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Abstract

Bayesian Neural Networks provide a principled framework for uncertainty quantification by
modeling the posterior distribution of network parameters. However, exact posterior inference
is computationally intractable, and widely used approximations like the Laplace method
struggle with scalability and posterior accuracy in modern deep networks. In this work, we
revisit sampling techniques for posterior exploration, proposing a simple variation tailored
to efficiently sample from the posterior in over-parameterized networks by leveraging the
low-dimensional structure of loss minima. Building on this, we introduce a model that learns
a deformation of the parameter space, enabling rapid posterior sampling without requiring
iterative methods. Empirical results demonstrate that our approach achieves competitive
posterior approximations with improved scalability compared to recent refinement techniques.
These contributions provide a practical alternative for Bayesian inference in deep learning.

1 Introduction

Bayesian Neural Networks (BNNs) have emerged as a principled framework for uncertainty quantification in
deep learning by treating model parameters as random variables and inferring their posterior distribution.
This Bayesian perspective is crucial for tasks requiring reliable decision-making under uncertainty, including
medical diagnosis (Leibig et al., 2017), autonomous driving (Feng et al., 2018), and weather forecasting
(Cofıno et al., 2002). Despite their appeal, the high dimensionality and non-linearity of modern neural
network parameter spaces render exact posterior inference intractable, requiring the development of efficient
approximation techniques.

A widely used method to make a deterministic, already-trained neural network Bayesian is the Laplace
approximation, which estimates the posterior distribution of the parameters as a Gaussian centered at
the Maximum a Posteriori (MAP) estimate (MacKay, 1992; Daxberger et al., 2021a). This approach is
particularly convenient due to its simplicity and post-hoc applicability. However, the Laplace approximation
faces significant challenges in modern deep networks. The computation and inversion of the Hessian scale
poorly with network size (Martens, 2010), and its reliance on local curvature limits its ability to capture
the complex, non-linear geometry of the posterior in over-parameterized models (Fort & Jastrzebski, 2019;
Bergamin et al., 2024).

In contrast, sampling techniques, though less frequently used in recent years, can be surprisingly effective
in exploring the posterior when the parameter space of loss minima resides on a much lower-dimensional
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Figure 1: We propose a novel sampling scheme to approximate the posterior of a trained network. When
the loss landscape of a trained network over its parameters (blue regions) is low on a very low-dimensional
curve (white region), a simple Hessian (H−1) fails in capturing its distribution. Our sampling scheme is
composed of two iterative steps: randomly perturb a given solution (yellow points) then refine to minimize
the loss function over the given dataset (orange points). This proposed scheme allows to estimate posteriors
of arbitrary shapes and it is well-suited when the space of solutions in a network is much lower dimensional
than the parameter space.

manifold than the full parameter space (Garipov et al., 2018). By leveraging this property, sampling methods
can efficiently explore the posterior with fewer samples, especially in over-parameterized settings. However,
relying on sampling for posterior estimation can still be computationally expensive if every new inference
requires a fresh sampling process. These limitations highlight the need for a method that combines the
efficiency of sampling-based exploration with a more scalable and flexible posterior representation.

In this work, we propose a variation of a sampling method to explore the geometry of the loss landscape
in the parameter space of neural networks. Our approach perturbs parameters around the MAP estimate
using a set of drift directions and refines them with gradient updates, effectively maintaining computational
efficiency as the network size increases. Using the data collected from our sampling process, we introduce a
novel objective function to learn a structured latent representation of the posterior by deforming the original
parameter space. This learned representation enables the direct generation of new parameter samples without
relying on computationally expensive iterative sampling or restrictive variational inference approximations.
We refer to these two components collectively as MetricBNN. Empirically, we demonstrate the efficacy of
our method in estimating uncertainty from trained models in both regression and classification tasks. In
particular, our approach produces better-calibrated uncertainty estimates than Gaussian approximations,
especially on real-world datasets and high-dimensional tasks.

2 Related Work

Bayesian Neural Networks. BNNs provide a principled approach to uncertainty quantification by treating
the network parameters θ as random variables and modeling their posterior distribution p(θ | D). However,
exact inference is intractable due to the high dimensionality of parameter spaces in modern neural networks.
Various methods have been proposed to approximate the posterior. Variational Inference (VI) approximates
the posterior by optimizing a surrogate distribution, often in the form of a mean-field Gaussian (Graves, 2011;
Blundell et al., 2015). Extensions to hierarchical and amortized variational methods have improved scalability
but often struggle to capture complex posterior structures (Zhang et al., 2018). The Laplace Approximation
(LA) defines the posterior locally around the MAP estimate using a Gaussian distribution (MacKay, 1998;
Daxberger et al., 2021a). Despite its simplicity and efficiency, it is limited by its reliance on local curvature
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and the Gaussian assumption. Sampling-based methods such as Stochastic Gradient Langevin Dynamics
(SGLD) (Welling & Teh, 2011) and Hamiltonian Monte Carlo (HMC) (Neal, 2011) generate posterior samples
by simulating stochastic dynamics. While these methods are more flexible, their computational cost often
makes them impractical for large-scale neural networks.

Improving Posterior Samples. To address these limitations, recent works have sought to refine and
extend the Laplace approximation by introducing more expressive approximate posteriors. Kristiadi et al.
(2022) combines Laplace approximation with normalizing flows for a non-Gaussian posterior, refining the base
Gaussian distribution. Similarly, Immer et al. (2021) refines Laplace approximation by leveraging Gaussian
variational methods and Gaussian processes, improving linearized Laplace posterior accuracy. Miller et al.
(2017) iteratively builds a mixture model to improve the posterior approximation by adding components
to the variational distribution. Eschenhagen et al. (2021) combines multiple pre-trained models to form a
weighted sum of Laplace approximations, improving posterior flexibility. Havasi et al. (2021) introduced
auxiliary variables to locally refine mean-field variational approximations, achieving better fit in regions of
interest. Bergamin et al. (2024) extends the Laplace approximation by leveraging Riemannian geometry to
model the posterior distribution on a manifold, improving accuracy for non-linear loss landscapes.

In this paper, we re-evaluate the efficiency of sampling methods for posterior estimation, particularly in
the context of over-parameterized neural networks. Through empirical results, we demonstrate that our
proposed simple sampling framework can outperform modern posterior refinement techniques in efficiency
and accuracy. Furthermore, our novel use of an autoencoder moves beyond the Gaussian formulation of the
posterior, enabling a flexible, easy-to-sample representation that significantly improves performance. This
approach allows us to capture the non-linear geometry of the posterior while maintaining computational
simplicity, addressing key limitations of both classical and modern refinement methods. Differently from classic
hypernetwork approaches, MetricBNN learns a structured latent representation of near-optimal parameter
regions explicitly for posterior approximation. This enables us to generate parameter samples efficiently
while preserving a geometry-informed posterior structure, directly targeting calibrated Bayesian uncertainty
estimation rather than task-conditioned adaptation.

3 Preliminaries

BNNs provide a principled framework for quantifying uncertainty in neural network predictions by treating
the model parameters as random variables. This section introduces the relevant background on BNNs,
discusses the Laplace approximation for posterior estimation, and highlights its limitations.

Consider an independent and identically distributed (i.i.d.) dataset D = {(xi, yi)}N
i=1 where xi ∈ RD and

yi ∈ RC . Let fθ : RD → RC denote a parametric function (e.g., a neural network) with parameters θ ∈ RK .
The goal is to model the predictive distribution: p(y′ | x′,D) =

∫
p(y′ | x′, θ)p(θ | D) dθ, where p(θ | D) is

the posterior distribution of the parameters given the dataset. Bayesian inference provides a framework
for estimating the posterior p(θ | D) using Bayes’ theorem: p(θ | D) = p(D|θ)p(θ)

p(D) , where p(D | θ) is the
likelihood of the data, p(θ) is the prior distribution over the parameters, and p(D) is the marginal likelihood or
evidence. In practice, computing the evidence p(D) is often intractable, making direct posterior computation
challenging.

3.1 Laplace Approximation

The Laplace approximation is a classic method for approximating the posterior distribution p(θ | D) using a
Gaussian centered at the MAP estimate. Let L(θ) denote the regularized negative log-likelihood:

L(θ) = − log p(D | θ)− α log p(θ), (1)

where α is a regularization coefficient and depends on the choice of prior for the parameters. Assuming this
to be the Normal distribution, the regularization can be rewritten as an Euclidean norm.

One of the main advantages of the Laplace approximation is that it allows to define a posterior distribution
given an already fully trained network, post-hoc. When given a fully trained network we assume access to
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Figure 2: Posterior samples for Regression task. The blue points represent the dataset, the orange lines are
samples from the estimated posteriors. Our proposed sampling method correctly captures the uncertainty in
the data gap.

the set of parameters, θ∗, that minimize the loss function of Equation 1. This is the MAP solution. The
exponential of this loss function is proportional to the posterior distribution as p(θ | D) ∝ p(D | θ)p(θ).
Laplace approximation methods propose to approximate the posterior distribution with a second-order Taylor
expansion around the MAP of the loss function. This results in a Gaussian approximation of the parameters
with the mean being the MAP solution and the covariance being the inverse of the Hessian computed in the
MAP. The posterior can then be defined as:

q(θ) = N (θ∗, H−1), (2)

where H = ∇2L(θ∗) is the Hessian of the loss function at θ∗.

3.2 Limitations of the Laplace Approximation

While widely used, the Laplace approximation has several limitations:

1. Local Approximation: It captures only the local curvature of the loss landscape around θ∗, ignoring
the broader structure of the posterior, which can be highly non-Gaussian in high-dimensional spaces
(Wilson & Izmailov, 2020).

2. Scalability: Computing and inverting the Hessian is computationally expensive for large-scale neural
networks, limiting its applicability to small models (Martens, 2010).

3. Positive-Definiteness: In over-parameterized networks, the Hessian is often not positive definite,
making it difficult to define a valid Gaussian approximation. Regularization or approximate methods
are sometimes used to mitigate this issue, but these approaches can introduce biases (Daxberger
et al., 2021a).

The limitations of the Laplace approximation motivate the need for alternative methods that better capture
the true posterior distribution. Specifically, the posterior for BNNs often lies on a complex, non-linear
manifold in parameter space, which the Laplace approximation fails to represent. This motivates our
approach, which combines efficient exploration of the parameter space with a flexible latent representation to
better approximate the posterior.

4 Method

To address the limitations of the Laplace approximation and improve posterior estimation in BNNs, we
propose MetricBNN, a two-step framework. The first step involves locally exploring the parameter space
around the MAP estimate using a simple sampling method. The second step learns a latent representation to
construct a flexible posterior distribution that captures the complex geometry of the parameter space.

4.1 Exploring Neighbor Solutions

Given a trained neural network with parameters θ∗ that minimize the regularized loss function (Equation 1), the
parameter space of deep networks is known to exhibit a high degree of redundancy due to overparameterization
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Figure 3: Estimated posterior for the regression task. The blue points represent the dataset and in orange
the mean and standard deviation of posteriors sampled from the estimated distributions. A naive SVD
approximation of the solutions found with the sampling scheme fails in correctly representing the true
posterior. Our proposed MetricBNN posterior correctly approximates it.

and reparametrization invariances Fort & Jastrzebski (2019); Garipov et al. (2018). These properties create a
connected, lower-dimensional manifold of near-optimal solutions surrounding the MAP estimate θ∗. This
phenomenon, often referred to as the linear connectivity assumption, suggests that different sets of parameters
can achieve similar performance, even when interpolating between them (Garipov et al., 2018; Fort &
Jastrzebski, 2019; Brea et al., 2019).

In particular, empirical studies on the loss landscapes of neural networks have shown that minima are often
connected by low-loss paths, forming smooth and structured regions in the parameter space (Garipov et al.,
2018). This implies that the posterior distribution is not confined to a single mode but instead spans a
broader, non-linear manifold. Capturing this geometric complexity is crucial for accurately modeling the
posterior. By exploring neighboring solutions around θ∗, we aim to gather representative samples that reflect
the underlying structure of this manifold, providing a richer and more accurate approximation of the posterior
distribution.

Estimating the posterior distribution of the parameters amounts to identifying the distribution of these
solutions. To achieve this, we propose collecting a set of such solutions using the following sampling technique
(MetricBNN sampling):

1. Initialization: Start with N particles, each initialized at the MAP estimate θ∗, i.e., θi,0.

2. Random Drift Assignment: Assign each particle a random drift vector di, sampled as a unit
vector with uniform orientation in the parameter space.

3. Iterative Exploration: For T time steps, update each particle’s position as:
(a) Drift: Perturb the particle by adding the corresponding random drift.

θ̂0
i,t+1 = θi,t + α · di. (3)

(b) Refinement: After each drift update, refine the particle’s position using M steps of gradient
descent to ensure alignment with the loss landscape.

θm+1
i,t+1 = θ̂m

i,t+1 − η∇θL(θ̂m
i,t+1) (4)

θi,t+1 = θ̂M
i,t+1 (5)

This procedure generates a set of N × T viable solutions near θ∗. These samples represent a local exploration
of the posterior distribution of interest, capturing the diversity of solutions around the MAP estimate.
Figure 2(on the right) illustrates an example of these solutions for a two-dimensional regression problem.

While sampling methods have traditionally been considered computationally expensive for high-dimensional
neural networks, leading to their relative neglect in favor of variational inference and other approximation
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Figure 4: Estimated posterior for the Banana classification task. The orange and yellow points represent the
data of the two classes in the classification dataset. In blue is the value of the uncertainty of the posteriors
sampled from the estimated distributions.

techniques (MacKay, 1998; Blundell et al., 2015), we argue that these concerns warrant re-evaluation in light
of the linear connectivity assumption. Specifically, the high redundancy and structured geometry of neural
network parameter spaces suggest that meaningful posterior exploration can be achieved through efficient
sampling on a lower-dimensional, connected manifold of solutions (Garipov et al., 2018; Fort & Jastrzebski,
2019). This implies that the computational complexity of sampling methods may scale more favorably with
the dimensionality of modern networks than previously assumed.

The empirical covariance matrix of the collected solutions provides an improved local Gaussian approximation
of the posterior distribution. However, due to the extreme non-linearity of the solution manifold, a Gaussian
approximation alone fails to accurately capture the true structure of the posterior distribution. Addressing
this limitation requires moving beyond the Gaussian assumption.

4.2 Defining a Posterior

While the empirical covariance of the collected samples provides a basic Gaussian approximation, it fails to
capture the non-linear geometry of the posterior, see Figure 3. Addressing this limitation requires moving
beyond the Gaussian assumption. Given that the drift applied in the Drift step (3a) is small enough, we can
assume that every element in between two sets of parameters is a viable solution. The curve defined by all
the samples can, however, be arbitrarily non-linear. To overcome this, we propose to learn a representation
that maps the parameters into a structured latent space where the collected trajectories of parameters are
linearly distributed.

We define a latent representation through an autoencoder framework:

• φ : Θ→ Z: An encoder that maps neural network parameters θ to a latent space Z ⊆ Rk.

• φ−1 : Z → Θ: A decoder that reconstructs parameters θ from the latent space.

The training dataset for the autoencoder consists of the collected samples, i.e., Dθ. The goal is to learn a
latent space where the posterior distribution is well-structured and linearly interpolable. We achieve this by
optimizing the following loss function:

L = λ+L+ + λ−L− + Ld, (6)

with:

L+ = EDθ

[(
||φ(θ)− φ(θ′)|| − 1

T

)2
]

, (7)

L− = EDθ
[− log (||φ(θ)− φ(θ′′)||)] , (8)

Ld = EDθ

[
||φ−1(φ(θ))− θ||2

]
, (9)

where θ and θ′ are two sets of parameters of the same trajectory and successive time step while θ′′ is another
randomly sampled set of parameters. Both λ+ and λ− are scalar values. The role of these terms is as follows:
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Figure 5: Trade-off between network size and computational complexity on the regression task. Each marker
shows NLL (lower is better) for a network with the indicated number of hidden layers. MetricBNN’s cost
grows only mildly with depth.

• L+: encourages local distances between successive samples are preserved.

• L−: encourages these sets of parameters to stretch in the learned latent space by maximizing every
pair-wise distance.

• Ld: encourages reconstruction, mapping latent representations back to their original parameter space.

Using the trained autoencoder, we define the posterior distribution in the latent space Z, MetricBNN posterior.
Each trajectory of samples is treated as independent, with a uniform probability assigned to each trajectory.
Along each trajectory, we place a uniform probability between the MAP solution and the last sample of such
trajectory, i.e., θi,T . Sampling from the posterior involves: Sample a trajectory index i uniformly, Sample a
scaling factor ϵ ∼ Uniform(0, 1). Compute the parameter sample:

θ = φ−1 (φ(θ∗) + ϵ · (φ(θi,T )− φ(θ∗))) . (10)

This method captures the broader geometry of the posterior while maintaining computational efficiency. We
provide a pseudo-code of the whole method in Appendix B

5 Experiments

In this section, we evaluate the ability of our proposed method to approximate the posterior efficiently. We
first assess the quality of our sampling technique in capturing model uncertainty using simple regression
and classification tasks. We then analyze the computational complexity of our approach as the network size
increases. Finally, we present quantitative results on real-world datasets, evaluating the negative log-likelihood
(NLL) and the expected calibration error (ECE) of our posterior distribution.

We benchmark our method against Bayesian inference baselines that collectively span local–Gaussian,
stochastic–sampling, and deterministic–ensembling paradigms.

Gauss–Newton Laplace (LA GN) (Daxberger et al., 2021a) fits a Gaussian around the MAP solution using
the Gauss–Newton curvature, offering a lightweight post-hoc posterior of any trained network. For some
experiments, we also include a low-rank estimate of the Laplace approximation (LA LowRank) and a linearized
version (Lin LA).

Riemannian Laplace (Riem LA) (Bergamin et al., 2024) extends this idea by replacing the Euclidean metric
with an appropriate Riemannian version, yielding a curvature-aware Gaussian that better respects the
manifold structure of the parameter space. We also include the linearized version of this approach (Riem Lin
LA).
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For fully stochastic references we include Hamiltonian Monte Carlo (HMC) (Neal, 2011) and its scalable
stochastic-gradient variant (SGLD) (Welling & Teh, 2011), both of which provide asymptotically exact
posterior samples at the cost of increased computation.

Complementing these, Deep Ensembles (Lakshminarayanan et al., 2017) (ENSEMBLES) approximate the
posterior with a set of independently trained networks, while (SWAG) (Maddox et al., 2019) captures the
first two moments of SGD iterates to form a low-rank Gaussian that can be sampled cheaply.

Finally, (ESPRO) (Benton et al., 2021) exploits mode-connecting simplices to generate functionally diverse
checkpoints without extra training epochs, yielding a fast ensembling baseline.

We conduct experiments across five different settings:

Simple Regression: We evaluate our method on the one-dimensional regression problem introduced in
Snelson & Ghahramani (2005). The dataset consists of 200 points, with 50 held out to assess the model’s
ability to estimate uncertainty. We use a fully connected neural network with three hidden layers of 32 units
and ReLU activations.

Simple Classification: We test our method on the Banana dataset, a two-dimensional binary classification
task with 5,300 points, of which 30% are reserved for testing. We use a fully connected network with two
hidden layers of 6 units and Tanh activations.

Classification on UCI Datasets: To evaluate performance on real-world structured data, we experiment
with six classification datasets from the UCI repository (Markelle et al., 2023). We use a fully connected
network with two hidden layers of 32 units and ReLU activations.

Image Classification: For high-dimensional problems, we experiment with the MNIST (LeCun, 1998),
FashionMNIST (Xiao et al., 2017) and CIFAR10 (Krizhevsky, 2009) datasets. For MNIST and FMNIST we
use a shallow convolutional neural network with two convolutional layers followed by three fully connected
layers with Tanh activations. For CIFAR10 we instead use a ResNet18 architecture (He et al., 2016) and
compute the posterior on the last two layers of the network.

OOD Classification: We test the ability of the model in classifying MNIST images with an increasing
amount of rotations (Daxberger et al., 2021b) and CIFAR10 images with 15 different realistic noises (Hendrycks
& Dietterich, 2019).

5.1 Scalability of the Proposed Sampling Method

Approximating the posterior distribution in neural networks is challenging due to the high-dimensional and
non-linear nature of the parameter space. The standard Laplace approximation has been shown to struggle
in these settings (Ritter et al., 2018; Lawrence, 2001), as it assumes a Gaussian posterior, which may not
align well with the actual distribution.

Our proposed sampling method provides a more flexible alternative, allowing for a tighter and better-calibrated
posterior that is independent of the loss landscape’s curvature. Figure 2 compares our method with the Laplace
approximation on the toy regression task, demonstrating a significantly improved uncertainty estimation.

Beyond accuracy, scalability is a key factor in Bayesian inference for deep networks. Many posterior
approximation techniques rely on computing second-order derivatives, making them computationally expensive
as the network size grows. To assess the computational trade-off, we analyze the inference time and NLL
performance as the number of layers in the network increases. Figure 5 presents these results for our method,
LA GN, Riem LA, ENSEMBLES, HMC. Results show that Hessian-based methods and HMC scale poorly
with size. ENSEMBLES have a higher temporal cost as they require the training of multiple models. Moreover,
they suffer from a very low-dimensional network as they converge to the same solution and thus result in
low variance solutions. Our sampling approach maintains a reasonable computational cost while preserving
accuracy. Furthermore, our learned latent posterior model enables rapid parameter sampling, further reducing
the overhead compared to iterative sampling.
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Table 1: Quantitative results on the UCI datasets, including NLL, lower is better, and ECE, lower is better.

Model Australian Breast Glass Ionosphere Vehicle Waveform

N
LL

LA GN 0.71 ± 0.06 0.73 ± 0.07 2.28 ± 0.28 0.72 ± 0.09 0.8 ± 0.16 0.88 ± 0.09
LA LowRank 0.69 ± 0.03 0.64 ± 0.10 2.06 ± 0.15 1.08 ± 0.21 0.76 ± 0.05 0.96 ± 0.04

Riem LA 0.54 ± 0.07 0.59 ± 0.1 1.42 ± 0.21 0.17 ± 0.02 0.65 ± 0.02 0.3 ± 0.01
Lin LA 0.69 ± 0.04 0.61 ± 0.04 3.59 ± 1.17 0.42 ± 0.04 0.68 ± 0.01 0.4 ± 0.02

Riem Lin LA 0.74 ± 0.05 2.32 ± 0.74 15.92 ± 0.05 13.5 ± 0.66 0.65 ± 0.01 0.38 ± 0.02
ENSEMBLES 0.51 ± 0.07 0.62 ± 0.10 0.90 ± 0.08 0.25 ± 0.05 0.63 ± 0.00 0.30 ± 0.01

HMC 1.30 ± 0.31 1.52 ± 0.61 1.49 ± 0.40 0.80 ± 0.30 0.65 ± 0.02 0.43 ± 0.03
SGLD 0.64 ± 0.16 0.65 ± 0.10 1.36 ± 0.03 0.26 ± 0.07 0.73 ± 0.02 0.72 ± 0.09

ESPRO 0.76 ± 0.25 0.63 ± 0.12 0.94 ± 0.17 0.22 ± 0.10 0.64 ± 0.03 0.32 ± 0.01
SWAG 0.70 ± 0.04 0.59 ± 0.06 1.56 ± 0.08 0.25 ± 0.08 0.68 ± 0.00 0.30 ± 0.01

MetricBNN 0.66 ± 0.05 0.57 ± 0.04 1.07 ± 0.07 0.17 ± 0.05 0.69 ± 0.02 0.3 ± 0.01

E
C

E

LA GN 13.61 ± 4.34 18.53 ± 9.51 12.25 ± 3.56 28.03 ± 7.23 21.36 ± 9.26 21.68 ± 6.40
LA LowRank 17.12 ± 3.17 16.66 ± 9.26 17.72 ± 10.25 49.68 ± 5.82 18.88 ± 6.29 13.82 ± 4.38

Riem LA 10.28 ± 4.83 13.60 ± 2.91 21.30 ± 7.77 5.57 ± 0.78 5.80 ± 1.10 5.62 ± 0.70
Lin LA 10.62 ± 1.71 18.45 ± 4.57 15.32 ± 7.21 28.80 ± 1.67 7.31 ± 1.30 23.00 ± 1.82

Riem Lin LA 8.47 ± 2.71 20.90 ± 2.58 14.10 ± 2.14 6.84 ± 2.31 10.75 ± 1.88 2.51 ± 0.72
ENSEMBLES 8.09 ± 1.37 15.46 ± 3.77 13.47 ± 1.57 8.24 ± 1.14 2.90 ± 1.30 1.39 ± 0.26

HMC 16.03 ± 2.87 26.04 ± 4.98 18.32 ± 2.43 9.24 ± 2.10 8.46 ± 1.17 6.53 ± 0.96
SGLD 13.38 ± 3.36 15.12 ± 6.35 18.40 ± 3.09 8.12 ± 2.58 12.12 ± 3.03 8.70 ± 4.52

ESPRO 11.62 ± 3.33 15.41 ± 3.37 14.03 ± 2.91 6.47 ± 1.72 8.29 ± 1.62 2.51 ± 0.96
SWAG 9.80 ± 6.35 14.29 ± 2.49 3.87 ± 2.75 7.44 ± 2.12 1.18 ± 0.98 2.39 ± 0.59

MetricBNN 27.33 ± 8.08 12.42 ± 4.38 11.51 ± 5.46 5.74 ± 0.97 10.18 ± 10.20 1.50 ± 0.53

Table 2: Quantitative results on image datasets, including NLL, lower is better, and ECE, lower is better.

Model MNIST FMNIST CIFAR10

N
LL

LA GN 2.42 ± 0.03 2.24 ± 0.08 2.29 ± 0.09
LA LowRank 1.35 ± 0.04 1.67 ± 0.06 2.19 ± 0.08

Riem LA 1.11 ± 0.11 1.20 ± 0.02 0.84 ± 0.03
Lin LA 0.96 ± 0.08 1.27 ± 0.13 1.93 ± 0.12

Riem Lin LA 0.62 ± 0.09 0.87 ± 0.07 0.83 ± 0.06
ENSEMBLES 0.17 ± 0.00 0.47 ± 0.00 1.55 ± 0.02

SGLD 1.60 ± 0.20 1.98 ± 0.26 0.78 ± 0.06
ESPRO 0.15 ± 0.02 0.51 ± 0.02 0.84 ± 0.05
SWAG 0.24 ± 0.01 0.89 ± 0.11 1.97 ± 0.33

MetricBNN 0.12 ± 0.01 0.58 ± 0.09 0.70 ± 0.04

E
C

E

LA GN 4.78 ± 2.97 12.31 ± 2.39 4.59 ± 1.88
LA LowRank 50.58 ± 3.20 18.70 ± 3.07 9.74 ± 5.82

Riem LA 47.14 ± 9.19 26.78 ± 7.83 33.91 ± 8.23
Lin LA 29.43 ± 1.32 19.63 ± 1.18 35.46 ± 12.67

Riem Lin LA 21.20 ± 2.00 15.19 ± 1.92 32.10 ± 3.15
ENSEMBLES 10.52 ± 0.13 11.33 ± 0.29 8.94 ± 0.17

SGLD 13.83 ± 7.47 14.55 ± 6.06 7.45 ± 1.25
ESPRO 1.56 ± 0.20 4.36 ± 0.79 10.40 ± 0.33
SWAG 13.47 ± 1.07 25.25 ± 4.95 3.47 ± 2.76
MBNN 1.57 ± 0.31 13.57 ± 6.89 9.26 ± 0.45

5.2 Quality of the Proposed Geometric Posterior

A potential concern is whether the posterior obtained via our sampling method could be approximated using
a naive covariance computation, similar to the Laplace approximation. However, as shown in Figure 3, this
approach still does not yield accurate uncertainty estimates. By contrast, our latent posterior representation
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effectively captures the true posterior structure, demonstrating the benefits of learning a structured parameter
space.

5.3 Performance on UCI Regression and Image Classification

We further evaluate our approach to real-world structured data by testing it on standard UCI regression
benchmarks. Table 1 reports NLL and ECE results, showing that our method remains competitive with the
baselines. In Appendix we provide details on the computational cost as well demonstrating that our method
offers a good balance between accuracy and computational cost.

To assess performance in high-dimensional settings, we train convolutional neural networks on MNIST and
FashionMNIST and CIFAR10. Table 2 presents NLL and ECE results.
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Figure 6: Robustness to semantic and photometric shift CIFAR10. Each panel reports test NLL across each
corruption.

5.4 OOD Classification

We evaluate all methods under two canonical OOD settings. For every corruption we report the log-likelihood.
All networks are first trained on clean data only. Posterior approximations are then fit post-hoc.
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Figure 7: Robustness to geometric shift (Ro-
tated MNIST). Test NLL and standard devi-
ations of MNIST image classification versus
rotation angle; lower is better.

Geometric shift: progressively rotating MNIST test images
by 0◦–90◦ (Daxberger et al., 2021b). Figure 7 shows that
MetricBNN has competitive log-likelihood performances for ro-
tations up to 30 degrees. Performances drop when the rotations
become more severe as distinguishing between the numbers is
not always possible.

Semantic + photometric shift: applying the fifteen cor-
ruption families of CIFAR10 (Hendrycks & Dietterich, 2019).
Figure 6 shows competitive performances for MetricBNN for
some of the perturbations.

Our experiments highlight three key takeaways: Our sampling-
based posterior exploration provides a more flexible and well-
calibrated uncertainty estimate, particularly as network size
increases. The proposed latent posterior model enables efficient
posterior sampling, avoiding the computational overhead of
iterative methods. Our approach remains competitive in terms
of NLL and ECE on real-world datasets while being significantly
more computationally efficient.

6 Discussion

In this work, we revisited scalable Bayesian inference in deep learning, benchmarking our method, MetricBNN,
against a broad range of baselines including Laplace approximations, variational methods, deep ensembles,
and sampling-based techniques. Across structured and high-dimensional tasks, MetricBNN consistently
achieves competitive or superior negative log-likelihood and calibration while maintaining efficiency as network
size increases. We observe that while Laplace-based methods and their geometric extensions can perform
well in certain settings, their performance is notably sensitive to the parameter count, network capacity,
and the quality of the MAP solution used for centering the approximation. Differences in MAP training
conditions and model size can therefore lead to the lower scores observed in our experiments compared to
those reported in other Laplace-focused studies. Our sampling-based exploration combined with a learned
latent posterior helps mitigate these sensitivities, capturing non-Gaussian, non-linear posterior structures
more robustly across diverse regimes.

Across our experiments, MetricBNN demonstrates strong empirical performance on structured datasets, high-
dimensional image classification, and out-of-distribution (OOD) robustness benchmarks. On structured UCI
datasets, MetricBNN achieves negative log-likelihood and calibration scores competitive with or better than
Laplace (LA GN, Riem LA) and variational baselines, while providing a more flexible posterior representation.
On high-dimensional datasets like MNIST, FashionMNIST, and CIFAR10, MetricBNN maintains low NLL
and ECE scores, matching or outperforming deep ensembles and methods such as SWAG, while avoiding
the computational overhead of training multiple models or computing Hessians at scale. In OOD settings,
MetricBNN shows consistent robustness under geometric shifts (rotated MNIST) and photometric and
semantic corruptions (CIFAR10), providing well-calibrated uncertainty estimates across perturbation levels.

Compared to fully sampling-based methods such as Hamiltonian Monte Carlo (HMC) and SGLD, MetricBNN
achieves comparable uncertainty estimates while being significantly more computationally efficient, making it
practical for large-scale neural network applications. In contrast to deep ensembles, which require training
multiple networks to achieve uncertainty calibration, MetricBNN provides comparable calibration with a
single network, improving efficiency and scalability. Compared to variational inference methods, which
often rely on restrictive mean-field approximations, MetricBNN captures the non-Gaussian structure of the
posterior by leveraging the geometry of the parameter space through structured latent representations.

Finally, while hypernetworks typically generate weights conditioned on input or task information for adaptation,
our approach fundamentally differs by using an autoencoder to learn a structured latent space of near-optimal
parameter regions for scalable posterior sampling. This allows MetricBNN to efficiently generate parameter
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samples that reflect the geometry of the loss landscape without the use of expensive iterative techniques or
variational methods.

7 Conclusions

In this work, we proposed a simple variation of sampling-based techniques tailored to explore the posterior
geometry of Bayesian Neural Networks efficiently, even in over-parameterized settings. By leveraging the
low-dimensional structure of loss minima, our method achieves competitive posterior approximations while
maintaining scalability as network size increases. Additionally, we introduced a model that learns a deformation
of the parameter space based on the collected samples, enabling rapid posterior sampling without requiring
iterative methods. Our empirical results demonstrate that this approach improves posterior accuracy and
computational efficiency compared to recent refinement techniques. These contributions provide a practical
and flexible framework for Bayesian inference in deep learning, offering new directions for scalable uncertainty
quantification in complex models.
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A Experimental Details

This section provides additional details regarding the experimental setup, including the models, hyper-
parameters, and computational settings.

A.1 Experimental Setup

We evaluate our method across four types of tasks: toy regression, toy classification, structured classification
from the UCI repository, high-dimensional image classification and OOD classification.

Toy Regression. We consider the Snelson 1D regression dataset (Snelson & Ghahramani, 2005), consisting
of 200 points, with 50 held out for evaluating uncertainty estimation. We use a fully connected neural network
with three hidden layers of 32 units and ReLU activations. The model is trained using the Adam optimizer
with a learning rate of 1× 10−3, batch size of 200, and L2 regularization of 0.01 for 50,000 epochs.

For the sampling procedure of our approach, we used a drift-scaling factor of α = 0.1 and performed T = 100
sampling steps. At each step, we updated the parameters using M = 10 gradient refinement steps to improve
posterior estimates. We initialized N = 10 particles, each following a perturbed trajectory in the parameter
space, with a drift step scaled by an inner learning rate of η = 0.001. For the autoencoder-based posterior
model, we projected the sampled parameter trajectories into a structured latent space of k = 32 dimensions.
The autoencoder was trained using batch size 1024 for 1000 epochs, optimizing the contrastive loss with
weight coefficients λ+ = 1.0 and λ− = 1.0. The architecture consists of an encoder with two fully connected
hidden layers of 256 units and ReLU activations, and a decoder with a symmetric structure of two hidden
layers with 256 units and ReLU activations. Training was performed using the Adam optimizer.

Toy Classification. For classification, we use the Banana dataset, a 2D binary classification problem with
5300 points, of which 30% are used for testing. The network consists of two hidden layers with 16 units and
Tanh activations. The training procedure follows the regression setup, except with a smaller batch size (32)
and 2500 training epochs. For our model, we use the same parameters as in the regression task.

Structured Data (UCI Datasets). To evaluate our method in structured classification settings, we test
on six datasets from the UCI repository (Markelle et al., 2023), using a fully connected architecture with
two hidden layers of 32 units and ReLU activations. The training follows the same schedule as before, with
a batch size of 32 and 1000 training epochs. Our method is estimated with the same parameters as in the
classification experiment except for T = 50 steps.

High-Dimensional Image Classification. For large-scale experiments, we train Bayesian neural networks
on MNIST (LeCun, 1998), FashionMNIST (Xiao et al., 2017) and CIFAR10 (Krizhevsky, 2009). For MNIST
and FAMNIST we use a shallow convolutional neural network consisting of two convolutional layers, followed
by three fully connected layers, with Tanh activations. For CIFAR10 we use a standard ResNet18 architecture.
Training follows the same setup as UCI experiments, but with a reduced number of epochs (100). Our method
follows the same parameters as in the UCI experiment.

OOD Classification. We use the same networks described above for both MNIST and CIFAR10 as well as
the same parameters for our method.

A.2 Scalability and Computational Complexity

To conduct the experiment on the computational complexity depicted in Figure 5 we used a fully connected
network with hidden layers from 1 to 9. Each layer with 64 units and ReLu as activation function. For each
architecture, we measure the inference time and negative log-likelihood (NLL) performance. To compute
the posterior of each model we use 100 samples of the parameters. All experiments were conducted on an
NVIDIA RTX3080 GPU.
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B Pseudocode

Algorithm 1 Proposed Posterior Approximation Method
Require: Trained neural network fθ, dataset D, drift scaling α, sampling steps T , gradient steps M , particles

N , inner learning rate η, autoencoder latent dimension k, training epochs E
Ensure: Approximate posterior q(θ)

1: Phase 1: Parameter Sampling
2: Initialize N particles at θ∗ (MAP estimate)
3: for each particle i = 1, . . . , N do
4: Sample random drift direction di ← v

||v|| , v ∼ N (0, I)
5: for each step t = 1, . . . , T do
6: Apply drift: θi,t = θi,t−1 + αdi

7: for each gradient step m = 1, . . . , M do
8: Refine using gradient descent:
9: θi,t ← θi,t − η∇θL(θi,t)

10: end for
11: end for
12: end for
13: Store all sampled parameters Θ = {θi,t}
14: Phase 2: Learning Latent Posterior Representation
15: Train an autoencoder φ : Θ→ Z using:
16: for epoch e = 1, . . . , E do
17: Sample minibatch of subsequent parameters θ, θ′ ∼ Θ
18: Compute latent embeddings: z = φ(θ) and z′ = φ(θ′)
19: Compute negative parameters by reshuffling the batch: z′′

20: Compute contrastive loss:
21: L+ = (||z − z′|| − 1/T )2

22: L− = − log(||z − z′′||)
23: Ld = ||φ−1(z)− θ||
24: Update autoencoder using L = λ+L+ + λ−L− + λdLd

25: end for
26: Posterior Approximation and Sampling
27: Sample trajectory index j ∼ Categorical({zmax,j}N

j=1)
28: Sample interpolation factor ϵ ∼ U(0, 1)
29: Compute latent posterior sample: z = zMAP + ϵ(zmax,j − zMAP)
30: Map to parameter space: θ = φ−1(z)
31: return Posterior sample θ
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C Time Complexity Results

We provide a more detailed comparison of the computational complexity and the accuracy of our method
and the baselines for the UCI experiment and the images experiment.

Table 3: Logarithmic time complexity in seconds and accuracy for the UCI datasets.

Model Australian Breast Glass Ionosphere Vehicle Waveform

Lo
g

T
im

e

LA GN 1.88 ± 0.98 1.54 ± 0.8 1.56 ± 0.67 1.88 ± 0.72 3.05 ± 1.95 2.68 ± 0.48
LA LowRank 2.0 ± 0.22 1.24 ± 0.28 0.98 ± 0.37 1.47 ± 0.48 4.69 ± 0.1 3.68 ± 0.16

Riem LA 4.36 ± 4.06 2.42 ± 1.61 3.69 ± 3.63 2.38 ± 1.61 3.33 ± 3.0 3.26 ± 2.45
Lin LA 1.86 ± 1.0 1.52 ± 0.4 1.55 ± 0.48 1.89 ± 0.65 3.05 ± 1.95 2.68 ± 0.31

Riem Lin LA 1.9 ± 1.04 1.63 ± 0.6 1.67 ± 0.54 1.93 ± 0.65 3.08 ± 1.42 2.69 ± 1.53
ENSEMBLES 2.5 ± 0.02 2.14 ± 0.03 2.01 ± 0.02 2.2 ± 0.02 3.76 ± 0.01 3.32 ± 0.02

HMC 3.3 ± 0.2 0.54 ± 0.21 1.73 ± 0.09 0.36 ± 0.24 2.62 ± 0.42 1.43 ± 0.16
SGLD 1.38 ± 0.03 1.06 ± 0.07 0.95 ± 0.05 1.11 ± 0.04 2.58 ± 0.03 2.16 ± 0.03

ESPRO 0.61 ± 0.1 0.33 ± 0.16 0.19 ± 0.22 0.31 ± 0.18 1.66 ± 0.01 1.27 ± 0.03
SWAG 0.95 ± 0.01 0.62 ± 0.07 0.51 ± 0.08 0.68 ± 0.08 2.16 ± 0.02 1.72 ± 0.01

MetricBNN 1.66 ± 0.34 1.61 ± 0.29 1.64 ± 0.32 1.76 ± 0.35 1.8 ± 0.36 1.82 ± 0.41

A
cc

ur
ac

y

LA GN 0.49 ± 0.12 0.57 ± 0.21 0.17 ± 0.11 0.36 ± 0.09 0.45 ± 0.04 0.57 ± 0.14
LA LowRank 0.55 ± 0.05 0.60 ± 0.23 0.12 ± 0.06 0.33 ± 0.06 0.46 ± 0.04 0.57 ± 0.05

Riem LA 0.57 ± 0.04 0.72 ± 0.01 0.38 ± 0.01 0.93 ± 0.02 0.61 ± 0.01 0.86 ± 0.00
Lin LA 0.56 ± 0.06 0.62 ± 0.08 0.11 ± 0.09 0.91 ± 0.00 0.60 ± 0.01 0.84 ± 0.01

Riem Lin LA 0.75 ± 0.01 0.68 ± 0.03 0.48 ± 0.18 0.91 ± 0.03 0.58 ± 0.02 0.86 ± 0.01
ENSEMBLES 0.82 ± 0.02 0.71 ± 0.04 0.72 ± 0.04 0.92 ± 0.02 0.72 ± 0.00 0.83 ± 0.00

SGLD 0.73 ± 0.03 0.69 ± 0.01 0.52 ± 0.08 0.92 ± 0.02 0.50 ± 0.02 0.64 ± 0.03
ESPRO 0.82 ± 0.02 0.77 ± 0.01 0.67 ± 0.08 0.96 ± 0.01 0.70 ± 0.00 0.86 ± 0.01
SWAG 0.57 ± 0.10 0.71 ± 0.04 0.34 ± 0.05 0.92 ± 0.02 0.58 ± 0.01 0.86 ± 0.01

MetricBNN 0.50 ± 0.04 0.76 ± 0.01 0.57 ± 0.04 0.95 ± 0.01 0.58 ± 0.01 0.85 ± 0.01

Table 4: Logarithmic time complexity in seconds and accuracy for the image datasets.

Model MNIST FMNIST CIFAR10

Lo
g

T
im

e

LA GN 3.57 ± 0.02 2.24 ± 0.08 4.79 ± 0.16
LA LowRank 2.86 ± 0.11 1.67 ± 0.06 3.83 ± 0.02

Riem LA 5.22 ± 3.16 5.01 ± 4.09 5.31 ± 0.08
Lin LA 3.64 ± 2.80 3.67 ± 2.96 4.81 ± 0.06

Riem Lin LA 3.90 ± 3.18 3.91 ± 3.29 5.50 ± 0.09
ENSEMBLES 4.07 ± 0.04 4.03 ± 0.05 5.35 ± 0.01

SGLD 2.97 ± 0.05 2.97 ± 0.05 4.17 ± 0.08
ESPRO 2.12 ± 0.05 2.10 ± 0.05 3.93 ± 0.10
SWAG 2.51 ± 0.06 2.51 ± 0.06 4.20 ± 0.10

MetricBNN 3.61 ± 0.05 3.67 ± 0.09 4.22 ± 0.10

A
cc

ur
ac

y

LA GN 0.19 ± 0.02 0.19 ± 0.04 0.16 ± 0.04
LA LowRank 0.77 ± 0.04 0.45 ± 0.03 0.26 ± 0.06

Riem LA 0.71 ± 0.04 0.38 ± 0.03 0.45 ± 0.05
Lin LA 0.85 ± 0.03 0.67 ± 0.04 0.52 ± 0.04

Riem Lin LA 0.92 ± 0.02 0.75 ± 0.06 0.82 ± 0.07
ENSEMBLES 0.98 ± 0.01 0.87 ± 0.02 0.86 ± 0.02

SGLD 0.38 ± 0.14 0.25 ± 0.09 0.85 ± 0.10
ESPRO 0.96 ± 0.02 0.83 ± 0.03 0.86 ± 0.03
SWAG 0.97 ± 0.02 0.77 ± 0.02 0.16 ± 0.03

MetricBNN 0.97 ± 0.03 0.82 ± 0.02 0.85 ± 0.40
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D Sensitivity of the Hyper-Parameters for MetricBNN

We additionally provide experiments on the sensitivity of the hyper-parameters of MetricBNN. Figures 8 and
9 show the difference in the sampling distribution of MetricBNN when varying the parameters α, N , T . As
expected the variance increases with an increase in the number and length of the trajectories as well as the
norm of the drift term. Figures 10 and 11 provide the negative loglikelihood for the same varying parameters
plus the number of hidden dimensions of the autoencoder k for the posterior distribution.
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Figure 8: Samples from MetricBNN on the Toy regression problem with varying length of sampling (T ) and
number of particles (N).
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Figure 9: Samples from MetricBNN on the Toy regression problem with varying λ+ and λ− for training the
autoencoder (λd fixed to 1).
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Figure 10: Negative log-likelihood on the Toy regression experiment for MetricBNN with α = 0.01 and
different values of N and T (different subplots) and M and k (within each subplot).
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Figure 11: Negative log-likelihood on the Toy regression experiment for MetricBNN with α = 0.1 and different
values of N and T (different subplots) and M and k (within each subplot).
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E Principal Components Analysis on Estimated Posterior

We additionally present the two principal components of the posterior samples of both MetricBNN and HMC
for the Banana dataset with varying amounts of steps T in Figure 12. Given enough steps, the presented
method covers a large part of the parameter space.

Figure 12
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