

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 OPTIMIZING THE INEFFABLE: GENERATIVE POLICY LEARNING FOR HUMAN-CENTERED DECISION-MAKING

Anonymous authors

Paper under double-blind review

ABSTRACT

Algorithmic decision-making is widely adopted in high-stakes applications affecting our daily lives but often requires human decision-makers to exercise their discretion within the process to ensure alignment. Explicitly modeling human values and preferences is challenging when tacit knowledge is difficult to formalize, as Michael Polanyi observed, “We can know more than we can tell.” To address this challenge, we propose generative near-optimal policy learning (GenNOP). Our framework leverages a conditional generative model to reliably produce diverse, near-optimal, and potentially high-dimensional stochastic policies. Our approach involves a re-weighting scheme for training generative models according to the estimated probability that each training sample is near-optimal. Under our framework, decision-making algorithms focus on a primary, measurable objective, while human decision-makers apply their tacit knowledge to evaluate the generated decisions, rather than developing explicit specifications for the ineffable, human-centered objective. Through extensive synthetic and real-world experiments, we demonstrate the effectiveness of our method.

1 INTRODUCTION

We have witnessed a pragmatic shift in automated decision-making systems from a heavily first-principles approach (e.g., the DENDRAL (Buchanan & Feigenbaum, 1981), the MYCIN (Van Melle et al., 1984), and the INTERNIST-1 (Miller et al., 1986) expert systems from the 1960–80s) towards a mostly empirically-grounded one (e.g., IBM Watson for Oncology (Strickland, 2019), automated insulin delivery (AID) systems (Sherr et al., 2022), and the COMPAS assessment for recidivism risk (Dressel & Farid, 2018) from the 2000–20s), as the availability of empirical data and the capacity to model it grow in orders of magnitude. The apparent success of data-driven systems is typically evidenced by their superior predictive accuracy and calibration on held-out evaluations. This aligns with classic results showing that statistical (actuarial) aggregation outperforms unaided clinical judgment for quantifiable information (Meehl, 1954; Dawes et al., 1989; Grove et al., 2000). Yet this success masks a crucial oversight, as decision-makers often conflate the *positive* capabilities of their empirical toolkits (what can be predicted or optimized) with the inherently *normative* nature of decision-making (what ought to be done). This conflation has produced many unintended consequences: decisions that are optimal in a statistical sense but misaligned with human values.

Consider a critical care physician attending to a patient just admitted to the intensive care unit (ICU). The physician can observe the conditions of the patient, gather her demographic information and medical history, and order a series of tests. Suppose the physician has access to a database of patient characteristics (X), actions taken by critical care physicians (A), and clinical outcomes (Y), as well as an algorithm (f) derived from this database that can give accurate and well-calibrated predictions of Y given X, A . Should the physician simply adopt the solution to the optimization problem $\arg \max_a f(X = x, A = a)$?

The algorithm provides a positive statement: “patients with characteristics x can expect a y -day reduction in length of stay at the ICU if a dosage of medications is administered to them”; however, adopting the $\arg \max$ implies a normative statement: “reducing the length of stay is the sole objective of the patient’s care”. This implication holds for any one or combination of quantifiable

054 clinical outcomes. Instead, the critical care physician’s true normative statement is: “we should
 055 treat Ms Wang with *a* dosage of medications because we believe this is the best course of action
 056 for her care”, stressing the importance of the individual (Tonelli, 1998). Any care derived from the
 057 true normative statement necessitates the clinical judgment by the physician to reflect the *unquan-*
 058 *tifiable* characteristics and welfare of the patient and to strike a balance among quantifiable clinical
 059 outcomes, the patient’s agency for their own care, and medical ethics and best practices. We term
 060 the class of decision-making tasks where the importance of the individual requires human judgment
 061 *human-centered decision-making* problems.

062 To model the effect of human judgment and to formalize normative statements, we introduce two
 063 implicit quantities: (1) a human-centered objective U that can be evaluated by human judgment but
 064 never measurable; and (2) an overall utility V whose order determines true normative preferences
 065 but is *ineffable* to both humans and algorithms. Figure 1 illustrates the relationship among the
 066 measurable objective Y , the human-centered objective U , and the overall utility V , for a given
 067 action space. See Section 2 for more details. Several examples of human-centered decision-making
 068 problems in various domains and their corresponding A , Y , U , V are included in Appendix B.

089 Figure 1: Illustration of the Objectives of Human-Centered Decision-Making Problems: (a) The
 090 measurable objective Y is the quantity that can be measured and optimized by algorithms: we
 091 can know the relationship between Y and A as well as the feasible region of A through explicit
 092 knowledge $f(\cdot | x)$ and/or learning the contextual mapping $\hat{f}(\cdot | x)$ from empirical data; (b) The
 093 human-centered objective U is the quantity that can be evaluated by human judgment but never
 094 measurable: human evaluators, upon observing a number of actions, can determine the relative
 095 contextual preferences among the actions through their tacit knowledge $h_x(\cdot)$, which cannot be
 096 formalized as $\hat{h}(\cdot | x)$ and reapplied without the human evaluators involved; (c) We have effectively
 097 a bi-objective optimization problem with one objective (Y) accessible to algorithms and the other
 098 (U) inaccessible to algorithms but visible to human evaluators: trade-offs between the two objectives
 099 are inevitable, and the overall utility V is a function of the two objectives.

100 A natural solution to injecting human values into automated decision-making systems is to place
 101 humans-in-the-loop (HITL). However, most current HITL systems either:

102 1. attempt to create a proxy for human judgment either by directly eliciting human tacit knowl-
 103 edge (Polanyi, 1966) or through preference-based learning such as reinforcement learning
 104 from human feedback (RLHF) (Ouyang et al., 2022). However, human judgment is too
 105 complex to capture comprehensively under all contexts, observable and latent; once human
 106 judgment is formalized, it can no longer adapt to individualities, distributional shifts, and

108 subtle changes in context, thereby losing the flexibility that made it valuable in the first
 109 place; or
 110 2. reduce human involvement to simply accepting or rejecting singular algorithmic recom-
 111 mendations. An over-simplified human role can lead to both algorithmic aversion and
 112 over-reliance (Dietvorst et al., 2015; Bunker & Khetani, 2019). When humans reject sin-
 113 gular algorithmic recommendations, they resort to either making local perturbations to the
 114 recommended decisions or coming up with *de novo* decisions on their own, leaving val-
 115 uable algorithmic power untapped.
 116

117 Neither approach captures the strengths of both humans and algorithms. A more promising strategy
 118 is to design for complementarity (McLaughlin & Spiess, 2024; Hemmer et al., 2024): clearly delin-
 119 eiating roles so that humans and algorithms each operate where they excel. We adopt such a strategy
 120 and propose a framework termed “generative near-optimal policy learning” (GenNOP). Under our
 121 framework: (1) Human experts define a measurable objective Y and set ϵ , the acceptable gap from
 122 optimal Y -value. (2) A generative model, trained on empirical (X, A, Y) data, produces a distribu-
 123 tion π over actions that achieve at least $(1 - \epsilon)$ of the optimal Y -value. (3) Human experts sample
 124 candidate actions from π and select the one that maximizes their judgment of U . With an appropri-
 125 ate choice of ϵ , the accepted U -maximizing decision coincides with the V -maximizing decision —
 126 the normative choice. Thus, GenNOP allows algorithms to handle the measurable dimension, while
 127 humans retain authority over the unmeasurable, value-laden dimension. Figure 2 illustrates how hu-
 128 mans and algorithms collaborate under the GenNOP framework. See Appendix C for a comparison
 129 of GenNOP with other paradigms of solving human-centered decision-making problems.
 130

151 Figure 2: Illustration of Human-Centered Decision-Making Under Generative Near-Optimal Policy
 152 Learning (GenNOP): (1) Human sets the hyperparameter ϵ ; (2) Algorithm learns the distribution of
 153 (potentially high-dimensional) actions that are ϵ -optimal, π_ϵ^* ; (3) Human samples m actions from
 154 the learned distribution and chooses the one maximizing the human-centered objective.
 155

156 **Our Contributions** Our framework offers a natural way of allocating roles to human experts and
 157 algorithms, without inducing significant performativity (Perdomo et al., 2020), as human experts
 158 are not asked to consider balancing the measurable objective with the human-centered objective—
 159 an unnatural task that depends on the algorithmic output—except when they determine the hyper-
 160 parameter ϵ . We formally define the human-centered decision-making problems in Section 2. In
 161 Section 3, we introduce our framework GenNOP aimed at solving these problems along with an im-
 plementation using max-stable process regression and diffusion models. In Section 4, we showcase

162 and evaluate our framework and implementation using synthetic and real datasets. See Appendix A
 163 for a review of related work.
 164

165 2 HUMAN-CENTERED DECISION-MAKING

166 **Problem Setup** We assume access to n i.i.d. observations $\{(\mathbf{a}_i, \mathbf{x}_i, y_i)\}_{i=1}^n \sim \mathcal{D}$ from an offline
 167 dataset with covariates $\mathbf{x}_i \in \mathcal{X}$ that characterize individual i , action $\mathbf{a}_i \in \mathcal{A}$ taken by individual
 168 i , and measurable objective value $y_i \in \mathbb{R}$. Note that $\mathbf{x}_i, \mathbf{a}_i$ are vectors, as GenNOP admits multi-
 169 dimensional covariates and actions. For notational convenience, we use x_i, a_i thereafter in place
 170 of vector notations. We adopt the potential outcomes framework (Rubin, 1974; Imbens & Rubin,
 171 2015).

172 Formally, our hybrid decision-maker solves a utility-maximization problem with regard to the cho-
 173 sen decision (or *action*) a :

$$174 \max_a V_a, \quad (1)$$

175 where $V_a = v(Y_a, U_a)$ is the overall utility (or *value*) of an action, $Y_a = y(a)$ the measurable
 176 objective, and $U_a = u(a)$ the human-centered objective. The decision-maker does not have full
 177 knowledge about the shape of $v(\cdot, \cdot)$ but can make mild assumptions about it.

178 Unlike the conventional *human-agnostic* setup which aims at optimizing for Y , under the *human-
 179 centered* setup, the goal (as in Equation (1)) is to optimize for V , the overall utility of an action as a
 180 function of the measurable objective Y and the human-centered objective U , by incorporating both
 181 the observed dataset \mathcal{D} and a human evaluator in the loop.

182 **ϵ -Optimality vs Quantitative Optimality** If there is some $a^* = \arg \max_a Y_a = \arg \max_a U_a$, intuitively, we should never sacrifice quantitative optimality in Y . In practice, how-
 183 ever, Y_a and U_a often exhibit inherent trade-offs at or near Y - and U -optimalities: near the Y -
 184 optimality, small gains in Y often come with significant losses in U , and vice versa. For example, if
 185 Y represents the commercial success of a movie (measured in box-office revenue) and U its artistic
 186 value, modifying the plot of a movie expected to be hugely commercially successful to bring in yet
 187 more revenue would require the movie to appeal to an even broader audience at a cost of its artistic
 188 value. Two real-world examples are shown in Appendix D. We thus assume that there exists a
 189 strictly concave Pareto frontier (Assumption 1). Since in most real-world cases, V_a exhibits dimi-
 190 nishing returns to both Y_a and U_a , we can assume that $v(\cdot, \cdot)$ is strictly concave in both its inputs
 191 (Assumption 3). Along with other mild assumptions stated in Appendix E.1, we have the following:

192 **Proposition 1** (Maxima non-coincidence). *Let $\{(Y^{(n)}, U^{(n)})\}_{n=1}^N$ be i.i.d. draws satisfying Ass-
 193 sumptions 1 — 3. Define:*

$$194 M_Y \in \arg \max_{1 \leq n \leq N} Y^{(n)}, \quad M_V \in \arg \max_{1 \leq n \leq N} v(Y^{(n)}, U^{(n)}),$$

195 with arbitrary tie-breaking. Then:

$$196 \lim_{N \rightarrow \infty} \mathbb{P}(M_Y = M_V) = 0.$$

197 **Proposition 2** (Local V -order dominance). *Under Assumptions 1 — 5, there exists $\bar{\epsilon} \in (0, \epsilon]$ such
 198 that for any two sampled points with*

$$199 Y^{(i)}, Y^{(j)} \in [y^* - \bar{\epsilon}, y^*],$$

200 we have, writing $V^{(k)} := v(Y^{(k)}, U^{(k)})$,

$$201 U^{(i)} \geq U^{(j)} \implies V^{(i)} \geq V^{(j)}.$$

202 Consequently, within any finite sample restricted to $y \in [y^* - \bar{\epsilon}, y^*]$, an $\arg \max U$ is also an
 203 $\arg \max V$.

204 **Proposition 3** (Global V -optimality of U -maximizers). *Under Assumptions 1 — 4 and 6, there
 205 exists $\bar{\epsilon} \in (0, \epsilon]$ such that, over*

$$206 \mathcal{N}_{\bar{\epsilon}, \eta} := \{(y, u) : y \in [y^* - \bar{\epsilon}, y^*], g(y) - \eta \leq u \leq g(y)\},$$

216 every global maximizer of U is also a global maximizer of V :

$$218 \quad \arg \max_{(y,u) \in \mathcal{N}_{\epsilon,\eta}} U \subseteq \arg \max_{(y,u) \in \mathcal{N}_{\epsilon,\eta}} v(y,u).$$

220 Moreover, for i.i.d. samples supported in $\mathcal{N}_{\epsilon,\eta}$ with density bounded below as in Assumption 6, if
221 $\hat{k}_m \in \arg \max_{1 \leq k \leq m} U^{(k)}$ and $V^{(k)} := v(Y^{(k)}, U^{(k)})$, then:

$$223 \quad \lim_{m \rightarrow \infty} \mathbb{P} \left(\left(Y^{(\hat{k}_m)}, U^{(\hat{k}_m)} \right) \in \arg \max_{(y,u) \in \mathcal{N}_{\epsilon,\eta}} v(y,u) \right) = 1.$$

226 See Appendix E.2 for proofs. We formally define ϵ -optimality of actions for an individual characterized by covariates x as follows:

228 **Definition 1** (ϵ -optimality). For some $\epsilon \geq 0$, an action $a \in \mathcal{A}$ is considered ϵ -optimal if

$$230 \quad |y^*(x) - \mathbb{E}[Y_a | X = x]| \leq \epsilon,$$

231 where $y^*(x) = \max_{a \in \mathcal{A}} \mathbb{E}[Y_a | X = x]$ is the optimal Y -value for an individual with covariates x .

233 Under this definition, ϵ -optimality can vary from individual to individual. For example, treatments
234 that are considered near-optimal for an otherwise healthy individual are intuitively different from
235 those considered near-optimal for an individual with many comorbidities, even when the treatments
236 are intended for the same condition.

237 If we know the value of ϵ a priori, we can query the algorithm to find out y^* and generate a large
238 number of actions a such that $Y_a \geq y^* - \epsilon$. We can then ask the human evaluator to choose the one
239 among the generated actions that maximizes U : among the generated actions, any U -maximizing
240 action is guaranteed to be a V -maximizing action. Unfortunately, the human decision-maker does
241 not have explicit access to the value of ϵ , at least not without knowing the shape of $v(\cdot, \cdot)$. However,
242 compared to estimating the shape of v , directly estimating ϵ as a hyperparameter is a much easier
243 and more intuitive task. Even when ϵ is underestimated, any U -maximizing action chosen from the
244 generated actions is still better than the Y -maximizing action.

246 3 GENERATIVE NEAR-OPTIMAL POLICY LEARNING (GENNOP)

248 Our proposed framework, GenNOP, aims at using a conditional generative model to learn a stochastic
249 policy that is ϵ -optimal in Y -value. Compared to a deterministic policy that is quantitatively
250 optimal in Y -value, an ϵ -optimal stochastic policy offers human evaluators choices from which a
251 higher V -value (overall utility) is attained. We precisely define our target policy of interest, ϵ -
252 optimal stochastic policies, as follows:

253 **Definition 2** (ϵ -optimal policies). An ϵ -optimal policy π_ϵ^* is a stochastic policy that maps covariates
254 x to the uniform distribution of all ϵ -optimal actions:

$$255 \quad \pi_\epsilon^*(a|x) = \frac{1}{|\Omega_\epsilon^*(x)|} \mathbf{1} \{a \in \Omega_\epsilon^*(x)\}, \quad (2)$$

258 where $\Omega_\epsilon^*(x) = \{a : |y^*(x) - \mathbb{E}[Y_a | X = x]| \leq \epsilon\}$ and $\mathbf{1}\{\cdot\}$ denotes the indicator function.

259 Figure 3 illustrates ϵ -optimality and ϵ -optimal policy. Whereas the density of the absolute-optimal
260 policy $p(\pi^*(x))$ represents a point mass in the action space, that of the ϵ -optimal policy $\Omega_\epsilon^*(x)$
261 represents a richer, more diverse, and potentially multi-modal density over the action space, at the
262 expense of ϵ in the Y -space, which is desirable by practitioners under various settings.

264 3.1 CONDITIONAL GENERATIVE MODEL AS π_ϵ^*

266 The goal of GenNOP is to train a generative model parametrized by θ whose generative distribution
267 π_θ approximates π_ϵ^* . To this end, we define our learning objective as minimizing the Kullback-
268 Leibler (KL) divergence between the target policy π_ϵ^* and the generative policy π_θ :

$$269 \quad \min_{\theta} L(\theta) = \mathbb{E}_{x \sim p(X)} [D_{\text{KL}}[\pi_\epsilon^*(\cdot|x) || \pi_\theta(\cdot|x)]].$$

Figure 3: ϵ -Optimal Policy

If we have a dataset $\mathcal{D}^* = \{(x_i, a_i)\}_{i=1}^n$ where x_i is drawn from $p(X)$ and a_i from the true ϵ -optimal policy π_ϵ^* , our learning objective above can be conveniently expressed in distribution as minimizing (see Appendix H.1 for derivation):

$$L(\theta) \stackrel{d}{=} \mathbb{E}_{(x,a) \sim \mathcal{D}^*} [-\log \pi_\theta(a|x)]. \quad (3)$$

However, we cannot directly obtain action samples drawn from the target policy π_ϵ^* . Instead, we perform an *re-weighting* step to the observational dataset \mathcal{D} , so that the distributions of action samples drawn from the re-weighted dataset approximate the distributions of those drawn from π_ϵ^* . We rely on two quantities:

1. $g_\epsilon(y, x) = \mathbb{E}_{y^*(x)}[1\{y^*(x) < y + \epsilon\}] = \mathbb{P}\{y^*(x) < y + \epsilon\}$ is the probability that a given outcome value y is at most ϵ below the optimal outcome for an individual with covariates x . It acts as a *filter* on the observational treatment distribution. Its estimation involves the choice of a parametric distribution and is discussed in Section 3.2.
2. $p(a|x)$ is the generalized propensity score (GPS) of action a given covariates x . It is used to transform the filtered *observational* distribution into a *counterfactual* distribution via inverse probability weighting (IPW). Its estimation is discussed in Appendix I.2 by adopting the strategy by Zou et al. (2020).

We define the weight function of an observation given ϵ as $w(x, a, y; \epsilon) = g_\epsilon(y, x)/p(a|x)$, which is identifiable from observational data under standard causal assumptions in Appendix F. Adopting the conditional diffusion model with classifier-free guidance parametrized by θ as the generative policy π_θ , we re-weight its loss function (6) and have the following learning objective (see Appendix H.2 for derivation):

$$L(\theta) = \mathbb{E}_{t,x,a,y,\epsilon} \left[w(x, a, y; \epsilon) \cdot \|\epsilon - \epsilon_\theta(a_t, t, x)\|^2 \right]. \quad (4)$$

Overall, our strategy for learning π_θ can be viewed as a two-stage learning process: (1) weight construction via training neural networks that parametrize generalized extreme value (GEV) distributions and estimating the GPS via variational autoencoder (VAE); and (2) conditional diffusion model training with re-weighted objective. In the first stage, we adopt a “filter-and-weight” strategy to construct a re-weighted dataset of uniformly distributed, counterfactually near-optimal actions, out of an observational dataset of self-selected, possibly suboptimal actions. The GenNOP algorithm is summarized as Algorithm 1.

3.2 ESTIMATING CONDITIONAL OPTIMALITY VIA MAX-STABLE PROCESS REGRESSION

We aim to estimate the probability distribution of the conditional optimality: $g_\epsilon(y, x) = \mathbb{P}\{y^*(x) < y + \epsilon\}$, where $y^*(x) = \max_{a \in \mathcal{A}} \mathbb{E}[Y_a | X = x]$. Learning a counterfactual model $f: \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}$ is intractable for large or continuous \mathcal{A} . Instead, note that we need only the value of $\max_{a \in \mathcal{A}} Y_a | X = x$, not the arg max. Hence we view $\{Y_x\}_{x \in \mathcal{X}}$ as a stochastic process, where each Y_x denotes the random variable $\{Y | X = x\}$.

Let \mathcal{X} be a metric space with distance $d(\cdot, \cdot)$. For each x_i in our sample, we treat its kb nearest neighbors as having identical covariates x_i , randomly partition them into k blocks of size b , and take the maximum within each block: $\{y_i^{(1)}, y_i^{(2)}, \dots, y_i^{(k)}\}$. We repeat this for $i \in \{1, \dots, n\}$.

324 **Algorithm 1** Generative Near-Optimal Policy Learning (GenNOP)

325 **Require:** Dataset $\mathcal{D} = \{(x_i, a_i, y_i)\}_{i=1}^n$, neighbors k , block size b , metric d , threshold ϵ

326 **Ensure:** ϵ -optimal actions $\{a_1^*, \dots, a_m^*\}$ for given x

327 1: Initialize parameters: GEV (ψ), VAE (ϕ, φ), diffusion model (θ).

328 2: **for** each $x_i \in \mathcal{D}$ **do**

329 3: Find $k \cdot b$ nearest neighbors; partition into k blocks; compute block maxima $\{y_i^{(j)}\}$.

330 4: **end for**

331 5: Train the GEV model via MLE to obtain $\hat{\psi}$.

332 6: **for** each $(x_i, a_i, y_i) \in \mathcal{D}$ **do**

333 7: Compute $g_\epsilon(y_i, x_i) = \mathbb{P}\{y^*(x_i) < y_i + \epsilon\}$ using GEV with $\hat{\psi}$.

334 8: Estimate $p(a_i|x_i)$ via VAE.

335 9: **end for**

336 10: **while** not converged **do**

337 11: Sample mini-batch $(x, a, y) \sim \mathcal{D}$, timestep t , and noise ε .

338 12: Update θ by minimizing

339
$$L(\theta) = \mathbb{E} \left[w(x, a, y; \epsilon) \cdot \|\varepsilon - \varepsilon_\theta(a_t, t, x)\|^2 \right].$$

340 13: **end while**

341 14: **Return** m actions sampled from $\pi_\theta(\cdot|x)$.

Figure 4: Max-Stable Process Regression

342 By standard extreme-value theory, the collection $\{y_i^{(j)}\}_{i=1, \dots, n; j=1, \dots, k}$ admits a max-stable character-
 343 ization, so each marginal distribution is a GEV distribution with parameters μ, σ, ξ , which are esti-
 344 mated via neural networks. See Appendix I.1 for details. Figure 4 illustrates how $y^*(x)$ is esti-
 345 mated probabilistically from block maxima. To showcase the robustness of this method and the
 346 effect of different choices of k, b , we conducted an ablation study and reported in Table 1 the means
 347 and standard deviations of the negative log-likelihood of the estimated parameters over 5 random
 348 initializations. We found that overall this method is robust, while moderate regularization strength,
 349 number of blocks (k), and block size (b) can lead to the best performance. See Appendix J for more
 350 details.

Table 1: Ablation Study of GEV Parameter Estimation.

Dimensionality	Regularization	$k = 10, b = 30$	$k = 20, b = 10$	$k = 20, b = 20$	$k = 20, b = 30$	$k = 30, b = 30$	$k = 50, b = 30$
1D	0	0.52 (2.90)	-1.34 (0.16)	-0.56 (1.40)	-0.15 (3.27)	-1.31 (0.66)	-1.24 (0.90)
1D	1	-2.06 (0.17)	-1.45 (0.07)	-1.99 (0.13)	-2.17 (0.17)	-2.02 (0.21)	-2.05 (0.07)
1D	10	-1.84 (0.31)	-1.19 (0.06)	-1.53 (0.17)	-1.72 (0.55)	-1.49 (0.65)	-1.82 (0.07)
2D	0	3.09 (4.58)	0.60 (1.41)	1.07 (2.62)	-0.56 (1.02)	-0.74 (0.88)	0.29 (3.11)
2D	1	-0.95 (0.65)	-0.36 (0.24)	-0.66 (0.44)	-1.22 (0.12)	-1.05 (0.34)	-0.29 (1.56)
2D	10	-1.25 (0.13)	-0.33 (0.06)	-0.22 (0.24)	-0.72 (0.42)	-0.68 (0.49)	-0.36 (0.47)

4 EXPERIMENTS

375 **Synthetic Results** We created the following synthetic datasets to compare GenNOP with the base-
 376 line methods: (1) A fully-synthetic dataset in which covariates, actions, and measurable objective

values are all 1-dimensional and bounded by $(0, 1)$; (2) A semi-synthetic dataset in which actions are represented by images drawn from the Fashion-MNIST dataset to showcase the capability of handling high-dimensional action spaces; covariates in this dataset are also multi-dimensional. Details can be found in Appendix K.

We report the evaluation metrics on the synthetic datasets in the table below. Numbers outside parentheses are the mean metrics taken over the distributions of covariates. Those inside are the 5-th percentile metrics. Standard deviations of the metrics taken over 10 generated samples are indicated by the numbers after \pm . 0.00 indicates quantities less than 0.005. Compared to the baseline methods, GenNOP enjoys superior performance across metrics and datasets. Moreover, the aim of GenNOP to learn policies that give individualized action recommendations is well attained, as the superior performance of GenNOP holds not only at the mean but also for its poorest-performing units (indicated by the 5-th percentile covariates). With an acceptable performance even for its poorest-performing units, decision-makers can become more confident in adopting GenNOP.

Table 2: Evaluation Metrics.

Method	Fully-synthetic dataset		Semi-synthetic dataset		
	Precision \uparrow	Recall \uparrow	Precision \uparrow	Recall \uparrow	FID \downarrow
GenNOP	$0.85 \pm 0.00 (0.47 \pm 0.00)$	$0.97 \pm 0.00 (0.80 \pm 0.00)$	$0.83 \pm 0.03 (0.38 \pm 0.06)$	$0.69 \pm 0.03 (0.27 \pm 0.03)$	5.0 ± 1.8
GenNOP w/o p	$0.83 \pm 0.00 (0.37 \pm 0.01)$	$0.94 \pm 0.00 (0.80 \pm 0.00)$	$0.87 \pm 0.03 (0.44 \pm 0.08)$	$0.67 \pm 0.02 (0.25 \pm 0.03)$	6.5 ± 3.4
GenNOP w/o g_ϵ	$0.01 \pm 0.00 (0.02 \pm 0.00)$	$0.45 \pm 0.00 (0.10 \pm 0.00)$	$0.38 \pm 0.02 (0.00 \pm 0.00)$	$0.45 \pm 0.02 (0.00 \pm 0.00)$	14.3 ± 3.8
DRPolicyForest (Athey & Wager, 2021)	$0.37 \pm 0.00 (0.00 \pm 0.00)$	$0.06 \pm 0.00 (0.00 \pm 0.00)$	$0.44 \pm 0.02 (0.00 \pm 0.00)$	$0.33 \pm 0.03 (0.00 \pm 0.00)$	22.0 ± 3.3
DDOM (Krishnamoorthy et al., 2023)	$0.29 \pm 0.00 (0.00 \pm 0.00)$	$0.11 \pm 0.00 (0.00 \pm 0.00)$	$0.66 \pm 0.04 (0.04 \pm 0.08)$	$0.54 \pm 0.03 (0.04 \pm 0.09)$	34.7 ± 12.4
GP-UCB (Srinivas et al., 2010)	$0.13 \pm 0.00 (0.00 \pm 0.00)$	$0.27 \pm 0.00 (0.00 \pm 0.00)$	$0.40 \pm 0.03 (0.00 \pm 0.00)$	$0.43 \pm 0.05 (0.00 \pm 0.00)$	19.1 ± 7.3

The impact of the key quantities g_ϵ, p is demonstrated by the ablation studies. Without the “filter” g_ϵ , GenNOP saw a considerable reduction in performance, particularly in precision, as it learns from all past actions in the training dataset, which can include suboptimal ones. Without the “weight” p , GenNOP took a relatively minor but still statistically significant performance reduction in most metrics, as the observational distribution of actions can be very different from the uniform distribution.

Figure 5: Effect of Hyperparameters on Expected Regret

To bring ϵ -optimal policy into the context of human-centered decision-making, we created an end-to-end synthetic dataset by including U, V in its data-generating process. We define the regret of an action a for an individual with covariates x as the difference between the optimal overall utility value (V) for that individual and the overall utility value attained by that action: $\text{Regret}(a, x) = v^*(x) - V_a | X = x$, where $v^*(x) = \max_a V_a | X = x$; additionally, we define the regret of a stochastic policy $\pi(x)$ given the number of draws m as the difference between $v^*(x)$ and the U -maximizing action among the m draws:

$$\text{Regret}(\pi, x; m) = v^*(x) - V_{a^*} | X = x,$$

where $a^* = \arg \max_a U_a | X = x, a \in \{a_i\}_{i=1}^m \sim \pi(x)$. We examine how the choices of ϵ and m influence the expected regret: $\mathbb{E}_x \text{Regret}(\pi_\epsilon, x; m)$ in Figure 5. For GenNOP, expected regret decreases as ϵ increases from 0 up to its optimal value as determined by the shape of the utility function. Past the optimal ϵ value, expected regret increases; nevertheless, expected regret stays below its value at $\epsilon = 0$ until a very high value of ϵ , indicating the advantage of ϵ -optimality over quantitative optimality ($\epsilon = 0$) as long as a moderate ϵ is chosen. Given the optimal ϵ , expected regret is already near its minimum even when only a few action samples are generated, indicating

432 the practicality of GenNOP, as human experts can only evaluate a small number of action candidates
 433 in practice.

440 Figure 6: Regrets Under Varying Decision-Maker Perception Preferences and Capabilities.

441 **Decision-Maker Perception Preferences and Capabilities** While we initially assumed decision-
 442 makers using GenNOP would optimize for the human-centered objective (U), in practice different
 443 decision-makers have varying focuses: family members prioritize U , junior clinicians focus on mea-
 444 surable outcomes (Y), and experienced clinicians may optimize for overall utility (V). Since both U
 445 and V are unmeasurable, we can only qualitatively assess decision-maker preferences, but GenNOP
 446 should perform well across these diverse practical settings.

447 To evaluate the decisions made by the human-algorithm hybrid system, we model the human
 448 decision-makers as capable of perceiving the quality of any action (Q_a) as a linear combination of
 449 their perceived Y_a, U_a, V_a values. Given a policy π , they solve the following optimization problem
 450 as their decision:

$$451 \arg \max_{a \sim \pi} \lambda_Y Y_a (1 + \delta_Y) + \lambda_U U_a (1 + \delta_U) + \lambda_V V_a (1 + \delta_V),$$

452 where $\lambda_Y + \lambda_U + \lambda_V = 1$ and $\lambda_Y, \lambda_U, \lambda_V \geq 0$; and $\delta_Y, \delta_U, \delta_V \sim \text{Unif}(-\delta, \delta)$, $\delta \geq 0$ are drawn
 453 independently to model the limitations in decision-maker perception capabilities.

454 We assess the quality of the decisions made by the hybrid system by comparing the overall objective
 455 of the chosen decision and that of the oracle decision and calculating the regret. Using barycentric
 456 coordinates, we plot the regret against the ternary preferences $(\lambda_Y, \lambda_U, \lambda_V)$ in equilateral tri-
 457 angles in Figure 6. The ground-truth ϵ -optimal policy achieves zero regret at $(0, 1, 0)$ and trivially
 458 at $(0, 0, 1)$, while the algorithm-only system at $(1, 0, 0)$ yields maximum regret under $\delta = 0$. Zero
 459 regret remains achievable when λ_Y stays below a threshold determined by the λ_U/λ_V ratio, suggest-
 460 ing decision-makers should prioritize human-centered over overall objectives when facing moderate
 461 perception preferences for measurable objectives. While GenNOP cannot achieve perfect zero regret
 462 due to non-zero densities where $Y_a < y^* - \epsilon$, it maintains low regret except near the Y -vertex and
 463 significantly outperforms the baseline DDOM. Performance depends critically on ϵ selection: small
 464 values ($\epsilon = 0.05$) enable low-to-moderate regret outside the Y -vertex neighborhood at higher min-
 465 imum regret cost, while large values ($\epsilon = 0.5$) resemble DDOM with elevated minimum regret, thus
 466 recommending conservative ϵ choices. When perception capabilities are limited by noise ($\delta = 0.2$),
 467 with perceived quality multiplied by factors from $[0.8, 1.2]$, GenNOP demonstrates reasonable ro-
 468 bustness with only slight increases in minimum regret and undesirable region size near the Y -vertex.
 469 We elaborate further in Appendix L.

470 **Real Datasets** We apply our framework to the dosing problem mentioned in the Introduction,
 471 which is a good example of a human-algorithm hybrid system solving a human-centered decision-
 472 making problem. To this end, we extracted 2 datasets from the Medical Information Mart for
 473 Intensive Care (MIMIC)-IV (Johnson et al., 2023) dataset: (1) `mimic-icu-cardio` and (2)
 474 `mimic-icu-sepsis`, which contain dosages of sets of medications (A), patient characteristics
 475 (X), and measurable objectives (Y) of patients admitted to ICUs for cardiovascular and sepsis diag-
 476 noses. Details can be found in Appendix K.4.

Figure 7: 2-D Representations of Observed Actions and Generated Action Distributions

For each dataset, we plot the observed actions and the generated action distribution by GenNOP as 2-D representations in Figure 7 using principal component analysis (PCA). For comparison, we also show the action distribution induced by Gaussian perturbation of the singular optimal action as a result of solving for quantitative optimality instead of ϵ -optimality. This is to mimic the myopic tendency of human behavior when processing the only option available: to perturb it locally. In both datasets, GenNOP yield generative distributions more closely aligned with the observed distributions of ϵ -optimal actions taken by human experts than did the perturbation method. Specifically, in `mimic-icu-cardio`, GenNOP yield a distribution that covered most of the observed actions, while the perturbation method concentrate its distribution on only a few observed actions and completely miss the mode where the majority of the observed actions reside; in `mimic-icu-sepsis`, although both methods enjoy good coverage of the observed actions, GenNOP correctly concentrate on the main axis of actions, while the perturbation method puts too much density on the minor axis, which can lead to lower precision and potentially algorithmic aversion by human decision-makers as a result.

5 DISCUSSION

In this paper, we proposed generative near-optimal policy learning (GenNOP). We note that as algorithmic capabilities in decision-making steadily improve to the extent of surpassing human capabilities in many aspects, the applications of these capabilities are largely human-agnostic, even when human experts are an integral part of the pipeline, resulting in worse performance of the hybrid system at best and decisions misaligned with human values and preferences with profound impact at worst. Our framework is a compromise between a more integrated human-algorithm system and an easier-to-operationalize mode of design for complementarity.

We note the limitations of our current evaluation strategies. In the synthetic experiments, we assumed human evaluators are capable of choosing the action maximizing V_a (or Q_a) regardless of the set of candidate actions presented to them. In practice, the axiom of independence of irrelevant alternatives (IIA) may not hold. In the real dataset experiments, we resorted to clinicians whose actions we observed in the datasets. Instead, an ideal evaluation for these experiments would involve medical experts as raters for the generated actions under different policies in randomized controlled trials. Our framework works the best when ample observations of past decisions are available. When they are sparse, human expertise can help formulate data-driven set optimization problems in place of the generative model. Moreover, a separate algorithm can be trained to mimic the decision-selection process to reduce the human decision-maker's workload, which puts the latter in the role more of a supervisor than a practitioner. Large language models can be a sensible basis for such a algorithm. We leave the exploration of these areas of improvement to future work.

540 REPRODUCIBILITY STATEMENT
541542 **Open Access to Code Repository** Access to our implementation of GenNOP is available at
543 <https://anonymous.4open.science/r/GenNOP/>.
544545 **Compute Resources** All experiments, with the exception of those on the semi-synthetic dataset,
546 should not require significant compute resources beyond the CPU capabilities of a typical recent
547 personal computer. Specifically, they were conducted using a laptop computer with an Apple M3
548 Pro chip with 18 GB of memory. Each experiment took an insignificant amount of time (on the order
549 of a few minutes).550 The experiments on the semi-synthetic dataset were conducted using a virtual machine from Google
551 Cloud Compute Engine with the following configuration: n1-standard-8 (8 vCPUs, 30
552 GB Memory), 1 x NVIDIA Tesla P100, 100 GB Storage. These experiments (in-
553 cluding the repetitions needed to establish statistical significance) took about 8 hours.
554555 USE OF LARGE LANGUAGE MODELS (LLMs)
556557 **Writing** We used LLMs to assist with restructuring the flow of content and polishing text at the
558 sentence level. All em dashes (—) in this paper are our own writing.
559560 **Retrieval and Discovery** We used LLM-based Deep Research agents for literature review. All
561 retrieved papers were manually reviewed for relevance. Additional papers were included manually.
562 The Related Work section was manually written.
563564 REFERENCES
565566 Ravindra K Ahuja, Özlem Ergun, James B Orlin, and Abraham P Punnen. A survey of very large-
567 scale neighborhood search techniques. *Discrete Applied Mathematics*, 123(1-3):75–102, 2002.568 Rohan Alur, Manish Raghavan, and Devavrat Shah. Human expertise in algorithmic prediction.
569 *Advances in Neural Information Processing Systems*, 37:138088–138129, 2024.
570571 Francis J Anscombe, Robert J Aumann, et al. A definition of subjective probability. *Annals of
572 mathematical statistics*, 34(1):199–205, 1963.573 Susan Athey and Stefan Wager. Policy learning with observational data. *Econometrica*, 89(1):
574 133–161, 2021. doi: 10.3982/ECTA15732.
575576 Sachin Banker and Salil Khetani. Algorithm overdependence: How the use of algorithmic rec-
577 ommendation systems can increase risks to consumer well-being. *Journal of Public Policy &
578 Marketing*, 38(4):500–515, 2019.579 Dimitris Bertsimas and John Tsitsiklis. Simulated annealing. *Statistical science*, 8(1):10–15, 1993.
580581 Bruce G Buchanan and Edward A Feigenbaum. Dendral and meta-dendral: Their applications
582 dimension. In *Readings in artificial intelligence*, pp. 313–322. Elsevier, 1981.583 Ernie Chan. *Algorithmic trading: winning strategies and their rationale*. John Wiley & Sons, 2013.585 Yuansi Chen, Chi Jin, and Bin Yu. Stability and convergence trade-off of iterative optimization
586 algorithms. *arXiv preprint arXiv:1804.01619*, 2018.587 Antoine Cully and Yiannis Demiris. Quality and diversity optimization: A unifying modular frame-
588 work. *IEEE Transactions on Evolutionary Computation*, 22(2):245–259, 2017.589 Robyn M Dawes, David Faust, and Paul E Meehl. Clinical versus actuarial judgment. *Science*, 243
590 (4899):1668–1674, 1989.
591592 Giovanni De Toni, Nastaran Okati, Suhas Thejaswi, Eleni Straitouri, and Manuel Rodriguez. To-
593 wards human-ai complementarity with prediction sets. *Advances in Neural Information Process-
594 ing Systems*, 37:31380–31409, 2024.

594 Kalyanmoy Deb, Karthik Sindhya, and Jussi Hakanen. Multi-objective optimization. In *Decision*
 595 *sciences*, pp. 161–200. CRC Press, 2016.

596

597 Erick Delage, Daniel Kuhn, and Wolfram Wiesemann. “dice”-sion-making under uncertainty: when
 598 can a random decision reduce risk? *Management Science*, 65(7):3282–3301, 2019.

599

600 Berkeley J Dietvorst, Joseph P Simmons, and Cade Massey. Algorithm aversion: people erroneously
 601 avoid algorithms after seeing them err. *Journal of experimental psychology: General*, 144(1):114,
 602 2015.

603

604 Julia Dressel and Hany Farid. The accuracy, fairness, and limits of predicting recidivism. *Science*
 605 *advances*, 4(1):eaao5580, 2018.

606

607 Iason Gabriel. Artificial intelligence, values, and alignment. *Minds and machines*, 30(3):411–437,
 608 2020.

609

610 Robert Gauer, Damon Forbes, and Nathan Boyer. Sepsis: Diagnosis and management. *Am. Fam.*
 611 *Physician*, 101(7):409–418, April 2020.

612

613 William M Grove, David H Zald, Boyd S Lebow, Beth E Snitz, and Chad Nelson. Clinical versus
 614 mechanical prediction: a meta-analysis. *Psychological assessment*, 12(1):19, 2000.

615

616 Zhendong Guo, Haitao Liu, Yew-Soon Ong, Xinghua Qu, Yuzhe Zhang, and Jianmin Zheng. Gen-
 617 erative multiform bayesian optimization. *IEEE Transactions on Cybernetics*, 53(7):4347–4360,
 618 2022.

619

620 Joey Hejna, Rafael Rafailov, Harshit Sikchi, Chelsea Finn, Scott Niekum, W. Bradley Knox, and
 621 Dorsa Sadigh. Contrastive preference learning: Learning from human feedback without rl, 2024.
 622 URL <https://arxiv.org/abs/2310.13639>.

623

624 Patrick Hemmer, Max Schemmer, Niklas Kühl, Michael Vössing, and Gerhard Satzger. Com-
 625plementarity in human-ai collaboration: Concept, sources, and evidence. *arXiv preprint*
 626 *arXiv:2404.00029*, 2024.

627

628 Keisuke Hirano and Guido W. Imbens. *The Propensity Score with Continuous Treatments*, chapter 7,
 629 pp. 73–84. John Wiley & Sons, Ltd, 2004. ISBN 9780470090459. doi: <https://doi.org/10.1002/0470090456.ch7>. URL <https://onlinelibrary.wiley.com/doi/abs/10.1002/0470090456.ch7>.

630

631 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *arXiv preprint*
 632 *arxiv:2006.11239*, 2020.

633

634 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
 635 Fleet. Video diffusion models. *arXiv:2204.03458*, 2022.

636

637 Caroline Minter Hoxby and Jonah E Rockoff. *The impact of charter schools on student achievement*.
 638 Department of Economics, Harvard University Cambridge, MA, 2004.

639

640 Jessica Hullman, Yifan Wu, Dawei Xie, Ziyang Guo, and Andrew Gelman. Conformal prediction
 641 and human decision making. *arXiv preprint arXiv:2503.11709*, 2025.

642

643 Guido W. Imbens. The role of the propensity score in estimating dose-response functions.
 644 *Biometrika*, 87(3):706–710, 2000. ISSN 00063444. URL <http://www.jstor.org/stable/2673642>.

645

646 Guido W. Imbens and Donald B. Rubin. *Causal Inference for Statistics, Social, and Biomedical Sci-*
 647 *ences: An Introduction*. Cambridge University Press, 2015. doi: 10.1017/CBO9781139025751.

648

649 Alistair E. W. Johnson, Lucas Bulgarelli, Lu Shen, Alvin Gayles, Ayad Shammout, Steven Horng,
 650 Tom J. Pollard, Sicheng Hao, Benjamin Moody, Brian Gow, Li-wei H. Lehman, Leo A. Celi,
 651 and Roger G. Mark. MIMIC-IV, a freely accessible electronic health record dataset. *Scientific*
 652 *Data*, 10(1), January 2023. ISSN 2052-4463. doi: 10.1038/s41597-022-01899-x. URL <http://dx.doi.org/10.1038/s41597-022-01899-x>.

648 Ravi Kashyap. Fighting uncertainty with uncertainty: A baby step. *arXiv preprint*
 649 *arXiv:1601.04043*, 2016.

650

651 Diederik P Kingma. Auto-encoding variational bayes. *arXiv preprint arXiv:1312.6114*, 2013.

652

653 Oliver Klingefjord, Ryan Lowe, and Joe Edelman. What are human values, and how do we align ai
 654 to them?, 2024. URL <https://arxiv.org/abs/2404.10636>.

655

656 Siddarth Krishnamoorthy, Satvik Mehul Mashkaria, and Aditya Grover. Generative pretraining for
 657 black-box optimization. *arXiv preprint arXiv:2206.10786*, 2022.

658

659 Siddarth Krishnamoorthy, Satvik Mehul Mashkaria, and Aditya Grover. Diffusion models for black-
 660 box optimization. *arXiv preprint arXiv:2306.07180*, 2023.

661

662 Michael Lingzhi Li and Shixiang Zhu. Balancing optimality and diversity: Human-centered decision
 663 making through generative curation, 2024. URL <https://arxiv.org/abs/2409.11535>.

664

665 Zihao Li, Hui Yuan, Kaixuan Huang, Chengzhuo Ni, Yinyu Ye, Minshuo Chen, and Mengdi Wang.
 666 Diffusion model for data-driven black-box optimization. *arXiv preprint arXiv:2403.13219*, 2024.

667

668 Bo Lin, Erick Delage, and Timothy CY Chan. Conformal inverse optimization. *arXiv preprint*
 669 *arXiv:2402.01489*, 2024.

670

671 Xiaoyu Lu, Javier Gonzalez, Zhenwen Dai, and Neil D Lawrence. Structured variationally auto-
 672 encoded optimization. In *International conference on machine learning*, pp. 3267–3275. PMLR,
 673 2018.

674

675 David Madras, Toni Pitassi, and Richard Zemel. Predict responsibly: improving fairness and accu-
 676 racy by learning to defer. *Advances in neural information processing systems*, 31, 2018.

677

678 Donato Maragno, Holly Wiberg, Dimitris Bertsimas, \mathcal{S} İlker Birbil, Dick den Hertog, and Ade-
 679 juyigbe O Fajemisin. Mixed-integer optimization with constraint learning. *Operations Research*,
 680 2023.

681

682 Bryce McLaughlin and Jann Spiess. Designing algorithmic recommendations to achieve human-ai
 683 complementarity. *arXiv preprint arXiv:2405.01484*, 2024.

684

685 Paul E. Meehl. *Clinical versus Statistical Prediction: A Theoretical Analysis and a Review of the*
 686 *Evidence*. University of Minnesota Press, Minneapolis, MN, 1954. doi: 10.1037/11281-000.

687

688 Randolph A Miller, Melissa A McNeil, Sue M Challinor, Fred E Masarie Jr, and Jack D Myers. The
 689 internist-1/quick medical reference project—status report. *Western Journal of Medicine*, 145(6):
 690 816, 1986.

691

692 Michael Moor, Nicolas Bennett, Drago Plecko, Max Horn, Bastian Rieck, Nicolai Meinshausen,
 693 Peter Bühlmann, and Karsten M. Borgwardt. Predicting sepsis in multi-site, multi-national
 694 intensive care cohorts using deep learning. *CoRR*, abs/2107.05230, 2021. URL <https://arxiv.org/abs/2107.05230>.

695

696 Jean-Baptiste Mouret and Jeff Clune. Illuminating search spaces by mapping elites. *arXiv preprint*
 697 *arXiv:1504.04909*, 2015.

698

699 Anh Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas Brox, and Jeff Clune. Synthesizing the
 700 preferred inputs for neurons in neural networks via deep generator networks. *Advances in neural*
 701 *information processing systems*, 29, 2016.

702

703 Bostrom Nick. *Superintelligence: Paths, dangers, strategies*. Oxford University Press, Oxford,
 704 2014.

705

706 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 707 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 708 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 709 27730–27744, 2022.

702 Juan Perdomo, Tijana Zrnic, Celestine Mendler-Dünner, and Moritz Hardt. Performative prediction.
 703 In *International Conference on Machine Learning*, pp. 7599–7609. PMLR, 2020.
 704

705 David Pisinger and Stefan Ropke. Large neighborhood search. *Handbook of metaheuristics*, pp.
 706 99–127, 2019.

707 Owens PL, Miller MA, Barrett ML, and Hensche M. Overview of outcomes for inpatient stays in-
 708 volving sepsis, 2016–2021. HCUP Statistical Brief Statistical Brief #306, Agency for Healthcare
 709 Research and Quality, Rockville, MD, April 2024. URL <https://hcup-us.ahrq.gov/reports/statbriefs/sb306-overview-sepsis-2016-2021.pdf>.
 710

711 Michael Polanyi. *The Tacit Dimension*. University of Chicago Press, 1966.

712 Aniruddh Raghu, Matthieu Komorowski, Leo Anthony Celi, Peter Szolovits, and Marzyeh Ghas-
 713 semi. Continuous state-space models for optimal sepsis treatment - a deep reinforcement learning
 714 approach. *CoRR*, abs/1705.08422, 2017. URL <http://arxiv.org/abs/1705.08422>.
 715

716 Eamon P Raith, Andrew A Udy, Michael Bailey, Steven McGloughlin, Christopher MacIsaac, Ri-
 717 naldo Bellomo, David V Pilcher, et al. Prognostic accuracy of the sofa score, sirs criteria, and
 718 qsofa score for in-hospital mortality among adults with suspected infection admitted to the inten-
 719 sive care unit. *Jama*, 317(3):290–300, 2017.

720 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 721 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Con-
 722 ference on Computer Vision and Pattern Recognition (CVPR)*, pp. 10684–10695, June 2022.

723

724 D.B. Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies.
 725 *Journal of Educational Psychology*, 66(5):688–701, 1974.

726

727 Salvatore Ruggieri and Andrea Pugnana. Things machine learning models know that they don't
 728 know. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 28684–
 729 28693, 2025.

730

731 Shalom H Schwartz. Universals in the content and structure of values: Theoretical advances and
 732 empirical tests in 20 countries. *Advances in experimental social psychology/Academic Press*,
 733 1992.

734

735 Jennifer L Sherr, Lutz Heinemann, G Alexander Fleming, Richard M Bergenstal, Daniela Brut-
 736 tomesso, Hélène Hanaire, Reinhard W Holl, John R Petrie, Anne L Peters, and Mark Evans.
 737 Automated insulin delivery: benefits, challenges, and recommendations. a consensus report of
 738 the joint diabetes technology working group of the european association for the study of diabetes
 739 and the american diabetes association. *Diabetes Care*, 45(12):3058–3074, 2022.

740

Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias W Seeger. Gaussian pro-
 741 cess optimization in the bandit setting: No regret and experimental design. *arXiv preprint
 742 arXiv:0912.3995*, 2010.

743

Eleni Straitouri, Lequn Wang, Nastaran Okati, and Manuel Gomez Rodriguez. Improving expert
 744 predictions with conformal prediction. In *International Conference on Machine Learning*, pp.
 745 32633–32653. PMLR, 2023.

746

747 Eliza Strickland. Ibm watson, heal thyself: How ibm overpromised and underdelivered on ai health
 748 care. *IEEE spectrum*, 56(4):24–31, 2019.

749

750 Mark Tonelli. The philosophical limits of evidence-based medicine. *Academic Medicine*, 1998.

751

Sang Truong and Sanmi Koyejo. *Machine Learning from Human Preferences*. Stanford University,
 752 2024.

753

754 Sebastian Tschiatschek, Eugenia Stamboliev, Timothée Schmude, Mark Coeckelbergh, and Laura
 755 Koesten. Challenging the human-in-the-loop in algorithmic decision-making, 2024. URL
<https://arxiv.org/abs/2405.10706>.

756 Peter JM Van Laarhoven, Emile HL Aarts, Peter JM van Laarhoven, and Emile HL Aarts. *Simulated*
757 *annealing*. Springer, 1987.
758

759 William Van Melle, Edward H Shortliffe, and Bruce G Buchanan. Emycin: A knowledge engi-
760 neer’s tool for constructing rule-based expert systems. *Rule-based expert systems: The MYCIN*
761 *experiments of the Stanford Heuristic Programming Project*, pp. 302–313, 1984.

762 Anouk Wouters, Gerda Croiset, and Rashmi A Kusurkar. Selection and lottery in medical school
763 admissions: who gains and who loses? *MedEdPublish*, 7, 2018.
764

765 Zhanhui Zhou, Jie Liu, Jing Shao, Xiangyu Yue, Chao Yang, Wanli Ouyang, and Yu Qiao. Beyond
766 one-preference-fits-all alignment: Multi-objective direct preference optimization. In *Findings of*
767 *the Association for Computational Linguistics ACL 2024*, pp. 10586–10613, 2024.

768 Simon Zhuang and Dylan Hadfield-Menell. Consequences of misaligned ai. *Advances in Neural*
769 *Information Processing Systems*, 33:15763–15773, 2020.
770

771 Hao Zou, Peng Cui, Bo Li, Zheyuan Shen, Jianxin Ma, Hongxia Yang, and Yue
772 He. Counterfactual prediction for bundle treatment. In *Advances in Neural In-*
773 *formation Processing Systems*, volume 33, pp. 19705–19715. Curran Associates, Inc.,
774 2020. URL [https://proceedings.neurips.cc/paper_files/paper/2020/
775 file/e430ad64df3de73e6be33bcb7f6d0dac-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2020/file/e430ad64df3de73e6be33bcb7f6d0dac-Paper.pdf).
776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A RELATED WORK
811812 There are four bodies of literature closely related to our work: (1) algorithmic decision-making under
813 ambiguity in human factors, (2) optimization with multiple solutions, and (3) generative models for
814 optimization. Our work attempts at tackling the challenges in (1) under the paradigm of (2) with the
815 methodology of (3).816
817 **Algorithmic Decision-Making Under Ambiguity in Human Factors** Many (Gabriel, 2020;
818 Nick, 2014; Klingefjord et al., 2024; Truong & Koyejo, 2024) have highlighted the challenges in
819 formalizing the multifaceted human values (Schwartz, 1992). Tackling these challenges by surro-
820 gate objectives has many pitfalls and carries much risk (Zhuang & Hadfield-Menell, 2020). An-
821 other stream of approaches such as reinforcement learning from human feedback (RLHF) (Ouyang
822 et al., 2022) and contrastive preference learning (CPL) (Hejna et al., 2024) assume that human
823 evaluators are capable of expressing their values through preferences. Alur et al. (2024) introduce
824 a framework leveraging “algorithmic indistinguishability” to identify specific instances where hu-
825 man judgment can improve algorithmic predictions. Others adopt multi-objective and uncertainty
826 set approaches (Zhou et al., 2024; Li & Zhu, 2024; Lin et al., 2024). Our framework takes a hy-
827 brid approach: following the division of the HITL decision-maker into two personas: a strategic
828 decision-maker (“human designer”)—one that determines the goals of the machine—and a practical
829 decision-makers (“human practitioner”)—one that oversees the recommended actions by the
830 machine—in Tschiatschek et al. (2024), we put less emphasis on the human designer faithfully
831 specifying their goal and more on the human practitioner correctly judging decisions given by the
832 machine.833
834 **Optimization with Multiple Solutions** Our work views machines through optimization. The idea
835 of “fighting uncertainty with uncertainty” (Kashyap, 2016) dates back to the Anscombe–Aumann
836 framework (Anscombe et al., 1963), where lotteries address ambiguity in decision-making (Hoxby
837 & Rockoff, 2004; Wouters et al., 2018; Chan, 2013). Stochastic policies can outperform determin-
838 istic ones (Delage et al., 2019). Quality-diversity (QD) algorithms (Mouret & Clune, 2015; Cully &
839 Demiris, 2017) relate to our work but have limitations: they need random variations in action spaces,
840 rely on model-based metrics with performance issues (Maragno et al., 2023), and require intensive
841 computation. Other approaches include simulated annealing (Van Laarhoven et al., 1987; Bertsimas
842 & Tsitsiklis, 1993), large-scale neighborhood search (Ahuja et al., 2002; Pisinger & Ropke, 2019),
843 and multi-objective optimization (Deb et al., 2016). These iterative methods face computational
844 costs and stability-convergence tradeoffs (Chen et al., 2018). Our approach leverages generative
845 models, eliminating iterative search requirements. Outside of optimization, conformal predictions
846 have been explored to facilitate human-AI collaboration by generating a set of predictions and de-
847 ferring some or all prediction efforts to human (Straitouri et al., 2023; De Toni et al., 2024; Madras
848 et al., 2018; Hullman et al., 2025; Ruggieri & Pugnana, 2025).849
850 **Generative Models for Optimization** Recent generative model advances have been applied to
851 optimization problems. Generative model-based optimization (GMO) methods (Nguyen et al., 2016;
852 Lu et al., 2018; Guo et al., 2022) enable optimization in high-dimensional spaces by using Bayesian
853 optimization and evolutionary algorithms in latent spaces. However, these risk mode collapse due
854 to over-reliance on latent space structure. Our method, while still assuming low-dimensional latent
855 spaces, directly generates action space samples rather than projecting latent-space interpolations.
856 Another approach uses generative models for BBO (Krishnamoorthy et al., 2022; Li et al., 2024),
857 applying conditional generative models with outcomes as conditions.
858
859
860
861
862
863

864
865
866
867
B EXAMPLES OF HUMAN-CENTERED DECISION-MAKING PROBLEMS868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
Table 3: Examples of Human-Centered Decision-Making Problems

Domain	Key Decision (A)	Measurable Objective (Y)	Human-Centered Objective (U)	Overall Utility (V)	Illustrative Trade-Off
Corporate Hiring	Selecting a new employee.	Candidate's quantifiable metrics (years of experience, test scores, keyword match).	Candidate's unmeasurable qualities (cultural fit, potential, team chemistry).	A productive, collaborative, long-term team member.	Rejecting a high-potential candidate (high U) because their resume lacks a specific keyword (low Y).
Urban Planning	Approving a new development project.	Hard metrics (housing density, tax revenue, traffic flow).	Qualitative experience (neighborhood character, sense of community, aesthetics).	A vibrant, equitable, and livable city.	Maximizing housing density (high Y) at the cost of destroying a beloved historic district (low U).
Product Design	Designing a software feature.	Business KPIs (conversion rate, daily active users, click-through rate).	User's subjective experience (delight, trust, intuitive flow).	A successful product with deep user loyalty.	Using a “dark pattern” to boost sign-ups (high Y) while eroding user trust (low U).
University Admissions	Selecting an incoming class.	Standardized metrics (GPA, SAT/ACT scores, class rank).	Applicant's ineffable potential (leadership, creativity, resilience).	A diverse and dynamic student body that succeeds post-graduation.	Admitting a “test-taker” with perfect scores (high Y) over a creative leader with a unique story (high U).
Financial Investing	Constructing an investment portfolio.	Financial performance indicators (ROI, alpha, Sharpe ratio).	Ethical and moral alignment (ESG principles, social impact, personal values).	A portfolio that generates wealth and provides peace of mind.	Forgoing a highly profitable but unethical investment (high Y , low U).
Film Curation	Acquiring a film for distribution.	Commercial performance (gross box office revenue).	Artistic merit and critical acclaim (story quality, creative vision).	A film that is both a commercial and cultural success.	Green-lighting a formulaic sequel (high Y potential) over an innovative indie film (high U potential).
Personal Well-being	Choosing a meal on a diet.	Nutritional data (low sugar content, low calories).	Subjective experience (perceived sweetness, palatability, satisfaction).	A healthy and satisfying food choice that supports long-term adherence.	Eating a nutritionally perfect but tasteless meal (high Y , low U), leading to later cravings and diet failure.

918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
**C DIFFERENT PARADIGMS OF SOLVING HUMAN-CENTERED
 DECISION-MAKING PROBLEMS**

941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
Figure 8: Illustration of Different Paradisms of Solving Human-Centered Decision-Making Problems

954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 (a) Human-programmed optimization; (b) Data-driven optimization with human input; (c) Direct learning; (d) Generative near-optimal policy learning (GenNOP). Solid arrows indicate primary procedures; dashed arrows indicate secondary procedures if the solution from a primary procedure is not accepted by a human evaluator: in (a) and (b), human programmers have to readjust the optimization parameters, a hard task involving human prediction of optimizer behavior; in (c), human evaluators make localized perturbations to the solution as they have no control over predictor behavior. GenNOP is the only paradigm that does not involve any secondary procedure as it explicitly allows human evaluators to express their tacit knowledge by presenting them multiple solutions.

972 D REAL-WORLD EXAMPLES OF THE $Y_a - U_a$ RELATIONSHIP
973
974
975
976990 Figure 9: Real-World Examples of the $Y_a - U_a$ Relationship
991

992 (a) The left figure illustrates a scenario where an expert movie curator recommends a movie title
993 to a general consumer: the curator believes both the commercial success and the artistic value of
994 a movie positively contribute to the general consumer’s utility. The measurable objective (Y_a) is
995 represented by the log of the gross box office; the human-centered objective (U_a) is represented by
996 the IMDb Metascore, a proxy for what the curator in our scenario would evaluate the artistic value
997 of the movies. Here Y_a and U_a have a weak, positive correlation. The movie with the highest box
998 office is not the one with the highest expert rating. (b) The right figure illustrates a scenario where
999 a sweet-tooth consumer on a low-calorie diet makes a food choice: the consumer’s utility depends
1000 on both the lack of sugar content (the measurable objective, Y_a) and the perceived sweetness (the
1001 human-centered objective, U_a) of the foods. Here Y_a and U_a have a negative correlation.

1003 E ASSUMPTIONS AND PROOFS OF SECTION 2
10041005 E.1 ASSUMPTIONS
1006

1007 **Assumption 1** (Bounded support with strictly concave frontier). *There exist $y_- < y_+$ and a con-
1008 tinuous, strictly concave $g : [y_-, y_+] \rightarrow \mathbb{R}$ such that*

$$1009 \mathbb{P}((Y, U) \in S) = 1, \quad S := \{(y, u) : y \in [y_-, y_+], u \leq g(y)\},$$

1010 and the Pareto frontier is $\{(y, g(y)) : y \in [y_-, y_+]\}$.

1011 **Assumption 2** (Thick near-frontier band). *There exist $\eta > 0$ and $c > 0$ such that (Y, U) admits a
1012 density f with*

$$1013 f(y, u) \geq c \quad \text{for all } y \in [y_-, y_+] \text{ and } g(y) - \eta \leq u \leq g(y).$$

1014 **Assumption 3** (Monotone aggregator with interior V -maximizer). *The aggregator $v(\cdot, \cdot) : \mathbb{R}^2 \rightarrow \mathbb{R}$
1015 is continuous and strictly increasing in each argument, and with $V(y, u) = v(y, u)$ there is a unique
1016 maximizer*

$$1017 (y^*, u^*) \in \arg \max_{(y, u) \in S} V(y, u) \quad \text{with } u^* = g(y^*), y^* \in (y_-, y_+).$$

1018 **Assumption 4** (Local tradeoff bounds for $v(\cdot, \cdot)$ near $(y^*, g(y^*))$). *There exist $\epsilon_0 > 0$, $\eta_0 > 0$ and
1019 constants $L_Y, m_U > 0$ such that for all*

$$1020 y, y' \in [y^* - \epsilon_0, y^*], \quad u, u' \in [g(y) - \eta_0, g(y)],$$

$$1021 v(y', u) - v(y, u) \leq L_Y |y' - y|, \quad v(y, u') - v(y, u) \geq m_U (u' - u).$$

1026 **Assumption 5** (Local sampling restriction). *For some $\epsilon \in (0, \epsilon_0]$ and $\eta \in (0, \eta_0]$, we draw i.i.d.*
 1027 *candidates $(Y^{(k)}, U^{(k)})$ satisfying*
 1028

$$1029 \quad \mathbb{P}\left((Y^{(k)}, U^{(k)}) \in \mathcal{N}_{\epsilon, \eta}\right) = 1, \quad \mathcal{N}_{\epsilon, \eta} := \{(y, u) : y \in [y^* - \epsilon, y^*], g(y) - \eta \leq u \leq g(y)\}.$$
 1030

1031 **Assumption 6** (Global coverage on the frontier neighborhood). *For the same ϵ, η as above, the*
 1032 *sampling distribution has a density f_{samp} with*

$$1033 \quad f_{\text{samp}}(y, u) \geq c_{\text{samp}} > 0 \text{ for all } (y, u) \in \mathcal{N}_{\epsilon, \eta}, \quad f_{\text{samp}}(y, u) = 0 \text{ outside } \mathcal{N}_{\epsilon, \eta}.$$
 1034

1035 E.2 PROOFS

 1036

1037 *Proof of Proposition 1.* By Assumption 2, the marginal of Y has positive density on a
 1038 right-endpoint neighborhood of y_+ . Hence, for any $\varepsilon > 0$,

$$1039 \quad \mathbb{P}(Y \in [y_+ - \varepsilon, y_+]) \geq c\varepsilon > 0,$$
 1040

1041 and the sample maximum satisfies $Y^{(M_Y)} \rightarrow y_+$ almost surely as $N \rightarrow \infty$.

1042 By Assumptions 1 and 3, the unique population maximizer of $V(y, u) = v(y, u)$ over the compact
 1043 set S is $(y^*, g(y^*))$ with $y^* \in (y_-, y_+)$. Uniqueness and continuity yield: for every $\rho > 0$ there
 1044 exists $\kappa(\rho) > 0$ such that

$$1045 \quad \sup_{\substack{(y, u) \in S \\ \|(y, u) - (y^*, g(y^*))\| \geq \rho}} V(y, u) \leq V(y^*, g(y^*)) - \kappa(\rho).$$
 1046

1047 Since, by Assumption 2, any neighborhood of $(y^*, g(y^*))$ inside S has positive probability, the
 1048 empirical maximizer satisfies

$$1049 \quad \left(Y^{(M_V)}, U^{(M_V)}\right) \xrightarrow{p} (y^*, g(y^*)).$$
 1050

1051 Fix $\varepsilon \in \left(0, \frac{y_+ - y^*}{3}\right)$. With probability tending to one,

 1052

$$1053 \quad Y^{(M_Y)} \geq y_+ - \varepsilon \quad \text{and} \quad Y^{(M_V)} \leq y^* + \varepsilon < y_+ - 2\varepsilon,$$
 1054

1055 so $Y^{(M_V)} < Y^{(M_Y)}$ and hence $M_V \neq M_Y$. Therefore $\mathbb{P}(M_Y = M_V) \rightarrow 0$. \square

 1056

1057 *Proof of Proposition 2.* Work on the event (which has probability one under absolutely continuous
 1058 sampling) that there are no exact ties in the U -coordinates among the finitely many sampled points.
 1059 Let i, j be two sampled indices with

$$1060 \quad Y^{(i)}, Y^{(j)} \in [y^* - \epsilon, y^*] \quad \text{and} \quad U^{(i)} \geq U^{(j)}.$$
 1061

1062 By Assumption 4, for any such pair we can write

 1063

$$1064 \quad V^{(i)} - V^{(j)} = \left[v\left(Y^{(i)}, U^{(i)}\right) - v\left(Y^{(j)}, U^{(i)}\right)\right] + \left[v\left(Y^{(j)}, U^{(i)}\right) - v\left(Y^{(j)}, U^{(j)}\right)\right]$$

$$1065 \quad \geq -L_Y |Y^{(i)} - Y^{(j)}| + m_U (U^{(i)} - U^{(j)}).$$
 1066

1067 Let $\Delta_U^{\min} := \min \{U^{(i)} - U^{(j)} : U^{(i)} > U^{(j)}\}$ over the (finite) sample; on the no-tie event,
 1068 $\Delta_U^{\min} > 0$. Choose

$$1069 \quad \bar{\epsilon} := \min\left\{\epsilon, \frac{m_U}{L_Y} \Delta_U^{\min}\right\}.$$
 1070

1071 Then for any i, j with $Y^{(i)}, Y^{(j)} \in [y^* - \bar{\epsilon}, y^*]$ and $U^{(i)} > U^{(j)}$ we have

 1072

$$1073 \quad V^{(i)} - V^{(j)} \geq -L_Y \bar{\epsilon} + m_U \Delta_U^{\min} \geq 0.$$
 1074

1075 If $U^{(i)} = U^{(j)}$ (a null event under absolute continuity), the conclusion $V^{(i)} \geq V^{(j)}$ holds whenever
 1076 $Y^{(i)} \geq Y^{(j)}$ by monotonicity of $v(\cdot, \cdot)$ in its first argument. Hence, almost surely, the stated impli-
 1077 cation holds for all pairs, and in particular any $\arg \max U$ over $\{k : Y^{(k)} \in [y^* - \bar{\epsilon}, y^*]\}$ is also an
 1078 $\arg \max V$. \square

 1079

1080 *Proof of Proposition 3.* By Assumptions 1 and 3, $(y^*, g(y^*))$ is the unique maximizer of V over S .
 1081 Hence, by continuity and strict optimality, there exists $\epsilon_1 \in (0, \epsilon]$ and $\kappa > 0$ such that

$$1082 \quad 1083 \quad 1084 \quad 1085 \quad 1086 \quad 1087 \quad 1088 \quad 1089 \quad 1090 \quad 1091 \quad 1092 \quad 1093 \quad 1094 \quad 1095 \quad 1096 \quad 1097 \quad 1098 \quad 1099 \quad 1100 \quad 1101 \quad 1102 \quad 1103 \quad 1104 \quad 1105 \quad 1106 \quad 1107 \quad 1108 \quad 1109 \quad 1110 \quad 1111 \quad 1112 \quad 1113 \quad 1114 \quad 1115 \quad 1116 \quad 1117 \quad 1118 \quad 1119 \quad 1120 \quad 1121 \quad 1122 \quad 1123 \quad 1124 \quad 1125 \quad 1126 \quad 1127 \quad 1128 \quad 1129 \quad 1130 \quad 1131 \quad 1132 \quad 1133 \quad V(y^*, g(y^*)) \geq V(y, g(y)) + 2\kappa \quad \forall y \in [y^* - \epsilon_1, y^*]. \quad (5)$$

By Assumption 4, for all $y \in [y^* - \epsilon_1, y^*]$ and all $u \leq g(y)$,

$$V(y, g(y)) - V(y, u) \geq m_U(g(y) - u) \geq 0.$$

Combining with (5) gives, for all $(y, u) \in \mathcal{N}_{\epsilon_1, \eta}$ with $y < y^*$,

$$V(y^*, g(y^*)) - V(y, u) \geq 2\kappa - m_U(g(y) - u) \geq 2\kappa - m_U\eta.$$

Choose $\bar{\epsilon} \in (0, \epsilon_1]$ so that $2\kappa - m_U\eta > 0$. Then

$$V(y^*, g(y^*)) > \sup \{ V(y, u) : (y, u) \in \mathcal{N}_{\bar{\epsilon}, \eta}, y < y^* \}.$$

Therefore $(y^*, g(y^*))$ is the unique V -maximizer on $\mathcal{N}_{\bar{\epsilon}, \eta}$. Any U -maximizer over $\mathcal{N}_{\bar{\epsilon}, \eta}$ must occur on the frontier, i.e., at some $(y, g(y))$ with $y \in [y^* - \bar{\epsilon}, y^*]$. If $y < y^*$, the above inequality shows it cannot maximize V ; consequently any U -maximizer must be at $y = y^*$, hence is also a V -maximizer. This proves

$$\arg \max_{(y, u) \in \mathcal{N}_{\bar{\epsilon}, \eta}} U \subseteq \arg \max_{(y, u) \in \mathcal{N}_{\bar{\epsilon}, \eta}} V(y, u).$$

For the sampling statement, under Assumption 6 the i.i.d. sample has density bounded below on $\mathcal{N}_{\bar{\epsilon}, \eta}$, so the empirical $\arg \max U$ converges almost surely to the set $\arg \max_{\mathcal{N}_{\bar{\epsilon}, \eta}} U$, which we have just shown is $\{(y^*, g(y^*))\}$. Hence, if $\hat{k}_m \in \arg \max_{1 \leq k \leq m} U^{(k)}$,

$$\mathbb{P} \left(\left(Y^{(\hat{k}_m)}, U^{(\hat{k}_m)} \right) \in \arg \max_{(y, u) \in \mathcal{N}_{\bar{\epsilon}, \eta}} V(y, u) \right) \longrightarrow 1. \quad \square$$

F ASSUMPTIONS IN SECTION 3

We adopt the potential outcomes framework (Rubin, 1974; Imbens & Rubin, 2015). We write Y_a as the potential outcome for the measurable objective of an individual taken action a and make the following standard assumptions:

1. *Consistency:* Provided the action is a , then Y_a is the potential outcome under action a . Formally, $A = a$ implies $Y_a = Y$.
2. *Unconfoundedness:* $Y_a \perp\!\!\!\perp A \mid X$ for all a . This assumption implies action selection is as good as randomized given covariates.
3. *Positivity:* Every individual has a non-zero chance of taking any action in \mathcal{A} , namely, $p(a|x) > 0$ for all a . $p(a|x)$ denotes the GPS (Imbens, 2000; Hirano & Imbens, 2004).

G PRELIMINARIES

Diffusion Models Originally introduced by Ho et al. (2020), diffusion models have proven effective in generating high-dimensional data such as images and videos (Rombach et al., 2022; Ho et al., 2022). Diffusion models progressively corrupt data with noise and then learn to reverse this process. In our context, a neural network parametrized by θ is trained to predict the noise added to an action, similar to how these models generate images.

To generate a new action, we begin with a sample drawn from a standard Gaussian distribution. Then, using the learned reverse process, we iteratively update the noisy action. At each reverse step t , the network computes a noise prediction $\tilde{\varepsilon}_\theta(a_t, t, x)$ and updates the action as $a_{t-1} = \frac{1}{\sqrt{1-\gamma_t}} \left[a_t - \gamma_t \tilde{\varepsilon}_\theta(a_t, t, x) \right] + \sqrt{\gamma_t} z_t$, where $z_t \sim \mathcal{N}(0, I)$. After reversing all steps down to $t = 0$, the resulting a_0 is the generated policy sample, which can be conditioned on x if desired.

Training is performed by randomly selecting a time step t and corrupting the original action a_0 with Gaussian noise $a_t = \sqrt{\lambda_t} a_0 + \sqrt{1 - \lambda_t} \varepsilon$, $\varepsilon \sim \mathcal{N}(0, I)$, where $\bar{\lambda}_t = \prod_{s=1}^t (1 - \gamma_s)$. The network parameters θ are optimized by minimizing the mean squared error between the actual noise ε and the predicted noise $\varepsilon_\theta(a_t, t, x)$:

$$L(\theta) = \mathbb{E}_{t, a_0, \varepsilon} \|\varepsilon - \varepsilon_\theta(a_t, t, x)\|^2. \quad (6)$$

1134 **Max-Stable Processes** Let $Y_x^{(1)}, \dots, Y_x^{(k)}$ be a sequence of k independent copies of a stochastic
 1135 process $\{Y_x : x \in \mathcal{X}\}$. Define the rescaled pointwise maximum with functions c_k and d_k as:
 1136

1137

$$1138 \quad Y_x^* = \left[\max_{i=1, \dots, k} Y_x^{(i)} - d_k(x) \right] / c_k(x), \quad x \in \mathcal{X},$$

1140

1141

1142 If there are sequences of functions $c_k(x) > 0$ and $d_k(x) \in \mathbb{R}$ such that for all $k \in \mathbb{N}$, $\{Y_x^*\}_{x \in \mathcal{X}} \stackrel{d}{=} \{Y_x\}_{x \in \mathcal{X}}$,
 1143 then $\{Y_x\}_{x \in \mathcal{X}}$ is a *max-stable* process. Its marginal distributions are generalized extreme-
 1144 value (GEV) distributions, which can be expressed parametrically. The log-likelihood of observing
 1145 $\{y_j\}$ under the GEV distribution parametrized by μ, σ, ξ is given by:
 1146

1147

$$1148 \quad \ell(\{y^{(j)}\}; \mu, \sigma, \xi) = -k \log \sigma(l) - (1 + 1/\xi) \sum_{j=1}^k \log \left[1 + \xi \left(\frac{y^{(j)} - \mu}{\sigma} \right) \right] \\ 1149 \quad - \sum_{j=1}^k \left[1 + \xi \left(\frac{y^{(j)} - \mu}{\sigma} \right) \right]^{-1/\xi},$$

1150

1151

1152

1153

1154

1155 provided that $1 + \xi \left(\frac{y^{(j)} - \mu}{\sigma} \right) > 0$, for $j = 1, \dots, k$.
 1156

1157

1158

H GENNOP LEARNING OBJECTIVE DERIVATION

1159

1160

1161

H.1 DATA-BASED LEARNING OBJECTIVE

1162

1163

To derive Equation (3) from Equation (3.1), we expand the KL divergence:

1164

1165

1166

1167

$$1168 \quad \min_{\theta} L(\theta) = \mathbb{E}_{x \sim p(X)} [D_{\text{KL}}[\pi_{\epsilon}^*(\cdot|x) \parallel \pi_{\theta}(\cdot|x)]] \\ 1169 \quad = \mathbb{E}_{x \sim p(X)} \left[\mathbb{E}_{a \sim \pi_{\epsilon}^*(\cdot|x)} \left[\log \frac{\pi_{\epsilon}^*(a|x)}{\pi_{\theta}(a|x)} \right] \right] \\ 1170 \quad = \mathbb{E}_{x \sim p(X)} \left[\mathbb{E}_{a \sim \pi_{\epsilon}^*(\cdot|x)} [\log \pi_{\epsilon}^*(a|x) - \log \pi_{\theta}(a|x)] \right] \\ 1171 \quad = \mathbb{E}_{x \sim p(X), a \sim \pi_{\epsilon}^*(\cdot|x)} [\log \pi_{\epsilon}^*(a|x) - \log \pi_{\theta}(a|x)] \\ 1172 \quad \stackrel{d}{=} \mathbb{E}_{(x, a) \sim \mathcal{D}^*} [\log \pi_{\epsilon}^*(a|x) - \log \pi_{\theta}(a|x)]$$

1173

1174

1175

1176

1177

Since $\log \pi_{\epsilon}^*(a|x)$ does not depend on θ , the above can be equivalently expressed as:

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

$$\min_{\theta} \mathbb{E}_{(x, a) \sim \mathcal{D}^*} [-\log \pi_{\theta}(a|x)].$$

H.2 RE-WEIGHTED DIFFUSION MODEL LEARNING OBJECTIVE

To derive Equation (4) from Equations (3) and (6), we use importance sampling:

$$\begin{aligned}
L(\theta) &= \mathbb{E}_{(x,a) \sim \mathcal{D}^*} [-\log \pi_\theta(a|x)] \\
&= \mathbb{E}_{(x,a,y) \sim \mathcal{D}} \left[\frac{p_{\mathcal{D}^*}(x,a)}{p_{\mathcal{D}}(x,a,y)} \cdot (-\log \pi_\theta(a|x)) \right] \\
&= \mathbb{E}_{(x,a,y) \sim \mathcal{D}} \left[\frac{\pi_\epsilon^*(a|x)}{p(a|x)} \cdot (-\log \pi_\theta(a|x)) \right] \\
&= \mathbb{E}_{(x,a,y) \sim \mathcal{D}} \left[\frac{g_\epsilon(y,x)}{p(a|x)} \cdot (-\log \pi_\theta(a|x)) \right] \\
&= \mathbb{E}_{(x,a,y) \sim \mathcal{D}} [w(x,a,y;\epsilon) \cdot (-\log \pi_\theta(a|x))] \\
&= \mathbb{E}_{(x,a,y) \sim \mathcal{D}} \left[w(x,a,y;\epsilon) \cdot \mathbb{E}_{t,\varepsilon} \|\varepsilon - \varepsilon_\theta(a_t, t, x)\|^2 \right] \\
&= \mathbb{E}_{(x,a,y) \sim \mathcal{D}, t, \varepsilon} \left[w(x,a,y;\epsilon) \cdot \|\varepsilon - \varepsilon_\theta(a_t, t, x)\|^2 \right] \\
&= \mathbb{E}_{t,x,a,y,\varepsilon} \left[w(x,a,y;\epsilon) \cdot \|\varepsilon - \varepsilon_\theta(a_t, t, x)\|^2 \right]
\end{aligned}$$

I DETAILS IN SECTION 3

I.1 MAX-STABLE PROCESS REGRESSION

To allow μ , σ , and ξ to vary with x , we write: $\mu(x; \psi_1), \sigma(x; \psi_2), \xi(x; \psi_3)$, where $\psi = \{\psi_1, \psi_2, \psi_3\}$ are parameters of neural networks. The GEV log-likelihood for block maxima at location x_i is:

$$\ell\left(\{y_i^{(j)}\}; \mu(x_i; \psi_1), \sigma(x_i; \psi_2), \xi(x_i; \psi_3)\right),$$

subject to the positivity constraint $1 + \xi(x_i; \psi_3) \frac{y_i^{(j)} - \mu(x_i; \psi_1)}{\sigma(x_i; \psi_2)} > 0$ for all $j = 1, \dots, k$. Maximizing the sum of the log-likelihoods over $i = 1, \dots, n$ with respect to ψ yields the MLE parameters $\hat{\psi}$. With max-stable process regression, we have:

$$g_\epsilon(y, x) = \mathbb{P}\{\text{GEV}(\mu(x; \hat{\psi}_1), \sigma(x; \hat{\psi}_2), \xi(x; \hat{\psi}_3)) < y + \epsilon\}.$$

Compared to methods that yield point estimates for $y^*(x)$, max-stable process regression offers a probabilistic alternative. With point estimates, the key quantity $g_\epsilon(y, x)$ can only take values in $\{0, 1\}$; with probabilistic estimates, it can take values in $[0, 1]$, thereby avoiding hard cutoffs. In regions of X where observations are sparse, allowing gradual decay in contribution to the GenNOP objective is particularly desirable over hard cutoffs, which make GenNOP more sensitive to uncertainties in $y^*(x)$ estimates.

I.2 ESTIMATING GENERALIZED PROPENSITY SCORES VIA VARIATIONAL SAMPLE WEIGHT LEARNING

Because the policies of our consideration are potentially high-dimensional, traditional approaches to estimating GPS in the denominator will fail. To circumvent this issue, we assume that the policies have a latent low-dimensional representation, denoted as Z , and adopt the strategy by Zou et al. (2020) that learns Z via variational autoencoder (VAE) (Kingma, 2013). With encoder and decoder networks parametrized by ϕ and φ , respectively, we maximize the evidence lower bound (ELBO): $L_{\text{ELBO}} = \frac{1}{n} \sum_{i=1}^n \mathbb{E}_{z \sim q_\phi(z|a_i)} [\ell(a_i, z; \varphi, \phi)]$, where $\ell(a_i, z; \varphi, \phi) = \log p_\varphi(a_i|z) + \log p(z) - \log q_\phi(z|a_i)$.

1242 The stabilized weight $p(a_i)/p(a_i|x_i)$ can be expressed as:
 1243

$$\begin{aligned} 1244 \quad \frac{p(a_i)}{p(a_i|x_i)} &= \frac{1}{\int_z p(z|x_i) \frac{p(a_i|z)}{p(a_i)} dz} \\ 1245 \quad &= \frac{1}{\int_z p(z|x_i) \frac{p(z|x_i)}{p(z)} dz} \\ 1246 \quad &= \frac{1}{\mathbb{E}_{z \sim q_\phi(z|a_i)} \left[\frac{p(z|x_i)}{p(z)} \right]}. \\ 1247 \\ 1248 \\ 1249 \\ 1250 \\ 1251 \\ 1252 \\ 1253 \\ 1254 \\ 1255 \\ 1256 \\ 1257 \\ 1258 \\ 1259 \\ 1260 \\ 1261 \\ 1262 \\ 1263 \\ 1264 \\ 1265 \\ 1266 \\ 1267 \\ 1268 \\ 1269 \\ 1270 \\ 1271 \\ 1272 \\ 1273 \\ 1274 \\ 1275 \\ 1276 \\ 1277 \\ 1278 \\ 1279 \\ 1280 \\ 1281 \\ 1282 \\ 1283 \\ 1284 \\ 1285 \\ 1286 \\ 1287 \\ 1288 \\ 1289 \\ 1290 \\ 1291 \\ 1292 \\ 1293 \\ 1294 \\ 1295 \end{aligned}$$

1296 **J ABLATION STUDY OF GEV PARAMETER ESTIMATION DETAILS**
12971298 **Table 4: Ablation Study of GEV Parameter Estimation (Full).**
1299

Dimensionality	Regularization	$k = 10, b = 10$	$k = 10, b = 20$	$k = 10, b = 30$	$k = 20, b = 10$	$k = 20, b = 20$	$k = 20, b = 30$	$k = 30, b = 10$	$k = 30, b = 20$	$k = 30, b = 30$	$k = 50, b = 10$	$k = 50, b = 20$	$k = 50, b = 30$
ID	0	1.10 (4.63)	13.98 (16.49)	0.52 (2.90)	-1.34 (0.16)	-0.56 (1.40)	-0.15 (3.27)	0.35 (2.81)	-1.38 (0.97)	-1.31 (0.66)	-1.17 (0.48)	-1.81 (0.17)	-1.24 (0.90)
ID	0.05	-0.84 (0.58)	1.58 (4.18)	-0.22 (1.38)	-1.48 (0.28)	3.30 (10.05)	-1.46 (0.62)	-1.48 (0.15)	-1.31 (0.30)	-1.11 (0.97)	-1.24 (0.29)	-1.54 (0.49)	-1.01 (0.17)
ID	0.1	-0.11 (2.15)	-1.62 (0.12)	2.35 (7.56)	-0.56 (1.51)	-1.45 (0.05)	-0.39 (3.04)	-1.39 (0.19)	-1.09 (0.56)	-0.51 (1.52)	-1.47 (0.88)	-1.90 (0.07)	-1.91 (0.35)
ID	0.5	-0.13 (0.53)	1.53 (0.12)	0.61 (0.09)	-0.70 (0.07)	1.88 (0.05)	-1.46 (0.07)	-1.46 (0.07)	-1.47 (0.07)	-1.47 (0.11)	-1.32 (0.07)	-1.47 (0.07)	-1.47 (0.07)
ID	1	-1.48 (0.06)	-1.88 (0.22)	-2.06 (0.17)	-1.45 (0.07)	-1.99 (0.13)	2.17 (0.17)	-1.40 (0.13)	-1.95 (0.09)	2.02 (0.21)	-1.38 (0.07)	1.77 (0.19)	2.05 (0.07)
ID	10	-1.13 (0.13)	-1.33 (0.57)	-1.84 (0.31)	-1.19 (0.06)	-1.53 (0.17)	-1.72 (0.55)	-0.52 (0.23)	-1.63 (0.26)	-1.49 (0.65)	-0.66 (0.35)	-1.26 (0.40)	-1.82 (0.07)
2D	0	0.36 (1.61)	-0.61 (0.53)	3.09 (4.58)	0.60 (1.41)	1.07 (2.62)	-0.56 (1.02)	-0.52 (0.48)	-0.94 (0.57)	-0.74 (0.88)	-0.37 (0.61)	-0.59 (0.33)	0.29 (3.11)
2D	0.05	0.16 (1.24)	-0.92 (1.18)	1.56 (5.28)	1.47 (4.42)	-0.45 (0.45)	-0.15 (0.68)	-0.15 (1.13)	-0.15 (0.24)	-0.15 (0.88)	-0.56 (0.39)	-0.75 (0.39)	-1.13 (0.25)
2D	0.1	0.09 (1.24)	-1.22 (0.24)	3.41 (5.20)	-0.09 (0.16)	-0.71 (0.31)	0.55 (0.49)	-0.26 (0.26)	-0.95 (0.02)	-0.04 (0.50)	0.63 (0.30)	-0.43 (0.11)	-1.01 (0.21)
2D	0.5	-0.53 (0.50)	-0.44 (1.47)	-1.23 (0.24)	-0.29 (0.95)	-0.26 (1.26)	-1.22 (0.23)	-0.48 (0.28)	-0.92 (0.17)	1.19 (0.09)	1.26 (3.25)	-0.81 (0.24)	1.01 (0.22)
2D	1	-0.64 (0.12)	-1.00 (0.26)	-0.95 (0.65)	-0.36 (0.24)	-0.66 (0.44)	-1.22 (0.12)	-0.15 (0.26)	-1.08 (0.04)	-1.05 (0.34)	10.13 (16.32)	3.06 (6.88)	-0.29 (1.56)
2D	10	-0.16 (0.34)	-0.93 (0.09)	-1.25 (0.13)	-0.33 (0.06)	-0.22 (0.24)	-0.72 (0.42)	8.66 (17.81)	-0.64 (0.32)	-0.68 (0.49)	12.41 (18.23)	4.04 (6.56)	-0.36 (0.47)

1306 **GEV Regression Sensitivity: Num Blocks (k) vs Block Size (b) [Reg=0]**
1307

Figure 10: Regularization = 0.

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

GEV Regression Sensitivity: Num Blocks (k) vs Block Size (b) [Reg=1]

Figure 11: Regularization = 1.

1404

1405

1406

1407

1408

1409

1410

1411

GEV Regression Sensitivity: Num Blocks (k) vs Block Size (b) [Reg=10]

1412

1413

1450

1451

1452

1453

1454

1455

1456

1457

Figure 12: Regularization = 10.

1458 **K EXPERIMENT DETAILS**1459 **K.1 BASELINE METHODS**

1460 **Doubly-Robust Policy Learning Methods** Conventional methods for policy learning take 2-step
 1461 approaches: (1) Estimate the counterfactual outcomes for each individual-action pair; and (2) Learn
 1462 a policy that gives the counterfactual-outcome-maximizing actions for given individuals. Notably
 1463 among them is DRPolicyForest, a method derived from the doubly-robust policy trees (Athey
 1464 & Wager, 2021), which estimates the probability that an action a is optimal for a unit characterized
 1465 by covariates x . The original DRPolicyForest maps covariates to their most-probable optimal
 1466 actions; since we aim to map covariates to a distribution of actions, we modify the mapping by
 1467 introducing randomness: given covariates x , instead of always selecting the most-probable action,
 1468 we sample actions according to their probabilities of being the optimal action.

1469 **Black-Box Optimization (BBO) Methods** BBO methods are a class of general-purpose methods
 1470 aiming at finding the input x^* that maximizes an unknown function f by observing a set of $(x, f(x))$
 1471 pairs. Notable BBO methods include the Gaussian Process Upper Confidence Bound (GP-UCB) al-
 1472 gorithm (Srinivas et al., 2010) and denoising diffusion optimization models (DDOM) (Krishnamoorty
 1473 et al., 2023). We adapt the GP-UCB algorithm to our setting as we consider the *consistency*
 1474 assumption and thereby view the covariate (\mathcal{X})-action (\mathcal{A}) joint space as the input space to the data
 1475 generating process of the counterfactual outcome $y : \mathcal{X} \times \mathcal{A} \mapsto \mathbb{R}$. We adapt the DDOM method by
 1476 joining the covariate space \mathcal{X} with the outcome space \mathbb{R} as the new condition space.

1477 **GenNOP Ablations** To validate the components of GenNOP empirically, we conduct the following
 1478 ablation studies:

- 1479 • Set the numerator of the learning objective weight, $g_\epsilon(y, x)$, to 1. This ablation effectively
 1480 removes the “filter”, thereby allowing the generative model to be trained on suboptimal
 1481 actions.
- 1482 • Set the denominator of the learning objective weight, $p(a|x)$, to 1. This ablation removes
 1483 inverse probability weighting, thereby allowing selection biases to continue to exist in the
 1484 training data.

1485 **K.2 EVALUATION METRICS**

1486 As compared to a ground-truth ϵ -optimal policy, we would like the actions sampled from the gen-
 1487 erative policy π_θ to be both precise and comprehensive. To this end, we define the sample-based
 1488 precision and recall metrics as follows:

- 1489 • Precision: Expected fraction of the m generated treatments that are in $\Omega_\epsilon^*(x)$. Generative
 1490 policies with high precision is desirable because including more suboptimal actions (*i.e.*,
 1491 actions with counterfactual measurable objective value below $y^*(x) - \epsilon$) increases the risk
 1492 that the human decision-maker selects an action leading to a lower V (overall utility) than
 1493 the Y (measurable objective)-maximizing action.
- 1494 • Recall: Expected fraction of $\Omega_\epsilon^*(x)$ that have at least one corresponding generated action.
 1495 The purpose of sacrificing Y is to afford more opportunity to maximizing the overall utility
 1496 V . To this end, higher diversity among the generated actions is desirable as higher U
 1497 (human-centered objective) values are more likely to appear, thereby leading to V values
 1498 higher than that of the Y -maximizing action.
- 1499 • Fréchet inception distance (FID), which measures the difference between the generated
 1500 action distribution and the ground-truth action distribution in the semi-synthetic dataset.
 1501 See Appendix K.3 for details.

1502 **K.3 SYNTHETIC EXPERIMENT DETAILS**

1503 **Fully-Synthetic Dataset** We created a synthetic dataset with 1-dimensional \mathcal{A}, \mathcal{X} with the follow-
 1504 ing data generating process:

$$\begin{aligned}
1512 & X_i \sim \text{Unif}(0, 1), \\
1513 & \alpha_i = 10X_i + 1, \\
1514 & \beta_i = 12 - \alpha_i, \\
1515 & A_i \sim \text{Beta}(\alpha_i, \beta_i), \\
1516 & Y_i = \exp(-50(A_i - X_i)^2) \sin(9\pi A_i) \\
1517 & \\
1518 & \\
1519 &
\end{aligned}$$

1520 Using the above relationship, we sample 10,000 units. Under this setting, the distribution of π_ϵ is
1521 multi-modal for any $x \in X$.
1522

1523 **Semi-Synthetic Dataset** We created a semi-synthetic dataset derived from the Fashion-MNIST
1524 dataset. In essence, our task is to learn from the fashion preferences of different demographic profiles
1525 so as to provide them targeted recommendations of images of fashion items. Specifically, we sample
1526 100,000 individuals with 2-dimensional demographic profiles: age and gender. We assume there
1527 are 6 archetypes of demographic profiles based on age and gender, each having a mapping from the
1528 10 classes of fashion items to Y values. All items in the same class have the same Y value for the
1529 same archetype. The probability that an individual of some archetype choosing one of the 10 classes
1530 of fashion items is a function of the Y values of their archetype. This is in part to ensure the *overlap*
1531 assumption is met. After the individual chooses the class, they will choose one of the 5,000 images
1532 with equal probability from the *training* set of the Fashion-MNIST dataset as their self-selected
1533 treatment. For each action an individual takes, we add a small Gaussian noise with mean 0 to the Y
1534 value mapped from the archetype of that individual as the observed Y value.
1535

1535 We trained a classifier that maps an image to one of the 10 classes of fashion items, which is used
1536 to calculate the precision and recall metrics. In addition to the precision and recall metrics, we also
1537 report the FID: For each profile, we randomly draw 5 classes with replacement from its ϵ -optimal
1538 classes with equal probability and then draw one of the 1,000 images from the Fashion-MNIST
1539 *test* set for each class we draw also with equal probability. Representing the generated and the
1540 ground-truth distributions of ϵ -optimal policies empirically both using the 5 independently sampled
1541 actions, we calculate the FID between the two empirical distributions.
1542

1542 **End-to-End Dataset** We created a synthetic dataset with 1-dimensional \mathcal{A}, \mathcal{X} with the following
1543 data generating process:
1544

$$\begin{aligned}
1546 & X_i \sim U(0.1, 0.9) \\
1547 & y_{\text{width},i} = 50 + 25 \sin(2\pi X_i) \\
1548 & u_{\text{width},i} = 25 + 10 \cos(3\pi X_i) \\
1549 & y_{\text{center},i} = X_i \\
1550 & u_{\text{center},i} = X_i + 0.4 + 0.15 \sin(4\pi X_i) \\
1551 & Y_i(a) = \exp(-y_{\text{width},i}(a - y_{\text{center},i})^2) + 0.3 \exp(-40(a - (y_{\text{center},i} - 0.25))^2) \\
1552 & U_i(a) = \exp(-u_{\text{width},i}(a - u_{\text{center},i})^2) + 0.2 \exp(-30(a - (u_{\text{center},i} + 0.2))^2) \\
1553 & V_i(a) = Y_i(a)^{0.6} \cdot U_i(a)^{0.4} \\
1554 & \\
1555 &
\end{aligned}$$

1556 K.4 REAL EXPERIMENT DETAILS

1558 Human experts solve utility-maximization problems involving measurable and human-centered ob-
1559 jectives implicitly in their decision-making. Without access to ground-truth ϵ -optimal policies, we
1560 can nonetheless treat the decisions made by expert-level human decision-makers as a proxy for the
1561 ground truth. To this end, we study medications prescribed to patients admitted to intensive care
1562 units (ICUs) to showcase the alignment between the recommendations from GenNOP and the pre-
1563 scriptions given by critical care practitioners. The goal of the decision problem facing the latter can
1564 be characterized as significant in both measurable and human-centered objectives: critical care prac-
1565 titioners are tasked with stabilizing patients as their immediate goal, while they must take a holistic
1566 approach towards caregiving with their expertise and intuition. Additionally, there are vast pools of
1567

1566 past patient records available electronically for us to apply GenNOP. Among them is Medical In-
 1567 formation Mart for Intensive Care (MIMIC)-IV (Johnson et al., 2023), a large de-identified dataset
 1568 available for credentialed access. From its `icu` module, we extract 2 datasets explained as follows:
 1569

1570 **mimic-icu-sepsis** Sepsis is a life-threatening condition often treated in ICUs and is a major
 1571 cause of mortality worldwide. It requires timely and appropriate antibiotic therapy to improve out-
 1572 comes. The challenge lies in selecting the correct antibiotic regimen due to the diverse range of po-
 1573 tential pathogens, including bacteria, viruses, and fungi (Gauer et al., 2020). Recent advancements
 1574 in machine learning have shown promise in predicting sepsis outcomes and optimizing treatment
 1575 strategies (Raghu et al., 2017; Moor et al., 2021). Prompt and effective intervention, supported by
 1576 machine learning models and clinical tools, can significantly enhance patient recovery and reduce
 1577 the burden of sepsis on healthcare systems.

1578 In our study, we selected 2,783 patients whose diagnoses fell under the sepsis category using a set of
 1579 International Classification of Diseases Version 9/10 (ICD-9/10) codes for sepsis-related diseases,
 1580 who were admitted to the ICU, and who were eventually discharged from the hospital having sur-
 1581 vived, by joining tables and filtering columns. We regard individual age, sex, and SOFA score as
 1582 covariates (X). SOFA (Sequential Organ Failure Assessment) scores are a valuable tool in critical
 1583 care for assessing organ dysfunction and predicting patient outcomes in sepsis patients (Raith et al.,
 1584 2017). We consider the dosages of 4 commonly prescribed antibiotics (Vancomycin, Meropenem,
 1585 Piperacillin/Tazobactam, and Azithromycin) in the patients' initial prescription as the treatments.
 1586 The total length of stay (LOS) in the hospital is a significant treatment indicator for sepsis patients,
 1587 as it reflects the severity of the illness, the effectiveness of the treatment, and the patient's response
 1588 to therapy. Prolonged LOS is often associated with increased hospital costs, higher mortality rates,
 1589 and a greater likelihood of long-term complications (PL et al., 2024). We thus consider negative
 1590 hospital LOS (to conform to the maximization problem of GenNOP) as the measurable objective
 1591 (Y).

1592 **mimic-icu-cardio** Cardiovascular diseases are a leading cause of morbidity and mortality
 1593 worldwide and often necessitate intensive care for appropriate management. In our study, we se-
 1594 lected 4,219 patients whose diagnoses fell under the cardiovascular disease category, who were ad-
 1595 mitted to the ICU, and who were eventually discharged from the hospital having survived, by joining
 1596 tables and filtering columns. We consider individual age, sex, and lactate level as covariates. The
 1597 treatments of interest are the dosages of four commonly administered cardiovascular medications:
 1598 norepinephrine (a vasopressor), heparin (an anticoagulant), furosemide (a diuretic), and metoprolol
 1599 (a beta-blocker). As with the sepsis dataset, the total hospital length of stay (LOS) is used as the
 1600 outcome variable, reflecting both the severity of cardiac conditions and response to treatment.

1601 **Evaluation** Since we have no access to the counterfactual outcomes under actions other than those
 1602 recorded in the datasets, we cannot calculate those metrics reported for synthetic and semi-synthetic
 1603 datasets which compare generated actions with ground-truth ϵ -optimal actions. Instead, we regard
 1604 the actions taken by critical care practitioners filtered by the fitted max-stable process as a proxy
 1605 for the ground truth. We reserve a small range of covariates solely for this purpose and exclude all
 1606 actions within that range from the training set to prevent leakage that inflates evaluation metrics.

1607 We used principal component analysis (PCA) to reduce the action-space dimensionalities (*i.e.*, num-
 1608 bers of medications considered) for both real datasets to 2. For each dataset, we generate ϵ -optimal
 1609 action samples for the reserved range of covariates. We use two methods to generate action samples:
 1610 (1) GenNOP and (2) perturbation of optimal actions: we select the action with the highest observed
 1611 Y value (*i.e.*, shortest hospital LOS) and sample from the multivariate Gaussian distribution with
 1612 the selected action as the mean and the covariance matrix of all non-reserved actions. To represent
 1613 the densities of the generative distributions, we apply Gaussian kernel density estimation (KDE) to
 1614 the generated action samples.

1615 If we assume the actions taken by human experts, provided that they are ϵ -optimal, follow the distri-
 1616 bution given by the ϵ -optimal policy, we can assess the performance of any generative distribution
 1617 by comparing it with the ϵ -optimal actions taken by human experts. We trained a separate point-
 1618 estimate model for $y^*(x)$ which we used to select the ϵ -optimal actions taken by human experts to
 1619 avoid reusing part of the method being evaluated (*i.e.*, max-stable process regression in GenNOP).

1620 **L FURTHER DISCUSSIONS ABOUT DECISION-MAKER PERCEPTION**
1621 **PREFERENCES AND CAPABILITIES**
1622

1623 As expected, the ground-truth (a) ϵ -optimal policy with the best ϵ achieves zero regret at
1624 $(\lambda_Y, \lambda_U, \lambda_V) = (0, 1, 0)$ and trivially at $(\lambda_Y, \lambda_U, \lambda_V) = (0, 0, 1)$. Conversely, reducing the hy-
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

As expected, the ground-truth (a) ϵ -optimal policy with the best ϵ achieves zero regret at $(\lambda_Y, \lambda_U, \lambda_V) = (0, 1, 0)$ and trivially at $(\lambda_Y, \lambda_U, \lambda_V) = (0, 0, 1)$. Conversely, reducing the hybrid system to the machine-only system at $(\lambda_Y, \lambda_U, \lambda_V) = (1, 0, 0)$ yields the worst possible regret under $\delta = 0$. Zero regret is also achievable as long as λ_Y is below a threshold determined by the ratio between λ_U and λ_V . Notice that the threshold is higher when the ratio is higher. This indicates that decision-makers implementing GenNOP are better off *not* considering the overall objective and focusing on the human-centered objective instead when they have moderate levels of perception preference for the measurable objective that cannot be reduced in practice. We observe that (b) GenNOP can no longer achieve zero regret due to its non-zero—albeit diminishing—densities in the region where $Y_a < y^* - \epsilon$. Depending on the geometry of the true ϵ -optimal region in \mathcal{A} , generative models underlying GenNOP may make varying levels of errors as they implicitly interpolate and extrapolate. This problem can be ameliorated by introducing classification model ($\mathcal{A} \mapsto \{0, 1\}$) acting as a post-generation filter that further diminishes the densities in the region where $Y_a < y^* - \epsilon$. GenNOP nevertheless enjoys low regret under all but the perception preferences closest to the Y -vertex. We notice that the regret at the U -vertex is slightly higher than that slightly farther away from the U -vertex due to the generative model errors. Fortunately, real-world decision-makers can rarely operate at the U -vertex even when instructed to do so; they likely operate with the ideal perception preferences when generative model errors are considered. Comparing (b) with (f), we validate the superior performance of GenNOP over the baseline method DDOM as the undesirable region close to the U -vertex of GenNOP is much smaller.

1642 The performance of GenNOP is dependent on the choice of ϵ . As $\epsilon \rightarrow 0$, GenNOP is reduced to an
1643 optimization algorithm; and as $\epsilon \rightarrow \infty$, GenNOP is reduced to an unconditional generative model
1644 trained from all observational actions. Since decision-makers do not have access to the value of the
1645 best $\epsilon \approx 0.2$, we repeat the analysis for a small $\epsilon = 0.05$ and a large $\epsilon = 0.5$ in (d) and (e) to
1646 probe the behavior of GenNOP under misspecified ϵ 's. Zero regret is not attainable in either case.
1647 For the small ϵ , low-to-moderate regret is attainable outside the immediate neighborhood of the Y -
1648 vertex, compatible with most decision-makers at the expense of higher attainable minimum regret.
1649 The large ϵ case resembles the DDOM case (which is not dependent on ϵ) but with higher minimum
1650 regret. Consequently, we recommend decision-makers implementing GenNOP to choose the value
1651 of ϵ conservatively.

1652 Decision-makers are limited by their perception *capabilities* regardless of their perception *prefer-
1653 ences*. A decision-maker may attempt at executing a perception preference faithfully and consist-
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Decision-makers are limited by their perception *capabilities* regardless of their perception *preferences*. A decision-maker may attempt at executing a perception preference faithfully and consistently, yet they may not choose the action maximizing $Q_a(\lambda_Y, \lambda_U, \lambda_V)$ as they have access to only a noisy version of $\{Q_a\}_{a \sim \pi}$. We set $\delta = 0.2$ in (c) so that the perceived quality of each action is multiplied by an independent factor uniformly drawn from $[0.8, 1.2]$; the order statistics, especially the maximum, are likely perturbed by this random factor. We observe that GenNOP is reasonably robust under this perturbation, as the perturbed case largely resembles the unperturbed case with only a slight increase in minimum regret and in the size of the undesirable region near the Y -vertex.

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
M ADDITIONAL EXPERIMENTAL RESULTSFigure 13: Action Distributions on the $Y - U$ Plane.