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ABSTRACT

Visual Place Recognition (VPR) addresses the retrieval problem in large-scale
geographic image databases through feature representations. Recent approaches
have leveraged visual foundation models and have proposed novel feature aggre-
gations. However, these methods have failed to grasp the core concepts of founda-
tional models, such as leveraging extensive training sets, and have also neglected
the potential of classical feature aggregations, such as GeM and NetVLAD, for
low-dimensional representations. Building on these insights, we revive classic
aggregation methods and create more fundamental VPR models, abbreviated Su-
perPlace. First, we introduce a supervised label alignment method that combines
grid partitioning and local feature matching. This allows models to be trained
on diverse VPR datasets within a unified framework, similar to the design prin-
ciples of foundation models. Second, we introduce G2M, a compact feature ag-
gregation with two GeMs, in which one GeM learns the principal components of
feature maps along the channel direction and calibrates the other GeM’s output.
Third, we propose the secondary fine-tuning (FT2) strategy for NetVLAD-Linear
(NVL). NetVLAD first learns feature vectors in a high-dimensional space and
then compresses them into a low-dimensional space using a single linear layer.
G2M excels in large-scale applications requiring rapid response and low latency,
while NVL-FT2 is optimized for scenarios demanding high precision across a
broad range of conditions. Extensive experiments (12 test sets, 14 previous meth-
ods, and 11 tables) highlight our contributions and demonstrate the superiority of
SuperPlace. Specifically, SuperPlace-G2M achieves state-of-the-art results with
only one-tenth of the feature dimensions compared to recent methods. Moreover,
SuperPlace-NVL-FT2 holds the top rank on the MSLS challenge leaderboard. We
have submitted a ranking screenshot, the source code, and the original experimen-
tal records in the supplementary materials.

1 INTRODUCTION

Visual Place Recognition (VPR), also known as Visual Geo-localization, involves finding the most
similar image to a query image within a large-scale geographic image database (Berton et al., 2022b).
VPR has long been studied in computer vision (Sattler et al., 2018), robotics (Lowry et al., 2015),
and remote sensing (Psomas et al., 2024) due to its wide applications in augmented reality, robot
navigation, and autonomous driving. Previous research has identified several challenges in VPR, in-
cluding large database scales (Berton et al., 2022a), viewpoint shifts (Berton et al., 2021a), repeated
structures (Torii et al., 2015), structural modifications (Arandjelovic et al., 2016), occlusions (Liu
et al., 2021), visual scale differences (Fu et al., 2022), illumination changes (Liu et al., 2024), and
seasonal transitions (Toft et al., 2020).

Early VPR research aggregated hand-crafted local features such as SURF (Bay et al., 2008) into
global features through algorithms like Bag-of-Words (BoW) (Angeli et al., 2008) or Vector of
Locally Aggregated Descriptors (VLAD) (Jégou et al., 2010). However, most challenging problems
are difficult to solve within the framework based on hand-crafted features.
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In the past decade, VPR primarily leveraged location datasets and neural networks with differen-
tiable aggregation/pooling to map images into an embedding space, effectively distinguishing im-
ages from different locations (Arandjelovic et al., 2016). New VPR datasets have been continually
proposed to overcome challenging problems (such as generalization (Ali-bey et al., 2022), training
scale (Berton et al., 2022a), and cross-domain (Warburg et al., 2020)). However, these datasets do
not fully encompass the characteristics of previous datasets and introduce a new issue: inconsistent
supervised label formats (Berton et al., 2022a). At the same time, different methods have also been
proposed to aggregate multi-channel feature maps into global feature vectors. Generalized Mean
Pooling (GeM) and NetVLAD (Arandjelovic et al., 2016) were proposed, which achieved good re-
sults in different dimension ranges (less than 4k dimensions or larger than 30k dimensions). The
feature dimension strongly correlates with the retrieval speed and recall of VPR.

In the past year, Visual Foundation Models (VFMs) (Oquab et al., 2023; Kirillov et al., 2023;
Yang et al., 2024; Wang et al., 2024) have developed rapidly, and DINOv2 has been widely used
in VPR (Keetha et al., 2023; Lu et al., 2024b). VFMs have utilized multiple large-scale visual
datasets, knowledge distillation (Hinton et al., 2015), and other techniques to provide powerful
feature representation capabilities. However, these VPR studies have only used a VFM as a pre-
trained model on a single dataset and have not embraced the core principles of VFMs, such as
aligning multiple datasets for model training. Additionally, these studies also proposed some novel
feature aggregation methods: BoQ (Ali-bey et al., 2024), SALAD (Izquierdo & Civera, 2024a), and
SPGM (Lu et al., 2024a). The feature dimensions of these methods were approximately 4k-12k.
They were expected to perform better than GeM, and these works claimed to produce better results
with lower feature dimensions than NetVLAD. However, through some tentative experiments, we
found that classic methods from ten years ago are still competitive. This prompted us to improve
these classic methods instead of following recent aggregations introduced in the past year.

In this paper, we not only use VFMs as pre-trained models but also train on multiple datasets,
mirroring their training approach through a novel supervised alignment method. In particular, we
transform the distance metric into class labels through a grid partition in the Universal Transverse
Mercator (UTM) coordinate and check the similarity within the labels using local feature match-
ing. Beyond staying updated with the latest techniques, we also improve two feature aggregations
from over a decade ago to revive their superiority in the era of VFMs. Specifically, we propose a
generalized channel attention module for GeM and the secondary fine-tuning (FT2) for NetVLAD-
Linear (NVL). With the same training set, these improved aggregations achieve comparable or even
superior results to recent approaches while requiring lower dimensions and fewer parameters. Our
contributions are highlighted as follows:

1) We propose a supervised label alignment method to train VPR models using multiple datasets like
other foundation models. Specifically, the coarse classification labels are first determined by a grid
partition in the UTM coordinate, and then fine labels are selected by using local feature matching.

2) We propose a compact feature aggregation with two GeM pooling layers, G2M, in which one
GeM learns the principal components of feature maps along the channel direction and calibrates the
other GeM’s output.

3) We propose the secondary fine-tuning method for NetVLAD-Linear, called NVL-FT2, which first
learns feature representations in high-dimensional space and then compresses the representations
into low-dimensional space using a single linear layer.

4) Extensive comparative and univariate experiments demonstrate our contributions and the excel-
lence of SuperPlace. SuperPlace-G2M achieves state-of-the-art (SOTA) results using only one-tenth
of the feature dimensions of recent methods. SuperPlace-NVL-FT2 holds the top rank on the MSLS
Challenge leaderboard, significantly outperforming recent methods.

2 RELATED WORK

Early VPR research primarily relied on hand-crafted features, including global features extracted
directly (like GIST (Milford & Wyeth, 2012)) and features derived from clustering local descriptors.
Clustering algorithms such as BoW (Angeli et al., 2008), Fisher Vector (FV) (Csurka & Perronnin,
2010), and VLAD (Jégou et al., 2010) were used in conjunction with local feature extraction algo-
rithms like SIFT (Lowe, 2004), SURF (Bay et al., 2008), and ORB (Rublee et al., 2011).
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With the advent of deep learning, learning-based features have largely supplanted hand-crafted fea-
tures. Arandjelovic et al. (2016) introduced the Pittsburgh-250k dataset along with a differentiable
VLAD aggregation module and optimized a pre-trained (PT) model using a triplet loss function to
achieve VPR. NetVLAD (Arandjelovic et al., 2016) laid the foundation for learning-based VPR.

Training sets. VPR training sets were primarily obtained from images captured by Google Street
View (GSV) (Anguelov et al., 2010) and car-mounted cameras. Unlike Pittsburgh-250k, which was
collected using similar cameras, MSLS (Warburg et al., 2020) was gathered from different cameras
and included challenging scenes such as variations in weather, seasons, and lighting. Berton et al.
(2022a) proposed the SF-XL dataset containing millions of images for training and verifying VPR
models in large-scale scenarios. GSV-Cities (Ali-bey et al., 2022) and SF-XL were concurrently de-
veloped datasets based on GSV. GSV-Cities contained more diverse urban samples but had relatively
sparse samples, while SF-XL comprehensively covered the street scenes of San Francisco. There is
still no consensus on the best training set, and almost no studies have utilized multiple datasets. To
our knowledge, SALAD-CM (Izquierdo & Civera, 2024b) is the only method, apart from ours, that
uses multiple datasets (GSV and MSLS).

Aggregation Layers. Like NetVLAD, the other classic aggregation algorithms (Hou et al., 2018;
Peng et al., 2021) have been transformed into differentiable modules for end-to-end training.
Although these NetVLAD-inspired modules have demonstrated good performance, their high-
dimensional characteristics limit database size and retrieval efficiency. Generalized Mean (GeM)
pooling (Radenović et al., 2018) was introduced as a simpler alternative to NetVLAD, providing
low-dimensional global features. This method extends global average pooling by using the p-norm
of local features. Recently, three aggregation modules have been proposed: Bag-of-Queries (BoQ),
SALAD, and SPGM. BoQ (Ali-bey et al., 2024) employed distinct learnable global queries to probe
the input features through cross-attention, ensuring consistent information aggregation. SALAD
(Izquierdo & Civera, 2024a) redefined the soft assignment of local features in NetVLAD as an op-
timal transport problem and employed the Sinkhorn algorithm to solve it. SPGM (Lu et al., 2024a)
applied a spatial pyramid to divide feature maps at multiple levels and then used GeM pooling. Re-
spectively, their optimal feature dimensions when used with DINOv2 are 12,288 for BoQ, 8,448 for
SALAD, and 4,096 for SPGM. Unlike recent works, we make minor improvements to demonstrate
the effectiveness of earlier approaches.

Pre-trained Models. As in most vision tasks, pre-trained (PT) models in VPR have evolved from
convolutional neural networks (including residual networks) to transformers. Before 2020, works
such as NetVLAD and SFRS (Arandjelovic et al., 2016; Ge et al., 2020) used VGG networks as PT
models. In the past three years, CosPlace, MixVPR, and EigenPlaces (Berton et al., 2022a; Ali-bey
et al., 2023; Berton et al., 2023) adopted ResNet as their backbone architecture. Recently, Any-
Loc introduced DINOv2 without fine-tuning for VPR. Subsequently, SelaVPR (Lu et al., 2024b),
SALAD (Izquierdo & Civera, 2024a), CricaVPR (Lu et al., 2024a), and BoQ (Ali-bey et al., 2024)
adopted DINOv2 and fine-tuned it on the GSV-Cities dataset. The use of VFMs in VPR has been
limited compared to other vision tasks, compared to other vision tasks, such as segmentation (Seg-
ment Anything (Kirillov et al., 2023)), depth estimation (Depth Anything (Yang et al., 2024)), and
3D reconstruction (DUST3R (Wang et al., 2024)). Our supervised alignment method enables VPR
to effectively leverage multiple datasets, thereby advancing the field in line with the latest develop-
ments in VFMs.

3 METHODOLOGY

In this section, we first present G2M, a super-compact feature extraction method designed for large-
scale environments and scenarios with highly real-time requirements. Next, we present NVL-FT2,
an aggregation suite for general-scale applications where high performance is the priority. Finally,
we describe a supervised label alignment method specifically tailored for VPR.

As illustrated in Fig. 1, we used DINOv2 to extract serialized patch tokens and the CLS tokens. The
patch tokens were reshaped into a C ×H ×W feature map, where C,H,W represent the number
of channels, the height, and the width of the feature map, respectively. For the loss function, we
adopted the multi-similarity loss (Wang et al., 2019), as used in prior work (Ali-bey et al., 2023;
Izquierdo & Civera, 2024a; Lu et al., 2024a).
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Figure 1: Illustration of two improved classical aggregations. Without all the bells and whistles,
we improved on classic aggregations by adding simple structures, making them better than recent
complex aggregation layers with many parameters.

3.1 GENERALIZED CHANNEL ATTENTION FOR GEM

We initially adopted the extractor proposed in Radenović et al. (2018) to generate compact feature
representations. This extractor comprises Generalized Mean (GeM) pooling, a fully connected layer,
and L2 normalization. The GeM pooling function is formulated as follows:

f = [f1 · · · fc · · · fC ], fc =

(
1

|Xc|
∑
x∈Xc

xpc

) 1
pc

, (1)

where max pooling and average pooling are special cases of GeM pooling. Specifically, max pooling
occurs when pc → ∞, while average pooling occurs when pc = 1. The pooling parameter pc is
learned from each feature map.

Despite its effectiveness, this extractor is limited in its ability to fully capture the valuable infor-
mation of the multi-channel feature map. To further explore this limitation, we applied PCA to
reduce the channel dimension and visualized the resulting feature maps to assess their interpretabil-
ity. As shown in Fig. 2, location-dependent information tends to generate strong responses, while
location-independent information may be overemphasized or overlooked.

To address the above limitation and inspired by our visualizations, we introduce an additional branch
that learns the principal components of the feature map along the channel dimension to calibrate the
GeM pooling vector accordingly. As shown in Fig. 1, this branch consists of a new GeM pooling
layer, a low-rank MLP, a GELU activation, and a Sigmoid function. This kind of simple module
structure has contributed to the success of methods like the Squeeze-and-Excitation (SE) module
(Hu et al., 2018) and Low-Rank Adaptation (LoRA) (Hu et al., 2021). Notably, our motivation,
usage, and design details differ from those of the SE module, and we refer to this new module as
the Generalized Channel Attention (GCA) module. Together, the original extractor and the GCA
module form the improved extractor, which we call G2M.

3.2 SECONDARY FINE-TUNING FOR NETVLAD-LINEAR

NVL-FT2 represents an incremental improvement over NetVLAD, whose output feature dimension
is defined as C×K, where K denotes the number of cluster centers. In previous works, K has been
set to 64 in Arandjelovic et al. (2016) and 32 in Izquierdo & Civera (2024a). However, the global
features extracted by NetVLAD are characterized by excessively high dimensions, prompting earlier
studies to investigate two primary methods for dimension reduction: 1) employing PCA for dimen-
sion reduction, or 2) reducing the value of K. While the first approach introduces additional storage
overhead and increased computational requirements, the second results in a substantial performance
degradation.

An alternative and simpler strategy is to follow NetVLAD with a linear projection layer for dimen-
sion reduction. This method promises reduced storage requirements and faster processing times
compared to PCA. Despite these theoretical advantages, our implementation of NV-Linear consis-
tently underperformed relative to NetVLAD-PCA. This might explain why it has not been adopted
or proposed in prior work.
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Figure 2: Visualization of feature maps weighted by different components. We computed a
PCA between the patches of the images from the AmsterTime dataset and showed their first three
components. We found that high and low response areas of feature maps after principal component
weighting strongly correlate with the VPR task.

Given that both methods operate with the same feature dimension, training set, and neural network
architecture, such a performance gap is unexpected. Intuitively, the linear projection should out-
perform PCA. The key difference, however, lies in their training methodologies. NetVLAD-PCA
employs a two-stage training procedure: (1) fine-tuning the backbone network and NetVLAD in
a high-dimensional space, and (2) estimating an unsupervised model for high-to-low dimensional
projection, during which the parameters from the first step are frozen. In contrast, NetVLAD-Linear
utilizes a single-stage end-to-end training process, where the backbone network, NetVLAD, and the
linear layer are fine-tuned simultaneously in a lower-dimensional space. This training discrepancy
limits the ability of NetVLAD-Linear to capture the rich high-dimensional representations.

To overcome this issue, we propose a secondary fine-tuning process for NetVLAD-Linear. In this
approach, we first fine-tune the backbone network and NetVLAD, followed by a second stage where
we fine-tune the linear layer for dimension reduction. Importantly, the number of parameters in-
volved in FT2 is minimal—accounting for just 0.11% of the entire model’s parameters, as noted in
our experiments. Consequently, FT2 is computationally efficient and enables faster training.

3.3 SUPERVISED LABEL ALIGNMENT FOR VPR

As mentioned above, many datasets have been proposed in the VPR field, but it is unclear whether
they collectively provide comprehensive performance coverage. The difficulty in using them to-
gether lies in their different supervision labels. In this paper, we consider supervised label alignment
of four widely used large-scale datasets: GSV-Cities (Ali-bey et al., 2022), Pittsburgh-250k (Arand-
jelovic et al., 2016), MSLS(Wang et al., 2019), and SF-XL(Berton et al., 2022a), as shown in Tab.
2. We also recorded the number of images in each dataset after aligning the labels. While SF-XL
and MSLS can be further expanded (but with high redundancy), the number of images in Pitts-250k
is limited by the strategy described below.

GSV-Cities (G). Among the datasets, GSV-Cities serves as a foundational dataset due to its recent
performance (Izquierdo & Civera, 2024a). Therefore, we retain the original labels of GSV-Cities
and further determine the goal, which is to convert the distance metric labels into class labels (Place
IDs).

SF-XL (S). Following Berton et al. (2022a), we split the UTM coordinates {east, north} of SF-
XL into square geographic cells and then further divide each cell into a set of classes based on
the direction/heading {heading} of each image. Formally, the set of images assigned to the class
Lei,nj ,hk

would be

{x :

⌊
east

M

⌋
= ei,

⌊
north

M

⌋
= nj ,

⌊
heading

α

⌋
= hk}, (2)

where M (in meters) and α (in degrees) are two parameters that determine the extent of each class
in position and heading. M is set to 10, α is set to 30◦ (Berton et al., 2022a). We also introduced
CosPlace’s N × L group strategy to overcome quantization errors, with N and L set to 5 and 2,
respectively.

Pittsburgh-250k (P) has no orientation information like SF-XL. On the other hand, different slices
of panoramic images should not be classified into the same category. Therefore, we design the
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Table 1: Comparison of various VPR training sets.

Dataset # Img # Img Source Supervision Loss Related Work(SLA) Function
Pittsburgh 250k 2k GSV UTM Triplet Loss NetVLAD (CVPR16), DHEVPR (AAAI24), SelaVPR (ICLR24)
MSLS 1.68M 820k Mapillary UTM Triplet Loss TransVPR (CVPR22), R2Former (CVPR23), SALAD-CM (ECCV24)
SF-XL 5.6M 180k GSV UTM & Orient. LMC-Loss CosPlace (CVPR22), EigenPlaces (ICCV23), NocPlace (arXiv24)
GSV-Cities 530k 530k GSV Place ID MS-Loss MixVPR (WACV23), CricaVPR (CVPR24), SALAD (CVPR24)

MSLSPittsburghSF-XLGSV-Cities

Figure 3: Schematic diagram of collecting VPR data. VPR images with the same label are drawn
using the same color in each minimal grid map. Although orange triangles appear in all four sub-
graphs, they represent different labels in each. The black triangles indicate that images have not
been assigned labels.

following steps: 1) Perform grid partitioning as in SF-XL but without the heading label. 2) Use
the 0◦, 90◦, 180◦, 270◦ slices of panoramic images as subclass queries to search for similar training
images in each grid partition using local feature matching (Sarlin et al., 2020; Lindenberger et al.,
2023).

MSLS (M) originates from bicycle-mounted cameras, which typically capture images in a single
direction. Therefore, we can use the grid partitioning method for classification without considering
orientation information. It is worth noting that there is no need to set α and L in the step of aligning
P and M.

4 EXPERIMENTS

In this section, we present a comprehensive set of experiments designed to rigorously evaluate the
effectiveness of our proposed contributions. First, we outline the implementation details, including
descriptions of the training and test sets, architectures, training configurations, and evaluation met-
rics. Following this, we provide a detailed comparative analysis of performance and a univariate
analysis of each contribution.

4.1 IMPLEMENTATION DETAILS

Our training and evaluation code was built upon publicly available repositories, including DINOv2,
MixVPR, NetVLAD, GeM, CosPlace, SelaVPR, SALAD, and Deep Visual Geo-localization Bench-
mark.

Training sets. Detailed descriptions of the GPMS dataset can be found in Tab. 1, Sec. 3.3, and
the supplementary materials. Here, we emphasize the fairness of our experimental design: (1) In
Tab. 3 and 4, we employed GPMS, which differs from the training sets used by other methods. This
divergence reflects the contribution of SLA, and previous methods have also used varying training
sets. (2) In Tab. 5 - 11, all experiments within each table are conducted on the same training set. For
example, G2M and NVL-FT2 were trained on GSV-Cities, while SALAD was trained on GPMS in
Tab. 10.

Test sets. We conducted our experiments across the 12 test sets, each representing distinct real-world
challenges for VPR systems. A summary of these test sets is provided in Tab. 2. (1) The Pitts-30k
test set (Arandjelovic et al., 2016), extracted from GSV, features significant viewpoint changes. As a
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Table 2: Overview of test sets. These datasets have huge variations in size and domain shifts.

Dataset Pitts-30k Tokyo MSLS MSLS Nordland Amster SPED SF-XL SF-XL SF-XL SF-XL SVOXName test 24/7 val challenge Time test-v1 test-v2 occlusion night
# queries 6.8k 315 740 27,092 27592 1231 607 1000 598 466 76 4536
# database 10k 76k 18.9k 38,770 27592 1231 607 2.8M 2.8M 2.8M 2.8M 17k
Scenery urban urban various various country urban various urban urban urban urban various
Domain none day/night day/night day/night season long-term long-term viewpoint viewpoint occlusion day/night weather

subset of the larger Pitts-250k test set, Pitts-30k tends to yield lower performance metrics, suggesting
greater difficulty and offering more room for improvement. (2) Tokyo 24/7 (Torii et al., 2017),
consisting of database images sourced from GSV and query images captured by mobile devices,
includes significant variations in lighting and perspective. (3) The MSLS dataset (Warburg et al.,
2020) is collected from driving recorders worldwide, presenting numerous challenging scenarios,
such as weather and seasonal variations, day/night transitions, and complex road conditions. This
dataset includes two test subsets: val and challenge. The ground truth for the challenge subset is
unavailable, and VPR performance is evaluated using an online ranking system. More details are
presented in supplementary materials.

Architecture. We selected DINOv2 as a pre-trained model for two reasons: (1) It provides a fair
benchmark for comparing SuperPlace with recent methods, and (2) Even though DINOv2 was re-
leased over a year ago, it remains the most effective pre-trained model available.

Training configurations. The experiments were conducted on a server with 8 NVIDIA 4090 GPUs.
Instead of the Parameter-Efficient Fine-Tuning (PEFT) approach used in SelaVPR (Lu et al., 2024b)
and CricaVPR (Lu et al., 2024a), we adopted the fine-tuning of the last four layers (FT4) as used
in SALAD (Izquierdo & Civera, 2024a). Specifically, BoQ fine-tuned only the last two layers of
DINOv2 with a warm-up step. Although BoQ only adjusted the last two layers of DINOv2, it
introduced many parameters and a warm-up step, increasing the training time and the number of
training parameters, making it less efficient compared to FT4.

Unless otherwise specified, all experimental parameters followed these settings: (1) DINOv2-B
(Base) was used as the pre-trained model. (2) The GCA module in G2M was set with a rank of 64,
used GELU as the activation function, and had an output feature dimension of 768. (3) NV and NVL
utilized 64 cluster centers, with NVL having an output feature dimension of 8192. (4) SuperPlace
was trained using the Adam optimizer with the learning rate set to 6 × 10−5 and the batch size
set to 64. (5) In Tab. 3 and 4, SuperPlace was trained with the resolution of 322 × 322 (for best
performance). In Tab. 5 - 11, the training resolution was set to 224× 224 (for fast experiments).

Evaluation metrics. We followed the same evaluation metric as in existing literature (Arandjelovic
et al., 2016; Berton et al., 2022b), where the recall@K is measured. Recall@K is the percentage
of query images for which at least one of the top-K predicted reference images falls within a pre-
defined threshold distance. Following common evaluation procedures, we set the threshold to 25
meters for the test sets with GPS label, ±10 frames for Nordland (Sünderhauf et al., 2013), and the
corresponding matching image for SPED (Chen et al., 2017) and AmsterTime (Yildiz et al., 2022).

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We conducted an extensive set of experiments to thoroughly evaluate the soundness of SuperPlace,
comparing it against a wide range of methods. As shown in Tab. 3, this includes nine 1-stage
retrieval methods: NetVLAD (Arandjelovic et al., 2016), SFRS (Ge et al., 2020), CosPlace (Berton
et al., 2022a), MixVPR (Ali-bey et al., 2023), EigenPlaces (Berton et al., 2023), CricaVPR (Lu
et al., 2024a), SALAD (Izquierdo & Civera, 2024a), BoQ (Ali-bey et al., 2024), and SALAD-CM
(Izquierdo & Civera, 2024b), and five 2-stage re-ranking methods: Patch-NetVLAD (Hausler et al.,
2021), TransVPR (Wang et al., 2022), R2Former (Zhu et al., 2023), SelaVPR (Lu et al., 2024b),
EffoVPR (Tzachor et al., 2024). Previous studies typically avoided comparing 1-stage with 2-stage
methods, as the former were generally considered inferior under equivalent conditions. However,
our findings demonstrate that SuperPlace can outperform the 2-stage methods.

The key findings from our comprehensive experiments are summarized as follows:

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Comparison to state-of-the-art methods on benchmark datasets. The best is highlighted
in bold and the second is underlined . † These methods were tested using two models trained
separately on MSLS and Pittsbugh-30k. ‡ The results reported by CricaVPR use multiple (16)
query images, so we additionally report the results of a single query image.

Method Pre-trained Training Feat. MSLS-challenge Pitts-30k-test Tokyo-24/7 MSLS-val
model set dim. R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

2-
st

ag
e

Patch-NV† VGG-16 M, P 2826×4096 48.1 57.6 60.5 88.7 94.5 95.9 86.0 88.6 90.5 79.5 86.2 87.7
TransVPR† ViT M, P 1200×256 63.9 74.0 77.5 89.0 94.9 96.2 79.0 82.2 85.1 86.8 91.2 92.4
R2Former† ViT M, P 500×131 73.0 85.9 88.8 91.1 95.2 96.3 88.6 91.4 91.7 89.7 95.0 96.2
SelaVPR† DINOv2-L M, P 61×61× 128 73.5 87.5 90.6 92.8 96.8 97.7 94.0 96.8 97.5 90.8 96.4 97.2
EffoVPR DINOv2-L S 649×1024 79.0 89.0 91.6 93.9 97.4 98.5 98.7 98.7 98.7 92.8 97.2 97.4

1-
st

ag
e

NetVLAD VGG-16 P 32768 35.1 47.4 51.7 81.9 91.2 93.7 60.6 68.9 74.6 53.1 66.5 71.1
SFRS VGG-16 P 4096 41.6 52.0 56.3 89.4 94.7 95.9 81.0 88.3 92.4 69.2 80.3 83.1
CosPlace ResNet-50 S 2048 66.9 77.1 80.6 90.9 95.7 96.7 87.3 94.0 95.6 87.2 94.1 94.9
MixVPR ResNet-50 G 4096 64.0 75.9 80.6 91.5 95.5 96.3 85.1 91.7 94.3 88.0 92.7 94.6
EigenPlaces ResNet-50 S 2048 67.4 77.1 81.7 92.5 96.8 97.6 93.0 96.2 97.5 89.1 93.8 95.0
CricaVPR-16 ‡ DINOv2-B G 4096 69.0 82.1 85.7 94.9‡ 97.3 98.2 93.0 97.5 98.1 90.0 95.4 96.4
CricaVPR-1 ‡ DINOv2-B G 4096 66.9 79.3 82.3 91.6 95.7 96.9 89.5 94.6 96.2 88.5 95.1 95.7
SALAD DINOv2-B G 8448 75.0 88.8 91.3 92.4 96.3 97.4 94.6 97.5 97.8 92.2 96.2 97.0
BoQ DINOv2-B G 12288 79.0 90.3 92.0 93.7 97.1 97.9 98.1 98.1 98.7 93.8 96.8 97.0
SALAD-CM DINOv2-B GM 8448 82.7 91.2 92.7 92.6 96.8 97.8 96.8 97.5 97.8 94.2 97.2 97.4
G2M DINOv2-B G 768 72.5 86.0 88.7 92.2 96.1 97.4 92.7 96.8 97.8 91.0 96.1 96.9
NVL-FT2 DINOv2-B G 8192 76.0 87.2 90.2 93.1 96.1 96.9 97.8 98.7 99.1 93.1 96.4 96.8
SP-G2M DINOv2-B GPMS 768 79.1 90.1 92.0 92.2 96.2 97.3 94.3 97.6 97.8 93.2 96.8 97.4
SP-NVL-FT2 DINOv2-B GPMS 8192 80.4 92.5 93.6 93.7 97.4 98.2 96.8 98.4 98.7 94.3 97.2 97.7
SP-NVL-FT2 DINOv2-L GPMS 8192 84.8 93.1 94.2 94.1 97.8 98.5 97.1 98.4 98.7 94.5 97.8 98.1

Table 4: Comparison (R@1) to SOTA methods on more challenging datasets.

Method Pre-trained Feat. Nordland Amster SPED SF-XL SF-XL SF-XL SF-XL SVOXmodel dim. time test-v1 test-v2 occlusion night
SelaVPR DINOv2-L / 72.3 55.2 88.6 74.9 89.3 35.5 38.4 97.2
SALAD DINOv2-B 8448 90.0 58.8 92.1 88.6 94.8 51.3 46.6 98.2
BoQ DINOv2-B 12288 90.6 63.0 92.5 - - - - 99.0
SP-G2M DINOv2-B 768 88.0 54.4 87.3 84.0 92.3 43.4 38.2 98.1
SP-NVL-FT2 DINOv2-B 8192 91.4 62.3 87.5 90.9 94.1 59.2 45.3 98.6

1) Inspired by SelaVPR (ICLR’24), we trained SuperPlace using DINOv2-L as the pre-trained
model. Although SelaVPR employs re-ranking and the MSLS training set, its Recall@1 is 11.3%
lower than that of SP-NVL-FT2 on the MSLS-challenge dataset.

2) CricaVPR has a query leakage issue, which disqualifies it from fair comparison on the Pitts-30k
test set. Beyond this, CricaVPR’s overall Recall@K performance is inferior to both SALAD and
BoQ. Although BoQ outperforms SALAD, its higher feature dimensions should be considered.

3) The overall recall@K of SP-NVL-FT2(B) and BoQ is evenly matched, with NVL-FT2 benefiting
from the training set and BoQ from its larger feature dimensions and higher number of parameters.

4) SP-G2M achieves competitive results with significantly smaller dimensions than other methods,
making it suitable for real-time applications in large-scale environments.

5) High-dimensional representations and re-ranking offer advantages in handling day-night varia-
tions, so SP-NVL-FT2 performs slightly worse than EffoVPR and BoQ on Tokyo 24/7.

6) When tested on large datasets, the limitations of feature dimensions become apparent. For in-
stance, our platform could not evaluate BoQ’s performance on the SF-XL dataset due to its large
feature dimensions.

We provide another perspective of the analysis in the supplementary material, focusing on different
configurations (pre-trained models and datasets).

Table 5: Ablation of the GPMS dataset.

G P M S Pitts-30k-test MSLS-val SF-XL-val
R@1 R@5 R@1 R@5 R@1 R@5

G
2M

✓ 92.6 96.8 90.4 95.9 91.2 95.8
✓ ✓ 93.1 96.9 90.8 96.6 91.8 96.1
✓ ✓ 92.3 96.9 91.5 96.6 92.2 96.5
✓ ✓ 92.2 96.6 89.6 96.1 92.3 96.7

Table 6: Comparison to CliqueMining.

Method Training Pitts-30k-test MSLS-val MSLS-challenge
Set R@1 R@5 R@1 R@5 R@1 R@5

SALAD-CM G+M 92.6 96.8 94.2 97.2 82.7 91.2
SALAD-SLA 93.0 97.1 94.3 97.8 82.1 93.5

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 7: Comparison of different implements of
DINOv2-GeM and channel attention modules.

Ablated Versions Pitts-30k-test Tokyo-24/7 MSLS-val
R@1 R@5 R@1 R@5 R@1 R@5

G
SV

-C
iti

es

Frozen-DINOv2-GeM 74.8 90.1 49.8 67.0 45.4 60.7
Adapt-GeM (CricaVPR) 87.1 94.0 70.2 85.4 78.4 87.8
FT4-GeM (SALAD) - - - - 85.4 93.9
FT4-GeM (Our impl.) 91.9 96.6 94.3 97.8 90.3 95.4
GeM + SE 91.5 96.0 93.0 97.5 90.5 95.7
GeM + CBA 91.6 96.2 92.4 98.0 90.1 95.4
GeM + GCA (G2M) 92.6 96.8 94.0 98.1 90.4 95.9

Table 8: Comparison of different ranks and acti-
vate functions for G2M.

Ablated versions Rank Pitts-30k-test Tokyo-24/7 MSLS-val
R@1 R@5 R@1 R@5 R@1 R@5

G
SV

-C
iti

es

GeM / 91.9 96.6 94.3 97.8 90.3 95.4

G2M (GELU)

3 91.9 96.4 95.2 96.5 90.9 95.8
32 91.7 96.6 93.0 97.5 90.5 94.9
64 92.6 96.8 94.0 98.1 90.4 95.9
128 91.4 96.4 93.7 97.8 90.9 95.5

G2M (ReLU) 64 92.5 96.8 94.9 97.5 90.1 95.4

4.3 UNIVARIATE EXPERIMENT OF SUPERVISED LABEL ALIGNMENT

Contribution of each component of GPMS. We conducted an ablation experiment to evaluate the
contribution of each subset of the GPMS dataset, as shown in Tab. 5. First, SP-G2M was trained
on the G dataset and then fine-tuned for one epoch each on the P, M, and S datasets, respectively.
The bolded results align approximately along the diagonal in Tab. 5, indicating that each dataset
contributes most effectively to its corresponding test set. This indicates that the datasets do not
completely encompass each other’s characteristics.

Comparison with another alignment method. We compared our method, SLA, with another
alignment approach (Izquierdo & Civera, 2024b) published in a forthcoming ECCV that employed
CliqueMining (CM) to mix GSV-Cities and MSLS datasets. Despite the two works being nearly
concurrent, we ensured a fair comparison to highlight the superiority of our approach. As shown in
Tab. 6, SLA outperforms CM using the DINOv2-SALAD framework.

4.4 UNIVARIATE EXPERIMENT OF THE IMPROVED GEM

Ablation and Comparison for G2M. We only used the feature aggregator as a variable to conduct
experiments to verify the effectiveness of G2M, as shown in Tab. 7. First, we explored using
different fine-tuning methods for DINOv2-GeM: freezing, using adaptors (a PEFT method), and
fine-tuning the last four layers (FT4). In particular, FT4-GeM has two versions: our implementation
and SALAD’s implementation (Izquierdo & Civera, 2024a). We found that DINOv2-GeM can
achieve state-of-the-art performance, but recent works have not reproduced this effectiveness (Lu
et al., 2024a; Izquierdo & Civera, 2024a). Then, we added three modules to GeM: SE, CBA, and
our proposed GCA. Here, we set the rank r = 64 recommended in the SE (Hu et al., 2018) and CBA
(Woo et al., 2018), consistent with the GCA rank we selected in Tab. 8. The GCA module is better
than the other two.

Design details of G2M. As shown in Tab. 8, we adjusted the rank and activation function of GCA
to improve the design of GCA. Since the distributions of GSV-Cities and Pitts-30k were closely
related, we mainly selected parameters based on the results of Pitts-30k.

4.5 UNIVARIATE EXPERIMENT OF THE IMPROVED NETVLAD

Design details of NVL-FT2. As shown in Tab. 9, we conducted detailed design experiments and
training analyses for NVL. NVL-FT2 more closely approximates the performance of NV, outper-
forming one-shot NVL, twice-fine-tuned NV-MLP, and NV-PCA. We also found that incorporating
a CLS Token into NVL did not improve performance. Observing the training time and number of
training parameters, we found that although the steps in FT2 are more complex, the overall efficiency
improves.

Comparison with SALAD. We only used the aggregator as a variable to conduct comparative exper-
iments with SALAD. It is important to note that Izquierdo & Civera (2024a) conducted comparative
experiments with NetVLAD but did not use the recommended parameters from Arandjelovic et al.
(2016). As shown in Tab. 10, NetVLAD is better than SALAD but has the disadvantage of too high
a dimension. NVL-FT2 overcomes this limitation and surpasses SALAD in performance. Izquierdo
& Civera (2024a) also claimed that SALAD could be scaled to ultra-low dimensions (544-dim)
while maintaining good performance. We conclude that G2M offers the best performance compared
to low-dimensional methods.
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Table 9: Comparison of variant versions of NV. Training time (min) was measured on four 4090
GPUs, while inference time (ms) of the aggregation layer was measured on a single 4090 GPU.

Aggre. CLS FT2 Feat. Pitts-30k-test MSLS-val Train. Trainable Infer.
dim. R@1 R@5 R@1 R@5 time param. (M) time

G
PM

S

NV / / 49152 93.5 97.4 94.6 97.6 22 27.139 4.39
NV-PCA / / 8192 93.2 97.3 94.2 97.3 / / 11.1
NV-MLP ✓ 8192 93.0 97.2 93.8 97.2 22 + 28 0.438 4.66
NVL 8192 93.0 97.1 93.8 97.3 34 27.231 4.49
NVL ✓ 8448 93.1 97.2 92.8 97.2 51 27.418 4.60
NVL ✓ ✓ 8448 91.5 95.8 91.7 96.2 22 + 28 0.281 4.60
NVL-FT2 ✓ 8192 93.1 97.4 94.6 97.8 22 + 14 0.094 4.49

Table 10: Comparison to SALAD.

Method Feat. Pitts-30k-test MSLS-val SF-XL-val
dim R@1 R@5 R@1 R@5 R@1 R@5

G
PM

S

NetVLAD 49152 93.5 97.4 94.6 97.6 96.3 98.2
SALAD 8448 92.8 96.9 94.7 97.4 94.8 98.3
NVL-FT2 8192 93.1 97.4 94.6 97.8 95.5 98.0
GeM 768 92.4 96.8 91.5 96.4 92.6 97.0
G2M 768 92.0 96.6 92.4 96.8 93.2 97.4
SALAD 544 91.3 96.6 92.3 96.8 92.9 97.1

Table 11: Comparison to BoQ. † The fine-tuning
with warm-up is used.

Method Param. Infer. Feat. Pitts-30k-test MSLS-val
(M) time (ms) dim. R@1 R@5 R@1 R@5

G
SV

-C
iti

es BoQ† 8.63 2.53 12288 93.7 97.1 93.8 96.8
SALAD 1.41 1.45 8448 92.4 96.3 92.2 96.2
NVL-FT2 0.197 4.49 8192 93.0 96.7 93.0 96.5
NVL-FT2 † 0.197 4.49 8192 93.4 97.0 93.1 96.6
G2M 0.69 0.41 768 92.6 96.8 90.4 95.9

Comparison with BoQ. We only used the aggregator as a variable to conduct comparative experi-
ments with BoQ, as shown in Tab. 11. BoQ used a warm-up training technique suitable for training
large parameter structures at the expense of longer training time. In addition, the training resolution
of BoQ is 280× 280. We applied this technique and resolution to NV and observed a slight perfor-
mance improvement. Considering only Recall@K, BoQ is slightly better than NVL-FT2. However,
considering BoQ’s complex training techniques, extended training time, large parameters, and high
feature dimensions, NVL-FT2 is a more efficient solution.

5 CONCLUSION

This paper presents SuperPlace, a novel VPR system that integrates classical aggregation methods
and modern foundation models to achieve state-of-the-art performance. Specifically, we propose
three contributions: 1) a supervised label alignment method that combines grid partitioning and local
feature matching, allowing models to be trained on diverse VPR datasets within a unified framework
akin to the design principles of foundation models. 2) G2M, a compact feature aggregation with
two GeM layers, in which one GeM learns the principal components of feature maps along the
channel direction and calibrates the other GeM output. 3) the secondary fine-tuning (FT2) strategy
for NetVLAD-Linear. NetVLAD first learns feature vectors in a high-dimensional space and then
compresses them into a low-dimensional space by a single linear layer. Extensive experiments
have validated the effectiveness of SuperPlace, with SuperPlace-G2M achieving high performance
with minimal dimensions and SuperPlace-NVL-FT2 dominating the MSLS Challenge leaderboard.
These results highlight the strength of revisiting and refining classical methods in the era of visual
foundation models. In the future, we will further explore developing interpretable and open-world
VPR systems.
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A APPENDIX

A.1 THE SNAPSHOT OF MSLS LEADERBOARD

The MSLS place recognition challenge 1 is an authoritative competition for VPR with over 100
participants. Fig. 4 shows a snapshot of the MSLS challenge leaderboard at the time of submission.
The proposed method (named “SuperPlace” due to the double-blind review policy) ranks first.

Figure 4: A snapshot of MSLS leaderboard. The upper-right corner of the screenshot indicates our
username. By consulting the supplementary materials of SelaVPR (Lu et al., 2024b), we confirm
that ’anonymous02’ corresponds to SelaVPR.

A.2 COMPARISON OF DIFFERENT DIMENSIONS

We further explored the performance of G2M and NVL-FT2 in different dimensions, with other
parameters consistent with the SP in Tab. 3. As shown in Fig. 5, NVL-FT2 shows a significant per-
formance improvement as the dimension increases, but the growth is relatively weak after exceeding
8000 dimensions. The performance trend of G2M is less consistent, and we recommend maintaining
a feature dimension aligned with the number of channels in the extracted feature map.

A.3 COMPARISON WITH STATE-OF-THE-ART METHODS

1https://codalab.lisn.upsaclay.fr/competitions/865
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Figure 5: The Recall@1 and descriptor dimensionality comparison of different methods on MSLS-
Val (left) and Pitts-30k (right).

We provide further analysis in Tab. 3, focusing on different configurations (pre-trained models and
datasets) and their contribution to the performance:

1) Pre-trained Models:

• VGG-16 and ResNet-50: Older backbones like VGG-16 (e.g., NetVLAD, SFRS) consis-
tently underperform compared to modern pre-trained vision transformers (e.g., DINOv2).
For instance, NetVLAD achieves only 35.1% R@1 on MSLS-challenge, whereas modern
methods using DINOv2 (e.g., SALAD, SP-NVL-FT2) exceed 45%. This underscores the
importance of leveraging advanced pre-trained models for feature extraction.

• DINOv2 Variants: Methods using DINOv2-L (e.g., SP-NVL-FT2) outperform those using
the smaller DINOv2-B due to the former’s ability to extract more robust representations,
especially on challenging datasets like MSLS.

2) Feature Dimensions:

• Low-Dimensional Efficiency: SP-G2M achieves competitive results with a feature dimen-
sion of only 768, demonstrating its suitability for memory-constrained real-time applica-
tions.

• High-Dimensional Representations: Methods like BoQ and SALAD-CM leverage larger
dimensions (e.g., 12,288 for BoQ), improving performance in scenarios with significant
appearance variations (e.g., day-night changes). However, these approaches face limita-
tions on large-scale datasets due to higher computational and memory requirements, as
noted in the inability to evaluate BoQ on SF-XL.

3) Training sets:

• GSV-Cities is widely used by multiple methods due to its diversity of cities and training
efficiency. Models trained on this dataset are less likely to exhibit over-optimization or
suboptimal performance specific to a particular test set.

• Models trained on the SF-XL dataset perform well on the Pitts-30k test set and the Tokyo-
247 dataset but are relatively less optimal on the MSLS-val and MSLS-challenge dataset.
This phenomenon is largely due to the fact that the former datasets originate from Google
Street View services, sharing certain common characteristics, while the latter comes from
a crowdsourced dataset.

• The MSLS training set and the Pittsburgh training set have seen less frequent use recently.
However, our method’s results demonstrate their substantial value, particularly in enhanc-
ing a model’s generalization capability in challenging scenarios.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 12: The proposed aggregations work
with ResNet-50. † These results are reported
in Ali-bey et al. (2022).

Aggregations Training Feat. Pitts-30k-test MSLS-val SF-XL-val
set dim. R@1 R@5 R@1 R@5 R@1 R@5

R
es

N
et

-5
0

GeM† G 2048 - - 76.5 85.7 - -
GeM G 1024 89.8 94.8 84.5 90.5 87.7 93.3
GeM GPMS 1024 90.4 95.3 87.6 92.8 90.1 94.8
G2M GPMS 1024 90.4 94.8 88.8 93.2 88.3 93.8
NetVLAD G 65536 89.9 95.0 78.9 87.7 84.9 92
NetVLAD GPMS 65536 90.4 95.3 89.2 93.8 88.9 94.1
NVL GPMS 8192 89.9 94.9 87.6 93.8 88.2 93.7
NVL-FT2 † GPMS 8192 90.6 95.2 88 93.3 88.2 93.8

Table 13: The proposed aggregations work
with CLIP

Aggregations Training Feat. Pitts-30k-test MSLS-val SF-XL-val
set dim. R@1 R@5 R@1 R@5 R@1 R@5

C
L

IP

GeM G 1024 86.8 94.7 79.2 88.8 81.1 89.4
GeM GPMS 1024 88.0 94.8 85.3 93.1 83 91.1
G2M GPMS 1024 89.1 95 86.1 93.5 85.4 92.7
NetVLAD G 49152 89.3 95.4 82.8 91.1 83.7 90.9
NetVLAD GPMS 49152 90.2 95.7 88.1 93.7 86.7 93.7
NVL GPMS 8192 89.6 95.4 86.4 93.4 84.8 92.7
NVL-FT2 GPMS 8192 89.9 95.5 87.0 93.4 86.1 93.0

A.4 PERFORMANCE ON OTHER FOUNDATION MODELS

We further explored the performance of G2M and NVL-FT2 on other foundation architectures or
models. VGG and ResNet are both convolutional architectures, and the theoretical structures of
DINOv2 and ViT are identical, differing primarily in their improved model parameters. Therefore,
we believe it is sufficient to conduct generalization experiments for architectures using ResNet-50.
For validating the generalization capability of the foundation models, we selected the visual encoder
of OpenAI’s CLIP model, as it is widely recognized by researchers. As shown in Tab. 12 and 13,
our method achieves the same conclusions on ResNet-50 and CLIP as reported in the main text.
Notably, the experimental results of DINOv2 remain the best.

A.5 DATASET DETAILS

Pittsburgh-250k (Arandjelovic et al., 2016) is collected from Google Street View and provides 24
images with different viewpoints at each place. The images in this dataset have large viewpoint
variations and moderate condition variations.

Tokyo24/7 (Torii et al., 2017) includes 75,984 database images and 315 query images captured from
urban scenes. The query images are selected from 1,125 images taken at 125 distinct places with
three different viewpoints and at three different times of day. Significant viewpoint and condition
changes (e.g., day-night transitions) are present.

Mapillary Street-Level Sequences (MSLS) (Warburg et al., 2020) is a large-scale VPR dataset
containing over 1.6 million images labeled with GPS coordinates and compass angles, captured
from 30 cities in urban, suburban, and natural scenes over seven years. It covers various challenging
visual changes due to illumination, weather, season, viewpoint, and dynamic objects. It includes
subsets of training, public validation (MSLS-val), and withheld test (MSLS-challenge).

Nordland (Sünderhauf et al., 2013) primarily consists of suburban and natural place images cap-
tured from the same viewpoint in the front of a train across four seasons, which results in severe
condition changes (e.g., seasons and lighting) but no viewpoint variations. Its ground truth is pro-
vided by the frame-level correspondence. Following previous work (Sünderhauf et al., 2013; Wang
et al., 2022), we use the dataset partition first presented in (Sünderhauf et al., 2013) for our experi-
ments.

AmsterTime (Yildiz et al., 2022) is a collection of over one thousand pairs of query-reference
images of Amsterdam. For each pair, the query is a grayscale historical image, and its reference is a
modern-day photo that represents the same place, as confirmed by human experts. The pairs exhibit
multiple domain shifts, including changes in viewpoint, long-term temporal variations, modality
differences (RGB vs. grayscale), and different camera systems. Despite its relatively small scale,
AmsterTime is one of the most challenging datasets available.

SPED (Chen et al., 2017) comprises low-quality, high-scene-depth images taken from CCTV cam-
eras around the globe. The images in this dataset show various condition variations, such as lighting,
weather, and seasonal changes. This dataset covers various outdoor scenes, including forest land-
scapes, country roads, and urban environments.

SF-XL (Berton et al., 2022a) is a huge dataset covering San Francisco with over 41M images. Its
test set covers the same with a less dense set of 2.8M images. Two sets of queries are used: the first
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(test v1) is a challenging set of 1000 images from Flickr, with multiple challenges like night images
and photos from the sidewalk. Test v2 uses the same set of queries from San Francisco Landmark.

SVOX (Berton et al., 2021b) is a cross-domain dataset built from cross-domain VPR that evaluates
multiple weather conditions. It spans the city of Oxford, with a large (single domain) database from
GSV images: the queries are instead from the Oxford RobotCar dataset (Maddern et al., 2017),
providing several weather conditions, such as overcast, rainy, sunny, snowy, and night domains.
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