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ABSTRACT

Generative diffusion models learn probability densities over diverse image datasets
by estimating the score with a neural network trained to remove noise. Despite their
remarkable success in generating high-quality images, the internal mechanisms
of the underlying score networks are not well understood. Here, we examine the
image representation that arises from score estimation in a fully-convolutional
unconditional UNet. We show that the middle block of the UNet decomposes
individual images into sparse subsets of active channels, and that the vector of
spatial averages of these channels can provide a nonlinear representation of the
underlying clean images. Euclidean distances in this representation space are
semantically meaningful, even though no conditioning information is provided
during training. We develop a novel algorithm for stochastic reconstruction of
images conditioned on this representation: The synthesis using the unconditional
model is "self-guided" by the representation extracted from that very same model.
For a given representation, the common patterns in the set of reconstructed samples
reveal the features captured in the middle block of the UNet. Together, these
results show, for the first time, that a measure of semantic similarity emerges,
unsupervised, solely from the denoising objective.

1 INTRODUCTION

Generative diffusion methods provide a powerful framework for sampling from probability densities
learned from complex high-dimensional data such as images (Sohl-Dickstein et al.| 2015;Song and
Ermonl 2019; Ho et al} [2020). The key to their success lies in deep neural networks trained to
estimate the score (the gradient of the log of the noisy image distribution), which is achieved by
optimization on a denoising task. Training and sampling algorithms for these models have been
extensively studied (Croitoru et al. [2023), but the score estimation properties that enable their
spectacular image generation capabilities are not understood. Since denoising generally relies on
distinguishing signal from noise, these score networks must somehow learn to identify and isolate
patterns and structures found in their training data, so as to preserve them while eliminating noise.
Here, we open the “black box™ of a score network to reveal this internal representation.

Here, we examine a UNet (Ronneberger et al., 2015), trained unconditionally for image denoising.
Prior work (Brempong et al., 2022; [Yang and Wang| 2023} | Xiang et al., 2023} Baranchuk et al.|
2021 [Mukhopadhyay et al., 2023) has shown that activations from such a model can be extracted to
perform downstream tasks — such as classification and segmentation — with considerable success. We
aim instead to understand and interpret those aspects of the internal representations of a denoiser that
arise solely from the denoising task. We demonstrate that this network computes a low dimensional
sparse set of activations in the output channels of the middle network block. This may be summarized
with a vector comprised of the spatial averages of these channels, which provides a representation of
the underlying clean image. We verify that this representation is stable when computed on an image
contaminated with noise over a broad range of amplitudes.

This representation exhibits a number of intriguing properties. Roughly, the channels summarized by
the representation vector fall into two categories: non-selective channels, which capture common
features present in many images; and selective channels, which are specialized for patterns that
occur in only a small subset of images. As a consequence, for diverse datasets, the representation
vectors lie within a union of low-dimensional subspaces, each of which is spanned by many of the
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common channels and a small subset of the specialized channels. We demonstrate that distances in
this space are meaningful: Images whose representation vectors are similar are also semantically
similar. This allows us to partition the images in the dataset by applying a clustering algorithm to
their representation vectors. The emergent clusters capture the general visual appearance of the
corresponding images, sharing both fine details as well as global structure, but are only partially
aligned with object category labels.

Finally, we develop an algorithm for stochastic sampling, using a reverse diffusion algorithm condi-
tioned on this representation vector computed from a target image. This procedure recovers a sample
from a set of images whose representation is the same as that of the target image. Visually, these
images are similar in terms of both local and global patterns, revealing both the commonality and
diversity of attributes encoded in the representation. To quantify this, we show that the Euclidean
distance between a pair of representation vectors strongly predicts the distance between a pair of
conditional distributions induced by the representations. Thus, we show that the denoising objective
alone, without any external conditioning, engenders learning of high level features that carry detailed
semantic information.

2 IMPLICIT SPARSE IMAGE REPRESENTATION

Diffusion models learn image densities from data using a network that is trained for denoising.
Specifically, given a noisy image x, = x + oz, with z € A/(0,1d) a sample of white Gaussian noise,
one trains a network sy () to minimize the squared error:

00) = Ew,a,sz - j(xo'>||2 = Ew,G,Z||S0(*TU) - 0’z||2. (H

The optimal solution is the conditional mean, which can be directly related to the score of the
underlying noisy distributions using a relationship published in Miyasawal (1961)), but generally
referred to as "Tweedie’s formula" (Robbinsl |1956; |[Efronl |2011)):

‘%(xo) = ]E[x‘xa] =Ts + 0'2va 1nga(xa)- 2)

Thus, the trained network provides an approximation of the family of score functions for all o.
Reverse diffusion methods draw samples through iterative partial application of the learned denoiser,
thereby using this approximate score to ascend the probability landscape (Sohl-Dickstein et al.| [2015}
Song et al., |2020; Ho et al.| 2020).

2.1 SPATIAL AVERAGES OF ACTIVATIONS

We adopt a convolutional UNet architecture (Ronneberger et al.,[2015), a smaller and more readily
analyzed architecture than the most recent implementations, that nevertheless offers strong denoising
performance. The model consists of three main components: a set of encoder blocks (the downsam-
pling path), a middle block, and a set of decoder blocks (the upsampling path) (see Appendix [A]for
details). We examine the activations of these hidden layers to understand how the noisy image is
transformed to produce the score. To reduce the dimensionality, we consider the simplest summary
of channel activations, a;(z. ), consisting of the spatial averages of all channels at the output layer
of each block, notated by a;(z,) € R% . The components of the vector a; are nonnegative (due to
half-wave rectification (ReLU) nonlinearities), and carry information about the features encoded by
their corresponding channels. Because of the convolutional nature of the network, the activations
within each channel indicate the presence or absence of a feature in different spatial locations. Thus
if a feature associated with channel i € (0, d;) is present somewhere in the input image, a;(z,)[i]
will be positive, otherwise zero.

It is worth noting that the structure of the UNet architecture imposes certain properties on a;.
Idealized convolutions are translation equivariant, hence the spatial averages of their activations
are translation invariant w.r.t to the extracted features and do not carry information about location.
For ergodic processes, these averages are approximations of statistical moments (expected value of
nonlinear functions), and such measurements have been used for representation of visual texture
Julesz| (1962)); [Zhu et al.| (1998)); |Portilla and Simoncelli| (2000); |Victor et al.| (2017). However,
translation equivariance is imperfect for UNets (and most other convolutional networks) since it is
violated by zero-padded boundary handling, and downsampling operations. Both effects are more
prominent in the deeper blocks of the encoder, which have undergone more downsampling, and for
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Figure 1: Channel sparsity of input and output layers of a UNet trained on ImageNet. Histograms
show participation ratios (PR), of the spatially averaged input channels (orange) and output channels
(green) for individual blocks. The middle block and decoder blocks exhibit increases in sparsity
(i.e. reduction in PR). Blocks {E7, D;} are not included since they have only one input/output
channel, receptively. This is evidence that encoder blocks extract features to isolate noise and signal,
and middle block and decoder blocks preserve those channels containing signal while suppressing
those containing noise. (Notation: encoder blocks { E; }, middle block (M), decoder blocks { Dy},
downsampling (d), upsampling (u),““skip” connections.) See Figure for other models.

which the boundary influence encroaches on a larger spatial portion of the channels. In these cases,
a; can carry information about the location of features in addition to their presence. This effect
coincides with the growth of the receptive field (RF) in the deeper blocks. As a result, a; is expected
to carry location information for larger features (Kadkhodaie et al.|[2023; [Kamb and Gangulil 2024).

2.2 DENOISING AND CHANNEL SPARSITY

One of the difficulties in studying image representation in diffusion models is that it is not obvious
where to look. We aim to locate the layers whose feature vectors, a’s, well represent the clean image
underlying the noisy input image. Such feature vectors would be rich enough to capture patterns
and regularities of the image behind distortions caused by the noise in the input. Unlike Variational
AutoEncoders (VAEs) (Kingma et al., 2013)), for which the encoder, bottleneck and decoder are
defined by their distinct assigned roles through a dual objective function, the components of the UNet
denoiser are only defined architecturally, and the optimization is solely driven by a single end-to-end
denoising objective. As a result it is not clear where the denoising occurs.

Some insight arises from considering the operation of denoisers designed in the pre-DNN era.
Traditionally, image denoisers operate by transforming the noisy image to a latent space in which the
true image is concentrated (sparse), and the noise is distributed (dense). Then the noise is suppressed
and the image preserved. Finally, the latent representation is transformed back to the image space.
This basic description captures the Wiener filter (operating in the frequency domain), and thresholding
denoisers which are typically applied within a multi-scale wavelet decomposition (Milanfar, [2012).
In all cases, more concentrated signal representations lead to better separation of noise and signal,
hence superior denoising.

In the era of deep learning, DNNs optimized for denoising far outperform traditional solutions.
Assuming the same principles apply, we expect to observe an increase in representation sparsity in
portions of the network responsible for removing noise. To search for this locus, we measure the
sparsity of a at the input and output layers of each block of a UNet trained on ImageNet. Sparsity of
a is quantified by the normalized participation ratio (PR), the squared ratio of L; and L, norms:

where d is the ambient dimensionality of the space, i.e. number of channels in the layer. PR € (0, 1],
and provides a soft measure of dimensionality: small values reflect low dimensionality (sparsity), and
large values indicate high dimensionality (density).
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Figure 2: Stability of a across noise levels, for different network blocks of a model trained on
ImageNet64. Plots show cosine similarity of a(z,, ) and a(x,, ), for o4 = 0.5, as a function of o2. @
is most stable in the middle block (M). Note that a collapses as o falls to zero, for which the denoiser
should compute the identity function. See Figurerl;flfor other models.
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Figure 3: Channel selectivity. Left: Participation ratios for each channel over ImageNet. Distribution
is bimodal, corresponding to channels that are highly specialized (and infrequently active) on left,
and commonly used on right. Right: The panels show the set of images that maximally activate each
of four specialized channels, revealing selectivity for rectangular periodic lattices (PR= 0.19), a bird
on a branch (0.18), cylindrical objects(0.19), and dog faces (0.26). See Figurefor other models.

Figure [T]shows distributions of sparsity for input/output layers of blocks in the UNet denoiser trained
on ImageNet64 dataset. Both encoding blocks offer a substantial decrease in sparsity of a, but we
observe a stark increase of sparsity in the middle and decoding blocks. This suggests that removal
of noise, through suppression of channels whose activations are primarily carrying noise, starts at
the middle blocks, and then continues in the decoder blocks. The decoder block j, hence, denoises
the features present in a; passed from encoder j, conditioned on the denoised features coming from
below. This is evidence that the encoder transforms the noisy image to a hierarchical representation
in preparation for denoising, by extracting image structures learned from the training set. Thus, the
representation lends itself to investigation at the output layers of the middle and decoder blocks,
where image features are exposed after removal of noise. Figure[I0]shows this phenomenon in three
additional UNet models trained on Texture, CelebA, and LSUN-Bedroom datasets.

2.3 ROBUSTNESS OF REPRESENTATION TO NOISE

To elucidate the relationship between x and a, we need first to clarify the effects of noise. The vector
a depends on both the noise amplitude, o, and the particular noise realization . In the context of
diffusion sampling algorithms, the former translates to the evolution of representation with time. Not
surprisingly, the variance in a grows with noise level. To remove this variability, we take the mean
of @ across noise realizations, E, [a(z + 0z)]. Figuresand show the effect of noise level on a.
Variability due to noise level depends on the block depth, but interestingly, @; is most stable in the
middle block: increased noise level mostly increases the amplitude but not the direction of @;. The
noise resilience of @ at the output layer of the middle block makes it a good candidate for study. Thus,
for the remainder of this paper we focus on the representation in this layer, which we notate as:

d(zy) =E, [as(x + 02)].

2.4 DENOISING AND CHANNEL SELECTIVITY

In this section, we examine the components of the representation vector ¢, and their relationship to the
content of the (clean) image z. For each channel, ¢, in the output layer of the middle block we quantify
@13

its (non-)selectivity using the participation ratio: PAEGIE where ¢(i) = (p(x14)[i], .., D(Xno)[E])
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Figure 4: Specialized channels capture visual attributes and composition of an image. Left: Example
image that activates several specialized channels. Right: Each panel shows the set of images that
maximally activate one of the specialized channels activated by the example image, corresponding to
images of people, periodic texture patterns, and images with left-right reflective symmetry. All three
elements are present in the example image.

is the concatenation of the i*” entry of ¢ for all n images in the dataset. This provides an estimate of
the number of active channels, with smaller values indicating more selectivity. Figure [3]shows the
distribution of selectivity for all 512 channels in the middle block of a UNet trained on ImageNet64.
The distribution is bimodal. Channels fall roughly into one of the two categories: selective channels
that respond only to a small fraction of images in the set, and non-selective channels that respond to
many images.

Specialized channels respond to specific features or patterns, and have negligible responses for most
images in the dataset (Bau et al., 2020). Figure 3] shows sets of images that maximally excite four
example specialized channels. The pattern shared across these images indicates the feature extracted
by that channel. Since each image only contains a subset of patterns out of all the patterns present in
the data distribution, only a handful of specialized channels are activated for each image. Figure 4]
shows an example image along with the top three specialized channels it activates. Each channel is
selective for a particular property of the image. Over the entire dataset, all channels are used, but
different channels are used for different images.

More generally, channel selectivity predicts some statistical properties of the channels (Figure [T3).
The marginal distribution of ¢ values in specialized channels is heavy-tailed, but common channels
are closer to Gaussian. Specialized channels are spatially sparse while common channels are spatially
denser. Additionally, PCA analysis on activation maps of specialized channels shows that they
are highly concentrated in a few directions while the common channels are explained with more
dimensions. Finally, less selective channels respond to a larger set of frequencies and orientations,
and are the most stable w.r.t to noise level. These results imply that the common channels capture
shared or common image features, such as brightness, global structure of a scene, etc.

2.5 DENOISING AND EMERGENT SEMANTIC SIMILARITY

An immediate consequence of sparsity and channel selectivity is that the ¢’s lie in a union of
subspaces in R?, whose dimensionality lies approximately in the range [0.2d, 0.3d] (from Figure
[I). Each subspace corresponds to a combination of features that are likely to occur simultaneously
(Figure[3). What do images whose ¢’s lie on the same subspace have in common? To examine this,
we gathered images from the dataset with highest cosine similarity to a given target image in the
representation space. Figures [5]and Figure [T4] show two sets of those images. Images that are closest
in the ¢ are semantically similar, in stark contrast to images that are closest in the pixel space.

The fact that pairwise Euclidean distances in the ¢ space are meaningful implies that similar images
cluster together within the subspace. To test this, we applied a K-Means clustering algorithm (Lloyd,
1982) to the ¢ vectors computed from the ImageNet dataset (See Appendix [B). Figure[6]shows that
within clusters the ¢’s are well concentrated around centroids, and the centroids are well separated:
centroids of adjacent clusters are at least 2 standard deviations apart. The ¢’s of human labeled
classes, by comparison, are less well separated. As a result, we expect images from different classes
to appear within the same cluster. Examples are shown in Figure 6]

Images within same clusters are semantically similar: they clearly share location-specific global
scene structure, as well as location-nonspecific detailed elements (e.g., objects and their constituent
parts, texture). However, in many cases, the similarity is not the object identity: a variety of circular
objects appear in one cluster, dogs on a grass background in another, and a variety of bugs on a flat
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Figure 5: Union of subspaces. Left: Two sets of images whose ¢’s lie on two subspaces. Mid-
dle/Right: Three components of the ¢ vectors (out of the 512) for these images. The vertical axis
corresponds to a common channel, while the other two correspond to specialized channels, each
selective for only one image cluster. As a result, the ¢ vectors lie on a union of two-dimensional
subspaces in the displayed three dimensional ambient space.
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Figure 6: Representation vectors, ¢, are strongly concentrated within emergent clusters, less so with
respect to object classes. Top Left: Euclidean distance between centroids of two clusters plotted
against square root of their average variance along the line connecting the centroids, for 100 randomly
selected cluster pairs. For all pairs, centroids are more than two standard deviations apart, and thus
well-separated. t-SNE visualization of 10 randomly selected clusters. Top Right: Analogous plots
for pairs of human-labeled classes, which are substantially more overlapping. Bottom: Each row
contains images randomly selected from a cluster. Images within a cluster are visually similar and
share global organization and semantic patterns, but they not necessarily from the same class. For
example, dogs are clustered based on their pose, but not their breed. More examples in Appendix

background in another. This reveals that the type of patterns that are useful for computing the score
are not object identities. What connects images within the same cluster is "the gist of the scene"
(Potter and Levy}, [1969; [Oliva and Torralba, [2001}; [Olival, 2003}, [Oliva and Torralba, [2006}; [Sanocki
et al.,2023), which is only partially consistent with human labeled class memberships. Remarkably,
these emergent clusters arise solely from learning the score, by minimizing a denoising objective.
The network is trained without labels, augmentations, or regularization to induce any specific type of
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similarity or grouping (e.g membership in the same class). Therefore proximity in the representation
space defines a fully unsupervised form of similarity in the image space.

3 STOCHASTIC IMAGE RECONSTRUCTION BY CONDITIONAL SAMPLING

In order to define the representation more precisely, we propose an algorithm to “decode” ¢. As with
any other representation, decoding ¢ is essential to exposing what it represents. Computing ¢ involves
taking spatial average of the activations. Hence, ¢ represents not only the image it is computed from,
but a whole set of images which have different activations with the same spatial average. In other
words, ¢ is a many to one function. The goal is to sample from p(x) using a diffusion algorithm,
while requiring that all samples have the same ¢(x“) computed from a target image, 2¢. Since the
algorithm samples images that are consistent with the network’s own representation of a target image,
it is a stochastic reconstruction from the representation.

The algorithm is obtained by augmenting a reverse diffusion algorithm with a soft projection onto
the non-convex set in pixel space defined by ¢. To achieve this, the score step is alternated with
an iterative projection step, where the sample is modified until its representation matches ¢(z¢).
This matching step is analogous to methods used to generate texture images from their measured
statistics (Portilla and Simoncelli| [2000). The matching is implemented by minimizing the Euclidean
distance between the sample and target representations, ||¢(z) — ¢(z¢)||?, which is achieved by
back-propagating the gradient of the loss through the first half of the network (i.e. @4(z,)). The
algorithm, hence, consists of two alternating steps described in Algorithms [2]and [T} At every time
point in the synthesis, first the ¢ of the sample is matched to the target’s, via back propagating a
gradient in the score network. Then, the score-directed step pushes the sample closer to p(z) by
removing noise via using the decoder of the UNet.

Algorithm 1 Stochastic reconstruction from the representation

Require: score network s, conditioner image x¢, sigma schedule (o, ..., 0¢), distribution mean m
Draw z1 ~ N(m, 021d) > Initialize sample
fort e (T,...,1) do > Alternate between matching and score steps
Draw z ~ N (0,1d)
T = Te+ 012
x+ < Guidance step (z+, z7) > Update x; to match representations using Algorithm
Draw z ~ N(0,1)
Tt < Tt + 8(x¢) + 0t—12 > Update x; using the score
end for
x < x, + s(x1)
return x

Algorithm 2 Guidance step

Require: score network s to compute ¢(z), sample x, conditioner image x¢, learning rate of optimizer 7

Gze = ¢(xf) and ¢z, = (1) > Compute representations

L(z) = [|p(we) — doel? > Compute distance between representations

while not converged do > Minimize distance by backpropagating gradient through e
Vo L(2t) = (pug — &)V, d(xr) > Compute gradient
Tt <= xp — NV, L(2t) > Update

end while

return x;

This procedure can be described as a "self-guided" sampling algorithm , where the synthesis is guided
by the network’s own representation. Matching the ¢’s changes the trajectory by forcing the sample
to be within the set of images whose ¢ vectors are equal to the conditioner’s. The matching step does
not change the noise level (Figure[20), so it is in a sense "orthogonal" to the score step. This means
that matching iterations guide the sample in the domain of images that are high probability according
to po(x4) to reach the set of images defined by ¢(x%). A conceptual diagram of the algorithm is
shown in Figure
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Figure 7: Samples from the stochastic reconstruction algorithm |1, using models trained uncon-
ditionally on Texture, LSUN-Bedrooms, ImageNet64, and CelebA datasets (from top to bottom
row). Image at center of each panel is an original image from which the target ¢ is computed. The
surrounding eight images are samples, conditioned on that ¢. Semantic similarities between samples
within each panel reveal image structures captured by ¢. See Appendix [C|for more examples and
also samples from the same models without conditioning.

Figure[7]shows samples generated by the algorithm. In each panel, the representation is obtained from
areal image. Then the stochastic reconstruction algorithm is used to generate 8 images with the same
¢. The conditionally generated samples are not identical, but all are visually similar to the conditioner
image x¢. Importantly, they share location-specific global structure as well as location-nonspecific
details. Thus, the visual commonalities and diversities in the samples reveal what is and is not
captured by the spatial averages of the feature vector in the middle block.

Each ¢ characterizes a conditional density, p(z|¢), from which Algorithm draws samples. We show
that Euclidean distances between ¢’s are correlated with distances between conditional densities they
induce. This is captured by a Euclidean embedding property, which ensures that the separation of
@’s is related to a distance between the probability distributions p(z|¢), and hence that there exists
0 < A < B with B/A not too large, such that

Yoy, xy , Alld(x1) — ¢(2)]|* < d*(p1,p2) < Bllg(a1) — d(x2)|> 3)
‘We establish a distance between two conditional densities as

d*(p1,p2) =/ (Em [[IVlogp1 — Viog pa||*] + Ey, [V 1ogp1 — Vg pa||] ) odo. (4
0

where p1 = p, (x4 |¢1) and pa = p, (x5 |¢2). This distance is based on the difference in the expected
score assigned to =, by p(z,|¢p1) versus p(z,|p2), integrated across all noise levels. It provide a
distance by symmetrizing the Kullback-Leibler divergence KL(p||¢) between two distributions p and

g proved in 2012):
KL(p|lq) = / By, [V, 108 00 (20) — Va, log o () 2] oo
0
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Figure 8: Left: Schematic of alternating matching and score steps. Right The distance between
random pairs of ¢ vectors is strongly related to the distance between the pair of conditional densities
they induce.
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The right panel of Figure (8| confirms that, for a set of random pairs of images, Euclidean distances of
their representations satisfy the Euclidean embedding inequality (3) with % = 2.9. See fig. for an
intuition about what the symmetrized distance measures.

4 DISCUSSION

Generative diffusion models have shown incredible success in learning and sampling from image
densities. This feat is due to near minimum mean square error of denoising networks used in these
algorithms. We hypothesized that these networks must construct an internal representation of image
features that differentiate signal from noise, and we sought to elucidate that representation. We found
that the vector of spatial averages of channels in the middle block of a trained UNet can provide
a signature of this representation. The components of this vector are sparse and thus the scores
of complex image distributions have a low-dimensional structure, which is made explicit in these
networks. We also found that the geometry of the representation space is meaningful and nearby
images in representation space are semantically similar in pixel space. We showed that unsupervised
clustering of the representation vectors yields well-separated groups of images that are semantically
related, but only partially aligned with object identity. We developed a stochastic reconstruction
algorithm, and showed that Euclidean distances in representation space are correlated with the
symmetrized KL divergence of reconstruction distributions. These results show that a network trained
“bottom-up”, using only a denoising objective and no external conditioning, labeling, augmentation
or regularization, can nevertheless learn a rich and accessible representation of image structure.

Limitations and future directions. Many open questions remain to be explored. One concerns a
deeper understanding of the geometry of the representation space. We observed that the denoiser
transforms a union of manifolds into a union of subspaces. What is the distribution of the dimension-
alities of these subspaces, and how many of them, out of all possible ones, are spanned by the ¢’s?
Importantly, can we estimate the joint distribution of ¢’s within these subspaces? A more comprehen-
sive understanding of the latent space could be used to generalize Algorithm [I]to other conditional
settings—for example, sampling from an emergent cluster given its centroid, or combining features
to create new clusters, thereby enabling out-of-distribution generalization. Another direction is to
investigate the role of the encoder and decoder blocks in representing image structure, and how these
representations depend on the noise level. This requires analyzing the interaction between layer
depth and noise level, a relationship that is complex but essential to characterize. Finally, while
our analysis has focused on fully convolutional neural networks, it is important to examine whether
similar representations with comparable properties also arise in more modern architectures such as
transformers.
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REPRODUCIBILITY STATEMENT

All the results in this paper are fully reproducible: The datasets used are publicly available (expect
for the Texture dataset). The link to the code repository on GitHub will be resealed after the review
process to preserve anonymity.
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A ARCHITECTURE, DATASET, TRAINING

A.1 ARCHITECTURE

We used the original UNet architecture (Ronneberger et al,[2015)) with a few modifications. The
architecture is made up of 3 encoder blocks, 1 middle block, and 3 decoder blocks. The number of
layers in each block is 2, 3, and 6 for the encoder, middle and decoder blocks. Each layer consists of
3 x 3 convolutions with zero boundary handling, Layer normalization and ReLLU. The number of
channels is 64 in the first encoder block and then grows by a factor of two after each downsampling
operation, and decreased by a factor of two after each upsampling operation. This results in 64,
128, 256 channels in the encoder blocks, 512 channels in the middle block, and 256, 128, 64 in the
decoding blocks. The total number of parameters is ~ 13m.

The receptive field size at the end of the middle block is 84 x 84 surpassing the spatial size of the
input images in the ImagNet dataset. This is required for capturing large structures in the absence
of attention blocks (Kadkhodaie et al.,[2023). The depth of decoder blocks is increased in order to
increase the expressivity of the denoising operations. This is again related to the size of the receptive
field at the end of each decoder block with respect to the representation at the end of the middle

block.
}’I‘ H +‘+‘ >
i +
.,I.I IoI-»IAI-»I-»I-PI + Convad + LayerNorm + ReLU
¢ Downsampling
+ 4

f Upsampling
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> R - B > MR
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Figure 9: Fully convolutional UNet architecture used in our experiments.

A.2 DATASETS

We show results from models trained on 4 public datasets:

» ImageNet64: down-sampled version of ImageNet data set (Deng et al., 2009) , 3 x 64 x 64.
The training set consists of ~ 1.2m images and the validation set consists of 50k images, of

objects, animals, scenes, etc. We did not use the class labels for training.

* LSUN-Bedroom dataset (Yu et al.| 2015)): down-sampled to 3 x 80 x 80 images. We trained
the model on a subset of images randomly selected. Training set size ~ 300, 000 images.

* CelebA dataset (Liu et al.,[2015)): down-sampled to 3 x 80 x 80 images. Training set size
~ 200, 000 images.

 Texture dataset (collected by the authors, not published), cropped to 3 x 80 x 80 images.
Training set size ~ 230, 000 images.
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A.3 TRAINING

The network was trained to minimize mean squared loss using Adam optimizer, with an initial
learning rate of 0.001 with a decay of a factor of 2 every 100 epochs. Total number of epochs was set
to 1000. The size of each batch was 1024.

The standard deviation of noise was drawn randomly for each image from a \/LE distribution to

emphasize the small noise levels, since we have observed that the it takes more epochs for the
denoising MSE to plateau for small noise levels under uniform ¢ distribution.

B PROPERTIES OF REPRESENTATION

B.1 REPRESENTATION SPARSITY
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Figure 10: Change in sparsity for representations in models trained on Texture, LSUN-Bedroom,

and CelebA datasets, from top to bottom row. Channel sparsity increases in the Middle block across
dataset. See caption FigureElfor detailed description.
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Bedroom, and CelebA dataset. See caption of Figure|2| for detailed description.
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B.2 CHANNEL SELECTIVITY
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Figure 12: Channel selectivity for three models trained on Texture, LSUN-Bedroom, and CelebA
datasets. Texture dataset: Distribution of channel selectivity shows that the vast majority of
channels have low PR, corresponding to channels that are highly specialized (and infrequently active),
concentrated on the left. The panels show the set of images that maximally activate each of four
specialized channels, revealing selectivity for different texture patterns. PR of channels from left
to right for texture model: 0.013,0.024,0.027,0.038. LSUN-Bedroom: Channel selectivity is
distributed more evenly with more common channels compared to the models trained on ImageNet
and Texture datasets. This can be attributed to the presence of more common patterns and structures
within the images of the dataset, as they all depict bedrooms. The PR of the four channels shown are
0.015,0.053,0.018, 0.36,, from left to right. CelebA: Most channels in this model respond to the
majority of images. This can be attributed to the fact that all images in the dataset share the global
layout and coarser level structures since the faces are aligned and centered. The four channels shown
here have PR of 0.29,0.309, 0.36, 0.50.
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Figure 13: Channel selectivity predict signature statistical properties of the channels. From top to
bottom row, models trained on Texture dataset, LSUN-bedroom, ImageNet and CelebA. From left
to right: 1) marginal distribution of ¢[¢] in 4 specialized channels. 2) marginal distribution of ¢[i] in
4 common channels. 3) channel selectivity is correlated with spatial sparsity within the channel. 4)
The spatial variance of specialized channels is explained with fewer dimensions.

B.3 SEMANTIC SIMILARITIES IN REPRESENTATION SPACE

Figure 14: Nearby ¢’s correspond to images that are semantically similar. Left: Two sets of images,
each showing a target image (upper left), and a set of images whose ¢’s are closest to that of the
target image in terms of cosine similarity. For the butterfly image, proximity in latent space is aligned
with the object identity. For the tray of food, proximity is aligned with images depicting collections
of similar objects. Middle: Same as left, but showing images closest to the target in terms of cosine
similarity in the pixel domain. Right Symmetrized KL divergence between the distributions of
conditional samples, plotted against Euclidean distance in the representation, for randomly selected
pairs of ¢ vectors.

16



Under review as a conference paper at ICLR 2026

clustering. We used the python implementation of K-Means clustering algorithm, from the
sklearn package.

Clustering at different noise levels leads to similar results, consistent with stability of ¢ over noise
levels shown in Figure[2] This is not true when noise is very small, since ¢ collapses to zero at small
noise levels.

K-mean clustering algorithms are sensitive to initialization, so the assignments of images to clusters
changes with initialization, but always leads to the same semantic grouping. Even initialization from
the centroids of the pre-defined class labels results in similar clusters. This means that even when we
give the algorithm a chance to cluster the images within the same class together, it pushes away from
that and re-allocate the assignments such that the images are grouped together based on "the gist of
the scene" as opposed to object identity.

Figure 15: Continued from Figure@ Random images from different clusters are shown in each row.
Different cars with the same orientation are clustered together, but similar car brands with different
orientations are assigned to different clusters. (see rows 2 and 3).
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Figure 16: Random images from different clusters are shown in each row. Obtained from the model
trained on Texture dataset.

C STOCHASTIC RECONSTRUCTION ALGORITHM

We build our sampling algorithm based on the algorithm in (Kadkhodaie and Simoncelli, 2021)) which
does not require the noise level and follows an adaptive step size schedule. Hence, this network does
not take the noise variance as an input and is a blind denoiser. This setup has the advantage that
simplifies the network, which is important for analysis of the internal layers of the model.
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Figure 17: More samples from model trained on Texture dataset

Figure 18: More samples from model trained on ImageNet64 dataset. The samples are visually similar
to the target image at the center of each panel. Interestingly, the location of the large, long-ranging
image patterns are persevered in the samples, while the fine structures and details are diverse in their
location with respect to the target image. See caption of Figurem
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Figure 19: Samples generated unconditionally from models trained on Texture, CelebA, LSUN-
Bedrooms, and ImageNet64 datasets respectively.
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Figure 20: Matching does not change the noise level o. This plots shows the standard deviation
of noise on the image before and after the matching step, for a collection of random test images,
at different input noise levels. o after matching is measured by the norm of score divided by the
square root of ambient dimensionality, ||s(z,)||/+/n. This is an approximation of the strength of the
remainder noise on the image by assuming a Gaussian prior.

Figure 21: A pair of clean images, x and z’, from ImageNet dataset is shown on the first column.
The distance between the the two densities induced by the ¢’s obtained from these two images can be
defined and computed using Equation (@). The first term in the integrand is the difference between
two conditional scores: the score of x, given ¢ and the score of x, given ¢’. This difference is
computed and integrated at all o levels (and symmetrized). For these two images, this difference is
visualized in the green versus red boxes.
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