherDAaug 30.65 37.60

DRDA 30.84‡ 37.90‡
DRDA dyn. 30.92‡ 37.95‡

Table 4: BLEU scores on IWSLT En↔De. Results
of previous data augmentation (the second to the fifth
models) are cited from literature which we share the
same configuration with, as detailed in Appendix A.

Comparison between DRDA and other data aug- 321

mentation and subword regularization methods on 322

IWSLT are shown in Table 4. We use a range of 323

augmentation and regularization methods for com- 324

parison. The augmentation methods include Word- 325

Drop (Zhang et al., 2020; Sennrich et al., 2016a), 326

5tensorflow/tensor2tensor/utils/get_ende_bleu.sh
6SacreBLEU signature: nrefs:1|case:mixed|

eff:no|tok:13a|smooth:exp|version:2.2.0
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SwitchOut (Wang et al., 2018b), RAML (Norouzi327

et al., 2016) and Data Diversification (Nguyen et al.,328

2020). The subword regularization methods in-329

clude BPE-Drop (Provilkov et al., 2020) and Sub-330

word Regularization (Kudo, 2018). We also com-331

pare our method with others that adopt multi-view332

learning techniques, including R-Drop (Wu et al.,333

2021), MVR (Wang et al., 2021), and CipherDAug334

(Kambhatla et al., 2022b). DRDA yields greater335

improvement compared to others.336

5.3 Extremely Low Resource Setting337

TED En↔Sk task is challenging because of its ex-338

tremely low resources (only 61k training sentence339

pairs). Several techniques have been adopted to im-340

prove the performance in low-resource NMT tasks341

like this, including data augmentation, multilingual342

translation, and transfer learning (Ranathunga et al.,343

2021). Neubig and Hu (2018) firstly propose sim-344

ilar language regularization to mix low-resource345

language with a lexically related high-resource lan-346

guage, combining transfer learning and multilin-347

gual translation. Several works continue to extend348

SRL and achieve high translation quality (Xia et al.,349

2019; Ko et al., 2021; Wang et al., 2018a).350

Model En→Sk Sk→En

Transformer 20.82 28.97

LRL+HRL - 32.07
CipherDAaug 24.61 32.62

DRDA 24.48 33.25
DRDA dyn. 24.67 33.34

Table 5: BLEU scores on TED En↔Sk. LRL+HRL
method combines the original low-resource language
pair with a high-resource related language Czech.

On this task, DRDA yields stronger improve-351

ments over baseline Transformer than other tech-352

niques with no requirement for external high re-353

source languages, as shown in Table 5.354

5.4 Robustness to Perturbations355

We validate the robustness of DRDA on two noisy356

datasets. The first one is IWSLT De→En test set357

with synthetic perturbations. The perturbations are358

synthesized by traversing every character excluding359

space and punctuation in source sentences, and ap-360

plying one of the operations with probability 0.01:361

(1) remove the character, (2) add a random charac-362

ter following the character, and (3) substitute the363

character with a random one. The second dataset 364

is himl test set7, which contains health informa- 365

tion and scientific summaries and differs consider- 366

ably from the IWSLT training set. Cross-domain 367

datasets have different subword distributions, and 368

the difference can be viewed as a natural noise. The 369

results of the noisy test sets are shown in Table 6. 370

original synthetic himl

Transformer 35.26 32.19 26.11

R-Drop 37.40 34.34 28.15
BPE-Drop 36.54 35.00 27.92
SubwordReg 36.14 34.55 27.63

DRDA 37.90 34.94 28.80
DRDA dyn. 37.95 34.98 28.78

Table 6: BLEU scores on original and noisy IWSLT
De→En test set, and himl test set. Models are trained
on the IWSLT De→En training set.

Along with these results, consistent improve- 371

ment over Transformer and R-Drop is obtained 372

by DRDA on both synthetically noisy and cross- 373

domain datasets. DRDA significantly outperforms 374

subword sampling methods (BPE-Drop and sub- 375

word regularization) on natural noise datasets, but 376

only obtains similar results with synthetic noise. 377

We will discuss the reason in Section 6.2. 378

6 Analysis 379

In this section, we conduct analysis experiments 380

to answer the following research questions (RQs) 381

respectively: 382

• RQ1 (ablation satudies): How do the applied 383

techniques and components affect model per- 384

formance? 385

• RQ2: Does our approach really keeps se- 386

mantic consistency between original and aug- 387

mented data? 388

• RQ3: How does multi-granularity segmenta- 389

tion improve subword representations? 390

• RQ4: Why does multi-view learning help im- 391

prove NMT models? 392

6.1 RQ1: Ablations 393

Choice of vocabulary sizes Here, we investigate 394

the effects of pre-defined vocabulary sizes. As is 395

mentioned in Section 5.1, we adopt one prime vo- 396

cabulary and one augmented vocabulary. To find 397

7https://www.himl.eu/test-sets
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Figure 3: Ablations on IWSLT De→En over augmented
vocabulary size (left) and agreement loss weight (right).

the optimal vocabulary sizes, we test {10k, 7k, 5k,398

3k, 1k} for augmented vocabulary size when the399

prime size is 10k. Figure 3 verifies that, when the400

augmented vocabulary size is around 5k, the NMT401

model obtains the highest BLEU. The intuition is402

a huge difference in prime and augmented vocab-403

ulary sizes may corrupt the subword semantics,404

while a tiny difference may reduce the symbolic405

difference. A general recommendation in choosing406

vocabulary sizes is to use a proven suitable size for407

the prime vocabulary and set the augmented size to408

half the size of the prime vocabulary.409

Weight of agreement loss As is shown in Fig-410

ure 3, we find that agreement loss weight α signifi-411

cantly affects the performance of our method. Mod-412

els obtain the highest BLEU score when α = 5,413

and increasing or decreasing α causes a score drop414

up to 2 BLEU on the valid set. The model with-415

out agreement loss (i.e., α = 0) still outperforms416

vanilla Transformer, validating the important role417

multi-granularity segmentation plays in DRDA.418

{1k} {6k} {9k} µ σ
37.90 38.17 37.95 38.01 0.12

{1k,6k} {1k,9k} {6k,9k} µ σ
38.21 38.20 38.16 38.19 0.02

Table 7: BLEU scores on IWSLT De→En valid set
when a 12k prime vocabulary is combined with different
augmented vocabulary sets. µ and σ refer to the mean
and standard deviation of BLEU scores when combined
with one (top) or two (bottom) augmented vocabularies.

Number of augmented vocabularies Table 7419

shows the effects of adding an extra augmented420

vocabulary with a prime vocabulary size of 12k on421

the valid set. When combined with two augmented422

vocabularies, the BLEU scores have a smaller devi-423

ation than combined with one. We can summarize 424

that adding extra augmented vocabularies helps get 425

a steady, comparable, and maybe slightly better 426

result in the cost of an increase in training time. 427

6.2 RQ2: Semantic Consistency 428

Appendix B theoretically validates that our ap- 429

proaches generates more appropriate segmenta- 430

tions of a same sentence than other subword reg- 431

ularization methods. As a result, although both 432

DRDA and subword regularization are reversible, 433

DRDA is semantically more consistent because of 434

the segmentation appropriateness. 435

To give an empirical insight of the semanti- 436

cal consistency, we analyze the nearest neighbors 437

of subwords of different models (shown in Table 438

8), we find that vanilla Transformer and DRDA 439

both exhibit semantics-based neighbors, where the 440

embeddings of synonyms are similar. However, 441

embeddings obtained in BPE-Drop tend to have 442

high similarity with those they share a common se- 443

quence. Although this tendency can effectively al- 444

leviate vulnerability to misspelling, which explains 445

the superiority subword regularization shows in 446

synthetic noisy data in Section 5.4, it may introduce 447

semantic error as well (treat "_go" as a synonym 448

for "_good" in Table 8 for example), causing in- 449

accuracy in machine translation. 450

_good
Transformer DRDA BPE-Drop

_great _great _great
_better _big _go
_nice _nice _bad
_bad _bad _god

_useful _significant _nice

Table 8: Top 5 nearest neighbors of subwords "_good"
on IWSLT De→En.

The observation above indicates that DRDA in- 451

troduces little semantic noise to augmentation data, 452

and exhibits better semantic consistency. 453

6.3 RQ3: Effects on Subword Frequency 454

Here, we show that the mechanism of multi- 455

granularity segmentation can be attributed to the 456

increase in frequency of infrequent tokens. 457

NMT models with larger vocabulary sizes have 458

larger atomic translation units, i.e., more coarse- 459

grained subwords, so that they can better memo- 460

rize one-to-many or many-to-one mappings and 461
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Figure 4: Most occurrences of "_nerv" are absorbed
by "_nervous" when the vocabulary grows (left). The
frequency drop rate of "_nerv" is (121 − 6)/121 =
0.95. The right figure shows all frequency drop rates on
IWSLT En→De sorted in descending order.

resolve translation ambiguity (Koehn, 2009). How-462

ever, fine-grained subwords may suffer from a fre-463

quency drop when the vocabulary size grows. Fig-464

ure 4 shows that most occurrences of "_nerv"465

are absorbed by "_nervous" when the vocabu-466

lary grows, making it more difficult for the NMT467

model to obtain a precise representation of other in-468

flection forms like "_nervy", "_nervier" and469

"_nervine". More generally, the frequency drop470

is common on IWSLT En→De (results on more471

datasets are shown in Appendix D), where about472

50% of subwords appeared in 5k vocabulary suffer473

from a frequency drop when the vocabulary grows474

to 10k, as Figure 4 shows.475

In DRDA, by taking both small and large vocab-476

ulary sizes simultaneously, infrequent tokens occur477

more frequently so that subwords like "_nerv"478

can be trained in adequate contexts as well.479

6.4 RQ4: Multi-view Techniques and480

Subword Semantic Composition481

Multi-view learning pulls representations in differ-482

ent granularities together. To investigate the effects483

of multi-view techniques, we propose a task to find484

out how the coarse-grained and fine-grained repre-485

sentations of the same word are drawn closer.486

Figure 5: The similarity between the fine- and coarse-
grained representations is computed by cos θ.

The process is illustrated with an example in Fig-487

ure 5, and the formal definition of the task is shown488

in Appendix C. We take a coarse-grained subword 489

("_background") and its corresponding fine- 490

grained subword sequence ("_back", "ground"), 491

then compute the cosine similarity between the 492

former embedding and the sum of the latter embed- 493

dings. The similarity indicates the extent to which 494

the fine-grained and coarse-grained representations 495

are brought closer together. 496

We enumerate all the coarse-grained and fine- 497

grained representation pairs, and average all their 498

cosine similarity scores. The results are shown in 499

Table 9. As expected, DRDA with proper agree- 500

ment loss (α = 5) obtains a higher average similar- 501

ity than other data augmentation approaches. 502

Model _back, _plat, _feed,
avg

ground form back

Transformer 0.22 0.28 0.31 0.24
R-Drop 0.41 0.36 0.39 0.35
BPE-Drop 0.54 0.62 0.66 0.46

DRDA α = 0 0.48 0.50 0.66 0.50
DRDA α = 2 0.71 0.67 0.77 0.67
DRDA α = 5 0.78 0.79 0.85 0.77
DRDA α = 7 0.81 0.74 0.82 0.75

Table 9: Similarities between coarse- and fine-
grained representations for the same word (e.g.,
"_background" vs. "_back"+"ground"). avg
refers to the average similarities of all words on IWSLT
En→De.

Computing the similarities between representa- 503

tions in multiple granularities is a subword level 504

composition (SSC) tasks (Mitchell and Lapata, 505

2008, 2009; Turney, 2014). We can conclude that 506

multi-view techniques help DRDA models improve 507

the SSC understanding, thus obtaining better ro- 508

bustness to perturbations (Provilkov et al., 2020). 509

7 Conclusion 510

In this paper, we identify the semantic inconsis- 511

tency caused by irreversible operations or proba- 512

bilistic segmentations, and propose a deterministic 513

reversible data augmentation consisting of multi- 514

granularity segmentation and multi-view learning 515

to ensure the consistency when generating diverse 516

data. Experiments demonstrate the superiority of 517

our proposed DRDA over previous data augmenta- 518

tion and subword regularization in terms of transla- 519

tion accuracy and robustness. We also offer a com- 520

bination of empirical and theoretical verification of 521

semantic consistency, and insightful analyses about 522

multi-granularity and multi-view techniques. 523
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Limitations524

High resource scenarios As other data augmen-525

tation techniques, our proposed DRDA appears to526

be less effective in high-resource scenarios. The527

analysis in Section 6.3 offers one explanation to528

this phenomenon that, the frequency drop becomes529

less sharp when the data size grows, thus result-530

ing in lower effectiveness of data augmentation.531

Considering this phenomenon, a better application532

approach of data augmentation on high-resource533

scenarios can be designed, by locating the rare sub-534

words of a specific domain in a model trained on535

large general corpus and continuing training with536

the augmentation data. We leave this investigation537

as a direction for future research.538

Application scope As a foundation process in539

NLP, segmentation is applied in various tasks, in-540

cluding language modeling, named entity recogni-541

tion, and numerous others. As a result, segmenta-542

tion based data augmentation techniques including543

DRDA can be applied to a wide range of tasks. One544

limitation of this study is its exclusive application545

of DRDA to machine translation, which restricts546

the ability to validate and compare its effectiveness547

across other tasks.548
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A Implementation Details768

A.1 Datasets and Preprocessing769

We perform minimum preprocessing and cleaning770

steps to raw data.771

• For IWSLT En↔De, following pre-772

vious works, data is obtained with773

fairseq scripts8, which performs774

clean-corpus-n 9 with ratio = 1.5,775

min = 1 and max = 175.776

• For other IWSLT datasets, we extract777

titles, descriptions and main texts for778

training, and main texts only for validating779

and testing. There is no extra cleanup780

operation performed. IWSLT14 En↔Es781

dataset concatenates dev2010, tst2010,782

tst2011 and tst2012 as development783

set, uses tst2015 as test set. IWSLT17784

En↔Fr and En↔Zh datasets concate-785

nate dev2010, tst2010, tst2011,786

tst2012, tst2013, tst2014 and787

tst2015 as development set, use tst2017788

as test set.789

8fairseq/example/translation//prepare_iwslt14.sh
9mosesdecoder/scripts/training/clean-corpus-n.perl

• We use t2t-datagen 10 script to 790

generate WMT data, and performs 791

clean-corpus-n with min = 1 and 792

max = 80, removing about 1% training 793

sentence pairs. Following previous works, 794

we validate on newstest2013 and test on 795

newstest2014. 796

• The TED datasets are obtained using scripts 797

from the official repository (Qi et al., 2018). 798

We additionally remove the encoder language 799

token "__sk__" to accommodate bilingual 800

NMT. 801

A.2 Models and Hyperparameters 802

Smaller datasets are trained with model 803

transformer_iwslt_de_en, and 804

WMT dataset is trained with model 805

transformer_wmt_en_de. The corre- 806

sponding config is shown in Table 10. 807

small base

encoder layer 6 6
decoder layer 6 6
attention head 4 8

embedding size 512 512
feed-forward size 1024 2048

learning rate 6e− 4 5e− 4
lr schedule inverse sqrt inverse sqrt
optimizer adam adam

adam betas (0.9, 0.98) (0.9, 0.98)
clip norm 0.1 -

warm updates 8000 4000
network dropout 0.3 0.1
attention dropout 0.1 0.1

weight decay 1e− 4 0
label smoothing 0.1 0.1
words per batch about 17k about 380k

beam 5 4
length penalty 1.0 0.6

Table 10: Model configuration of
transformer_iwslt_de_en (small) and
transformer_wmt_en_de (base).

Note that DRDA, R-Drop, CipherDAug and 808

some other approaches may double the input texts, 809

but we constrain the tokens number forwarded to 810

the model in a batch according to the "words per 811

batch" hyperparameter, which means the numbers 812

10tensorflow/tensor2tensor/bin/t2t-datagen
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of sentences in a batch of these approaches are813

rough halved.814

A.3 Computational Cost815

Total training duration and GPU used in DRDA816

experiments are listed in Table 11.817

WMT IWSLT TED

GPU
2× 4× 2×

RTX 3090 TITAN Xp TITAN X (Pascal)

time 12 days 2 days 10 hours
steps 100k 200k 35k

Table 11: Computational cost of WMT, IWSLT and
TED experiments.

A.4 Baseline Implementation818

We reimplement those models with high relevance819

with our method, including vanilla Transformer,820

BPE-Drop, subword regularization, R-Drop, MVR821

and CipherDAaug. These models except for Trans-822

former use either segmentation-related techniques823

or multi-view techniques. Important details of our824

implementation are listed below:825

• BPE-Drop and subword regularization are im-826

plemented using sentencepiece. In en-827

coding, we set α = 0.1 and α = 0.2 for BPE-828

Drop and subword regularization respectively,829

and nbest_size = −1 for both. Results of830

subword regularization are obtained without831

n-best decoding (Kudo, 2018).832

• We use the task and loss module from the of-833

ficial open-source repository 11 to implement834

R-Drop. Weight α is set to 5.835

• In MVR implementation, we adopt the same836

subword regularization hyper-parameters to837

BPE-Drop, and the agreement loss weight is838

set to be 5.839

• CipherDAaug models are reimplemented on840

top of the official open-source code12. Follow-841

ing their instructions, we adopt 2 keys, and set842

agreement loss weight β = 5.843

For the traditional data augmentation methods (844

WordDrop, SwitchOut, RAML, DataDiverse) with845

which DRDA shares a relatively low similarity, re-846

sults are cited from Kambhatla et al. (2022b). We847

share exactly the same model architecture and hy-848

perparameters with Kambhatla et al. (2022b), and849

11https://github.com/dropreg/R-Drop
12https://github.com/protonish/cipherdaug-nmt

we successfully reimplemented their main model 850

with similar results, so we find it reliable to cite 851

from. 852

We report the performance of LRL+HRL from 853

the corresponding literature (Xia et al., 2019). 854

B Theoretical Discussion of Consistency 855

In this section, we discuss what is semantic con- 856

sistency, and give a theoretical analysis about why 857

DRDA is more semantically consistent. 858

It is clear that previous data augmentation meth- 859

ods that adopt irreversible operations result in se- 860

mantic loss, which will inevitably do damage to 861

the consistency between original and augmented 862

data. DRDA is superior to these methods in terms 863

of preservation of the original meanings, because 864

it is based on reversible segmentation to generate 865

diversity. 866

However, it is more tricky to prove that subword 867

regularization methods (Kudo, 2018; Provilkov 868

et al., 2020), which is also based on reversible seg- 869

mentation, leads to more inconsistency that DRDA. 870

To show the superiority of DRDA in consistency 871

over subword regularization, we review the dif- 872

ference of the two in sampling segmentation in 873

Section 3 and 4.1: 874

xi
DRDA = argmax

x
Pseg(x|s; pi), (8) 875

876
xSR ∼ argmax

x
Pseg(x|s; p), (9) 877

where xi
DRDA is a representation in certain gran- 878

ularity of source sentence s in DRDA, xSR is the 879

representation in subword regularization, pi and p 880

are vocabulary sizes. 881

argmax
x

Pseg(x|s; p) can be interpreted as the 882

difficulty of segmenting s with a certain vocabu- 883

lary size p. We can assume that the difficulty of 884

segmenting a sentence is an inherent property of 885

sentences, independent of vocabulary sizes: 886

argmax
x

Pseg(x|s) = argmax
x

Pseg(x|s; p),
(10) 887

where p ∈ N is any pre-defined vocabulary size. 888

Then, because of the deterministic argmax oper- 889

ation in DRDA and the random sampling operation 890

in subword regularization, the following inequality 891

holds: 892

Pseg(xDRDA|s) ≥ Pseg(xSR|s). (11) 893

Equation 11 validates that our approaches gen- 894

erates more appropriate segmentations of a same 895

12



sentence that other subword regularization meth-896

ods. As a result, although both DRDA and subword897

regularization are reversible, DRDA is semantically898

more consistent because of the segmentation appro-899

priateness.900

C Process of Subword Semantic901

Composition Task902

Let a ◦ b be a compound token concatenated by a903

and b, with their corresponding embedding ea◦b,904

ea and eb, the SSC understanding ability is scored905

by the similarity between ea◦b and ea + eb:906

SIM(ea◦b, ea + eb) =
ea◦b · (ea + eb)

∥ea◦b∥ · ∥ea + eb∥
. (12)907

To numerically evaluate the superiority of a908

model in understanding SSC, we average seman-909

tic composition similarities of all subwords except910

characters and special tokens (such as <unk>):911

SIM =
1

|Ṽ |

∑
a,b,a◦b∈V

SIM(ea◦b, ea + eb), (13)912

where Ṽ is a set of all subwords except characters913

and special tokens, and V is a set of all subwords.914

It should be noted that the models listed in Sec-915

tion 6.4 share the same V , so that comparing the916

scores completely makes sense.917

D More Studies918

D.1 Subword Nearest Neighbors919

_good ood
DRDA BPE-Drop DRDA BPE-Drop

_great _great oods oo
_big _go _penguins oods
_nice _bad ago ook
_bad _god _birthday od

_significant _nice wow _food
_better _useful ghter _good
_huge ood _entrop wood
_happy _goods anced ool
_useful _better gal _blood
_healty _big _astero idung

_photograph _photographs
DRDA BPE-Drop DRDA BPE-Drop

_photo _phot _pictures _photos
_photos _photographs _photos _pictures

_photographs _photo _images _photograph
_picture _fotograf _movies _phot
_pattern _picture _structures ć
_digit _ph _chemicals _images

_penguins _graph _statistics t’
_tremend ograph _maps ē
_pictures t’ _scene _
_doctors _photos _spectrum ©

Table 12: Top 10 nearest neighbors of example sub-
words.

Following Provilkov et al. (2020), we study the 920

closest neighbors of word embedding learned in 921

BPE-Drop and DRDA. Several examples are shown 922

in Table 12. 923

We can find that in the morphology of words, 924

BPE-Drop tends to bring two subwords sharing a 925

common sequence together ("_good" and "ood" 926

for example), while DRDA has no such behavior. 927

On one hand, the tendency to pull similarly spelled 928

words closer can effectively help NMT model over- 929

come the perturbation of misspelling, as shown in 930

previous experiments. On the other, it can intro- 931

duce unreasonable noise as well, since similarly 932

spelled subwords are not necessarily semantically 933

related words ("_good" and "_go" for example). 934

D.2 Effects of Granularity Selection 935

Our experiments have shown that the dynamic se- 936

lection of segmentation granularity yields a modest 937

improvement in BLUE scores. Here, we investigate 938

the mechanism and potential of this method. 939

prime augmented dynamic oracle

En → De 30.84 30.85 30.92 31.36
De → En 37.90 37.88 37.95 38.46
En → Fr 38.77 38.57 38.75 40.15
Fr → En 38.55 38.44 38.52 39.59
En → Zh 23.36 23.32 23.32 23.37
Zh → En 22.64 22.84 22.90 23.62
En → Es 41.99 42.07 42.07 42.64
Es → En 43.90 43.97 44.08 45.30

Table 13: BLEU scores on IWSLT tasks.

We define an oracle granularity selection model, 940

whose translation result corresponds to the one with 941

the highest sentence-level BLEU score among the 942

results generated by source sequences with differ- 943

ent granularities. The results of models with 5k 944

augmented size and 10k prime size on IWSLT trans- 945

lation tasks are shown in Table 13. 946

It can be summarized from the results that the 947

selection of input granularities has considerable 948

potential (up to 1.7 BLEU) in improving the trans- 949

lation, and our approach obtains an improvement of 950

up to 0.24 BLEU. In the future, a better re-ranking 951

approach can be adopted to build a selection model 952

closer to the oracle model. 953

D.3 Frequency Drops 954

More examples of frequency drop on WMT, 955

IWSLT and TED are shown in Figure 6. Among 956
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these results, all datasets suffer from a similar fre-957

quency drop regardless of their language directions958

and sizes. The vocabulary size grows from 16k to959

32k for WMT, from 5k to 10k for IWSLT and from960

4k to 8k for TED.961

Figure 6: Subwords frequency drop rates on WMT (top),
IWSLT (middle), and TED (bottom).
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