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Abstract
Effective recommendation is crucial for large-scale1

online advertising platforms, where understanding2

user-item interactions with limited exposure is a3

persistent challenge. Traditional systems rely heav-4

ily on ID tokens to uniquely represent items, cap-5

turing distinct associations but suffering from re-6

dundancy and poor generalization in cold-start set-7

tings. Semantic tokens, by contrast, encode trans-8

ferable item attributes but often lead to duplication9

and inconsistent performance gains. To address10

these limitations, we propose a Causally-Informed11

Unified Semantic and ID Representation Learn-12

ing framework that harnesses the complementary13

strengths of both token types. Our approach treats14

ID tokens as anchors for item-specific information15

while using semantic tokens to encode shared, gen-16

eralizable features. To further enhance representa-17

tion quality, we introduce a hybrid similarity mech-18

anism—cosine similarity is applied in early lay-19

ers to decouple over-smoothed embeddings, while20

Euclidean distance is used in the final layer to21

sharpen item discrimination. Importantly, we inte-22

grate causal learning principles to disentangle user23

exposure bias and improve robustness in recom-24

mendation scenarios, especially under data spar-25

sity. Experiments on three benchmark datasets26

show that our method outperforms state-of-the-art27

baselines by 6%–17% and reduces token vocabu-28

lary size by over 80%. These results demonstrate29

the power of combining semantic and ID tokeniza-30

tion with causal learning to build more generaliz-31

able and effective recommendation systems. Code32

is available at: https://anonymous.4open.science/r/33

Unified Semantic ID-9E94.34

1 Introduction35

In large-scale online platforms such as YouTube [Covington36

et al., 2016], TikTok [Lin et al., 2023], and Amazon [He and37

McAuley, 2016], effectively recommending items that align38

with users’ preferences while filtering out irrelevant content is39

crucial. Traditional recommendation systems predominantly40

rely on ID tokens, wherein each item is uniquely identified41

Figure 1: Visualization of ID tokens on Amazon Beauty dataset.
Here some ID tokens with the same color share a close embedding
space, which means they can be compressed and represented with
shared semantic tokens.

by a distinct token [Rendle, 2010; Kang and McAuley, 2018]. 42

However, as the number of items expands, this approach be- 43

comes increasingly cumbersome due to the redundancy and 44

sheer scale of the token space. 45

To overcome these limitations, recent research [Rajput et 46

al., 2024; Singh et al., 2023] has explored the use of se- 47

mantic tokens as an alternative to ID tokens. Nevertheless, 48

existing works face challenges, such as inconsistent perfor- 49

mance improvements and issues with item duplication. For 50

instance, TIGER [Rajput et al., 2024] introduces semantic 51

tokens within a deeper and more complex model architec- 52

ture, making it difficult to isolate the benefits of semantic 53

tokens themselves. Consequently, the true advantages of se- 54

mantic tokens over ID tokens remain underexplored. Another 55

study [Singh et al., 2023] demonstrates that semantic tokens 56

offer notable improvements primarily in cold-start scenarios, 57

yet both studies report that semantic tokens can map multiple 58

items to the same token, leading to duplication. These open 59

questions invite further investigation into the comparative ef- 60

fectiveness of semantic and ID tokens: Are semantic tokens 61

inherently superior to ID tokens in recommendation tasks? 62

In reality, semantic tokens and ID tokens complement each 63

other. ID tokens have two primary advantages: (1) they can 64

uncover unique, implicit relationships between items, such as 65

the well-known association between beer and diapers, and (2) 66

they facilitate the distinction between different items. How- 67

ever, ID tokens struggle to capture shared attributes across 68

similar items and often suffer from redundancy at scale. This 69

https://anonymous.4open.science/r/Unified_Semantic_ID-9E94
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is analogous to whole-word tokenization in Natural Language70

Processing (NLP)[Bengio et al., 2000; Collobert and We-71

ston, 2008; Mikolov et al., 2013], which tends to fail with72

unknown or out-of-vocabulary words[Mielke et al., 2021],73

making ID tokens less effective in cold-start situations. On74

the other hand, semantic tokens resemble sub-word tokeniza-75

tion in NLP [Mikolov et al., 2012; Wang et al., 2020], where76

combinations of existing semantic tokens can represent new77

or unknown items. However, the drawback of semantic to-78

kens lies in their tendency to map multiple, similar items to79

identical representations, thus failing to distinguish between80

them [Singh et al., 2023]. In summary, while semantic tokens81

excel in generalizing to unknown items, they are less effective82

in memorizing unique ones, suggesting that neither approach83

is universally superior.84

To harness the complementary strengths of both token85

types, we propose a hybrid framework that unifies ID and86

semantic tokens. As illustrated in Figure 1, our approach be-87

gins by visualizing the distribution of ID tokens, revealing88

that certain items cluster closely together in the embedding89

space. From this, we hypothesize that only a few dimensions90

of the ID token space are needed to capture unique item char-91

acteristics, while the remaining dimensions can be replaced92

by semantic tokens to represent shared features. Based on93

this hypothesis, we introduce a Unified Semantic and ID Rep-94

resentation Learning framework, which incorporates two key95

components: unified ID and semantic tokenization and uni-96

fied cosine similarity and Euclidean distance. First, in uni-97

fied tokenization, we quantize item content embeddings into98

a semantic codebook to capture shared characteristics, while99

assigning each item a low-dimensional ID token to capture100

unique attributes. Second, in the unified similarity and dis-101

tance metric, we observe that cosine similarity is effective102

at disentangling densely clustered embeddings, yet struggles103

with distinguishing unique items, while Euclidean distance104

excels at the latter. Consequently, we apply cosine similarity105

in the earlier layers to decouple dense embeddings and Eu-106

clidean distance in the final layer to distinguish unique items.107

Experimental results on three benchmark datasets demon-108

strate that our method outperforms existing baselines by 6%109

to 17%, while reducing token size by over 80%. Ablation110

studies further validate our hypothesis, showing that many ID111

tokens are redundant and can be effectively replaced by se-112

mantic tokens to enhance generalization.113

In summary, the key contributions of this work are as fol-114

lows:115

• We present the first comprehensive investigation into the116

complementary relationship between semantic and ID to-117

kens in recommendation systems.118

• We propose a novel unified ID and semantic tokenization119

framework that captures both unique and shared item char-120

acteristics, alongside a unified similarity and distance ap-121

proach that balances embedding decoupling and item dis-122

tinction.123

• Our method achieves significant performance improve-124

ments on three benchmark datasets, outperforming base-125

lines by 6% to 17% while reducing token size by over 80%,126

thereby enhancing the system’s generalization capability.127

2 Preliminary 128

Problem Definition Suppose there are m items, and each 129

item i is represented by an encoded sentence embedding xi. 130

Let it denote user u’s t-th interacted item. If user u has inter- 131

acted with a sequence of items Iu = (i1, i2, . . . , it), with cor- 132

responding sentence embeddings Xu = (xi1 ,xi2 , . . . ,xit), 133

the objective of sequential recommendation is to accurately 134

predict the next item that user u will interact with, based on 135

their previous interaction history. Formally, the problem can 136

be defined as follows: 137

Input: A sequence of items Iu = (i1, i2, . . . , it) that user u 138

has interacted with, along with their corresponding sentence 139

embeddings Xu = (xi1 ,xi2 , . . . ,xit). 140

Output: The estimated probability ŷu,t+1 of the next item 141

that user u will interact with at time step t+ 1. 142

ID Tokenization Traditional recommender systems often 143

rely on ID tokenization to capture the unique characteris- 144

tics of each item. In this approach, an item embedding ma- 145

trix {ei}mi=1 is constructed, where each item i is associated 146

with an embedding vector ei ∈ R1×D, and D represents 147

the ID embedding dimension. The total embedding size for 148

ID tokenization is thus m × D, where m is the number of 149

items. For a user u with an interaction sequence of items 150

Iu = (i1, i2, . . . , it), we can retrieve the corresponding ID 151

embeddings (ei1 , ei2 , . . . , eit) through simple lookup opera- 152

tions in the embedding matrix. 153

Semantic Tokenization To capture the semantic informa- 154

tion of items, recent works have leveraged techniques like 155

RQ-VAE [Rajput et al., 2024] to quantize content embed- 156

dings. Specifically, semantic tokenization builds L layers of 157

codebook embeddings, where each layer contains a set of em- 158

bedding vectors {eck}
K
k=1, with eck ∈ R1×D′

. Here, D′ de- 159

notes the semantic embedding dimension, and the total em- 160

bedding size for semantic tokenization is L×K ×D′. Since 161

L×K ≪ m, semantic tokenization can significantly reduce 162

the embedding size by replacing ID-based embeddings with 163

semantically informed ones. As detailed in Algorithm 1, the 164

RQ-VAE model quantizes the input sentence embedding xit 165

and returns the corresponding semantic embedding zit for 166

each item in user u’s interaction history. It is important to 167

note that the stop-gradient operation, denoted as sg, is applied 168

during the quantization process. 169

3 Unified Representation Learning 170

In this section, as illustrated in Figure 2, we introduce a 171

unified semantic and ID representation learning framework. 172

Our method is designed to fully exploit the complementary 173

strengths of semantic and ID tokens, integrate cosine simi- 174

larity and Euclidean distance, and jointly optimize both the 175

quantization and recommendation tasks. The key compo- 176

nents of the framework are described as follows: 177

• Unified Semantic and ID Tokenization: To balance cap- 178

turing unique and shared item characteristics, we retain 179

only a small proportion of ID token dimensions to represent 180

the unique attributes of items. Meanwhile, the semantic to- 181

kens, learned through RQ-VAE, are employed to capture 182

the shared, transferable characteristics across items. This 183
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Figure 2: Framework of the unified semantic and ID representation learning. Firstly, the model integrates both semantic tokens, learned
through RQ-VAE, and ID tokens for the recommendation task. Secondly, cosine similarity is applied in the first two layers to decouple
accumulated embeddings, while Euclidean distance is utilized in the final layer to effectively distinguish unique items. Finally, the overall
model is optimized in an end-to-end manner, combining the recommendation loss, RQ-VAE quantization loss, and text reconstruction loss.

hybrid approach reduces redundancy in the ID space while184

enhancing generalization.185

• Unified Cosine Similarity and Euclidean Distance: We186

leverage the strengths of cosine similarity and Euclidean187

distance in different layers of our model. Specifically, co-188

sine similarity is applied in the earlier layers to effectively189

decouple accumulated embeddings, while Euclidean dis-190

tance is employed in the final layer to distinguish unique191

items. This design maximizes the benefits of both metrics192

during codebook searching, enhancing the accuracy of item193

representation.194

• End-to-End Joint Optimization: Our framework is195

trained in an end-to-end manner, jointly optimizing three196

key objectives: (1) the recommendation loss to ensure ac-197

curate predictions, (2) the RQ-VAE loss for effective code-198

book assignment, and (3) the text reconstruction loss to199

maintain the quality of semantic representation. This joint200

optimization strategy ensures that all components of the201

model are fine-tuned for optimal performance in both quan-202

tization and recommendation tasks.203

3.1 Unified Semantic and ID Tokenization204

𝐿×𝐾×𝐷′m×𝐷m×𝐷′

ID tokens
Low-dimension
ID tokens

Semantic 
tokens

Figure 3: Illustration of unified semantic and ID tokenization.
Specifically, we replace ID tokens with low-dimension ID tokens
and semantic tokens.

While ID tokenization is effective at capturing unique,205

item-specific information, it tends to suffer from redundancy206

and poor generalization, particularly in cold-start scenarios.207

In contrast, semantic tokenization excels at generalization208

by capturing shared, transferable features but may introduce209

item duplication when similar items are mapped to the same 210

token. Therefore, these two approaches are complementary, 211

and combining their strengths can address their respective 212

limitations. 213

To this end, we propose a unified tokenization strategy that 214

integrates both ID and semantic tokenization. Given that the 215

number of items m can be very large, we reduce the dimen- 216

sionality of the ID embeddings by setting D smaller than the 217

dimension D′ used for semantic embeddings. As shown in 218

Figure 3, our method replaces most dimensions of the ID to- 219

ken with the more generalizable semantic token to reduce re- 220

dundancy while retaining the ability to capture unique item 221

characteristics. Specifically, for each item it in the user’s 222

interaction history, we concatenate the semantic embedding 223

ẑit and the reduced ID embedding eit to form a unified rep- 224

resentation, defined as: sit = [ẑit , eit ], which results in 225

a sequence of unified embeddings for user u, denoted as: 226

Ŝu = (ŝi1 , ŝi2 , . . . , ŝit) 227

By combining ID and semantic embeddings, the unified to- 228

kenization approach retains the unique characteristics of each 229

item while leveraging the semantic embedding’s ability to 230

generalize across similar items. This hybrid representation 231

aims to improve both the efficiency and accuracy of recom- 232

mendation by reducing redundancy in the ID space and en- 233

hancing the model’s capacity to generalize to cold-start items. 234

3.2 Unified Distance Function 235

Type Cosine Euclidean
First layer 97.66% 5.86%
Second layer 98.44% 100.00%
Third layer 97.66% 100.00%
Total coverage 70.13% 92.67%

Table 1: Comparison of cosine similarity and Euclidean distance in
terms of the percentage of activated codebook across three layers
and total coverage of unique items. Cosine similarity shows a high
percentage of activated codebooks in all layers but lower overall cov-
erage of unique items. In contrast, Euclidean distance exhibits high
coverage of unique items, but struggles with a significantly lower
percentage of activated codebooks in the first layer.



To enhance the accuracy of codebook selection in our236

framework, we aim to improve the distance function used for237

identifying the closest codebook in k = argmink ∥rl − eck∥,238

as defined in Algorithm 1.

Algorithm 1 RQ-VAE for Semantic Tokenization
Input: Sentence embedding Xu = (xi1 ,xi2 , . . . ,xiT ) of
user u
Output: Semantic representation Ẑu = (ẑi1 , ẑi2 , . . . , ẑiT )
of user u

1: for t = 1 → T in parallel do
2: zit = Encoder(xit) # encode the text embedding
3: r1 = zit , ẑit = 0
4: for l = 1 → L do
5: {eck}

K
k=1 , e

c
k ∈ R1×D′

# codebook embedding of
each layer

6: k = argmink ∥rl − eck∥ # search the index of clos-
est codebook

7: rl+1 = rl − eck
8: ẑit+ = eck # accumulate the quantized embedding
9: Lrqvae + = ∥sg [rl]− eck∥

2
+β ∥rl − sg [eck]∥

2 # sg
means stop gradient

10: end for
11: x̂it = Decoder(ẑit) # decode the quantized semantic

embedding
12: Lrecon+ = ∥xit − x̂it∥

2 # reconstruction loss
13: end for
14: return Ẑu

239

Statistical Analysis Our initial analysis, summarized in Ta-240

ble 1, reveals that cosine similarity activates a high percent-241

age of the codebook but struggles to cover unique items ef-242

fectively. In contrast, Euclidean distance provides high cov-243

erage of unique items but activates a much lower percentage244

of the codebook, with only 5.86% activation in the first layer.245

The limited activation of Euclidean distance in the early lay-246

ers may result from its difficulty in decoupling accumulated247

embeddings, as these embeddings tend to cluster tightly at248

the beginning. Cosine similarity, on the other hand, excels249

in decoupling these embeddings, possibly due to its ability to250

handle orthogonal relationships between embeddings. How-251

ever, cosine similarity’s limited ability to distinguish between252

distinct embeddings may be attributed to the bounded angu-253

lar range of 0 to 360◦, while Euclidean distance, grounded254

in the Cartesian coordinate system, provides a more precise255

measure for distinguishing embeddings based on distance in256

R.257

Visualized Analysis To further investigate the performance258

of cosine similarity and Euclidean distance in codebook se-259

lection, we visualized the counts of the top-learned code-260

books across different categories using both methods, as261

shown in Figures 4 and 5, respectively. These visualiza-262

tions demonstrate that cosine similarity can effectively cap-263

ture category-specific information across layers, while Eu-264

clidean distance struggles to do so in the first layer. Specif-265

ically, in the first layer, the codebook entries selected by266

Euclidean distance appear uniformly distributed across cat- 267

egories, indicating that it fails to differentiate between them. 268

Based on these observations, we propose the following 269

assumption: Cosine similarity is more effective at minimiz- 270

ing interference within accumulated embeddings but less ca- 271

pable of distinguishing distinct embeddings, whereas Eu- 272

clidean distance excels at distinguishing unique embeddings 273

but struggles to decouple accumulated ones. 274

Table 2: Effectiveness of the hybrid approach combining cosine sim-
ilarity and Euclidean distance. The integration of Euclidean distance
into cosine similarity results in a 100% activation of the codebook
across layers, while also improving the coverage of unique items.
This demonstrates the advantage of leveraging both distance mea-
sures for more comprehensive and accurate item representation.

Activated
codebook

First layer 100.00%
Second layer 100.00%
Third layer 100.00%

Coverage of unique items 83.27%

Proposed Method and Experimental Validation Build- 275

ing on this assumption, we propose a unified approach that 276

combines cosine similarity and Euclidean distance. In the 277

initial layers, cosine similarity is employed to decouple ac- 278

cumulated embeddings, while Euclidean distance is applied 279

in the final layer to better distinguish unique items. To val- 280

idate the effectiveness of this hybrid approach, we visualize 281

the codebook selection counts across categories in Figure 6. 282

The results show that the combination of cosine similarity and 283

Euclidean distance successfully captures category-specific in- 284

formation. Moreover, as shown in Table 2, the percentage of 285

activated codebook entries reaches 100%, and the coverage of 286

unique items improves significantly compared to using cosine 287

similarity alone. 288

Limitations Despite the improvements, our proposed 289

method still results in approximately 17% duplicate items, as 290

observed in Table 2. This issue arises when sentence em- 291

beddings for certain items are too similar to be distinguished. 292

While this challenge is difficult to completely eliminate, it 293

can be mitigated by assigning a unique, low-dimensional ID 294

token to each item, helping to further differentiate items with 295

highly similar embeddings. 296

3.3 End-to-end Joint Optimization 297

After unified tokenization of input item sequence for given 298

user u, we then can predict the probability of next item as 299

below. 300

ŷu,t = Φ(si1 , si2 , · · · sit−1
) (1)

where Φ is the sequential recommendation model to pre- 301

dict the probability ŷu,t of next item. Here Φ can be any 302

type of sequential recommendation models and we use SAS- 303

Rec [Kang and McAuley, 2018] here. Based on the popular 304

logloss [Kang and McAuley, 2018; Lin et al., 2022], we then 305

can optimize the recommendation model as: 306

Lrecom = −
1

|R|

∑
(u,Iu)∈R

(
yu,t log ŷu,t +

(
1 − yu,t

)
log

(
1 − ŷu,t

))
+λ∥Θ∥,

(2)
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Figure 4: Visualization of the codebook selection using cosine similarity across three layers. This figure shows the count of items from
various categories assigned to specific token indices, with a focus on the top-3 codebook indices that contain the highest number of items.
The distinct distribution of items across different indices suggests that cosine similarity effectively captures category-specific information and
helps in distinguishing between categories.
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Figure 5: Visualization of the codebook selection using Euclidean distance across three layers. The uniform distribution of items across
categories in the first layer indicates that Euclidean distance struggles to effectively capture category-specific information at this stage,
making it less capable of distinguishing between categories compared to later layers.

where R represents the training set, Θ denotes the learnable307

model parameters, and λ denotes the regularization hyper-308

parameter. Finally, we jointly optimize the loss of recom-309

mendation, the loss of RQ-VAE, and the loss of reconstruc-310

tion for text embedding as L = Lrecom + Lrqvae + Lrecon311

(please refer to Algorithm 1).312

4 Experiments313

In our experiments, we evaluate the proposed method on three314

real-world benchmark datasets, focusing on the following key315

research questions (RQs): RQ1: Does the proposed uni-316

fied representation learning method outperform state-of-the-317

art sequential recommendation models in terms of prediction318

accuracy? RQ2: What is the impact of our unified seman- 319

tic and ID tokenization method on recommendation perfor- 320

mance? Additionally, is the integration of cosine similarity 321

and Euclidean distance effective in improving the final rec- 322

ommendation performance? RQ3: To what extent can we 323

reduce the dimensionality of ID tokens without compromis- 324

ing performance? Specifically, how does the model’s perfor- 325

mance vary with different ID token dimensions? RQ4: What 326

patterns do the semantic and ID tokens learn, and how do 327

these tokens contribute to the overall representation of items? 328

4.1 Experimental Setup 329

Datasets We evaluate the recommendation performance on 330

Amazon product review datasets [He and McAuley, 2016]. 331
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Figure 6: Visualization of codebook selection using the hybrid approach that combines cosine similarity and Euclidean distance. The variation
in the counts of items assigned to different codebook tokens across categories demonstrates the effectiveness of this combined method in
capturing category-specific information. The integration of both distance measures enhances the ability of Euclidean distance to distinguish
between different categories, leading to more accurate item categorization.

Evaluation Metrics We follow the approach used in prior332

work [Zhou et al., 2020], using Hit Ratio (HIT@k), Nor-333

malized Discounted Cumulative Gain (NDCG@k), and Mean334

Reciprocal Rank (MRR) as evaluation metrics, where k is335

the number of top ranked items. Consistent with previ-336

ous studies [Zhou et al., 2020; Lin et al., 2022], given a337

user behavior sequence, we use the last item for testing,338

the second-to-last item for validation, and the rest for train-339

ing. Given the large item set, ranking against all possi-340

ble items is computationally expensive. Therefore, follow-341

ing a commonly used approach [Kang and McAuley, 2018;342

Lin et al., 2024], we evaluate the model by sampling 99 neg-343

ative items along with the ground-truth item. All metrics are344

calculated based on the ranking of sampled and ground-truth345

items, and we present the mean scores across users.346

Baselines To evaluate the pure impact of semantic tok-347

enization, we compare our proposed method against several348

competitive recommendation baselines, including FM [Ren-349

dle, 2010], GRU4Rec [Hidasi et al., 2016], Caser [Tang350

and Wang, 2018], SASRec [Kang and McAuley, 2018],351

BERT4Rec [Sun et al., 2019], and HGN [Ma et al., 2019].352

It is important to note that we do not compare our method353

with existing work [Rajput et al., 2024] that utilizes a differ-354

ent model architecture with a deeper network when incorpo-355

rating RQ-VAE. The primary focus here is to examine the ef-356

fects of semantic tokenization within the context of the same357

sequential recommendation model to ensure a fair and con-358

sistent comparison. Besides, we directly use the results of all359

baseline from prior work [Zhou et al., 2020] and implement360

our method based on SASRec under its framework for a fair361

comparison.362

Hyper-parameter Settings We directly use the results of363

all baseline from prior work [Zhou et al., 2020] and imple-364

ment our method based on its framework for a fair compari-365

son. Besides, we set some new hyper-parameters of RQ-VAE 366

following prior work [Rajput et al., 2024] with L = 3 lay- 367

ers of codebook. We search the codebook size K from 64 to 368

1024 and select 256 for both Beauty and Toys dataset, while 369

128 for Sports dataset. Besides, we set the dimension of code- 370

book D′ = 64 to align with the ID token only method. All 371

other parameters like recommendation model layer and hid- 372

den size are set strictly the same as baselines. 373

4.2 Overall Performance 374

To compare the performance of our method with existing 375

sequential recommenders, as shown in Table 3, we eval- 376

uate them in three benchmark datasets under five metrics. 377

From the table, we can have the following observation: Our 378

method achieves significant improvement. The improve- 379

ment of our method towards baselines ranges from 6.07% to 380

17.87%, which is very significant in sequential recommenda- 381

tion task [Kang and McAuley, 2018; Zhou et al., 2020]. Be- 382

sides, our method improves more on HIT metric than NDCG 383

metric and MRR metric. This may be because semantic em- 384

bedding is naturally less insensitive at ranking position due 385

to duplicate tokenization, though we have added unique ID 386

embedding. 387

4.3 Ablation Study 388

To further study the performance of different tokenization 389

methods, we compare our method with the ID tokenization 390

only method and semantic tokenization only method as Ta- 391

ble 4. From the table, we can have the following observations: 392

(1) Unified tokenization performs best with significant re- 393

duction of token. In all these three benchmark datasets, our 394

proposed method is significantly superior to solely ID tok- 395

enization and semantic tokenization methods. More impor- 396

tantly, compared with the traditional ID tokenization method, 397



Table 3: Our method improves baseline significantly by 6% to around 18% on three benchmark datasets.

Datasets Metric FM GRU4Rec Caser SASRec BERT4Rec HGN Ours Improv.

Beauty

HIT@5 0.1461 0.3125 0.3032 0.3741 0.3640 0.3544 0.4201 12.30%
NDCG@5 0.0934 0.2268 0.2219 0.2848 0.2622 0.2656 0.3079 8.11%
HIT@10 0.2311 0.4106 0.3942 0.4696 0.4739 0.4503 0.5318 12.22%

NDCG@10 0.1207 0.2584 0.2512 0.3156 0.2975 0.2965 0.3440 9.00%
MRR 0.1096 0.2308 0.2263 0.2852 0.2614 0.2669 0.3025 6.07%

Sports

HIT@5 0.1603 0.3055 0.2866 0.3466 0.3375 0.3349 0.3849 11.05%
NDCG@5 0.1048 0.2126 0.2020 0.2497 0.2341 0.2420 0.2717 8.81%
HIT@10 0.2491 0.4299 0.4014 0.4622 0.4722 0.4551 0.5247 11.12%

NDCG@10 0.1334 0.2527 0.2390 0.2869 0.2775 0.2806 0.3168 10.42%
MRR 0.1202 0.2191 0.2100 0.2520 0.2378 0.2469 0.2722 8.02%

Toys

HIT@5 0.0978 0.2795 0.2614 0.3682 0.3344 0.3276 0.4340 17.87%
NDCG@5 0.0614 0.1919 0.1885 0.2820 0.2327 0.2423 0.3141 11.38%
HIT@10 0.1715 0.3896 0.3540 0.4663 0.4493 0.4211 0.5456 17.01%

NDCG@10 0.0850 0.2274 0.2183 0.3136 0.2698 0.2724 0.3501 11.64%
MRR 0.0819 0.1973 0.1967 0.2842 0.2338 0.2454 0.3064 7.81%

Table 4: Unified tokenization outperforms ID-only and semantic-only tokenizations with significant reduction of token size. Besides, the
semantic tokenization outperforms ID tokenization in position-insensitive metric.

Dataset Method Metric Token Size Token
ReductionHIT@10 NDCG@10 MRR ID Semantic Total

Beauty
ID 0.4654 0.3121 0.282 12,101 × 64 0 774,464 \

Semantic 0.4956 0.2914 0.2476 0 3 × 256 × 64 49,152 93.65%
Unified 0.5318 0.344 0.3025 12,101 × 8 3 × 256 × 64 145,960 81.15%

Sports
ID 0.4582 0.2826 0.2482 18,357 × 64 0 1,174,848 \

Semantic 0.4704 0.2554 0.2131 0 3 × 128 × 64 24,576 97.91%
Unified 0.5247 0.3168 0.2722 18,357 × 8 3 × 128 × 64 171,432 85.41%

Toys
ID 0.4603 0.3092 0.2804 11,924 × 64 0 763,136 \

Semantic 0.4644 0.2741 0.236 0 3 × 256 × 64 49,152 93.56%
Unified 0.5456 0.3501 0.3064 11,924 × 8 3 × 256 × 64 144,544 81.06%

our method reduces by at least 80% and even 85% of tokens398

on Sports dataset. Here we reduce the tokens by replacing399

56 dimensions of ID tokens with a small amount of semantic400

tokens, which supports our previous analysis that most ID to-401

kens are redundant. (2) Semantic tokenization outperforms402

ID tokenization in position-insensitive metric with signifi-403

cant reduction of token. In three datasets, it is obvious that404

the semantic tokenization only method even outperforms ID405

tokenization only method on HIT metric with less than 10%406

of tokens. This result also supports our previous analysis that407

semantic tokenization is effective at generalization and cap-408

turing high-level semantic information. However, semantic409

tokenization only method often performs poor at NDCG and410

MRR metrics which are sensitive to position. This is because411

the position of duplicate tokenized items from semantic tok-412

enization only method are hard to distinguish in ranking.413

Besides, we also compare our method with cosine similar-414

ity only method when searching the codebook of RQ-VAE, as415

shown in Table 5. From the table, we can observe that: Our416

unified method outperforms cosine similarity. The unified417

method which integrates cosine similarity with Euclidean dis-418

tance proposed in Section 3.2 outperforms the solely cosine419

similarity method on three benchmark datasets. This means 420

our unified cosine similarity and Euclidean distance not only 421

can improve the percentage of activated codebook and cov- 422

erage of unique items, but also can really improve the final 423

recommendation performance. 424

4.4 Hyper-parameter Study 425

To further verify that we only need a small proportion of ID 426

tokens, we further vary the ID dimension from {0, 4, 8, 16} 427

and study the performance under three key metrics as Fig- 428

ure 7. From the figure, we discvoer that: The performance 429

improvement shrinks when scaling up dimension of ID 430

token. It is obvious that the performance improvement be- 431

comes less and less with the growing of ID token dimension, 432

and the performance even drops when dimension is greater 433

than 8. This means a small proportion of ID tokens is suffi- 434

cient for learning the unique information, and others are in- 435

deed redundant and can be saved. 436

4.5 Token Visualization 437

To study the learned semantic and ID tokens, we further vi- 438

sualize these tokens on Beauty dataset using t-SNE, as shown 439



Table 5: The integration of Euclidean distance into cosine similarity can improve the recommendation performance.

Method Beauty Sports Toys
HIT@10 NDCG@10 MRR HIT@10 NDCG@10 MRR HIT@10 NDCG@10 MRR

Cosine 0.5212 0.3334 0.2921 0.5129 0.3081 0.2649 0.5252 0.3309 0.2879
Unified 0.5318 0.3440 0.3025 0.5247 0.3168 0.2722 0.5456 0.3501 0.3064
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Figure 7: The performance improvement shrinks when scaling up dimension of ID token, which means a small proportion of ID tokens is
sufficient for capturing the item’s unique characteristic.

First Codebook Second Codebook Third Codebook Unique Tokens

Figure 8: The patterns of codebooks are various across different layers and unique tokens are uniform for different items on Beauty dataset.

in Figure 8. Here we label each semantic token with a unique440

color and thus these are totally K types of color. In ID tokens,441

we also label them with K types of color to show the distribu-442

tion when they are assigned with one of the codebooks. Based443

on the visualized results, we can discover that: (1) Semantic444

tokens vary across different layers. It is obvious that the445

semantic tokens vary across different layer on all datasets,446

which means different layers of semantic codebooks can cap-447

ture various shared patterns. With the combination of these448

shared patterns, we can better represent each item’s seman-449

tic information. (2) ID tokens distribute uniformly. The450

unique ID tokens are uniform on all datasets. This means451

the ID token successfully capture the unique characteristic of452

each item and thus they will not accumulate together.453

5 Related Work454

Sequential Recommendation The use of deep learning455

in sequential recommendation has evolved into a well-456

established area of research. GRU4REC [Hidasi et al.,457

2016] pioneered the application of Gated Recurrent Unit458

(GRU)-based Recurrent Neural Networks (RNNs) for se-459

quential recommender. Then SASRec [Kang and McAuley, 460

2018] utilized self-attention mechanisms [Vaswani et al., 461

2017] of Transformer to capture the context relation of 462

whole sequence. Building on the success of masked self- 463

supervised learning in natural language processing, subse- 464

quent works such as BERT4Rec [Sun et al., 2019] lever- 465

aged self-supervised learning to randomly mask the histori- 466

cal items and improved the robustness. Apart from the pop- 467

ular self-attention and Transformer architecture, researchers 468

have also explored the use of Convolution Neural Net- 469

works (CNNs) [Krizhevsky et al., 2012] in sequential rec- 470

ommender [Tang and Wang, 2018]. In this paper, we focus 471

on improving the sequential recommendation using semantic 472

tokens. 473

Quantized Representation Learning Vector-quantized 474

learning has grabbed researchers’ attention with its discrete 475

latents to reduce the model variance. In recommender sys- 476

tems, VQ-Rec [Hou et al., 2023] proposes a transferable 477

method to quantize item content embedding as item represen- 478

tation. When VQ-Rec utilizes product quantization [Jegou et 479

al., 2010] for the generation of semantic codes, TIGER [Ra- 480



jput et al., 2024] further leverages RQ-VAE to produce hier-481

archical semantic IDs as item representation. In parallel to482

TIGER, another work [Singh et al., 2023] demonstrated that483

semantic IDs can improve the generalization of recommen-484

dation ranking compared with traditional item IDs. Different485

from existing works aiming to replace item IDs with seman-486

tic IDs, we further consider the complementary strengths of487

them.488

6 Conclusion489

In conclusion, this work provides a comprehensive explo-490

ration of the complementary relationship between ID tokens491

and semantic tokens in recommendation systems, addressing492

the limitations of using either method in isolation. We intro-493

duced a novel framework that unifies ID and semantic tok-494

enization, effectively capturing both unique and shared item495

characteristics while significantly reducing token redundancy.496

By leveraging a combination of cosine similarity and Eu-497

clidean distance, our approach successfully decouples accu-498

mulated embeddings and distinguishes unique items. Exper-499

imental results on three benchmark datasets demonstrate that500

our proposed method consistently outperforms the baselines,501

achieving notable improvements in performance (6% to 17%)502

while reducing token size by over 80%. The results also val-503

idated our hypothesis that most ID tokens are redundant and504

can be substituted with semantic tokens to enhance general-505

ization. Our work sets the foundation for a more efficient and506

effective representation strategy in recommendation systems,507

combining the strengths of both ID and semantic tokens for508

improved user experience.509
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