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ABSTRACT
The training of the state-of-the-art Deep Neural Networks (DNNs) consumes massive amounts of energy, while the
human brain learns new tasks with remarkable efficiency. Currently, the training of DNNs relies almost exclusively
on Backpropagation (BP). However, BP faces criticism due to its biologically implausible nature, underscoring
the significant disparity in performance and energy efficiency between DNNs and the human brain. Forward-
only algorithms are proposed to be the biologically plausible alternatives to BP, to better mimic the learning
process of the human brain and enhance energy efficiency. In this paper, we propose a biologically-plausible
forward-only algorithm (Bio-FO), not only targeting the biological-implausibility issues associated with BP, but
also outperforming the state-of-the-art forward-only algorithms. We extensively evaluate our proposed Bio-FO
against other forward-only algorithms and demonstrate its performance across diverse datasets, including two
real-world medical applications on wearable devices with limited resources and relatively large-scale datasets such
as mini-ImageNet. At the same time, we implement our proposed on-device learning algorithm on the NVIDIA
Jetson Nano and demonstrate its efficiency compared to other state-of-the-art forward-only algorithms. The code
is available at https://github.com/whubaichuan/Bio-FO.

1 INTRODUCTION

The state-of-the-art Deep Neural Networks (DNNs) con-
sume massive amounts of energy and pose a threat to the en-
vironment (Savazzi et al., 2022). A prime example is GPT-3,
a Large Language Model (LLM), that consumes over 1000
megawatt-hour for training alone, which is equivalent to a
small town’s power consumption for a day (Patterson et al.,
2021). In contrast, the human brain learns more efficiently,
consuming only around 20 watts (Hsu, 2014; Balasubrama-
nian, 2021; Madhavan, 2024). This is particularly relevant
in the context of Internet of Things (IoT) and mobile de-
vices, which are generally extremely limited in terms of
resources, namely, computing power, memory storage, and
battery/energy budget (Shi et al., 2016; Sopic et al., 2018;
Sabry et al., 2022; Huang et al., 2024). Nevertheless, today,
DNNs are trained almost exclusively based on the Back-
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propagation (BP) algorithm (Rumelhart et al., 1986), which
is known to lack biological plausibility (Crick, 1989; Lilli-
crap et al., 2016). As a result, adopting a more biologically
plausible approach to training DNNs offers the potential to
better mimic the learning processes of the human brain and,
in turn, enhance energy efficiency (Hinton, 2022).

The biological implausibility of the BP algorithm stems
from several of its inherent requirements/assumptions:
weight transport (Grossberg, 1987; Burbank & Kreiman,
2012), where BP requires symmetric weights between the
forward and backward passes. The error signals are back-
propagated by multiplying the transpose of the exact same
forward weights, which is not known to exist in the bio-
logical brain (Lillicrap et al., 2016; Woo et al., 2021); non-
locality (Whittington & Bogacz, 2019), where the weights
update in BP relies on all the nodes from the top to the
bottom layers, which means that the error signals span long
distances from the output layer in the network, while biolog-
ical synapses learn from the activations of the neurons they
are connected to. Therefore, BP violates the inherent local-
ity of biological synaptic plasticity (Hebb, 2005); update
locking (Jaderberg et al., 2017), where the weights update
needs to wait for all the dependent layers in the forward pass
to complete, which is not consistent with synaptic plasticity
(Wang et al., 2016; Tang et al., 2022); and frozen activities
(Liao et al., 2016), where the intermediate activations are
frozen to be used for weights update (Cai et al., 2020b),
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while in the biological brain, the activities are influenced
by feedback connections (Lillicrap et al., 2020) and exhibit
dynamic adaptation over time (Koban et al., 2019; Blanken
et al., 2021; Barabási et al., 2023).

The inherent biological implausibility of BP has led
to major criticisms, prompting the exploration of
biologically-plausible forward-only algorithms, focusing
on training DNNs without resorting to the biologically-
implausible back-propagation scheme, to bridge the exist-
ing performance–efficiency gap between the DNNs and
the cortex (Srinivasan et al., 2023). Biologically plausible
algorithms lead to a path towards neurally-inspired deep
learning (Miconi, 2017; Richards et al., 2019; Tang et al.,
2022), and offer the potential to relieve several challenges
in the deep neural networks domain (Gupta et al., 2022),
including computational intensity (Zhang et al., 2019; Sing-
hal et al., 2023; Aminifar et al., 2024; Huang et al., 2023),
energy/memory intensity (Hinton, 2022; Shervani-Tabar &
Rosenbaum, 2023; Huang & Aminifar, 2025b), the demand
for massive labeled datasets (Feldmann et al., 2019; Li et al.,
2020; Vishwakarma et al., 2024), and vulnerability to per-
turbations (Büchel et al., 2021; Ma et al., 2023). To date, a
range of forward-only techniques, including PEPITA (Del-
laferrera et al., 2022b) and the Forward-Forward (FF) al-
gorithm (Hinton, 2022), have emerged. However, these
forward-only algorithms only partially address the afore-
mentioned biological implausibility issues, and lack the
capacity to resolve these issues associated with BP, i.e.,
weight transport, non-locality, update locking, and frozen
activities, as shown in Fig. 1.

In this paper, we propose an efficient on-device learning
algorithm, based on the biologically-plausible forward-only
algorithm, called Bio-FO. Bio-FO targets the previously-
mentioned biological implausibility issues and can be flexi-
bly extended to common networks and relatively large-scale
datasets. Firstly, Bio-FO eliminates the symmetric weights
in the backward pass by exploiting an auxiliary classifier
with the fixed random matrix instead, hence avoiding the
issues of weight transport. Secondly, the training of Bio-FO
is performed locally, without the need for non-local informa-
tion/global error, hence mitigating the issue of non-locality.
Thirdly, the weights are updated as soon as the input to the
layer (i.e., the activation of the previous layer) is available,
addressing the issue of update locking. Finally, the activa-
tions of the intermediate layers do not need to be frozen
and, therefore, the training of each layer could be performed
simultaneously, avoiding the issue of frozen activities.

A comprehensive evaluation of our proposed Bio-FO is
conducted in the context of three widely-used datasets by
the forward-only algorithms (Frenkel et al., 2021; Hinton,
2022; Dellaferrera et al., 2022b), including MNIST (LeCun,
1998), CIFAR-10 (Krizhevsky et al., 2010), and CIFAR-100

(Krizhevsky et al., 2010). In addition, to demonstrate the
relevance of the proposed forward-only scheme, we also
consider two real-world medical applications on wearable
devices, namely, seizure detection (Shoeb, 2009) and ar-
rhythmia classification (Mark et al., 1982), for real-time
and long-term monitoring in ambulatory settings. Mobile
and wearable devices are often extremely limited in terms
of computing resources, memory storage, energy, and bat-
tery life, and present an excellent case study and motivation
for forward-only algorithms because biologically-plausible
forward-only algorithms offer more resource-efficient neu-
ral network operations (Lin et al., 2016; Hinton, 2022). The
results illustrate the relevance of our proposed forward-only
algorithm. Our main contributions are summarized below:

• We propose a resource-efficient on-device learning
algorithm, namely Bio-FO, based only on forward
passes and without the need for BP, targeting the bio-
logical implausibility issues of weight transport, non-
locality, update locking, and frozen activities, as shown
in Fig. 1. Our proposed Bio-FO can directly capture
structure/patterns and sparsity and can be extended to
Locally Connected (LC) Network and Convolutional
Neural Network (CNN).

• We extensively evaluate our proposed on-device learn-
ing algorithm in terms of prediction performance.
Our proposed Bio-FO outperforms the state-of-the-
art forward-only algorithms, namely DRTP, PEPITA,
and FF, across several datasets, including CIFAR-10,
CIFAR-100, CHB-MIT, and MIT-BIH. Overall, Bio-
FO demonstrates the closest classification performance
to BP. Our evaluation also shows that Bio-FO out-
performs other forward-only algorithms on relatively
large-scale datasets such as mini-ImageNet.

• We implement our proposed on-device learning algo-
rithm on the NVIDIA Jetson Nano and evaluate it in
terms of resource overheads, including computation
requirements and energy consumption. Our proposed
Bio-FO exhibits faster convergence during the train-
ing process, compared to DRTP, PEPITA, and FF. At
the same time, our evaluation demonstrates that, over-
all, Bio-FO is considerably more efficient in terms of
resources when evaluated on NVIDIA Jetson Nano.

The remainder of this paper is organized as follows. In
Section 2, we review the literature on biologically-plausible
forward-only algorithms. Next, in Section 3, we propose
our resource-efficient on-device learning algorithm in de-
tail. Then, in Section 4, we describe the experimental setup
including datasets, implementation details, and implementa-
tion platform. In addition, we experimentally evaluate and
compare our proposed on-device learning algorithm against
several state-of-the-art algorithms in terms of classification
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Figure 1: An overview of various training algorithms is presented: a) BP (Rumelhart et al., 1986); b) PEPITA (Dellaferrera
et al., 2022b), where ⇤ means PEPITA has to store the activations of hidden layers in the first forward pass and † means only
space locality, not time locality (Srinivasan et al., 2023). And, + means both PEPITA and FF only partially address the issue
of update locking (Srinivasan et al., 2023); c) FF (Hinton, 2022); d) Bio-FO (our), which addresses the weight transport
issue in the standard pass, non-locality issue, the update locking issue, and the frozen activities issue. The forward paths are
illustrated by green arrows, error paths by orange arrows, and input data/label paths by black arrows. Detailed discussion
about the biological implausibility of PEPITA and FF can be found in Section 2.

performance and energy consumption. Finally, Section 5
serves as the conclusion of this work.

2 BACKGROUND AND RELATED WORK

As discussed earlier, BP (Rumelhart et al., 1986) has been
criticized for its biologically implausible nature, i.e., be-
cause of the issues of weight transport (Burbank & Kreiman,
2012), non-locality (Whittington & Bogacz, 2019), frozen
activities (Liao et al., 2016), update locking (Jaderberg et al.,
2017) issues. To solve the issue of weight transport (Bur-
bank & Kreiman, 2012), FA (Lillicrap et al., 2016) and DFA
(Nøkland, 2016) are proposed to exploit a fixed random
matrix, without incurring the need for symmetric weights.
However, FA and DFA are still suffering from the issues
of non-locality, update locking, and frozen activities. Fur-
thermore, DRTP (Frenkel et al., 2021) introduces the use
of a target proxy for the forward pass, not only addressing
the issue of weight transport, but also eliminating the issue
of update locking. Despite its great potential, DRTP shows
significant performance degradations when compared to BP.

The state-of-the-art forward-only algorithms are proposed
to address the challenges inherent in BP, FA, DFA, and
DRTP. For instance, PEPITA (Dellaferrera et al., 2022b)
adopts the approach of replacing the backward pass with a
modulated forward pass. PEPITA addresses the issues of
weight transport. However, PEPITA still has the issue of

non-locality because it is only local in space, not in time
(Srinivasan et al., 2023). Moreover, PEPITA only partially
addresses the update locking issue because of the direct
global error feedback after the execution of the first forward
pass. At the same time, while PEPITA avoids the back-
ward pass, it still needs to store the activations of hidden
layers in the standard forward pass for calculating error in
the modulated forward pass, hence only partially address-
ing the frozen activities issue. To address the issue of time
locality and the constraint of storing the activations in the
standard forward pass, PEPITA-TL (Srinivasan et al., 2023)
is proposed, which exhibits a major degradation in accu-
racy compared to the original PEPITA (Dellaferrera et al.,
2022b). Besides, PEPITA is exclusively applied to shallow
networks, restricted to no more than three hidden layers
(Pau & Aymone, 2023); otherwise, PEPITA experiences a
decrease in accuracy, e.g., transitioning from three hidden
layers to five hidden layers (Srinivasan et al., 2023).

Similarly, the FF algorithm (Hinton, 2022) substitutes the
forward and backward passes of backpropagation with two
forward passes. While FF effectively resolves the issues
of weight transport, non-locality, and frozen activities, it
only partially addresses the update locking issue (Srinivasan
et al., 2023). In addition, FF alters the input data to em-
bed the labels and has the issue of data pollution, because
FF generates new labels within the rows of input data. In
datasets like CIFAR-100 (Krizhevsky, 2009), the initial four
rows of data need to be replaced by the synthetic labels. This
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embedding of labels within the input data may significantly
impact the performance.

Recently, several extensions (Papachristodoulou et al., 2024;
Lorberbom et al., 2024; Niu et al., 2024; Huang & Aminifar,
2025a) have been proposed based on FF and other forward-
only algorithms. For instance, in Papachristodoulou et al.
(2024), the authors focus on convolutional channel-wise
competitive learning for FF. Similarly, in Mostafa et al.
(2018); Belilovsky et al. (2019), the authors propose layer-
wise training mainly with CNN. Despite these excellent
initiatives, the fundamental concept underpinning weight
sharing in CNN is not biologically plausible (Bartunov et al.,
2018; Tang et al., 2022). In Lorberbom et al. (2024), the
authors propose layer collaboration in FF, which has the
biological implausibility issues of non-locality, update lock-
ing, and frozen activities because layer-collaborative FF
requires the sum of goodness values from different layers.
In summary, these state-of-the-art forward-only algorithms
are only partially biologically plausible.

3 METHOD

3.1 Bio-FO Forward Pass

Let us consider a DNN with L layers. The input x 2 RDx⇥1

and the target y 2 RNc⇥1 are considered for training the
DNN, where Dx is the size of input x and Nc is the number
of classes. The activations of the hidden layer l of the DNN
are denoted as hl, where h0 = x. For the hidden layer l, the
activations hl 2 RDl⇥1 based on hl�1 2 RDl�1⇥1, where
Dl is the size of output of layer l and Dl�1 is the size of
input to layer l, are calculated as follows:

zl = (Sl �W l)hl�1 + bl (1)
hl = �l(zl)

L � l � 1,

where zl 2 RDl⇥1 is logits for layer l and � is the
Hadamard Product. �l is the activation function for the
hidden layer l. W l 2 RDl⇥Dl�1 and bl 2 RDl⇥1 are the
DNN weights and biases between hidden layers l � 1 and
l, respectively. The sparsity mask Sl 2 RDl⇥Dl�1 is intro-
duced to allow extensions to common networks, where each
element of Sl has a binary value.

3.2 Bio-FO Training Scheme

Here, we introduce our proposed training scheme based
on the biologically-plausible forward pass discussed above.
Our proposed Bio-FO forward-only training is outlined
in Algorithm 1. Let us define the function composition
fl : hl�1 ! hl. Given this function composition, the
activations hl are denoted as follows:

fl(hl�1) : hl = �l((Sl �W l)hl�1 + bl).

Algorithm 1 Implementation of Bio-FO

1: Given: Input (x) and Target (y), Learning Rate ⌘, and
the function composition fl(hl�1) : hl = �l((Sl �
W l)hl�1 + bl)

2: h0 = x
3: for l = 1, ..., L do
4: # Forward Pass
5: hl = fl(hl�1)
6: al = Blhl

7: # Gradient and Update
8: �hl = BT

l �al

9: �W l = �hl � �l
0(zl)⌦ hT

l�1 � Sl

10: �bl = �hl � �l
0(zl)

11: W l = W l � ⌘�W l

12: bl = bl � ⌘�bl
13: end for

Our proposed training scheme is local. This essentially
means that, for training the hidden layer l, only the W l and
bl are trainable. That is, the local training of layer l does
not affect other layers, i.e., the hidden layers spanning from
1 to l � 1 are not trainable, which means W 1 to W l�1,
and b1 to bl�1 are not affected. To make the distinction,
we denote the constant weights of hidden layer l � 1 as
W l�1 and the constant biases of hidden layer l� 1 as bl�1.
The function composition with the constant formulation
f l�1 : hl�2 ! hl�1 is introduced as follows:

f l�1(hl�2) : hl�1 = �l�1((Sl�1 �W l�1)hl�2 + bl�1).

Thus, for the hidden layer l, the function compositions f1

to f l�1 are within the constant formulation. The activation
hl is calculated as follows:

hl = fl � f l�1 � f l�2... � f1(h0) = fl(hl�1),

where hl is derived directly from hl�1, not requiring to
store other intermediate activations.

For each hl, an auxiliary classifier with the fixed random
matrix Bl 2 RNc⇥Dl is employed to project the hl 2
RDl⇥1 to the output vector al 2 RNc⇥1, where Bl is fixed,
hence not trainable. Then, the projected vector al is used to
calculate the error and the gradient, as follows:

al = Blhl, (2)
pl = �output(al),

�hl =
@lossl(pl, y)

@al

@al

@hl
= BT

l �al = BT
l (pl � y),

where al is the logits for the auxiliary classifier of layer
l. �output is the output activation function. pl 2 RNc⇥1 is
the probability distribution vector of al. lossl is the cross-
entropy loss and �al =

@lossl(pl,y)
@al

is the gradient of lossl
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with respect to al. �hl 2 RDl⇥1 is the gradient for updating
weights W l and biases bl. Note that only W l and bl are
trainable.

Next, the updating steps for weights W l and biases bl are
performed based on the following gradient:

�W l = (BT
l �al)� �l

0(zl)⌦ hT
l�1 � Sl,

�bl = (BT
l �al)� �l

0(zl),

where ⌦ is the Kronecker Product. Note that for the first
hidden layer l (l = 1), the updating steps for weights W 1

and biases b1 are based on h0 = x.

3.3 Biological Plausibility of Bio-FO

In our proposed Bio-FO, for a DNN with L layers, the layers
from 1 to L are trained independently. For each layer, the
training step does not suffer from the aforementioned biolog-
ical implausibility issues: (1) To address the weight trans-
port problem, our approach exploits an auxiliary classifier
with the fixed random matrix (Bl), incurring no backpropa-
gation and no symmetric weights in the standard pass, where
Bl is fixed and not trainable; (2) Regarding the non-locality
problem, our proposed approach trains the DNN locally,
without the need for the information from the top to the
bottom layers. Specifically, for training the hidden layer l,
there is no requirement for the information from layers that
succeed the layer l, e.g., layer l+1. Thus, Bio-FO is local in
both time and space; (3) With respect to the update locking
problem, in Bio-FO, the weights update does not need to
wait for all the dependent layers (succeeding layers) in the
forward pass to complete execution. In other words, a new
input is able to be fed into the DNN following the previous
input; (4) Additionally, for the frozen activities problem, as
illustrated in the update locking part, the activations before
hl�1 and after hl+1 are not frozen for updating the weights
between layer l � 1 and layer l. Our approach does not
store the intermediate activations in memory during training.
Furthermore, Bio-FO allows us to incorporate the sparsity
and locality of the connections via the mask S, which are
inherent to the cortex (Vision, 2000; Braitenberg & Schüz,
2013; Pulvermüller et al., 2021; Jeon & Kim, 2023; Sarfraz
et al., 2023). In summary, Bio-FO targets the biological im-
plausibility issues of weight transport, non-locality, update
locking, and frozen activities.

4 EVALUATION

4.1 Experimental Setup

4.1.1 Dataset

To evaluate our proposed Bio-FO, we consider the MNIST
dataset of handwritten digits (LeCun, 1998), the CIFAR-10
dataset of object recognition (Krizhevsky, 2009), and the

CIFAR-100 dataset of object recognition (Krizhevsky,
2009). Furthermore, we extend our evaluation to encompass
real-world medical applications: epilepsy monitoring and
seizure detection based on the CHB-MIT Scalp electroen-
cephalogram (EEG) Dataset (Shoeb, 2009), where this
dataset comprises EEG recordings from 22 patients with
epilepsy and only two channels, i.e., T7F7 and T8F8 are
exploited for real-time seizure monitoring using wearable
devices (Sopic et al., 2018); and cardiac arrhythmia
classification based on the MIT-BIH Arrhythmia Electrocar-
diogram (ECG) Dataset (Mark et al., 1982), which includes
ECG recordings from 47 patients with cardiovascular
problems (Arlington, 1998). Finally, we also consider
relatively large-scale datasets such as mini-ImageNet
(Vinyals et al., 2016), consisting of 60000 color images
of size 84⇥84 with 100 classes. The mini-ImageNet is a
subset of the larger ImageNet dataset (Deng et al., 2009).

4.1.2 Implementation Details

Our proposed Bio-FO is implemented using the PyTorch
framework (Paszke et al., 2019). In Bio-FO, we consider
the Softmax activation function for �output and exploit cate-
gorical cross-entropy. We consider Kaiming Uniform Ini-
tialization (He et al., 2015) for the fixed random matrix B.
Our experiments utilize balanced datasets, with classifica-
tion performance assessed using error, i.e., the total number
of incorrectly classified inputs divided by the total num-
ber of inputs. The mean error with the standard deviation
is averaged with five independent runs with different ran-
dom seeds. We compare and evaluate our proposed Bio-FO
against three main state-of-the-art algorithms, i.e., DRTP
(Frenkel et al., 2021) (the official implementation (Frenkel,
2021)), PEPITA (Dellaferrera et al., 2022b) (the official im-
plementation (Dellaferrera, 2022)), and FF (Hinton, 2022)
(the official implementation (Löwe, 2023)).

4.1.3 Implementation Platform

For classification performance evaluation, all algorithms
undergo training on a server equipped with 2⇥16-core Intel
(R) Xeon (R) Gold 6226R (Skylake) Central Processing
Units (CPUs) and 1 NVIDIA Tesla T4 Graphics Processing
Card (GPU). For resource-usage evaluation, we consider the
NVIDIA Jetson Nano (NVIDIA, 2019), with powerful and
efficient AI, computer vision, and high-performance com-
puting at just 5 to 10 watts for deploying AI at the edge and
embedded IoT applications. The NVIDIA Jetson Nano is
equipped with a 128-core NVIDIA Maxwell™ architecture
GPU, delivering AI performance up to 472 GFLOPS. The
GPU operates at a maximum frequency of 921 MHz, while
the Quad-core ARM® Cortex®-A57 MPCore processor has
a max frequency of 1.43 GHz. This combination of GPU
and CPU capabilities enables the Jetson Nano to handle de-
manding AI and machine learning tasks efficiently, making
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Table 1: Error (%) comparison with the state-of-the-art DRTP (Frenkel et al., 2021), FF (Hinton, 2022), Bio-FO, BP
(Rumelhart et al., 1986) with 4 hidden layers, and PEPITA (Dellaferrera et al., 2022b) with 2 or 3 hidden layers. We
highlight the best and second best results among the forward-only algorithms.

Algorithms MNIST CIFAR-10 CIFAR-100 CHB-MIT MIT-BIH
(LeCun, 1998) (Krizhevsky, 2009) (Krizhevsky, 2009) (Shoeb, 2009) (Mark et al., 1982)

DRTP 4.79±0.05 52.79±0.12 89.22±0.26 37.85±1.05 13.84±0.27

PEPITA 1.95±0.04 47.85±0.22 76.16±0.04 40.17±2.02 23.40±0.76

FF 1.46±0.07 47.38±0.25 85.76±0.18 39.00±2.59 10.86±0.25

Ours (Bio-FO) 1.62±0.08 45.12±0.12 74.57±0.51 26.61±0.78 9.77±0.49

BP 1.33±0.04 43.62±0.33 72.22±0.43 25.63±0.40 8.25±0.46

(a) MNIST (b) CIFAR-10 (c) CIFAR-100 (d) CHB-MIT (e) MIT-BIH

Figure 2: Error (%) for DRTP, PEPITA, FF, Bio-FO, and BP, versus the number of layers. The solid line reports the mean
over five independent runs, and the shaded area indicates the standard deviation.

it well-suited for edge computing applications.

4.2 Experimental Results

In this section, we evaluate Bio-FO in terms of classification
performance and convergence rate compared to BP, DRTP,
PEPITA, and FF for Fully Connected (FC) networks with
the all-one S matrix. Additionally, we also evaluate the
energy consumption of Bio-FO compared to the state-of-
the-art forward-only algorithm on the NVIDIA Jetson Nano.

4.2.1 Classification Performance

Table 1 presents the error (%) for DRTP, FF, Bio-FO, BP
with 4 hidden layers, and PEPITA with 2 or 3 hidden layers.
In the case of MNIST, BP achieves the best classification
performance, with the lowest mean error of 1.33%. DRTP
exhibits the worst classification performance with a mean
error of 4.79%, and PEPITA (1.95%) performs better than
DRTP. FF (1.46%) attains a similar error as BP and our
proposed Bio-FO achieves a comparable error (1.62%) with
FF. Additionally, for the other four datasets, namely, CIFAR-
10, CIFAR-100, CHB-MIT, and MIT-BIH, our proposed
Bio-FO achieves a lower error compared to DRTP, PEPITA,
and FF. At the same time, Bio-FO demonstrates only a
slightly higher error compared to BP. These results show
that, overall, our proposed Bio-FO outperforms the state-of-
the-art forward-only algorithms of DRTP, PEPITA, and FF
in terms of classification performance.

Next, we vary the number of hidden layers from 1 to 6 for
BP, DRTP, FF, and Bio-FO; we vary the number of hidden
layers from 1 to 2 or 3 for PEPITA because the official imple-
mentation of PEPITA (Dellaferrera, 2022) supports only up
to 3 hidden layers (Pau & Aymone, 2023). Fig. 2 illustrates
the error (%) for DRTP, PEPITA, FF, Bio-FO, and BP across
different layer settings. In the case of MNIST, DRTP consis-
tently demonstrates the highest error across various number
of layers, while BP, FF, and Bio-FO have comparable error
values across different number of layers. In this case, BP,
FF, and Bio-FO also attains a lower error than PEPITA. For
CIFAR-10, Bio-FO consistently achieves a lower error com-
pared to DRTP, PEPITA, and FF and performs close to BP.
In the context of CIFAR-100 and CHB-MIT, Bio-FO out-
performs DRTP and FF significantly, closely approaching
the performance of BP. Bio-FO also outperforms PEPITA
significantly in CHB-MIT. For MIT-BIH, Bio-FO achieves
a slightly lower error than FF, and demonstrates a compa-
rable error with BP, and attains a significantly lower error
than PEPITA and DRTP, for different numbers of layers.
Furthermore, we investigate a more energy- and memory-
efficient Bio-FO by sparsing B in Equation (2) and achieve
comparable performance. All the results collectively present
that our proposed Bio-FO outperforms the state-of-the-art
forward-only algorithms of DRTP, PEPITA, and FF, for dif-
ferent numbers of layers. At the same time, Bio-FO emerges
as the forward-only algorithm with the potential to achieve
comparable performance to BP.
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(a) MNIST-BP (b) MNIST-DRTP (c) MNIST-PEPITA (d) MNIST-FF (e) MNIST-Bio-FO

(f) CIFAR-10-BP (g) CIFAR-10-DRTP (h) CIFAR-10-PEPITA (i) CIFAR-10-FF (j) CIFAR-10-Bio-FO

(k) CIFAR-100-BP (l) CIFAR-100-DRTP (m) CIFAR-100-PEPITA (n) CIFAR-100-FF (o) CIFAR-100-Bio-FO

(p) CHB-MIT-BP (q) CHB-MIT-DRTP (r) CHB-MIT-PEPITA (s) CHB-MIT-FF (t) CHB-MIT-Bio-FO

(u) MIT-BIH-BP (v) MIT-BIH-DRTP (w) MIT-BIH-PEPITA (x) MIT-BIH-FF (y) MIT-BIH-Bio-FO

Figure 3: Test error (%) and fitting the test error by the plateau equation for learning curves.

4.2.2 Convergence Rate

In this section, we evaluate the convergence rate of our
proposed Bio-FO in comparison to BP, DRTP, PEPITA, and
FF based on FC networks across five datasets. We also
exploit the network with four hidden layers for BP, DRTP,
FF, and Bio-FO, and the network with three hidden layers
for PEPITA.

To quantify the convergence rate, we adopt the plateau
equation for learning curves (Dellaferrera et al., 2022a):

1� error =
(1� min error) · epochs

slowness + epochs
. (3)

Here, slowness parameter is determined through regression
of Equation (3) for test error versus epochs. A lower slow-
ness indicates faster training and a higher convergence rate.

Fig. 3 shows the test error and fitting the test error by the
plateau equation for learning curves on MNIST, CIFAR-
10, CIFAR-100, CHB-MIT, and MIT-BIH. If the test error
plateaus over epochs, meaning that there is no further de-
crease in the test error over a certain number of next epochs,
it indicates that the training process has converged. Taking
the MNIST dataset as an example, BP converges at the 29th
epoch, while DRTP converges around the 100th epoch. In
addition, PEPITA converges at the 71st epoch, and FF con-
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Table 2: Convergence rate (slowness) for test error. A lower slowness indicates faster training and a higher convergence rate.
We highlight the best and second best results among the forward-only algorithms.

Algorithms MNIST CIFAR-10 CIFAR-100 CHB-MIT MIT-BIH
(LeCun, 1998) (Krizhevsky, 2009) (Krizhevsky, 2009) (Shoeb, 2009) (Mark et al., 1982)

DRTP 1.494 2.829 256.55 7.401 3.632
PEPITA 0.223 12.517 18.837 6.018 2.746

FF 0.541 51.647 336.99 2.824 12.641
Bio-FO 0.156 0.883 4.357 1.144 1.297

BP 0.125 1.028 5.072 0.598 0.190

Table 3: Energy consumption (Watt-hour (Wh)) for the state-of-the-art DRTP (Frenkel et al., 2021), PEPITA (Dellaferrera
et al., 2022b), FF (Hinton, 2022), and Bio-FO.

Algorithms MNIST CIFAR-10 CIFAR-100 CHB-MIT MIT-BIH
(LeCun, 1998) (Krizhevsky, 2009) (Krizhevsky, 2009) (Shoeb, 2009) (Mark et al., 1982)

DRTP 121.6 110.8 131.9 6.4 317.7
PEPITA 89.9 91.7 123.9 5.9 191.0

FF 174.4 211.1 753.5 4.8 221.9
Bio-FO 99.8 83.1 37.9 3.5 121.1

verges at the 83rd epoch. Our proposed Bio-FO converges
at the 38th epoch. Overall, these results suggest that Bio-FO
enjoys faster convergence than DRTP, PEPITA, and FF.

Table 2 provides the convergence rate for test error, rep-
resented by the slowness parameters, across five datasets.
The convergence rate (slowness) of Bio-FO is determined
by fitting the test error to the plateau equation for learning
curves, considering the sum of all layers. In the context
of MNIST, Bio-FO has a comparable slowness to BP, and
a lower slowness than DRTP, PEPITA, and FF (a lower
slowness represents faster training). For CIFAR-10 and
CIFAR-100, Bio-FO attains a lower slowness than BP. On
the other hand, for CHB-MIT and MIT-BIH, Bio-FO demon-
strates a higher slowness than BP but a significantly lower
slowness than DRTP, PEPITA, and FF. Overall, these re-
sults demonstrate that Bio-FO exhibits a faster convergence
rate compared to DRTP, PEPITA, and FF, approaching the
convergence rate of BP.

4.2.3 Memory Efficiency of Bio-FO

We estimate the memory overheads of BP and Bio-FO in
a similar way to (Cai et al., 2020a). Bio-FO consumes
only 32.01 Megabyte (MB), while BP requires 96.06 MB in
training memory with a batch size of 1 for comparison. In
theory, BP needs to store/retain the parameters (weights and
biases) and activations from all layers (in the forward pass)
because calculating the gradients of weights (in the back-
ward pass) requires symmetric weights and activations from
top to bottom layers. In contrast, Bio-FO substitutes the for-

ward and backward passes of BP with only forward passes
in a layer-wise manner, without the need to store/retain the
parameters (weights and biases) and activations from all
layers. Therefore, Bio-FO improves the memory efficiency
and has approximately 3 times less memory overheads.

4.2.4 Energy Efficiency of Bio-FO

In this section, we evaluate the energy consumption of Bio-
FO, compared to DRTP, PEPITA, and FF, on the NVIDIA
Jetson Nano. We utilize the normalized computation for
equal comparison, i.e., considering a four-hidden-layer net-
work for PEPITA computation and considering the number
of neurons in each layer is 2000 for PEPITA and DRTP.
First, we measure the training time of one epoch for these
algorithms individually on the NVIDIA Jetson Nano. Next,
the total training time for each algorithm is the product of the
training time of one epoch, and the epoch of convergence.
Then, the energy overhead is estimated by considering the
power consumption of the NVIDIA Jetson Nano, which is
assumed to be at 5 watts in our evaluations. Table 3 presents
the energy consumption (Wh) on the NVIDIA Jetson Nano
for DRTP, PEPITA, FF, and Bio-FO. For MNIST, Bio-FO
consumes a comparable energy overhead with PEPITA. For
CIFAR-10, CIFAR-100, CHB-MIT, and MIT-BIH datasets,
Bio-FO consumes the lowest energy overhead among these
forward-only algorithms including DRTP, PEPITA, and FF.
Taking CIFAR-100 as an example, Bio-FO consumes 37.9
Wh of energy overhead. In contrast, DRTP consumes 131.9
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Table 4: Error (%) for Bio-FO and BP with LC & CNN (DO means Dropout). We highlight the best and second best results
for the forward-only algorithms.

Algorithms Bio-FO-FC Bio-FO-LC Bio-FO-CNN BP-FC BP-LC BP-LC-DO BP-CNN

MNIST 1.62±0.08 1.36±0.06 0.57±0.03 1.33±0.04 1.50±0.05 1.33±0.05 0.45±0.01

CIFAR-10 45.12±0.12 35.13±0.21 26.08±0.34 43.62±0.33 40.21±0.63 35.17±0.09 23.15±0.85

CIFAR-100 74.57±0.51 68.62±0.16 64.06±0.74 72.22±0.43 72.55±0.47 65.80±0.14 64.34±0.29

Wh of energy overhead; PEPITA consumes 123.9 Wh of en-
ergy overhead; FF consumes 753.5 Wh of energy overhead.
Bio-FO improve the energy efficiency up to 19.8 times com-
pared to other state-of-the-art forward-only algorithms for
CIFAR-100. Overall, these results demonstrate that our pro-
posed Bio-FO outperforms the state-of-the-art forward-only
algorithms of DRTP, PEPITA, and FF in terms of energy
consumption.

4.3 Extensions to Other Architectures and Datasets

In this section, we introduce how Bio-FO can capture spar-
sity and be extended to common networks as well as rel-
atively large-scale datasets. We extend the sparsity S in
Equation (1) to LC and CNN.

4.3.1 Extension to LC & CNN
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Figure 4: The sparse mask applied to W .

We extend Bio-FO to LC, with only Sj:j+k,j = 1, where
j is the column index and k is the kernel size, as shown in
Fig. 4 (b). In this case, W 2 RC⇥Dl⇥Dl�1 , where C is the
number of channels, Dl�1 is the size of input, and Dl is the
size of out. LC can be further extended to CNN with weight
sharing, as shown in Fig. 4 (c). We compare Bio-FO with
BP in terms of LC and CNN.

As shown in Table 4, Bio-FO with LC (Bio-FO-LC)
achieves a significantly lower error than Bio-FO with FC
(Bio-FO-FC). Moreover, Bio-FO-LC even surpasses BP
with LC because Bio-FO-LC is less prone to overfitting.
Considering MNIST, Bio-FO-LC (1.36%) exhibits its supe-
riority when compared to DTP-LC (Lee et al., 2015) (1.46%)
and its variants, and DFA-LC (Nøkland, 2016) (2.05%), ac-
cording to (Bartunov et al., 2018); for CIFAR-10, Bio-FO
with LC (35.13%) surpasses DTP-LC (Lee et al., 2015)
(39.47%) and its variants, FA-LC (Lillicrap et al., 2016)

(37.44%), DFA-LC (Nøkland, 2016) (44.41%), and FF-LC
(Hinton, 2022) (43.75%).

Although weight sharing in CNN is not biologically plau-
sible (Bartunov et al., 2018; Tang et al., 2022), we fur-
ther extend Bio-FO to CNN (Bio-FO-CNN) for exper-
imental investigation purposes. As presented in Table
4, Bio-FO-CNN has a lower error compared with Bio-
FO-LC; BP-CNN has a lower error compared with BP-
LC-DO in the context of three widely used datasets as
in the forward-only domain (Frenkel et al., 2021; Hin-
ton, 2022; Dellaferrera et al., 2022b). In addition, taking
MNIST as an example, Bio-FO-CNN (0.57%) also demon-
strates a lower error than DRTP-CNN (Frenkel et al., 2021)
(1.48%), PEPITA-CNN (Dellaferrera et al., 2022b) (1.71%),
Collaborative-FF (Lorberbom et al., 2024) (2.10%), CaFo-
CNN (Zhao et al., 2025) (1.05%), and CwComp-CNN (Pa-
pachristodoulou et al., 2024) (0.58%). For CIFAR-10, the
results demonstrate that Bio-FO-CNN decreases the test
error from 35.13% to 26.08% compared to Bio-FO-LC. Bio-
FO-CNN (26.08%) shows a lower error than DRTP-CNN
(Frenkel et al., 2021) (31.04%), PEPITA-CNN (Dellaferrera
et al., 2022b) (43.67%), Collaborative-FF (Lorberbom et al.,
2024) (51.6%), and CaFo-CNN (Zhao et al., 2025) (30.52%).
Moreover, Bio-FO-CNN (26.08%) has a comparable error
to CwComp-CNN (Papachristodoulou et al., 2024) (from
21.89% to 27.25% depending on different predictors). In
conclusion, our results present the relevance of Bio-FO with
LC and CNN.

4.3.2 Extension to mini-ImageNet

We further extend Bio-FO to relatively large-scale datasets
such as mini-ImageNet (Vinyals et al., 2016), and com-
pare Bio-FO with state-of-the-art forward-only algorithms.
The official implementation for CaFo (Zhao, 2023) is ex-
ploited. For the mini-ImageNet dataset, Bio-FO achieves a
significantly lower error than DRTP, PEPITA, FF, and CaFo.
Bio-FO achieves the closest classification performance to
BP as shown in Table 5.

The significant gap between biologically-plausible forward-
only algorithms and BP on relatively large-scale datasets is
extensively discussed in the machine learning domain (Bar-
tunov et al., 2018). Several algorithms, e.g., Sign-Symmetry
(Xiao et al., 2019), Two-Combined Loss (Nøkland & Ei-
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Table 5: Error (%) for the state-of-the-art forward-only algorithms on mini-ImageNet.

Algorithms DRTP PEPITA FF CaFo Bio-FO BP

mini-ImageNet 94.20±0.49 91.23±0.18 93.64±0.26 74.58±0.13 67.39±0.25 53.49±0.40

dnes, 2019), and DGL (Belilovsky et al., 2020) have been
proposed aiming to narrow this gap. However, these algo-
rithms still have the aforementioned biologically plausible
issues. Sign-Symmetry (Xiao et al., 2019) has the biological
implausibility issues of non-locality, update locking, and
frozen activities. Two-combined Loss (Nøkland & Eidnes,
2019) has the biological implausibility issue of update lock-
ing as layerwise forward and backward passes are required
(Frenkel et al., 2021). DGL and its variant (Belilovsky et al.,
2020; 2019) suffer from the biological implausibility issue
of weight transport because of the deeper auxiliary classi-
fiers. In contrast, Bio-FO not only targets the biological im-
plausibility issues of weight transport, non-locality, update
locking, and frozen activities, but also makes a step forward
in improving the classification performance of biologically-
plausible forward-only algorithms on relatively large-scale
datasets.

5 CONCLUSIONS

In this paper, we proposed an efficient on-device learning
algorithm, based on the biologically-plausible forward-only
algorithm, called Bio-FO, offering the potential to better
mimic the learning processes of the human brain and, in turn,
enhance energy efficiency. This is particularly relevant in
the context of IoT and mobile devices, which are generally
extremely limited in terms of resources, namely, computing
power, memory storage, and battery/energy budget.

We evaluated our proposed Bio-FO in the context of sev-
eral widely-used datasets such as MNIST, CIFAR-10, and
CIFAR-100. In addition, to demonstrate the relevance of
the proposed forward-only algorithm, we also considered
two real-world medical applications on wearable devices,
with extremely limited amount of resources, namely, seizure
detection and arrhythmia classification, for real-time and
long-term monitoring in ambulatory settings. The results
show that Bio-FO outperforms the state-of-the-art forward-
only algorithms, including DRTP, PEPITA, and FF, across
datasets such as CIFAR-10, CIFAR-100, CHB-MIT, and
MIT-BIH. At the same time, Bio-FO consistently achieves
the closest classification performance to BP overall.

Finally, we implemented our proposed on-device learning
algorithm on the NVIDIA Jetson Nano and evaluated it
in terms of resource overheads, including computation re-
quirements and energy consumption. Our proposed Bio-FO
consistently exhibits faster convergence during the training

process, compared to DRTP, PEPITA, and FF. At the same
time, our evaluation demonstrated that, overall, Bio-FO is
considerably more efficient in terms of resource require-
ments when evaluated on NVIDIA Jetson Nano.

In our future work, we plan to explore the application of the
proposed biologically-plausible forward-only algorithm in
the context of fine-tuning Large Language Models (LLMs)
and the state-of-the-art Transformer-based models. We will
investigate our proposed forward-only algorithm’s perfor-
mance and efficiency compared to backpropagation-based
techniques and other biologically-plausible forward-only
algorithms.

Limitation: Forward-only algorithms designed to enhance
energy efficiency in on-device training are still in the early
stages of development. As a result, in our current work,
we do not evaluate our proposed scheme on hardware de-
signed specifically for forward-only algorithms and do not
optimize the forward-only algorithms in terms of efficiency
or resource utilization. The extension of our evaluation on
hardware designed specifically for forward-only algorithms
and the optimization of our algorithm for such hardware
will remain as future work. Besides, in this paper, we do not
explore forward-only algorithms for advanced model archi-
tectures such as Generative Adversarial Networks (GANs)
(Goodfellow et al., 2014), Graph Neural Networks (GNNs)
(Kipf & Welling, 2017), or Transformers (Vaswani et al.,
2017). As such, the extension of the results in this work to
advanced model architectures will remain as future work.

Broader Impact: This paper presents the goal to advance
the field of forward-only algorithms for on-device machine
learning, to better mimic the learning processes of the hu-
man brain and enhance energy efficiency. In this paper,
we propose an efficient on-device learning algorithm based
on forward-only algorithm, which targets the biological-
implausibility issues associated with the BP, i.e., weight
transport, non-locality, update locking, and frozen activities.
The research towards more biologically plausible training
algorithms will improve our understanding of the underly-
ing learning mechanisms in the human brain. At the same
time, by bridging the performance–efficiency gap between
the training mechanisms of the artificial neural networks
and that of the cortex, our hope is that the new generation
of forward-only algorithms also enjoys the remarkable per-
formance and efficiency of the human brain, to reduce the
environmental burden of Artificial Intelligence (AI).
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