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ABSTRACT

While astonishingly capable, large Language Models (LLM) can sometimes pro-
duce outputs that deviate from human expectations. Such deviations necessitate an
alignment phase to prevent disseminating untruthful, toxic, or biased information.
Traditional alignment methods based on reinforcement learning often struggle with
the identified instability, whereas preference optimization methods are limited by
their overfitting to pre-collected hard-label datasets. In this paper, we propose a
novel LLM alignment framework named iREPO, which utilizes implicit Reward
pairwise difference regression for Empirical Preference Optimization. Particu-
larly, iREPO employs self-generated datasets judged by empirical human (or
AI annotator) preference to iteratively refine the aligned policy through a novel
regression-based loss function. Furthermore, we introduce an innovative algo-
rithm backed by theoretical guarantees for achieving optimal results under ideal
assumptions and providing a practical performance-gap result without such assump-
tions. Experimental results with Phi-2 and Mistral-7B demonstrate that iREPO
effectively achieves self-alignment using soft-label, self-generated responses and
the logit of empirical AI annotators. Furthermore, our approach surpasses prefer-
ence optimization baselines in evaluations using the Language Model Evaluation
Harness and Multi-turn benchmarks.

1 INTRODUCTION

Large Language Models (LLMs) represent a cutting-edge frontier in artificial intelligence, harnessing
vast textual data to produce remarkably human-like text across diverse applications like customer
service and decision support systems. Unlike traditional neural networks, training LLMs involves
a multi-layered stack of processes, typically unfolds in three main phases: (1) base model training,
where the foundational machine learning model, often a transformer architecture, learns from a vast
dataset; (2) supervised fine-tuning, which involves refining the model with curated, high-quality
datasets to enhance its performance on specific tasks; and (3) human alignment, which refines model
outputs based on feedback to align more closely with human expectations and ethical standards.

Despite the sophistication of their training, LLMs can still occasionally generate outputs that are
biased, untruthful, or irrelevant (Gallegos et al., 2024). This underscores the crucial need for an
alignment phase to correct such deviations and ensure that the models perform ethically and effectively.
Alignment strategies can be broadly categorized into online and offline approaches. Online alignment
involves methods like Reinforcement Learning from Human Feedback (RLHF) integrated with
Proximal Policy Optimization (PPO) (Christiano et al., 2017; Schulman et al., 2017). This dynamic
approach leverages human feedback to directly influence the model’s learning trajectory, capitalizing
on PPO’s ability to manage complex behaviours and maintain stability in updates. However, PPO’s
vulnerability to instability due to reward scaling and KL divergence poses further challenges in
maintaining consistent performance.

Conversely, offline alignment is often referred to as preference-based learning, employing techniques
such as Direct Preference Optimization (DPO) (Rafailov et al., 2023; Wang et al., 2023) and Identity
Preference Optimization (IPO) (Azar et al., 2023). Such methods utilize pre-existing datasets
of human preferences and integrate reward modeling directly with policy optimization, thereby
eliminating the need for ongoing human interaction. However, they often oversimplify by focusing
solely on the binary order between responses, potentially overlooking nuanced differences in reward
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quality and leading to potential overfitting. Furthermore, the effectiveness of DPO and IPO heavily
relies on the quality and diversity of the preference data. Our observations suggest that the quality
difference between ‘chosen’ and ‘rejected’ responses in some offline preference dataset samples is
minimal. This implies that relying solely on implicit reward differences may not be sufficient.

In this paper, we propose a novel LLM alignment framework, namely implicit Reward Pairwise Differ-
ence Regression for Empirical Preference Optimization (iREPO). By recasting the traditional human
preference model as an empirical preference optimization problem, iREPO aims to dynamically
align LLMs using their self-generated responses paired with soft labels. This method offers a distinct
advantage over traditional preference optimization approaches that rely on static, pre-collected offline
datasets. The core innovation of iREPO lies in regressing the implicit reward pairwise difference
directly to the logit of human preferences, thereby eliminating the need for explicit reward model
learning. iREPO integrates continuous policy updates and data generation with real-time querying
of human feedback, potentially narrowing the gap between the model’s self-generated distribution
and the desired target distribution. This approach not only enhances the responsiveness of LLMs to
evolving data and norms but also improves the relevance and accuracy of the outputs by ensuring
they are more reflective of current human judgments and preferences.

The main contributions of this work are summarized as follows.

• We propose a novel preference optimization framework iREPO that regresses the implicit reward
pairwise difference to the logit of empirical human (or AI annotators) preferences. The logit,
derived from Zermelo rankings of multiple self-generated responses, effectively captures the
quality gap between the strongest and weakest responses. This allows for the maximization of
the implicit reward gap while accounting for the actual quality of responses, thereby enhancing
model alignment with empirical preferences.

• We design a new loss function and propose a corresponding algorithm to solve its empirical risk
minimization in iREPO. We provide theoretical results showing (i) an optimal alignment policy
obtained by iREPO under ideal conditions and (ii) a performance gap between iREPO and the
optimal policy without the ideal conditions.

• Experimental results on well-known foundation models, such as Phi-2 and Mistral-7B, affirm the
superior performance of iREPO, showcasing its effectiveness over well-established baselines in
both Language Model Evaluation Harnesses and Multi-Turn benchmarks.

2 RELATED WORK

Alignment LLM through Reinforcement Learning: Recent advances in aligning LLMs have
increasingly leveraged reinforcement learning (RL) methods that incorporate human feedback directly
into the learning process (Christiano et al., 2017). Ouyang et al. (2022) introduced a paradigm where
RL agents learn from human feedback (RLHF) in the form of preferences between pairs of trajectory
snippets instead of rewards from the environment. This method, alongside statistical gradient-
following algorithms like REINFORCE (Williams, 1992; Ahmadian et al., 2024) or PPO (Schulman
et al., 2017), provided robust policy gradient methods that enhance the refinement of LLMs in large
action spaces and complex optimization landscapes.

Iterative and Online Alignment: Further building on RLHF, iterative and online methods (Xiong
et al., 2024; Ye et al., 2024) developed processes that continuously align RL policies by incorporat-
ing feedback while maintaining critical characteristics of the original policies, thus ensuring both
adherence to human preferences and robust policy performance. On the other hand, the application of
game-theoretic concepts like minimax and Nash equilibriums has also been explored as a means to
enhance the robustness of model training in the face of diverse and sometimes conflicting human
feedback. Munos et al. (2023); Rosset et al. (2024) adopt a Nash learning framework, which seeks to
find an equilibrium that harmonizes different objectives defined by human feedback, facilitating a
balanced approach to model training. Similarly, (Swamy et al., 2024) utilize a minimax framework to
minimize the maximum regret, accommodating a wide spectrum of human preferences and aiming to
produce policies that perform well under the most adverse conditions. Recently, Wu et al. (2024)
have explored SPPO, a self-play preference optimization framework enabling models to refine their
alignment through preference-based learning objectives iteratively.
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Alignment LLM through Preference Optimization: Beyond RL, preference optimization has
emerged as a powerful approach to align LLMs with human judgments (Ziegler et al., 2020). Notable
developments include DPO (Rafailov et al., 2023), showcasing the potential of directly shaping
language model outputs based on human preferences and bypassing traditional reward modelling
methods. Additionally, variants such as fDPO (Wang et al., 2023) expanded the methodology by
incorporating diverse divergence constraints to manage a wider range of preference complexities and
model uncertainties. Chowdhury et al. (2024) proposed cDPO, aiming to enhance the robustness of
DPO for consistent model performance in environments characterized by noisy feedback. Zhao et al.
(2023) introduced sequence likelihood calibration with human feedback (SLIC-HF), accommodating
various divergence measures beyond the reverse KL divergence.

In light of the advances made by DPO and its variants, significant theoretical and practical innovations
continue to contribute to the alignment of language models with human preferences (Azar et al.,
2023; Ethayarajh et al., 2024b; Zhao et al., 2023; Wu et al., 2024; Liu et al., 2024; Hong et al.,
2024). For instance, Azar et al. (2023) presented Ψ-PO, a general theoretical framework that deepens
understanding of learning from human preferences. Concurrently, the KTO framework (Ethayarajh
et al., 2024b) is proposed, leveraging the Kahneman-Tversky human utility function based on the
psychological factors for aligning model behavior with human decision-making patterns. On the
practical side, Liu et al. (2024) introduced statistical rejection sampling techniques to improve the
efficiency and effectiveness of preference optimization. Hong et al. (2024) suggested ORPO, a novel
approach that optimizes preferences without needing a reference model, simplifying the optimization
process and broadening its applicability.

3 PRELIMINARIES

3.1 RLHF WITH EXPLICIT REWARD MODELS

The RLHF pipeline for aligning LLMs typically encompasses three main phases (Ziegler et al., 2020):
(1) Supervised Fine-tuning (SFT), where a pre-trained LLM undergoes supervised learning with
high-quality data tailored to specific downstream tasks; (2) Reward Modeling, a critical component
for capturing human preferences effectively; and (3) RL Fine-Tuning, where the model is fine-tuned
to optimize the reward model’s outputs. A prevalent method within the Reward Modeling phase
involves constructing an explicit reward model (Christiano et al., 2017; Ouyang et al., 2022). In this
approach, a prompt x ∼ ρ are paired with two responses (yw, yl) ∼ πref(· | x) generated under a
SFT reference policy πref . A preference (yw ≻ yl | x) is typically annotated by humans or AI based
on the Bradley-Terry (BT) model (Bradley & Terry, 1952), which derives from an underlying true
reward model r∗(y, x) as follows.

P (yw ≻ yl | x) =
exp (r∗ (x, yw))

exp (r∗ (x, yw)) + exp (r∗ (x, yl))
. (1)

To estimate r∗(·), Maximum Likelihood Estimation (MLE) techniques are often applied (Ziegler
et al., 2020):

r̂ ← argmaxr∈REx∼ρ,(yw,yl)∼πref
[log σ (r (x, yw)− r (x, yl))] , (2)

where σ(·) is a sigmoid function andR is a class of reward functions. Using the learned r̂, the LLM
is fined tuned with PPO (Schulman et al., 2017)

max
θ

Ex∼ρ,y∼πθ(y|x) [r̂(x, y)− βDKL (πθ(y | x)∥πref(y | x))] . (3)

In practice, the policy πθ, parameterized by θ ∈ Θ ⊂ Rd, is often a transformer-based model.

Denote θ̂ a solution to problem (3), then the corresponding optimal policy πθ̂ with respect to (w.r.t)
r̂(x, y) will satisfy the following equation Rafailov et al. (2023)

r̂(x, y) = β log

(
πθ̂(y|x)
πref(y|x)

)
+ β logZ(x), (4)

where Z(x) =
∑

y πref (y | x) exp( 1β r̂(x, y)) is the partition function and β is a scaling factor.

While PPO is a popular choice for reward modelling, it encounters instability issues as different
implementations of similar reward models can produce varying outcomes. This leads to inconsistent
policy performance and challenges in aligning LLMs with preferences (Rafailov et al., 2023).
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3.2 RLHF WITH IMPLICIT REWARD MODELS

The limitations of explicit reward models, particularly those using RLHF and PPO, have paved the
way for the development of implicit modeling schemes. DPO (Rafailov et al., 2023) represents a
pioneering approach in this area, bypassing the reward estimate step that learns r̂(x, y). Instead, they
observed that for any arbitrary reward estimate r̂(x, y) with its corresponding optimal policy πθ̂:

r̂(x, yw)− r̂(x, yl) = β

(
log

πθ̂(yw | x)
πref(yw | x)

− log
πθ̂(yl | x)
πref(yl | x)

)
(5)

which we call the implicit reward pairwise difference. Substitute this difference back to (2), DPO
then perform MLE to directly optimize the policy:

min
θ
−E(x,yw,yl)∼D

[
log σ

(
β log

πθ (yw | x)
πref (yw | x)

− β log
πθ (yl | x)
πref (yl | x)

)]
(6)

Alternatively, methods such as IPO (Azar et al., 2023), SLiC-HF (Zhao et al., 2023), KTO (Ethayarajh
et al., 2024a), and SPPO (Wu et al., 2024) learn directly from human preferences, with no explicit
reward model.

4 iMPLICIT REWARD PAIRWISE BASED EMPIRICAL PREFERENCE
OPTIMIZATION (iREPO)

4.1 EMPIRICAL HUMAN PREFERENCE MODEL

The primary objective in aligning LLMs with human preferences is to ensure that their outputs are
ethically and socially acceptable. Consider a set of d possible responses {y1, y2, . . . , yd} produced
by a SFT language model. Let H represent a population of annotators, which could include humans
or AI/LLM rankers. The goal is to optimize the probability model for human preference as follows:

P∗(yi
H
≻ yj | x) = P[H prefers yi over yj | x] = EH [I(yi

H
≻ yj | x)] (7)

Here, yi and yj (for i, j = 1, . . . , d and i ̸= j) are the two competing responses among which
preferences are being assessed, and x is the prompt based on which yi and yj are being evaluated.

P∗(yi
H
≻ yj | x) represents the optimal probability that the human or annotator population prefers

response yi over response yj given the context x. To quantify such preferences, the following BT
model is often utilized:

EH [I(yi
H
≻ yj | x)] =

er
∗(x,yi)

er∗(x,yi) + er
∗(x,yj)

= σ(r∗(x, yi)− r∗(x, yj)) (8)

where r∗(x, yi), representing the strength of response yi, is often referred to as the true reward
model. However, accessing the true population reward model directly is not feasible. Conventional
approaches often approximate this reward model through reinforcement learning techniques (Williams,
1992; Ahmadian et al., 2024; Schulman et al., 2017).

In practice, one can access a finite h number of human or AI annotators to approximate the human
population preference. Denote Hk the k-th annotator sampled independently from a distribution,
k = 1, . . . , h. We construct an empirical human preference model as follows.

Ph(yi ≻ yj | x) =
1

h

∑h

k=1
I{yi

Hk≻ yj} (9)

Assuming that the preference model (9) also follows the BT model (8). Given the impracticality of
directly accessing r∗(x, yi), we introduce rh(x, yi) as a practical approximation based on h annotator
preferences. Denote wi = er

h(x,yi) (i = 1, · · · , d), the pairwise preference probabilities can then be
computed as:

Ph(yi ≻ yj | x) =
er

h(x,yi)

erh(x,yi) + er
h(x,yj)

=
wi

wi + wj

Suppose a pool of h annotators (either humans or LLMs) is available to evaluate preferences between
each pair of responses (yi, yj). Let hij be the number of times yi is preferred over yj among
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annotators. Through analyzing the evidence from these pairwise comparisons, we can employ a
maximum likelihood estimation (MLE) to optimize the weights w1, w2, . . . , wd corresponding to the
empirical preference ratings. The likelihood of the observed evidence given the strengths, represented
by a matrix He = [hij ] and a strength vector w = [wi], respectively, is as follows.

P(He|w) :=
∏
ij

Ph(yi ≻ yj | x) =
∏
ij

(
wi

wi + wj

)hij

, (10)

The corresponding log-likelihood function is:

logP(He|w) =
∑
ij

hij log
wi

wi + wj
=

∑
ij

hij logwi −
∑
ij

hij log(wi + wj) (11)

Differentiating with respect to wi (∀i), and setting the result to zero we get:
1

wi

∑
j

hij −
∑
j

hij + hji

wi + wj
= 0, (12)

which then can be rearranged to find wi:

wi =

∑
i hij∑

j(hij + hji)/(wi + wj)
, (13)

Zermelo’s Model for d-response Ranking from Pairwise Comparison: The formulation (13)
provides a method to iteratively update the weights wi to maximize the log-likelihood, which primarily
relies on Zermelo’s theorem (Zermelo, 1929). Notably, it adjusts the strength of each response based
on the observed preference counts hij . The update balances the observed wins of each response
against the total contest outcomes, weighted by the sum of strengths, effectively utilizing empirical
data to converge to the most likely estimates of the response strength. To find the optimal wi for all
responses efficiently, we employ an accelerated variant of the traditional Zermelo algorithm proposed
by Newman (2023), which offers computational efficiency and convergence guarantees (detailed in
Alg. 1, lines 11–17). We also provide more details about these ranking algorithms in Appendix C.

The values of wi can then be sorted in order to give a ranking of the responses, or simply used in
their raw form as a kind of rating. Based on the sorted list of d responses, we then employ a pair of
responses with the strongest strength and the lowest strength, denoted as ys and yl, respectively. Their
corresponding strengths, ws and wl, are then used to estimate the implicit reward difference between
these responses, according to the empirical human preference model described in equation (9).

Ph(ys ≻ yl | x) =
ws

ws + wl
= σ(rh(x, ys)− rh(x, yl))). (14)

Then, we have

rh(x, ys)− rh(x, yl)) = log
ws

ws + wl
= logit(Ph(ys ≻ yl|x)). (15)

Logit of Empirical Human Preference: Using Zermelo-based rankings, iREPO strategically selects
the strongest and weakest responses to uncover the broadest reward discrepancies, without explicit
reward modeling. We quantify these using the logit of empirical preferences, a function well-suited
for transforming probabilities to a comprehensive scale, capturing the nuanced differences between
extreme values effectively. This focused analysis of polarities enhances our model’s precision
in preference assessment and ensures it closely mirrors human evaluative tendencies, accurately
reflecting the perceived merits and demerits of responses.

4.2 iREPO: ALGORITHM

In this section, we propose a novel preference optimization, iREPO, presented in Algorithm 1.
Suppose ys and yl are the strongest and weakest responses estimated by Zermelo rankings from
pairwise comparisons, respectively. The gist of iREPO is regressing the implicit reward pairwise
difference (5) to the logit of empirical human preference (15) via the loss function:

ℓiREPO(θ;x, ys, yl) :=

[
β

(
log

πθ(ys|x)
πref(ys|x)

− log
πθ(yl|x)
πref(yl|x)

)
− logit(Ph(ys ≻ yl|x))

]2
(16)
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Algorithm 1 implicit Reward pairwise based Empirical Preference Optimization (iREPO)

1: Input:D0 = Doff, πθ0 = πref, h: number of human or LLM annotators
2: for t = 1, . . . , T do
3: Generate D(t) = {(x, y1, . . . , yd) | x ∼ ρ, (y1, . . . , yd) ∼ πθ(t−1)(· | x)}. Then m independent train-

ing examples are randomly selected in uniform, denoted by D̂(t) = {(x(k), y
(k)
1 , · · · , y(k)

d )}mk=1 ⊂ D(t)

4: for k = 1, . . . , |D̂(t)| do
5: for each pair of responses (y(k)

i , y(k)
j ) do

6: h
(k)
ij ← number of human (LLM annotators) prefers y(k)

i over y(k)
j

7: w
(k)
s , w(k)

l ← ranking responses’ strengths using ZERMELO_ALGORITHM with H(k)
e = [h

(k)
ij ], ∀i, j

8: Compute logit(Ph(y
(k)
s ≻ y

(k)
l |x

(i))) with w
(k)
s , w(k)

l

9: θ(t) ← argmin
θ

|D̂(t)|∑
k=1

ℓiREPO

(
θ(t−1);x(k), y

(k)
s , y

(k)
l

)
10: return πθ(t) with best validation result.

11: function ZERMELO_ALGORITHM(He)
12: Initialize C iterations, w(0)

i = 1 ∀i = 1, . . . , d
13: for t = 1, . . . , C do
14: for i = 1, . . . , d do
15: w

(t)
i ←

(∑
j ̸=i hijw

(t−1)
j /(w

(t−1)
i + w

(t−1)
j )

)
/
(∑

j ̸=i hji/(w
(t−1)
i + w

(t−1)
j )

)
16: Sort w(C)

i to get the rankings of d responses, then select the strongest ws, and the lowest wl

17: return ws, wl

Table 1: Comparison of different preference optimization techniques.

Methods ℓ (x, ys, yl) Reward Modeling Training Data
DPO − log σ(zs − zl) implicit reward offline
SLiC max{0, 1− β(log zs − log zl)} implicit reward offline
IPO ((zs − zl)− 1/2)

2 implicit reward offline
SPPO (zs − 1/2)2 + (zl − 1/2)2 relative preference reward online batch
iREPO ((zs − zl)− logit(Ph(ys ≻ yl|x)))2 implicit reward online batch

In each iteration t, iREPO uses a set of m training samples D̂(t) ⊂ D(t), which is generated by the
policy πθ(t−1) (line 3), to calculate the logit of empirical preference (lines 5–8) and obtain the policy
πθ(t) by minimizing the empirical loss (line 9).

We now compare iREPO with other popular preference optimization approaches.

Loss function. For the ease of comparison, let zs = β log πθ(ys|x)
πref (ys|x) , zl = β log πθ(yl|x)

πref (yl|x) , where
in DPO, SLiC, IPO and SPPO, ys and yl are correspond to the chosen and the rejected responses,
respectively. As shown in Table 1, iREPO is an implicit pairwise reward difference model similar to
DPO and IPO, i.e., based on the term (zs − zl). While DPO’s loss is MLE, IPO uses a least square
estimation (LSE) to which ℓiREPO is closest. The key difference is while IPO regresses all of the
training samples to a constant 1/2, iREPO has an updated logit(Ph(ys ≻ yl|x)) for each sample.

Training data. DPO and IPO use pre-collected offline dataset Doff for training. These approaches
use hard label 1 to indicate ys ≻ yl for human alignment with Doff. If Doff’s coverage does not
encompass the entire support of the target distribution, a disparity arises between Doff and the target
distribution, potentially degrading the performance of these approaches (Liu et al., 2024). On the
other hand, iREPO uses soft label Ph(ys ≻ yl|x) to calculate the logit of empirical preference for
human alignment on-the-fly. By updating new policies, generating new data, and querying the human
feedback, iREPO can potentially close the gap between D(t) and the target distribution, which will
be analyzed in the next section.

Empirical human or AI annotator preference: To give feedback for LLM responses, human
judgment has traditionally been considered the gold standard. However, recent advancements in
LLM technology have broadened their utility, enabling them to effectively function as rankers or
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annotators — particularly significant when LLMs serve as judges and provide feedback to other
models. Moreover, there is a fact that LLM annotators are considerably more cost-effective than
human resources and often match the reliability and accuracy of human judgments (Jiang et al., 2023;
Li et al., 2023). Hence, in this work, we consider multiple LLM rankers (Jiang et al., 2023) operating
collaboratively to provide feedback for responses generated by the aligned models. Such annotators
allow for scalable, consistent, and rapid feedback, which is invaluable for the iterative process of
model alignment. We provide more details on the AI annotators in Sec:5

4.3 iREPO: THEORETICAL RESULTS

Assumption 4.1 (Realizability). Assume that there exists an θ⋆ ∈ Θ such that
E(x,ys,yl)∼D [ℓiREPO(θ

⋆;x, ys, yl)] = 0.

For the ease of presentation, we define Rθ (x, ys, yl) := β log
(

πθ(ys|x)
πref(ys|x)

)
− β log

(
πθ(yl|x)
πref(yl|x)

)
.

Define Bernoulli distributions p∗(x, ys, yl) := Ber(P∗(ys ≻ yl | x)) and pθ(x, ys, yl) :=
Ber(σ(Rθ(x, ys, yl))), which represent the human population preference and πθ-induced prefer-
ence distributions on an arbitrary (x, ys, yl), respectively. The following result shows that under
optimal conditions, iREPO is aligned with human population preference. The optimal conditions
require the following assumptions.
Assumption 4.2 (Human population preference). The number of human or AI annotators h is
sufficiently large such that Ph ≈ P∗.
Assumption 4.3 (No data distribution disparity). There exists an iREPO’s training iteration τ⋆ such
that the supp(D(τ⋆)) ≈ supp(D(τ⋆−1)) due to πθ(τ⋆) ≈ πθ(τ⋆−1) .

Lemma 4.4. With Assumptions 4.1, 4.2,and 4.3, and denote θ(τ
⋆) a solution to

min
θ

E(x,ys,yl)∼D(τ⋆) [ℓiREPO(θ;x, ys, yl)] (17)

Then πθ(τ⋆) is a policy that generates responses aligned with the population human preference P∗ in
expectation of a total variance distance as follows

Ex∼ρ,(ys,yl)∼π
θ(τ

⋆) (·|x)[DTV (p∗(x, ys, yl)∥pθ(τ⋆)(x, ys, yl))] = 0. (18)

Furthermore, πθ(τ⋆) is also an optimal policy of the following problem

max
θ

Ex∼ρ,y∼πθ(y|x) [rθ(τ⋆)(x, y)− βDKL (πθ(y | x)∥πref(y | x))] (19)

where rθ(τ⋆)(x, y) = β log
(

π
θ(τ

⋆) (y|x)
πref (y|x)

)
+ β logZ(x), ∀x ∼ ρ, y ∼ πθ(τ⋆)(·|x).

We provide a proof of Lemma 4.4 in Appendix A. We next show the human-alignment performance
gap between a policy produced by iREPO and the human population preference without optimal
conditions as in Lemma 4.4. For brevity, we alternatively use π∗ for the optimal policy πθ(τ⋆) from
Lemma 4.4.
Theorem 4.5. Denote θ̂(t) the solution to the empirical iREPO minimization at an iteration t, (line 9
of Algorithm 1) and pθ̂(t)(z) := Ber(σ(Rθ̂(t)(z))). With Assumption 4.1, we have

Ez∼π∗ [DTV

(
p∗(z)∥pθ̂(t)(z)

)
] ≤ O

(
1√
h

)
+O

(√
C(t)

m

)
, (20)

where O(·) hides some constants and C(t) is the concentrability coefficient defined as

C(t) := sup
θ∈Θ

Ez∼π∗ [Rθ (z)− logitPh(z)]
2

Ez∼D(t) [Rθ (z)− logitPh(z)]
2 . (21)

We provide a proof of Theorem 4.5 in Appendix B.
Remark 4.6. This theorem characterizes the preference distribution gap in terms of h, m, and C(t),
representing human, sample, and data distribution gap complexity measures, respectively. We note
that the concentrability coefficient is adapted from the reinforcement learning literature Zhang (2023).
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5 EXPERIMENTS

5.1 EXPERIMENTAL SETTING

Models and Datasets: We use Phi-2 (Hughes, 2023) and Mistral-7B (Tunstall et al., 2023b) as
the pre-trained foundation models. These models undergo supervised fine-tuning on the Ultrachat-
200k dataset (Ding et al., 2023) to enhance their dialogue capabilities across diverse topics. In the
alignment phase, we utilize the UltraFeedback Binarized dataset (Tunstall et al., 2023b), comprising
approximately 63k prompts with pairs of chosen and rejected responses. To facilitate iterative
training, we uniformly sample a subset of datasets (20k for Phi-2 and 15k for Mistral-7B) from the
UltraFeedback Binarized dataset in each iteration. For iREPO, we only use the prompts from these
subsets and use the aligned models to generate 3 responses with different sampling parameters.

Annotators: To provide preference on the self-generated responses, we utilize a suite of LLM rankers
supported by the LLM-Blender framework (Jiang et al., 2023) for comparing and annotating the
outputs generated by the aligned LLM. These rankers are based on DeBERTa (He et al., 2021) trained
on various high-quality and large-scale datasets with human preference annotations such as Mix-
Instruct, Summarize From Feedback (Stiennon et al., 2020), Chatbot Arena Conversations (Zheng
et al., 2023c). Impressively, despite their relatively small model sizes (from 0.4B - 13B), these
rankers exhibit a correlation with human preferences that approach the performance of larger mod-
els (Jiang et al., 2023). These low-cost, time-efficient annotators make iREPO practical and robust
for evaluating self-generated responses. We detail the choice of AI annotators in Appendix D.5.

Evaluation Benchmark: We utilize two widely recognized evaluation benchmarks: the Language
Model Evaluation Harness (LM-Eval-Harness) (Gao et al., 2023) and Multi-turn Benchmark (MT-
Bench) (Zheng et al., 2023b). The LM-Eval-Harness offers a transparent evaluation platform,
assessing LLMs across diverse benchmarks such as ARC (Clark et al., 2018), HellaSwag (Zellers
et al., 2019), MMLU (Hendrycks et al., 2021), TruthfulQA (Lin et al., 2022), Winogrande (Sakaguchi
et al., 2019), and GSM8K (Cobbe et al., 2021). These tasks are designed to test different aspects
of model capabilities, with models evaluated based on their accuracy and coherence in generating
responses. Meanwhile, MT-Bench evaluates LLMs based on their capacity for coherent and engaging
conversations, using 3.3K expert-level pairwise human evaluations of responses from commercial
LLM models to 80 specific questions.

Baselines and Implementation: We compare our approach against three baselines: SFT, iterative
DPO (Iter-DPO) (Rafailov et al., 2023; Tran et al., 2023), and iterative IPO (Iter-IPO) (Azar et al.,
2023), which are widely used in the literature. Similar to our approach, DPO and IPO recast the
reinforcement learning-based alignment formulation as simple loss functions to obtain implicit reward
models. While these methods depend on a dataset of preferences for direct optimization, for a fair
comparison, we initially utilize pre-collected response pairs and apply an empirical human preference
model to train on implicit reward pairwise differences instead of relying on fixed preference outcomes.
More details on datasets, benchmarks, and experimental settings are described in Appendix D.

5.2 MAIN RESULTS

Performance on Language Model Evaluation Harness: We demonstrate the capability of iREPO
by leveraging the comprehensive suite of tasks provided by the LM-Eval-Harness for wide-ranging
evaluation. As shown in Table 2, iREPO shows notable improvements in model alignment and
performance across tasks in this benchmark. The iterative alignment approach of iREPO manifests in
incremental gains observed from the iREPO-0 to iREPO-2 iterations for both the Phi-2 and Mistral-
7B models. In its initial iteration, iREPO-0 utilizes responses from the preference dataset and
incorporates the logit of empirical human preferences instead of relying solely on binary preferences.
The performance of iREPO-0 is superior to those of Iter-DPO and Iter-IPO in both models. This
highlights the effectiveness of iREPO’s new loss function, which is simple, low-complexity, yet
adaptive and generalizable in aligning LLMs with human-like understanding and responsiveness.

As the iterative process progresses, iREPO’s performance is notably enhanced through training
on self-generated responses supplemented with human feedback. Notably, iREPO consistently
outperforms SFT, Iter-DPO, and Iter-IPO regarding average scores, suggesting an effective integration
of training objectives that better align with the evaluation metrics. For instance, in the Phi-2 model

8
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Table 2: Comparison of different methods using Language Model Evaluation Harness Benchmark.

Method Average ARC HELLA
SWAG MMLU TRUTH

FULQA
WINO

GRANDE GSM8K

Ph
i-

2

SFT 61.10 61.26 74.86 57.26 45.46 74.19 53.57
Iter-DPO-0 62.53 64.42 76.87 57.89 48.83 73.72 53.45
Iter-DPO-1 62.24 63.82 77.12 58.08 48.86 71.35 54.21
Iter-DPO-2 62.10 63.23 77.10 57.79 48.72 71.51 54.27
Iter-IPO-0 62.59 63.48 76.28 58.13 47.53 75.30 54.81
Iter-IPO-1 62.96 63.82 77.52 58.20 49.43 74.03 54.73
Iter-IPO-2 62.98 63.31 77.51 58.42 50.61 73.09 54.92
iREPO-0 63.14 63.23 76.78 57.56 51.61 74.74 54.89
iREPO-1 63.55 64.08 76.85 57.75 51.68 75.37 55.57
iREPO-2 63.72 64.41 77.20 57.95 51.68 75.61 55.48

M
is

tr
al

-7
B

SFT 59.01 60.07 82.36 61.65 38.88 76.80 34.27
Iter-DPO-0 63.51 63.65 85.35 63.82 47.14 79.01 42.08
Iter-DPO-1 63.53 63.77 85.37 63.45 48.23 79.49 40.86
Iter-DPO-2 63.54 63.71 85.37 63.51 48.29 79.34 41.03
Iter-IPO-0 62.67 63.14 84.37 63.54 45.35 79.56 40.03
Iter-IPO-1 62.99 63.30 85.15 63.59 46.07 80.05 39.78
Iter-IPO-2 63.09 63.31 85.42 63.48 46.19 80.20 39.96
iREPO-0 64.25 65.19 85.37 62.50 51.85 79.87 40.71
iREPO-1 64.78 66.04 85.69 62.68 53.46 80.11 40.69
iREPO-2 65.27 66.64 85.40 62.68 55.47 80.74 40.69

Writing

Roleplay

Reasoning

Math

Coding

Extraction

STEM

Humanities

1
2
3
4
5
6
7
8
9

Phi-2 iREPO
Iter-DPO
Iter-IPO Writing

Roleplay

Reasoning

Math

Coding

Extraction

STEM

Humanities

1
2
3
4
5
6
7
8
9

Mistral-7B iREPO
Iter DPO
Iter IPO

Figure 1: MT-Bench single-grading evaluation for Phi-2 and Mistral-7B models with different methods.

evaluations, iREPO-1 achieves a higher average score than earlier iterations and baseline methods,
with significant improvements noted in the ARC, HellaSwag and TruthfulQA benchmarks. This
suggests that iREPO’s methodology enhances general performance and specifically improves the
model’s ability to handle complex reasoning and truthfulness in responses—a critical aspect in
practical applications of LLMs. Similarly, for the Mistral-7B model, iREPO-1 to iREPO-2 shows
marked improvements over the baselines in the ARC, TruthfulQA, and Winogrande tasks, reinforcing
the method’s utility in enhancing the understanding of context and factual accuracy. DPO and IPO
are not designed for iterative training, thus slightly improving performance over iterations.

Single-Grading on Multi-turn Benchmark: We compare the performance of iREPO with other
baselines in eight domains using the MT-Bench single-grading scheme. As shown in Fig. 1 and
Table 3, in both Phi-2 and Mistral-7B, iREPO demonstrates superior performance across various
domains, surpassing the best version of Iter-DPO and Iter-IPO. Particularly, in a 2-turn evaluation,
iREPO-2 consistently achieves higher grades than others. In fields requiring an understanding of
language and context, such as Writing and Humanities, our method excels by producing responses that
are not only contextually appropriate but also rich in detail and coherence. This showcases iREPO
’s capabilities in complex narrative generation applications and interactive educational content.
Moreover, in technical domains like STEM and Extraction, iREPO proves effective, highlighting its
ability to handle tasks requiring precision and high informational accuracy.

Pairwise Winrate on Multi-turn Benchmark: We employ the pairwise win-rate comparison method
within MT-Bench, conducting more than 300 matches across 80 questions with GPT-4 serving as the
judge to assess the quality of responses from competing models. In these competitions, iREPO-2
stands out by achieving the highest win rates against models aligned with Iter-DPO and Iter-IPO.
Particularly, In Mistral-7B, iREPO-2 significantly outperforms other baselines with an adjusted
win rate of 63.06%, compared to 54.97% for Iter-DPO and 32.05% for Iter-IPO. A similar result
is observed in Phi-2, where iREPO-2 consistently outperforms the baselines. This underscores its
ability to generate responses that are accurate, contextually relevant, and of better quality.

9
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Table 3: Comparison of different methods on MT-Bench (win rates are adjusted following Zheng et al. (2023a)).

Model Method Pairwise Comparison Single Grading Score
Win Tie Loss Win Rate (%) 1st Turn 2nd Turn Average

Phi-2
Iter-DPO 55 45 218 51.57 7.19 5.82 6.51
Iter-IPO 40 66 214 45.94 7.01 5.56 6.28
iREPO-2 63 47 208 52.52 7.15 5.95 6.55

Mistral-7b
Iter-DPO 104 73 135 54.97 5.07 5.46 5.03
Iter-IPO 39 151 122 32.05 4.58 5.02 4.8
iREPO-2 128 47 135 63.07 6.77 5.57 6.17
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= 0.005
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Figure 2: (a) Performance of iREPO with and without the logit of empirical human preference, and (b)
Performance of iREPO with different number of AI annotators

5.3 ABLATION STUDIES

Effects of β and Pairwise Reward Difference Models: We investigate the impact of the logit of
empirical human preference in iREPO’s loss function on the alignment performance, contrasting
training with and without this feature (iREPO w/o Logit). The results depicted in Fig. 2a reveal that
omitting the logit term significantly degrades performance. Specifically, iREPO w/o Logit exhibits
a substantial decline in average performance. This suggests that the logit of the empirical human
preference model plays a vital role in iREPO’s loss function, steering the training process toward
more effective outcomes. Additionally, our evaluation of different β values indicates that performance
variations are minimal. The model with β = 0.001 achieves the best performance, while other values
of β slightly underperform but still maintain satisfactory performance.

Effects of Annotators: To investigate the impact of AI annotator quantity on the performance of
iREPO, we trained the last iteration model using different groups of annotators, with each group
consisting of {5, 9, 15, 21} members. Each group evaluates a consistent set of responses generated
by the aligned model, and their feedback is incorporated to refine the model’s alignment. The results
in Fig. 2b demonstrate that increasing the number of annotators from 5 to 21 has minimal impact on
iREPO’s performance. Notably, models trained with 9 annotators slightly outperform those trained
with different numbers of annotators. This indicates that a moderate number of AI annotators is
sufficient to capture a broad range of perspectives, effectively simulating a comprehensive empirical
human preference model. Furthermore, LLM annotators with proven judgment capabilities provide
high-quality feedback, offering scalable, consistent, and efficient alternatives to human resources.

6 CONCLUSION

In this paper, we introduced iREPO, a novel LLM alignment framework, to address the challenges of
traditional alignment methods such as instability in reinforcement learning approaches and overfitting
in preference optimization methods. By utilizing implicit reward pairwise difference model and
empirical preference data from self-generated responses labeled by humans or AI annotators, iREPO
iteratively refines LLM policies through a novel regression-based loss function. This innovative
approach is supported by theoretical guarantees that ensure optimal results under specific, albeit
unreal, assumptions and offers practical insights into reducing performance gaps in more typical
scenarios. Experimentally, we show that iREPO effectively implements self-alignment with Phi-2
and Mistral-7B, delivering superior performance compared to traditional preference optimization
baselines in assessments using the LLM Evaluation Harness and Multi-turn benchmarks.
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A PROOF OF LEMMA 4.4

Proof. We alternatively use z and (x, ys, yl) for brevity.

Define P∗(z) := P∗(ys ≻ yl | x), we have P∗(z) = σ(logitP∗(z)). Therefore, the Bernoulli
distribution p∗(z) = Ber(P∗(z)) = Ber(σ(logitP∗(z))).

Ez∼D(τ⋆) [DTV (pθ(τ⋆)(z)∥p∗(z))] ≤ 2Ez∼D(τ⋆) |σ(Rθ(τ⋆) (z))− σ(logitP∗(z))| (22)

≤ 1

2
Ez∼D(τ⋆) |Rθ(τ⋆) (z)− logitP∗(z)|

≤ 1

2

(
Ez∼D(τ⋆)

[
Rθ(τ⋆) (z)− logitP∗(z)

]2) 1
2

= 0

where the first inequality is because by the total variance distance between any two Bernoulli
distributions p1 and p2 defined by Ber(σ(x1)) and Ber(σ(x2)), ∀x1, x2 ∈ R, respectively:

DTV (p1||p2) = |σ(x1)− σ(x2)|+|1− σ(x1)− (1− σ(x2))|
= 2|σ(x1)− σ(x2)|.

The second inequality is by mean value theorem, that there exists a x0 ∈ [x1, x2] such that

|σ(x1)− σ(x2)| =
dσ

dx

∣∣∣∣
x0

|x1 − x2|

= σ(x0)(1− σ(x0)|x1 − x2|

≤ 1

4
|x1 − x2|.

The third inequality is due to Cauchy-Schwarz. The last inequality is because θ(τ
⋆) is a solution to

min.
θ

E(x,ys,yl)∼D(τ⋆) [ℓiREPO(θ;x, ys, yl)] and the Assumption 4.1. The result (18) follows because

D(τ⋆) = {(x, ys, yl) | x ∼ ρ, (ys, yl) ∼ πθ(τ⋆−1)} and we assumed πθ(τ⋆−1) ≈ πθ(τ⋆) .

We next show the result (19). Define a reward function

rθ(τ⋆)(x, y) = β log

(
πθ(τ⋆)(y|x)
πref(y|x)

)
+ β logZ(x), ∀x ∼ ρ, y ∼ πθ(τ⋆)(·|x) (23)

According to (3) and (4), θ(τ
⋆) is also the solution to the following problem

max
θ

Ex∼ρ,y∼πθ(y|x) [rθ(τ⋆)(x, y)− βDKL (πθ(y | x)∥πref(y | x))] (24)

and thus πθ(τ⋆) is an optimal policy.

B PROOF OF THEOREM THEOREM 4.5

Proof. Denote ph(z) := Ber(σ(logitPh(z))). By triangle inequality:

DTV

(
p∗(z)∥pθ̂(t)(z)

)
≤ DTV (p∗(z)∥ph(z)) +DTV

(
ph(z)∥pθ̂(t)(z)

)
,∀z. (25)

We bound the right-hand side (RHS) terms on the above inequality. First,

DTV (p∗(z)∥ph(z)) = 2

∣∣∣∣∣ 1h
h∑

i=1

I(ys
Hi≻ yl)− EH [I(ys

H
≻ yl)]

∣∣∣∣∣
≤ O

(
1√
h

)
∀z.
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due to the uniform law of large number. Second,

Ez∼π∗ [DTV

(
pθ̂(t)(z)∥ph(z)

)
] ≤ 2Ez∼π∗

∣∣σ(Rθ̂(t) (z))− σ(logitPh(z))
∣∣ (26)

≤ 1

2
Ez∼π∗

∣∣Rθ̂(t) (z)− logitPh(z)
∣∣

≤ 1

2

(
Ez∼π∗

[
Rθ̂(t) (z)− logitPh(z)

]2) 1
2

≤ 1

2

(
C(t) Ez∼D(t)

[
Rθ̂(t) (z)− logitPh(z)

]2) 1
2

≤ O

(√
C(t)

m

)
,

where the first three inequalities are similar to those of (22). The fourth inequality is by definition (21).
The last inequality is due to the concentration result of least square regression with realizability
Assumption 4.1 (Zhang, 2023, Examples 3.18 and 3.25).

C ZERMELO-BASED RANKINGS FROM PAIRWISE COMPARISONS

C.1 RELATION BETWEEN ZERMELO RANKINGS AND BRADLEY-TERRY MODELS

Zermelo Rankings are based on the concept of comparing pairs of items to determine a rank-
ing (Zermelo, 1929), which is particularly suitable for scenarios involving subjective evaluations
or competitions, such as ranking outputs from a large language model. In this context, Zermelo
Rankings use the Bradley-Terry model, which is a probabilistic model used to estimate the relative
strength (wi) of each item. For two items i and j, the probability that item i is preferred over item j
is given by:

P(i ≻ j) =
wi

wi + wj
(27)

This model is powerful because it translates qualitative pairwise preferences into a quantitative
measure of strength or skill for each item. The strengths are iteratively updated to find the maximum
likelihood estimates that best explain the observed data. By utilizing pairwise comparison data, Zer-
melo Rankings provide an efficient mechanism to rank items even when the number of comparisons
is sparse or inconsistent, which often occurs with language model evaluations.

C.2 TRADITIONAL ZERMELO’S ALGORITHM

The traditional Zermelo algorithm (Zermelo, 1929), iteratively updates the strengths wi of each item
to maximize the likelihood of observed pairwise outcomes. Given d items and hij is the number of
times item i beats item j, the update rule for each strength is:

w′
i =

∑d
j=1 hij∑d

j=1(hij + hji)(wi + wj

) (28)

This iterative formula seeks to adjust wi,∀i such that it accurately reflects the empirical likelihood
of item i beating item j across multiple pairwise comparisons. The log-likelihood function that the
algorithm aims to maximize is:

logP (H|w) =
∑
ij

hij log
wi

wi + wj
=

∑
ij

hij logwi −
∑
ij

hij log(wi + wj) (29)

Differentiating this log-likelihood with respect to πi and setting the derivative to zero leads to the
iterative update formula, which aims to maximize the likelihood of the given pairwise data. However,
the problem with the traditional algorithm is its slow convergence, especially when applied to large-
scale datasets. The convergence rate is highly sensitive to the initial values chosen for wi, and the
iteration can take many steps to reach stability, making it computationally inefficient.
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C.3 ACCELERATED ZERMELO’S ALGORITHM

To address the inefficiencies of the traditional approach, Newman (2023) proposed an enhanced
iterative algorithm. This new method modifies the update formula to better exploit the pairwise
comparison data and thereby accelerate convergence. The enhanced update rule is given by:

w′
i =

∑d
j=1 hijwj(wi + wj)∑d
j=1 hji(wi + wj)

(30)

The key difference here is the introduction of weighted terms that more directly adjust the strengths
based on the relative competitive outcomes between items. The numerator

∑d
j=1

wijπj

πi+πj
takes into

account both the number of wins and the relative strength of item j compared to i, while the
denominator adjusts for losses in a similar manner.

From a mathematical perspective, this update method provides a more dynamic weighting of the
strength parameters, leading to several important improvements:

• Faster Convergence: By directly incorporating the current strengths (wi and wj) into the weight
adjustment, the algorithm accelerates the convergence process. This ensures that items with
higher empirical strength are updated more aggressively, allowing the estimates to reach a stable
state much faster than the traditional Zermelo method.

• Reduction in Iterations: Empirical studies have shown that the enhanced algorithm can be over a
hundred times faster in some scenarios (Newman, 2023). The reduced number of iterations is
particularly beneficial for ranking LLM responses, making computational efficiency crucial.

The enhanced iterative formula preserves the concavity of the likelihood function, which guarantees
convergence to the global maximum, provided the network of comparisons is strongly connected (i.e.,
there exists a path through the network that connects every item). To prove convergence, consider
the asynchronous version of the update, where a single wi is updated at each step, while others
remain fixed. The log-likelihood is strictly increasing with each update unless a fixed point is reached,
thereby ensuring convergence. See Newman (2023, Section 3) for more details.

C.4 TOY EXAMPLE

We consider a toy example with three responses evaluated by a pool of 9 annotators (either human
or language model outputs) who compare each pair of responses and indicate their preference. The
preference matrix obtained from this evaluation is depicted in Fig. 3a. In this matrix, each element
hij represents the number of times response yi was preferred over response yj among all annotators.
For instance, response 1 (y1) was preferred 6 times over both response 2 (y2) and response 3 (y3),
whereas response 2 was preferred 5 times over response 3. The diagonal elements are zero since a
response cannot be compared with itself.
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Response j

1
2

3
Re

sp
on

se
 i

0 6 6

3 0 4

3 5 0

Preference Counts

0

1

2

3

4

5

6

(a) Preference Counts

1 2 3
Responses

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

St
re

ng
th

1.51

0.70
0.82

1.59

0.73
0.86

Response Rankings
Zermelo's Algorithm
Newman's Algorithm

(b) Ranking from Pairwise Comparison
We applied both the traditional Zermelo Algorithm and Newman’s Enhanced Iterative Algorithm to
determine the strengths of these three responses based on the pairwise preference data. The traditional
Zermelo Algorithm required 18 iterations to converge, while the enhanced algorithm converged in
only 8 iterations. Both methods provide similar strength values and reasonable rankings, as shown in
Fig. 3b. Notably, response 1 has the highest strength, reflecting its strong preference by annotators,
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while response 2 has the lowest strength, indicating it was less preferred compared to the other
responses. The example illustrates the practical benefits of the Zermelo-based approach, making
it a suitable choice for evaluating and ranking responses in AI alignment and large-scale pairwise
comparison settings.

D EXPERIMENT DETAILS

D.1 DATASETS

UltraFeedback-binarized (Tunstall et al., 2023b): is a pre-processed version of the UltraFeedback
dataset, which is a large-scale, fine-grained, diverse preference dataset, used for developing and
refining LLMs models focused on preference-based learning. This dataset contains approximately
64k prompts derived from a diverse array of sources, including UltraChat, ShareGPT, Evol-Instruct,
TruthfulQA, FalseQA, and FLAN. Each record includes a pair of model-generated responses: one
"chosen" and one "rejected," accompanied by their respective scores. These responses are selected
based on preference scoring that assesses criteria like relevance, accuracy, and utility, with the
"chosen" response typically having the highest overall score to reflect superior quality or better
alignment with human judgment, while the "rejected" response illustrates less preferred options.

For the initial training of our algorithm, referred to as iREPO-0, we utilize the responses from this
dataset. However, instead of employing a deterministic binary (win-lose) relationship as seen in DPO,
IPO or KTO, we compute the logit of empirical human preferences using the scores of the chosen and
rejected responses. These logits are then integrated into our loss function to ensure a more nuanced
model training process and to facilitate fair comparisons with baseline models.

In the next training iterations (iREPO-1 and iREPO-2), we randomly pick 15k prompts and 20k
prompts for Mistral-7B and Phi-2, respectively. Then, we use our aligned model to generate repsonse
pairs and employ humans or AI annotators to give feedback.

D.2 BENCHMARKS

Language Model Evaluation Harness (LM-Eval-Harness) (Gao et al., 2023): serves as a structured
and transparent platform for assessing the capabilities of language models across a diverse range
of benchmarks. Each benchmark within this harness targets specific aspects of a language model’s
abilities, from reasoning and understanding to knowledge application and truthfulness in responses.
In this study, we utilize the following datasets from LM-Eval-Harness for evaluation:

1. ARC (AI2 Reasoning Challenge - 25-shot) (Clark et al., 2018): This dataset comprises
7,787 authentic, grade-school level, multiple-choice science questions that are intended for
question-answering. It is mainly used to assess the model’s capacity to engage in complex
reasoning.

2. HellaSwag (10-shot) (Zellers et al., 2019): This dataset is created to test the model’s ability to
predict logical scenario completions, demanding a strong sense of commonsense reasoning
and contextual awareness.

3. MMLU (Massive Multitask Language Understanding - 5-shot) (Hendrycks et al., 2021):
This dataset is designed to evaluate the model’s understanding and application of knowledge
across a wide range of 57 tasks, including topics such as elementary mathematics, US
history, computer science, law, and more.

4. TruthfulQA (0-shot) (Lin et al., 2022): This dataset is specifically constructed to test the
model’s capability to produce responses that are accurate, truthful, and non-misleading,
with a focus on ethical considerations in AI outputs. It includes 817 questions across 38
categories, such as health, law, finance, and politics.

5. Winogrande (5-shot) (Sakaguchi et al., 2019): This dataset contains approximately 44k
problems, formulated as a fill-in-a-blank task with binary options. Its goal is to choose the
right option for a given sentence which requires commonsense reasoning.

6. GSM8k (Grade School Math 8k) (Cobbe et al., 2021): This component assesses the model’s
problem-solving skills in basic arithmetic and algebra, reflecting its numerical reasoning
capabilities.
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Models are evaluated based on their accuracy and coherence in generating responses across these
tasks, with an aggregated "Average" score providing a holistic view of their overall proficiency.

Multi-turn Benchmark (MT-Bench) (Zheng et al., 2023b): is crafted to evaluate how effectively
language models handle multi-turn dialogues, focusing on the nuanced aspects of conversational AI,
such as the ability to maintain context over several turns, the coherence and relevance of responses,
and the adaptive capacity of models to shift strategies based on dialogue progression. MT-Bench
comprises:

1. Expert-Level Pairwise Human Preferences: This component involves 3,300 pairwise com-
parisons conducted by experts, assessing model responses to 80 unique questions. These
questions are designed to be representative of real-world conversational challenges.

2. Participating Models: The benchmark tests several advanced models including GPT-4,
GPT-3.5, Claud-v1, Vicuna-13B, Alpaca-13B, and LLaMA-13B, providing a comparative
analysis of their performance.

3. Annotator Expertise: The responses are evaluated by graduate students specializing in
the relevant question topics, ensuring that the assessments are both knowledgeable and
contextually informed.

D.3 HYPERPARAMETERS AND IMPLEMENTATION DETAILS

Implementation Detail: Our implementation of iREPO leverages well-established frameworks
and libraries to ensure robust alignment and performance enhancements across language models.
The frameworks utilized include the Alignment Handbook (Tunstall et al., 2023a), TRL (von Werra
et al., 2020), vLLM (Kwon et al., 2023) and Alpaca-Farm (Dubois et al., 2023) frameworks, each
contributing uniquely to facilitate end-to-end training process as follows.

• Alignment Handbook (Tunstall et al., 2023a): e utilize this comprehensive codebase to
align LLMs with human and AI preferences. It provides essential recipes and configurations,
which are foundational for training iREPO and other baselines.

• Transformer Reinforcement Learning (TRL) (von Werra et al., 2020): This powerful
toolset facilitates the fine-tuning and alignment of LLMs, supporting various methods like
Direct Preference Optimization (DPO) and Identity Preference Optimization (IPO). We
integrate iREPO within this framework to enhance consistency and reproducibility in our
results.

• vLLM(Kwon et al., 2023): A library designed to accelerate LLM inference. We leverage this
library to generate responses after each training iteration. vLLM achieves approximately 24
times higher throughput compared to the conventional generation method of HuggingFace
Transformers (HF).

• LLM-Blender (Jiang et al., 2023): An ensembling framework that is designed to fuse the
strength of multiple open-source LLMs to produce a confidential rank for the multiple output
candidates through a pairwise comparison method which uses cross-attention to encode the
input text and a pair of candidates.

Training Details: We enhance training efficiency by incorporating LoRA (Hu et al., 2022) with
acceleration technologies such as DeepSpeed-Zero3 (Rasley et al., 2020) and FlashAttention (Dao
et al., 2022). Our experiments are primarily conducted on two workstations including: an Intel®
Xeon® W-3335 Processor, 512GB RAM, and 4 NVIDIA GeForce RTX 4090 GPUs; and an AMD
Ryzen 3970X Processor with 64 cores and 256GB of RAM and 4 NVIDIA GeForce RTX 3090
GPUs.

Hyperparameter Tuning: For iREPO, we conducted three training iterations in total. In each
iteration, we selected the model that performed best after the first epoch of training on 20k prompts
from UltraFeedback to proceed to the next iteration. Due to resource limitations, we utilize LoRA Hu
et al. (2022) to fine-tune our models.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 4: Model Traning Parameters

Part Hyperparameters Mistral-7B Phi-2

L
oR

A Rank 128 256
α 128 256

Dropout 0.05 0.05

Tr
ai

ni
ng

A
rg

um
en

ts

β 0.001 0.001
Optimizer AdamW AdamW

Batch size/GPU 2 4
Learning rate 5.0e-6 5.0e-6

Training epochs 1 1
Warmup ratio 0.1 0.1

Schedule cosine cosine
Gradient accumulation 2 4

Max prompt length 1024 1024
Max response length 1024 1024

Data type bfloat16 bfloat16

D.4 RESPONSE GENERATION

Our experiments leverage the vLLM’s efficient memory sharing capabilities during response genera-
tion. Specifically, vLLM supports parallel sampling, where multiple output sequences are generated
from a single prompt. This approach allows the computational resources and memory allocated for
the prompt to be shared across different output sequences, enhancing efficiency.

For each prompt, we utilized vLLM to generate two distinct responses. The quality and variability of
these responses are influenced by sampling parameters such as max tokens, temperature, and top_p,
which are detailed as follows:

Table 5: Sampling parameters for generating responses using vLLM

Parameter Response 1 Response 2 Response 3 Description
Max

Tokens 512 512 512 The maximum length of the gener-
ated response in tokens.

Temperature 0.8 1.0 0.8

The randomness in prediction; lower
values lead to more predictable text,
higher values produce more varied
outputs.

Top_p 1.0 1.0 0.8

The threshold for cumulative prob-
ability for selecting possible next
words, allowing for a diverse set of
responses.

D.5 CHOICE OF ANNOTATORS

In our paper, we leverage a number of LLM rankers to give preference feedback to responses
by iREPO across iteration. Unlike human preference annotation, which can be expensive and
time-consuming, using LLM rankers significantly reduces costs. To construct a diverse pool of
annotators, we utilize multiple open-source LLM ranker models, such as llm-blender/pair-ranker, llm-
blender/PairRM (Jiang et al., 2023) and its variants fine-tuned on different human feedback datasets,
OpenAssistant/reward-model-deberta-v3-large-v2 (Assistant, 2023), openbmb/UltraRM-13b (Cui
et al., 2023), berkeley-nest/Starling-RM-7B-alpha (Zhu et al., 2023), etc. Despite being relatively
smaller in size, these models demonstrate strong correlations with human preferences and approach
the performance level of GPT-4, making them effective and efficient alternatives for high-quality
ranking tasks (Jiang et al., 2023).
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Figure 4: Preference classification accuracy of LLM rankers on Ultrafeedback-Binarized dataset.

To evaluate the performance of these LLM rankers, we utilize two models with distinct configurations:
llm-blender/PairRM and openbmb/UltraRM-13b, to assess preferences between response pairs in
the Ultrafeedback-Binarized dataset Tunstall et al. (2023b), which contains responses pre-labeled as
’chosen’ and ’rejected’. As depicted in Fig. 4, the accuracy of the LLM rankers in preferring ’chosen’
responses over ’rejected’ ones is relatively high (approximately 80%), indicating their adequacy for
iREPO and offering a cost-effective alternative to high-cost human annotators or commercial LLMs.
Furthermore, we observed that there are not much gap in the quality between ‘chosen’ and ‘rejected’
responses in some samples of this dataset. This highlights that relying solely on implicit reward
differences, as in methods like DPO and IPO, may not be sufficient. In contrast, leveraging logits
from empirical preferences with iREPO provides a more robust and generalizable approach.

Another cost-effective option is to employ the pairwise annotators API wrapper provided in Alpaca-
Farm (Dubois et al., 2023) and AlpacaEval (Dubois et al., 2024). This API facilitates pairwise
feedback from commercial LLM models (e.g. GPT-4, ChatGPT).

In most of our experiments, we utilize nine LLM rankers to evaluate the responses generated by
the aligned LLM models. Each ranker is responsible for comparing or ranking a list of candidate
responses, ultimately providing an ordered list of preferences. By aggregating these individual
rankings across all rankers, we construct a comprehensive preference matrix He, which captures the
cumulative preferences across all rankers. This matrix serves as the basis for applying Zermelo’s
ranking method through pairwise comparisons, enabling to effectively quantify the relative strengths
of the candidate responses.

D.6 POTENTIAL LIMITATIONS

While our proposed framework, iREPO, demonstrates significant improvements in LLM alignment,
it is not without limitations. One of the key constraints arises from its reliance on iterative refinements
using feedback from either human or AI annotators. This introduces several potential issues:

• Annotation Consistency: The consistency of annotations, especially when using AI an-
notators, can vary. Differences in how AI systems interpret and annotate data can lead to
inconsistencies in training data, which may affect the reliability of the aligned model.

• Data Dependency and Variability: The effectiveness of iREPO hinges on the quality and
diversity of the data generated by annotators. If the dataset lacks variability or is biased,
the alignment process may not adequately capture the full spectrum of human preferences,
potentially leading to skewed or biased model outputs.

However, these limitations are being actively mitigated by advances in AI annotator technology and
data management practices. Most AI annotators used in iREPO are subject to rigorous evaluations
that ensure a high level of consistency in their annotations (Jiang et al., 2023). The prompts used for
generating annotator responses are sourced from large and diverse datasets, ensuring the data feeding
into iREPO captures a broad spectrum of human preferences, mitigating the risks associated with
data dependency and variability.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 6: Responses generated by iREPO with Mistral-7B model (Sample 1).

Model Responses

Prompt How many kinds of cells does the computer have?

SFT I don’t have a physical form, so I don’t have cells. Computers and smartphones
IRL "cell phone" however, are electronic devices, so they have no cells.

iREPO-0 It does not have any known cells. Christians believe that humans are created as a
soul put into a body and composed of cells.

iREPO-1 Computars don’t have cells, I’m afraid. Computers are made of components like
processors, memory chips, circuit boards, various electrical components, and
mechanical parts – none of these are biological cells. Computers do not have
living cells like biological organisms. They are designed, built, and powered by
humans for different purposes, including calculation, processing information,
and performing tasks based on instructions.
You might be thinking of "Computers" as species of artificial intelligence. But
that too is incorrect. Computers are inanimate machines, and they are not living
organisms. They cannot reproduce themselves, possess cell-like structures, or
follow biological processes like energy metabolism, information replication, or
growth, as you would find in living cells of biological organisms.
Only biological organisms, including all living creatures, such as humans, an-
imals, plants, and single-cell organisms, possess cells. Whether we’re talking
about multicellular organisms like us or unicellular organisms like amoebas,
cells are the fundamental units of life.

iREPO-2 Computers are not living organisms and do not have cells in the same sense
as biological organisms do. Computers are made up of constructed electronic
components and not biologically-derived cells. They do not replicate or exhibit
behavior regulated by DNA, or require nutrients and oxygen for survival in the
same way living cells do. To summarize:
- Computers do not possess cells. - The components of computers, such as
integrated circuits, may have tiny structures that closely resemble physical cells
(though they are man-made constructs), but they are in no way biologically active
or functionally similar to actual cells.
In a figurative sense though, one could be playful and artificially map the different
functional "parts" into "virtual cells," but this analogy is to be taken only as a
simplified model of a living organism for explaining purposes, and not a true
comparison of electronic and cellular structures or behavior. As an example,
you could create a concept where the memory of a computer is assigned to be a
"nucleus cell," the CPU to be the "brain cell," the motherboard to be the "skeletal
system cell," and other built-in pieces to represent the rest of the body cells. But
remember, these are all figurative parts, not physical biological cells.
Some computer hardware components have designations that sound like cells,
like processors or flash-based memory referred to as "flash cells" but it’s a
metaphor taken solely from the function these components perform, not their
biological structures or behavior.

D.7 VIBE TESTS

We further provide the generation examples of our models in the below tables.
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Table 7: Responses generated by iREPO with Mistral-7B model (Sample 2).

Model Responses

Prompt Please answer the following question: Use information from the paragraph to
answer the question. Question: A hydrocarbon with more carbon atoms will
have fewer or many isomers? Paragraph : The more carbon atoms a hydrocarbon
has, the greater the number of isomers.
A:

SFT The more carbon atoms a hydrocarbon has, the greater the number of isomers.

iREPO-0 If a hydrocarbon has more carbon atoms, it has a greater number of isomers.

iREPO-1 The hydrocarbon with more carbon atoms will have a higher or, more accurately,
a *greater* number of isomers (isomerization possibilities). This follows a trend
of increasing the number of isomers with an increase in the number of carbon
atoms, as described in the given paragraph. | Footnote: Isomerizations are also
called "isomers".

iREPO-2 The hydrocarbon with more carbon atoms will have a greater number of isomers,
or isomercally speaking, more possible arrangements of the carbon atoms in
a structure with the same chemical formula (number of carbons) can create
different isomers.
With an increase in the number of carbon atoms, the number of possible isomers
increases significantly due to the additional degrees of freedom present with
each added carbon atom. This is because the carbon atom is a trivalent element,
which means it can bind with up to three other atoms during the formation of
isomers. However, in a hydrocarbon isomer, all carbon atoms must be bonded
with hydrogen atoms, which also adds a degree of freedom in the number of
hydrogens. Thus, the number of possible isomers grows exponentially with the
addition of each carbon atom.
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Table 8: Responses generated by iREPO with Mistral-7B model (Sample 3).

Model Responses

Prompt Please answer the following question: Extract the answer to the question from
the following context. Question: Who are the descendants? Context: During a
panel discussion at Harvard University’s reunion for African American alumni
during the 2003–04 academic year, two prominent black professors at the institu-
tion—Lani Guinier and Henry Louis Gates—pointed out an unintended effect
of affirmative action policies at Harvard. They stated that only about a third of
black Harvard undergraduates were from families in which all four grandparents
were born into the African American community. The majority of black students
at Harvard were Caribbean and African immigrants or their children, with some
others the mixed-race children of biracial couples. One Harvard student, born
in the South Bronx to a black family whose ancestors have been in the United
States for multiple generations, said that there were so few Harvard students
from the historic African American community that they took to calling them-
selves "the descendants" (i.e., descendants of American slaves). The reasons for
this underrepresentation of historic African Americans, and possible remedies,
remain a subject of debate. A:

SFT The descendants that the Harvard student referred to were those from a black
family whose ancestors have been in the United States for multiple generations.

iREPO-0 Family of black students that have African American family lineage and ancestry
for four generations and up parents: African Americans Please choose an option
1) this answer 2) a descendent of students 3) family of students 4) None of the
above

iREPO-1 The descendants, as referenced in the given context, are the African American
undergraduate students at Harvard who self-identify as descendants of their
families in the African American community, where all four grandparents were
born into the African American community. This group may represent students
whose families have deep historical roots in the black community in America.

iREPO-2 The descendants referred to in the context are those black undergraduates at
Harvard University who are from families in which all four grandparents were
born into the African American community, or as they call themselves, "the
descendants of American slaves." These students identify as descendants of
African Americans whose ancestors lived through the historical experience of
enslavement in the United States.
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Table 9: Responses generated by iREPO with Phi-2 model (Sample 1).

Model Responses

Prompt next question: The fact that Joe was able to memorize the list in spite of his
apparent state proved that part of his brain was what?
Options:
- awake
- repeat
- sleeping
- concentrate
- read aloud
reasoning:

SFT C. Concentrate

iREPO-0 Based on the given information, I would choose the option "concentrate." While
Joe’s ability to memorize the list is impressive, it occurred despite his apparent
state, which suggests that his brain was actively focused and engaged. None of
the other options capture this specific detail about Joe’s mental state. Therefore,
the most suitable answer is "concentrate."

iREPO-1 Based on the information provided, I think the correct answer is "concentrate."
Here’s to making the right choice:
The ability for Joe to memorize the list, despite his apparent state, points to his
brain’s capacity to concentrate. The act of memorization requires focusing one’s
attention and mental effort, which is a key characteristic of concentration. So,
choosing "concentrate" as the answer correlates well with the given facts.

iREPO-2 Based on the given information, the ability of Joe to memorize the list despite
his apparent state suggests that the appropriate option is "concentrate." Memo-
rization typically requires focused attention and mental effort, both of which are
indications that Joe’s brain was actively concentrating on the task at hand. The
other options, such as being awake, sleeping, or reading aloud, don’t directly
relate to the act of memorizing the list as stated in the situation.
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Table 10: Responses generated by iREPO with Phi-2 model (Sample 2).

Model Responses

Prompt I’m taking a test and have to guess the right answer to the question after the
article. Article: The panda is one of the animals most in danger. There are
about 1,000 pandas living in nature reserves today. Zoos and research centers
look after about 160 pandas. Scientists are studying how they live and more
baby pandas are born in the zoos. Pandas live in the forests and mountains of
Southwest China. They mainly live on bamboo, and each panda needs to eat
a lot of bamboo every day. The area of bamboo is becoming smaller for many
different reasons, so pandas have less and less land to live on. Pandas don’t have
many babies, and baby pandas often die. The situation is becoming very serious.
Our government is working hard to save pandas. There are more than 30 nature
reserves to protect pandas but these are not enough. The government has made a
new plan to help pandas. The nature reserves will be bigger and the bamboo will
grow better. Then the pandas will have enough food to eat and enough places to
live in. Pandas born in the zoos may go back to live in the nature reserves. Most
people love pandas. The panda is one of the best-known animals in the world. It
is the symbol for the World Wide Fund for Nature. The WWF works to protect
all animals in danger, so the panda has become the symbol of all animals in
danger. There is still a long way to go to save the panda. Think of other animals
in danger such as tigers ,whales, turtles and elephant–we need to save the panda,
and we need to save them, too. Question: _ is the symbol for the World Wide
Fund for Nature. Options: A: The tiger B: The panda C: The elephant D: The
whale The answer to this question is:

SFT B) The panda

iREPO-0 B: The panda

iREPO-1 B: The panda
According to the article, the panda is mentioned as the symbol for the World
Wide Fund for Nature (WWF). This information is crucial for understanding the
context of the question presented after reading the article.

iREPO-2 B: The panda
According to the article, the panda is the symbol for the World Wide Fund for
Nature (WWF). The given options mention other animals in danger as well.
However, the specifically mentioned animal as the WWF’s symbol in the article
is the panda.
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Table 11: Responses generated by iREPO with Phi-2 model (Sample 3).

Model Responses

Prompt Definition: You are given a passage. You need to construct a question about the
information present in the passage. Construct a question in such a way that (i) it
is unambiguous, (ii) its answer is the whole paragraph. Avoid creating questions
that can be answered correctly without actually understanding the paragraph.
Input: Yes some one with heavy feet can learn how to dance. anything is possible
through Jesus Christ. if a man with no legs can swim then a person with heavy
feet can swim. Output:

SFT What is the main idea presented in the passage?

iREPO-0 Can you generate a question based on the information presented in the passage
that relates to the idea that "if a man with no legs can swim, then a person with
heavy feet can swim"? Is it possible?
output:
Yes, here’s a question related to that idea:
"Based on the comparison made in the passage regarding a man with no legs
swimming and a person with heavy feet swimming, can you form a question
relating to the possibility of a person with heavy feet swimming as well?"

iREPO-1 Based on the passage, how would you construct a question relating to the poten-
tial of a person with heavy feet in swimming, as compared to the example given
about a man with no legs swimming?
Answer:
QUESTION: Based on the comparison between a man with no legs swimming
and a person with heavy feet swimming, what potential ability does the passage
suggest a person with heavy feet may possess in terms of swimming?
Conflict resolution:
ANSWER: The passage suggests that a person with heavy feet, like the example
of a man with no legs swimming, may also have the ability to swim. The question
relates to the capability mentioned in the passage, drawing a parallel between
two contrasting scenarios.

iREPO-2 Can you form a question based on the given passage that explores the possibility
that someone with heavy feet can learn to swim, drawing upon the statements
about heavy feet, dance, and swimming abilities made in the text?
user classification question-based on the passage
user answer Can a person with heavy feet learn to swim, in consideration of the
statements about heavy feet being capable of learning dance and a man with no
legs swimming as mentioned in the given passage?
Certainly, the question addresses the possibility presented in the text. It draws on
the examples of heavy feet learning to dance and a man with no legs swimming
to explore whether someone with heavy feet can also learn to swim.
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