
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOWARDS ROBUST MULTI-OBJECTIVE OPTIMIZA-
TION: ADVERSARIAL ATTACK AND DEFENSE METH-
ODS FOR NEURAL SOLVERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep reinforcement learning (DRL) has shown great promise in addressing multi-
objective combinatorial optimization problems. Nevertheless, the robustness of
DRL-based neural solvers remain insufficiently explored, especially across di-
verse and complex problem distributions. This work provides a novel preference-
based adversarial attack method, which aims to generate hard problem instances
that expose vulnerabilities of solvers. We measure the vulnerability of a solver
by evaluating the extent to which its performance in terms of hypervolume de-
teriorates when tested on hard instances. To mitigate the adversarial effect, we
propose a defense method that integrates hardness-aware preference selection into
training, leading to substantial improvements in solver robustness and generaliz-
ability. The experimental results on multi-objective traveling salesman problem
(MOTSP), multi-objective capacitated vehicle routing problem (MOCVRP), and
multi-objective knapsack problem (MOKP) verify that our attack method success-
fully learns hard instances for different solvers. Furthermore, our defense method
significantly strengthens the robustness and generalizability of neural solvers, de-
livering superior performance on hard or out-of-distribution instances.

1 INTRODUCTION

Deep reinforcement learning (DRL) has emerged as a transformative approach to address combi-
natorial optimization problems (COPs), which has attracted significant attention in recent years. Its
distinct advantages include exceptional computational efficiency, the ability to exploit intrinsic prob-
lem structures, and adaptability through iterative feedback-driven learning. Unlike supervised learn-
ing Zoph & Le (2017), DRL eliminates the dependence on labeled datasets. Moreover, compared to
heuristic and exact algorithms Xin et al. (2021), DRL demonstrates superior efficiency in identifying
near-optimal solutions in a reasonable computational time. These attributes make DRL particularly
effective in solving classical NP-hard COPs Mazyavkina et al. (2021) Kool et al. (2019) Kwon et al.
(2020) Li et al. (2021b), such as the traveling salesman problem (TSP), the knapsack problem (KP),
and the capacitated vehicle routing problem (CVRP), as well as their respective multi-objective
variants, known as multi-objective combinatorial optimization problems (MOCOPs).

Despite promising performance, current DRL models for COPs often experience significant degra-
dation when faced with instances that differ in distribution or size from their training instances,
highlighting their vulnerability to such variations. Hence, the robustness is a major concern to be
addressed in developing DRL models for enhancing out-of-distribution generalizability. For single-
objective COPs, previous studies Zhang et al. (2022) Lu et al. (2023) found that the performance of
DRL models tends to degrade under non-i.i.d. conditions. They mitigated the vulnerability using
different strategies, such as altering training strategies and refining model architectures.

For MOCOPs, current DRL models inherently suffer from the same robustness issue (see empirical
evidence in Section 3.3). When distributions of training and testing instances diverge, DRL models
are prone to overfitting to characteristics of the training distribution, limiting their generalizability
on out-of-distribution instances. However, the robustness of DRL models for MOCOPs has not been
studied, warranting further research to better understand their vulnerability to different distributions
and propose techniques for enhancing their robustness.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In this paper, we first present a preliminary study on the robustness of DRL models for MOCOPs.
Our findings demonstrate the vulnerability of DRL models to distributional shifts by revealing a sig-
nificant impact of the underlying distribution of instances on the hypervolume (HV). This motivates
the need for methodologies to robustify DRL models for MOCOPs. Our main contributions can be
summarized as follows::

• We introduce a Preference-based Adversarial Attack (PAA) method to target DRL models
for MOCOPs. PAA undermines DRL models by generating hard instances that degrade
solutions of subproblems associated with specific preferences. The generated instances
effectively lower the quality of the Pareto fronts in terms of hypervolume.

• We propose a Dynamic Preference-augmented Defense (DPD) method to mitigate the im-
pact of adversarial attacks. By integrating a hardness-aware preference selection strategy
into adversarial training, DPD effectively alleviates the overfitting to restricted preference
spaces. It enhances the robustness of DRL models, thereby promoting their generalizability
across diverse distributions.

• We evaluate our methods on three classical MOCOPs: MOTSP, MOCVRP and MOKP. The
PAA method substantially impairs state-of-the-art DRL models, while the DPD method
enhances their robustness, resulting in strong out-of-distribution generalizability.

2 RELATED WORK

2.1 MOCOP SOLVERS

Algorithms to solve MOCOPs (or MOCOP solvers) are typically classified into exact, heuristic, and
learning-based methods. Exact algorithms provide Pareto-optimal solutions, but become compu-
tationally intractable for large-scale problems Florios & Mavrotas (2014) Halffmann et al. (2022).
Heuristic methods, particularly evolutionary algorithms Zhang & Li (2007b) Fang et al. (2020) Ke
et al. (2014) Seada & Deb (2015), effectively explore the solution space through crossover and mu-
tation operations Deb & Jain (2013) Tian et al. (2021), generating a finite set of approximate Pareto
solutions in acceptable time. However, their reliance on problem-specific, hand-crafted designs
limits their applicability Zhang & Li (2007a).

Learning-based solvers, particularly those based on deep reinforcement learning, have seen grow-
ing adoption in MOCOPs, largely due to their high performance and efficiency. Current research
on DRL-based neural solvers belongs mainly to two paradigms: one-to-one and many-to-one. In
the one-to-one paradigm, each subproblem is addressed by an individual neural solver Wu et al.
(2020) Li et al. (2021a) Zhang et al. (2021). In contrast, the many-to-one paradigm streamlines the
computational process by using a shared neural solver to handle multiple subproblems Lin et al.
(2022) Chen et al. (2024) Fan et al. (2024) Wu et al. (2024) Chen et al. (2025), which outperforms
the one-to-one paradigm and delivers state-of-the-art neural solvers. Among them, the efficient
meta neural heuristic (EMNH) Chen et al. (2024) learns a meta-model that is rapidly adapted to
each preference to solve its subproblem. The preference-conditioned multi-objective combinatorial
optimization (PMOCO) Lin et al. (2022) uses a hypernetwork to generate decoder parameters tai-
lored to each subproblem. The conditional neural heuristic (CNH) Fan et al. (2024) leverages dual
attention, while the weight embedding model with conditional attention (WE-CA) Chen et al. (2025)
employs feature-wise affine transformations, to enhance preference–instance interaction within the
encoder. Our study demonstrates that the proposed attack and defense framework is sufficiently
general to challenge and robustify models from all three categories.

2.2 ROBUSTNESS OF DRL MODELS FOR COPS

Robustness COPs have been studied from both theoretical and neural perspectives. From the the-
oretical side, Varma & Yoshida (2021) introduced the notion of average sensitivity, measuring the
stability of algorithmic outputs under edge deletions in classical COPs such as minimum cut and
maximum matching. On the neural side, several studies have investigated hard instance generation
and defense methods to improve the robustness of DRL solvers for COPs. For example, Geisler
et al. (2021) proposed an efficient and sound perturbation model that adversarially inserts nodes
into TSP instances to maximize the deviation between the predicted route and the optimal solution.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Zhang et al. (2022) developed hardness-adaptive curriculum learning methods (HAC) to assess the
hardness of given instances and then generate hard instances during training based on the relative
difficulty of the solver. Lu et al. (2023) introduced a no-worse optimal cost guarantee (i.e., by
lowering the cost of a partial problem) and generated adversarial instances through edge modifica-
tions in the graph. In contrast to these approaches that focused on generating hard instances, Zhou
et al. (2024) focused on defending neural COP solvers, by an ensemble-based collaborative neural
framework designed to improve performance simultaneously in both clean and hard instances.

3 PRELIMINARIES

3.1 PROBLEM STATEMENT

The mathematical formulation of an MOCOP is generally given as:
min
π∈X

F (π) =
(
f1(π), f2(π), . . . , fm(π)

)
, (1)

where X represents the set of all feasible solutions, and F (π) is an m-dimensional vector of ob-
jective values. A solution π to an MOCOP is considered feasible if and only if it satisfies all the
constraints specified in the problem. For example, the MOTSP is defined on a graph G with a set of
nodes V = {0, 1, 2, . . . , n}. Each solution π = (π1, π2, . . . , πT) is a tour consisting of a sequence
of nodes of length T , where πj ∈ V . The definitions of MOTSP, MOCVRP and MOKP are given
in Appendix B.

For multi-objective optimization problems, the goal is to find pareto-optimal solutions that simul-
taneously optimize all objectives. These pareto-optimal solutions aim to balance trade-offs under
different preferences for the objectives. In this paper, we use the following the Pareto concepts Qian
et al. (2013):

Definition 1 (Pareto Dominance). Let u, v ∈ X . The solution u is defined as dominating solution
v (denoted u ≺ v) if and only if, for every objective i where i ∈ {1, . . . ,m}, the objective value
fi(u) is less than or equal to fi(v), and there exists at least one objective j where j ∈ {1, . . . ,m},
such that fj(u) < fj(v).

Definition 2 (Pareto Optimality). A solution x∗ ∈ X is Pareto optimal if it is not dominated by any
other solution in X . Formally, there exists no solution x′ ∈ X such that x′ ≺ x∗. The set of all
Pareto-optimal solutions is referred to as the Pareto set P = {x∗ ∈ X | ∄x′ ∈ X such that x′ ≺ x∗}.
The projections of Pareto set into the objective space constitute Pareto front PF = {F (x) | x ∈ P}.

3.2 DECOMPOSITION

By scalarizing a multi-objective COP into a series of single-objective problems under different pref-
erences, decomposition is an effective strategy for obtaining the Pareto front in DRL models for
MOCOPs. Given a preference vector λ = (λ1, λ2, . . . , λm) ∈ Rm with λi ≥ 0 and

∑m
i=1 λi = 1,

the weighted sum (WS) and Tchebycheff decomposition (TCH) can be used to transform an MO-
COP into scalarized subproblems, which are solved to approximate the Pareto front.

WS Decomposition. WS decomposition minimizes convex combinations of m objective functions
under preference vectors, as defined below:

gw(π|λ) =
m∑
i=1

λifi(π), with π ∈ X . (1)

Tchebycheff Decomposition. Tchebycheff decomposition minimizes the maximum weighted dis-
tance between the objective values and an ideal point, defined as:

gt(π|λ, z∗) = max
1≤i≤m

λi|fi(π)− z∗i |, with π ∈ X , (2)

where z∗ = (z∗1 , z
∗
2 , . . . , z

∗
m) represents the ideal point, with z∗i = minπ∈X fi(π).

The decomposition strategy addresses an MOCOP by reducing it to a series of subproblems un-
der varying preferences. Given an instance x and a preference λ, neural MOCOP solvers learn a
stochastic policy pθ to approximate the Pareto solution π = (π1, π2, . . . , πT), where θ represents
the learnable parameters.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.3 GLIMPSE OF ROBUSTNESS OF DRL SOLVERS

Figure 1: Results for Varying cDIST in Gaussian
Mixture Generator.

Given the unexplored robustness of DRL models
for MOCOPs, we first examined the performance
of two representative neural solvers, PMOCO Lin
et al. (2022) and CNH Fan et al. (2024), for MOTSP.
Both solvers are pretrained on clean 50-node bi-/tri-
objective TSP instances (as in the original papers).

Concretely, we create out-of-distribution test in-
stances using a Gaussian-mixture generator (see de-
tails in Appendix A) for evaluation. We vary cDIST ∈
{1, 5, 10, 20, 30, 40, 50}, where cDIST controls the
spatial spread of the clusters, which determines the
hardness of the instances. WS-LKH Tinós et al.
(2018) (the state-of-the-art solver for MOCOPs) was
used as a baseline for comparison. Figure 1 illus-
trates the HV gaps, representing the difference be-
tween the solutions produced by a neural solver and
those using WS-LKH:

Gap =
HVLKH −HVDRL

HVLKH
× 100. (3)

Our findings reveal that with increasing cDIST (indicating more difficult test instances), the perfor-
mance of the neural solvers deteriorates and the gap between their solutions and those provided by
WS-LKH widens. These results highlight a significant limitation that neural solvers trained on uni-
formly distributed instances struggle to maintain robustness as test instances become more diverse
and complex.

4 THE METHOD

In this section, we introduce a preference-based adversarial attack method to generate hard in-
stances to reflect the robustness of neural solvers. Furthermore, we propose a dynamic preference-
augmented defense method to robustify neual solvers. The sketch of the proposed adversarial attack
and defense methods is illustrated in Figure 2.

4.1 PREFERENCE-BASED ADVERSARIAL ATTACK (PAA)

Typically, neural solvers decompose an MOCOP into a series of subproblems under different pref-
erences, which are solved independently. According to Lin et al. (2022), if a neural solver can solve
subproblems (2) well with any preference λ, it can generate a good approximation to the whole
Pareto front for MOCOP. In this paper, we hypothesize that if a neural model does not effectively
approximate the solution of the subproblem under certain values of λ, the resulting approximation
of the Pareto front will be inadequate. Following this inspiration, we propose the PAA method to
attack neural solvers for MOCOPs. In particular, perturbations are tailored to the original data (i.e.,
clean instances) in accordance with respective preferences, resulting in hard instances aligned with
each specified preference. After identifying hard instances across varying preferences, we gather
them into a comprehensive set, which is used to systematically undermine the robustness of a neural
solver.

Without loss of generality, we evaluate the performance of a neural solver for each subproblem
by generating hard instances under the corresponding preference, which maximize a variant of the
reinforcement loss, defined as:

ℓ(x; θ) =
L(π | x)
b(x)

log pθ(π | x), (4)

where L(π | x) represents the loss of the subproblem with a given preference λ (e.g., using the
Tchebycheff decomposition as in Eq. (2)). b(x) is the baseline of L(π | x), which is calculated by
b(x) = 1

M

∑M
j=1 L(πj | x), where M is the number of sampled tours for a batch. x denotes the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

∇xℓ(x;θ)

Attack Defense

Preference
Evaluation

Neural
Preference
Based	Model

Uniformed
Distribution

	Multiple	Disturbed
Distributions

ℓ(x;	θ)

Combined
Distribution

Dtrain
Data

ob
j1

obj2

Preference

ob
j1

obj2

Preference
Mini
Batch

ob
j1

obj2

Augmented
Preferences

Data

Augment

ob
j1

obj2

Preference

Update

MOVRP	Solver
MOVRP	Solver...

Figure 2: Attack and Defense of Neural Solvers for MOCOP.

problem-specific input, i.e., node coordinates in TSP. pθ(π | x) denotes the probability distribution
of the solution π, which is derived from a neural model parameterized by θ.

Subsequently, the input x corresponding to each preference undergoes the following iterative update:

x(t+1) = ΠN

[
x(t) + α · ∇x(t)ℓ(x(t); θ(t))

]
, (5)

where θ(t) denotes the best-performing model at iteration t, N represents the feasible solution space,
α is the step size, and ℓ(x(t); θ(t)) is the reinforcement loss defined in Eq.(4). At each iteration t,
the variable x(t) is updated by performing gradient ascent on the loss function ℓ(x; θ), with the
calculated gradients ∇x(t)ℓ(x(t); θ(t)) guiding the update step. The projection operator ΠN (·) is a
min-max normalization, ensuring the updated variables x(t+1) remains within a feasible solution
space N . The iterative process continues until the variable x(t) converges towards hard instances
for the current given preference.

In summary, the clean instances x are initially sampled from a uniform distribution, i.e., the distri-
bution of training instances used by neural solvers. Subsequently, we perturb clean instances using
our PAA method under respective preferences λ to generate diverse hard instances. Ultimately,
we gather these instances to construct the set of hard instances Dhard, which are used to assess the
robustness of the model.

4.2 DYNAMIC PREFERENCE-AUGMENTED DEFENSE (DPD)

To enhance the robustness of the model, we propose the DPD method, which leverages hard in-
stances Dhard and employs the hardness-aware preference selection method to train the MOCOP
solvers.

Perturbative Preference Generation. During the adversarial training phase, for each batch in an
epoch, we sample a subset of instances Dλ

hard from Dhard along with the corresponding preferences
λ. Given a preference vector λ = (λ1, λ2, . . . , λm), we generate a set of augmented preferences
{λ′

1, λ
′
2, . . . , λ

′
m} to explore the neighborhood of λ. These augmented preferences are dynamically

adjusted to emphasize regions where the model exhibits weaker performance. For each preference
vector λ, its augmented preferences are computed as:

λ′
i = Perturb(λ, δi), (6)

where δi ∼ Uniform(−ϵ, ϵ) is a small random perturbation. i reflects the index of the perturbed
preference vector.

Since the perturbation may result in a preference vector that does not satisfy the constraint∑m
k=1 λ

′
i,k = 1, a normalization step is applied to ensure validity:

λ′
i,k =

λ′raw
i,k∑m

j=1 λ
′raw
i,j

, ∀k ∈ {1, . . . ,m}, (7)

where λ′raw
i,k represents the raw preference value after perturbation. By incorporating the nor-

malization step, the generated preferences remain within the valid preference space, ensuring∑m
k=1 λ

′
i,k = 1 for all augmented preferences.

Hardness-aware Preference Selection. For each augmented preference λ′
i and hard instance x ∈

Dλ
hard, the neural solver makes an inference to derive a specific Tchebycheff value (Tch). Tch(λ′

i)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Adversarial Training Framework
Input: pre-trained model θ, preference set Λ = {λk}Pk=1, hard instances Dhard = ∅, epochs E, batch size B,
number of perturbed preferences N , optimizer ADAM, size of mini-batches per epoch M
Output: Updated model parameters θ
1: for t = 1 to E do ▷ Epoch loop
2: Generate Dclean with uniform distribution.
3: for k = 1 to P do
4: Select preference λk ∈ Λ.
5: Generate dadv,k for Dclean using preference λk via PAA.
6: Dhard = Dhard ∪ dadv,k.
7: end for
8: Dtrain = Dhard ∪ Dclean.
9: for j = 1 to M do ▷ Mini-batch loop

10: Sample mini-batch B ⊂ Dtrain of size B, each with preference λj .
11: for i = 1 to N do ▷ Preference augmentation
12: Generate λ′

i using (6) and (7) and estimate Tch values for λ′
i using B.

13: end for
14: Select λadv according to Eqs. (8) and (9).
15: Compute gradient∇J (θ) using λadv and B (Eq. (11)).
16: Update parameters: θ ← ADAM(θ,∇J (θ)).
17: end for
18: end for

quantifies the quality of the solution generated by the model with preference λ′
i, where a smaller

Tch(λ′
i) indicates a better quality solution for this preference. Tch(λ′

i) are processed using the
following softmax function to compute a relevance score for each preference:

P (λ′
i) =

exp(−Tch(λ′
i))∑N

j=1 exp(−Tch(λ′
j))

. (8)

The preferences λ′
i that produce the poorest solutions (i.e., the highest Tch(λ′

i)) are selected for
further optimization. N in Eq.(8) denotes the total number of augmented preference vectors.

The preferences associated with the lowest relevance scores, as identified through P (λ′
i), signify

regions that cause lower performance of the solver. These preferences are prioritized for further
being involved in the optimization, aiming to improve the robustness and generalizability of the
model across diverse preferences. The preference with the smallest P (λ′

i) is selected for further
optimization:

λ′
adv = argmin

i
P (λ′

i). (9)

For the selected adversarial preference λ′
adv, the original hard instances Dλ

hard are reused for training.
For each instance x ∈ Dλ

hard, the loss function is recalibrated as:

L(x | λ′
adv) = max

1≤k≤m
λ′

adv,k · |fk(x)− z∗k|. (10)

Training Framework. The proposed adversarial training framework is detailed in Algorithm 1.
Each epoch in our training framework comprises two phases: the attack phase and the defense
phase. During the attack phase, hard instances tailored to individual preferences are generated and
subsequently aggregated for further training. In the defense phase, neural MOCOP solvers are
trained on constructed instances. The optimization process employs the REINFORCE algorithm
Williams (1992) to minimize the loss, which is formulated as follows.

∇J (θ) = Eπ∼pθ, s∼Dtrain, λadv∼Sλ

[(
L(π | s, λadv)− Lb(s, λadv)

)
· ∇ log pθ(π | s, λadv)

]
(11)

where Lb(s, λadv) is used as a baseline to reduce the variance in the estimation of the gradient.
Monte Carlo sampling is used to approximate this expectation, where diverse training samples and
randomly selected preferences are used iteratively to optimize the model parameters.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 EXPERIMENTS

In this section, we conduct a comprehensive set of experiments on four MOCOPs (Appendix B):
bi-objective TSP (Bi-TSP), tri-objective TSP (Tri-TSP), bi-objective CVRP (Bi-CVRP), and bi-
objective KP (Bi-KP) to thoroughly analyze and evaluate the effectiveness of the proposed attack
and defense methods. All experiments are executed on a server equipped with an Intel(R) Xeon(R)
Silver 4214R CPU @ 2.40GHz and an RTX 3090 GPU.

5.1 BASELINES AND SETTINGS

Instance Distributions for Evaluation. To evaluate the efficacy of the proposed attack approach,
we benchmark against four typical instance distributions (clean uniform, log-normal (0,1) with mod-
erate skewness, beta (2,5) with bounded asymmetry, and gamma (2,0.5) with high skewness) as well
as ROCO Lu et al. (2023), a learning-based attack method that perturbs graph edges under a no-
worse-optimum guarantee and trains an agent with PPO Schulman et al. (2017) to maximize solver
degradation.

Evaluation Setup for Targeted Solvers. We target state-of-the-art neural MOCOP solvers, namely
Conditional Neural Heuristic CNH1 , Meta Neural Heuristic EMNH 2 Chen et al. (2024), and
Preference-Based Neural Heuristic PMOCO3. We selected these solvers as they all adopt POMO
Kwon et al. (2020) as the base model for solving single-objective subproblems. For fair compar-
isons, we adopt WS (weighted sum) scalarization across all methods. To establish the baseline for
the relative optimality gap, we approximate the Pareto front using two non-learnable solvers: WS-
LKH for MOTSP and MOCVRP, and weighted-sum dynamic programming (WS-DP) for MOKP.

Metrics. To evaluate the proposed attack and defense methods, the average HV Audet et al. (2021)
and the average optimality gap are employed. HV provides a comprehensive measure of both the
diversity and convergence of solutions, while the gap quantifies the relative difference in HV com-
pared to the first baseline solver.

Implementations. We evaluate PMOCO, CNH, and EMNH using their pre-trained models. Hard
instances are generated with 101 and 105 uniformly sampled preferences for the bi- and tri-objective
settings, respectively, with 100 clean samples per preference, yielding 10,100 and 10,500 instances.
Training uses 10,000 clean samples plus hard instances per epoch, with 3 gradient steps (step size
0.01) over 200 epochs. An ablation on these parameters is given in Appendix C. For testing, 200
Gaussian instances are constructed with cDIST ∈ [10, 20, 30, 40, 50]. Other settings (e.g., learning
rate, batch size) follow their original papers.

5.2 ATTACK PERFORMANCE

From Table 1, it can be observed that perturbations based on log-normal, beta, and gamma distri-
butions generally have little effect on reducing the HV value of the solution set. In particular, these
perturbations produce higher HV values across various solvers compared to clean instances. This
indicates that conventional disturbances struggle to substantially impair the performance of solvers
such as WS-LKH and WS-DP. Furthermore, the discrepancies between the solutions generated by
these neural solvers and the conventional solver under these distributions are consistently smaller
than those observed for clean instances. Hence, despite the heterogeneous nature of these distribu-
tions, neural solvers demonstrate robust capabilities to maintain high-quality solutions. In contrast,
PAA generates problem distributions that significantly reduce HV values in both classical and neu-
ral MOCOP solvers, demonstrating strong and consistent attack effect across all problems and sizes.
Notably, it achieves the best attack effect over all cases in Bi-KP.

Furthermore, the HV gaps of different solvers on hard instances generated by PAA and on clean in-
stances are considerably larger. For example, on Bi-CVRP50, the attack against EMNH yields a gap
of 4.73%, while on Bi-KP100, the attack against PMOCO reaches 7.09%, significantly exceeding
the attack effects by instances generated by the other methods.

1https://github.com/mingfan321/CNH/
2https://github.com/bill-cjb/EMNH
3https://github.com/Xi-L/PMOCO

7

https://github.com/mingfan321/CNH/
https://github.com/bill-cjb/EMNH
https://github.com/Xi-L/PMOCO

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Optimality Gap Analysis for Attack Performance. Bold values indicate the best performance.

Method Size
Optimality Gap (%)

Clean instances LogNormal(0,1) Beta(2, 5) Gamma(2, 0.5) ROCO-RL PAA
HV (↓) Gap (↑) HV(↓) Gap (↑) HV(↓) Gap (↑) HV (↓) Gap (↑) HV(↓) Gap (↑) HV (↓) Gap (↑)

Bi-TSP

WS-LKH 20 0.5118 - 0.8503 - 0.6566 - 0.7348 - 0.5627 - 0.4675 -
50 0.5757 - 0.8760 - 0.7012 - 0.7768 - 0.6231 - 0.5608 -

100 0.6799 - 0.9123 - 0.7201 - 0.7771 - 0.7094 - 0.6824 -
EMNH 20 0.5042 1.48% 0.8482 0.25% 0.6514 0.79% 0.7301 0.64% 0.5568 1.05% 0.4591 1.79%

50 0.5671 1.49% 0.8731 0.33 % 0.6954 0.83% 0.7750 0.23% 0.6141 1.44% 0.5502 1.89%
100 0.6653 2.15% 0.9034 0.97% 0.7119 1.14% 0.7726 0.58% 0.6914 2.53% 0.6665 2.33%

PMOCO 20 0.5038 1.55% 0.8477 0.31% 0.6485 1.25% 0.7291 0.73% 0.5535 1.64% 0.4584 1.95%
50 0.5651 1.85% 0.8691 0.78% 0.6951 0.88% 0.7708 0.77% 0.6113 1.88% 0.5498 1.96%

100 0.6571 3.34% 0.8948 1.92% 0.7035 2.33% 0.7705 0.84% 0.6946 2.09% 0.6603 3.23%
CNH 20 0.5061 1.11% 0.8499 0.04% 0.6557 1.81% 0.7321 0.36% 0.5536 1.62 % 0.4603 1.54%

50 0.5669 1.53% 0.8722 0.43% 0.6949 0.89% 0.7721 0.60% 0.6124 1.72% 0.5507 1.80%
100 0.6682 1.64% 0.9049 0.81% 0.7130 0.98% 0.7741 0.38% 0.6957 1.93% 0.6621 2.12%

Bi-CVRP

WS-LKH 20 0.2466 - 0.7145 - 0.8164 - 0.7158 - 0.3225 - 0.2450 -
50 0.3140 - 0.7255 - 0.8361 - 0.7285 - 0.3690 - 0.3402 -

100 0.2408 - 0.7265 - 0.7435 - 0.7252 - 0.3782 - 0.2705 -
EMNH 20 0.2404 2.51% 0.6955 2.66% 0.8022 1.74% 0.6958 2.79% 0.3149 2.33% 0.2354 3.92%

50 0.3048 2.93% 0.7179 1.05% 0.8235 1.51% 0.7090 2.68% 0.3609 2.18% 0.3241 4.73%
100 0.2309 4.11% 0.7240 0.34% 0.7363 0.97% 0.7149 0.04% 0.3709 1.93% 0.2588 4.32%

PMOCO 20 0.2415 2.07% 0.7090 0.77% 0.8139 0.31% 0.7100 0.77% 0.3133 2.84% 0.2401 2.00%
50 0.3081 1.88% 0.7220 0.48% 0.8330 0.37% 0.7224 0.84% 0.3573 3.17% 0.3286 3.41%

100 0.2307 4.19% 0.7248 0.23% 0.7375 0.81% 0.7050 2.77% 0.3703 2.08% 0.2591 4.21%
CNH 20 0.2457 0.36% 0.7149 -0.06% 0.8157 0.08% 0.7140 0.25% 0.3168 1.77% 0.2404 1.87%

50 0.3090 1.59% 0.7250 0.07% 0.8340 0.25% 0.7291 -0.08% 0.3615 2.02% 0.3295 3.15%
100 0.2393 0.62% 0.7235 0.41% 0.7389 0.62% 0.7179 1.00% 0.3718 1.69% 0.2597 3.99%

Bi-KP

WS-DP 50 0.7122 - 0.6809 - 0.6851 - 0.8138 - - - 0.6212 -
100 0.8283 - 0.6628 - 0.6046 - 0.8012 - - - 0.6483 -
200 0.6384 - 0.5799 - 0.5922 - 0.7799 - - - 0.3929 -

EMNH 50 0.7270 -2.07% 0.6883 -1.09% 0.6821 0.44% 0.8093 0.55% - - 0.5918 4.73%
100 0.8571 -3.47% 0.6827 -3.00% 0.6189 -2.36% 0.7984 0.35% - - 0.6056 6.59%
200 0.6299 1.33% 0.5803 -0.01% 0.6074 -2.57% 0.7894 -1.22% - - 0.3838 2.32%

PMOCO 50 0.7251 -1.81% 0.6969 -2.35% 0.6808 0.63% 0.8231 -1.14% - - 0.5901 5.00%
100 0.8549 -3.22% 0.7058 -6.49% 0.6241 -3.21% 0.8181 -2.11% - - 0.6023 7.09%
200 0.6295 1.39% 0.5769 0.52% 0.6019 -1.64% 0.7706 1.19% - - 0.3816 2.88%

CNH 50 0.7313 -2.68% 0.6982 -2.54% 0.7023 -2.51% 0.8251 -1.39% - - 0.5957 4.10%
100 0.8608 -3.93% 0.7028 -6.04% 0.6239 -3.19% 0.8194 -2.27% - - 0.6094 6.00%
200 0.6301 1.30% 0.5822 -0.39% 0.6127 -3.46% 0.7853 -0.69% - - 0.3857 2.24%

Tri-TSP

WS-LKH 20 0.3279 - 0.7841 - 0.5065 - 0.6156 - 0.3740 - 0.2615 -
50 0.3557 - 0.8049 - 0.5462 - 0.6647 - 0.4229 - 0.3161 -

- 100 0.4599 - 0.8663 - 0.6392 - 0.7392 - 0.4874 - 0.4490 -
EMNH 20 0.3218 1.86% 0.7753 1.12% 0.5039 0.51% 0.6119 0.60% 0.3679 1.63% 0.2549 2.52%

50 0.3418 3.90% 0.7942 1.33% 0.5402 1.09% 0.6499 2.23% 0.4070 3.74% 0.3022 4.39%
100 0.4412 4.07% 0.8309 4.08% 0.6114 4.35% 0.7118 3.71% 0.4659 4.41% 0.4296 4.32%

PMOCO 20 0.3228 1.54% 0.7799 0.52% 0.5020 0.88% 0.6114 0.68% 0.3675 1.73% 0.2563 1.98%
50 0.3425 3.72% 0.7968 1.01% 0.5337 2.28% 0.6512 2.03% 0.4089 3.29% 0.3031 4.13%

100 0.4349 5.42% 0.8324 3.92% 0.6141 3.93% 0.7112 3.78% 0.4620 5.21% 0.4237 5.63%
CNH 20 0.3241 1.15% 0.7804 0.47% 0.5036 0.57% 0.6126 0.48% 0.3681 1.58% 0.2579 1.37%

50 0.3433 3.48% 0.7984 0.80% 0.5408 0.98% 0.6574 1.09% 0.4080 3.52% 0.3042 3.76%
100 0.4401 4.31% 0.8417 2.84% 0.6180 3.31% 0.7164 3.08% 0.4641 4.77% 0.4253 5.27%

ROCO-RL shows non-trivial attack capability on a few instances (e.g., a notable 4.41% gap against
EMNH on Tri-TSP100), yet PAA consistently surpasses it in most MOCO problems, achieving
superior attack performance. This indicates that PAA explicitly exposes the vulnerabilities of di-
verse neural MOCOP solvers, underscoring its effectiveness in challenging solvers across MOCO
problems of different sizes and types.

5.3 DEFENSE PERFORMANCE

To evaluate our defense method, we conducted comparative experiments on EMNH, PMOCO, and
CNH trained on uniformly distributed clean instances, alongside their DPD variants trained under
the proposed framework. We also included WE-CA Chen et al. (2025), a recent neural solver that
employs feature-wise affine transformations at the encoder level, as a state-of-the-art baseline for
robustness evaluation. All models (with or without DPD) were evaluated in Gaussian instances.
The results are reported in Table 2. As shown, DPD-defended solvers (PMOCO-DPD, CNH-DPD,
EMNH-DPD, WE-CA-DPD) consistently enhance the performance of neural solvers, achieving
overall improvements on all problems. Remarkably, on Bi-TSP20 and Bi-CVRP100, WE-CA-DPD
and CNH-DPD achieve the first and second best results, respectively. The improvement is partic-
ularly evident on Bi-CVRP100, where WE-CA-DPD improves HV by 2.23% over WS-LKH, the
largest gain among all solvers.

In addition, CNH-DPD achieves the best result on Bi-CVRP50. The strong and consistent Bi-
CVRP results indicate that models with encoder-level preference-instance interaction mechanism
(e.g., CNH, WE-CA) exhibit the most pronounced improvements under DPD. In particular, CNH-
DPD and WE-CA-DPD deliver leading performance on Bi-CVRP20/50/100.

Regarding the meta-learning–based solver, EMNH-DPD improves EMNH performance and pro-
duces the best result (HV 0.6885, with a runtime of 5.29s) on Tri-TSP20, as well as second-best re-
sults on Tri-TSP50 and Tri-TSP100. This demonstrates the versatility of DPD in enhancing solvers

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Optimality Gap Analysis for Defense Performance. Bold values indicate the best performance in the
respective metric. Underlined values indicate the second-best performance in the respective metric.

Method Instance 20 Nodes 50 Nodes 100 Nodes
HV (↑) Gap (↓) Time (↓) HV (↑) Gap (↓) Time(↓) HV (↑) Gap (↓) Time (↓)

WS-LKH

Bi-TSP

0.8873 - 4.30m 0.8660 - 38.47m 0.8365 - 3.19h
EMNH 0.8742 1.48% 6.12s 0.8649 0.13% 9.42s 0.8265 1.19% 30.09s
EMNH-DPD 0.8894 -0.23% 6.38s 0.8697 -0.43% 9.15s 0.8317 0.57% 30.25s
PMOCO 0.8779 1.06% 7.11s 0.8566 1.08% 11.33s 0.8248 1.40% 30.87s
PMOCO-DPD 0.8867 0.07% 8.44s 0.8654 0.06% 13.29s 0.8360 0.06% 32.08s
CNH 0.8794 0.89% 7.32s 0.8587 0.84% 12.03s 0.8294 0.85% 34.76s
CNH-DPD 0.8871 0.02% 8.67s 0.8660 0.00% 15.22s 0.8373 -0.09% 33.57s
WE-CA 0.8803 0.78% 7.33s 0.8591 0.79% 10.52s 0.8304 0.72% 31.34s
WE-CA-DPD 0.8886 -0.14% 7.29s 0.8674 -0.16% 10.17s 0.8377 -0.14% 31.41s
WS-LKH

Bi-CVRP

0.5743 - 6.44m 0.5314 - 44.82m 0.5157 - 4.03h
EMNH 0.5558 3.22% 6.03s 0.5278 0.67% 16.11s 0.5048 2.11% 40.29s
EMNH-DPD 0.5772 -0.50% 6.72s 0.5319 -0.09% 16.88s 0.5258 -1.96% 40.75s
PMOCO 0.5526 3.78% 6.39s 0.5219 1.79% 18.02s 0.5015 2.75% 47.21s
PMOCO-DPD 0.5763 -0.35% 6.51s 0.5308 0.11% 17.44s 0.5173 -0.31% 47.93s
CNH 0.5564 3.11% 7.23s 0.5289 0.47% 19.55s 0.5071 1.67% 52.16s
CNH-DPD 0.5794 -0.88% 7.65s 0.5386 -1.35% 19.98s 0.5261 -2.01% 51.49s
WE-CA 0.5572 2.97% 6.41s 0.5292 0.41% 16.43s 0.5109 0.93% 44.24s
WE-CA-DPD 0.5803 -1.04% 6.23s 0.5382 -1.27% 16.37s 0.5272 -2.23% 43.72s
WS-DP

Bi-KP

0.5832 - 17.45m 0.4948 - 1.42h 0.6783 - 4.23h
EMNH 0.5817 0.26% 5.32s 0.4858 1.81% 17.46s 0.6682 1.49% 40.23s
EMNH-DPD 0.5828 0.06% 5.38s 0.4903 0.91% 18.45s 0.6718 0.96% 40.74s
PMOCO 0.5809 0.39% 7.22s 0.4803 2.93% 16.87s 0.6653 1.91% 48.31s
PMOCO-DPD 0.5829 0.05% 7.88s 0.4897 1.03% 17.94s 0.6712 1.04% 48.92s
CNH 0.5820 0.21% 8.17s 0.4845 2.08% 19.12s 0.6683 1.47% 54.11s
CNH-DPD 0.5832 0.00% 8.49s 0.4901 0.95% 19.46s 0.6742 0.60% 53.74s
WE-CA 0.5823 0.15% 7.24s 0.4852 1.94% 16.18s 0.6691 1.35% 45.72s
WE-CA-DPD 0.5829 0.05% 7.53s 0.4913 0.70% 17.44s 0.6752 0.46% 44.43s
WS-LKH

Tri-TSP

0.6864 - 6.03m 0.6151 - 55.14m 0.4978 - 3.71h
EMNH 0.6719 2.11% 5.12s 0.5831 5.20% 9.43s 0.4829 2.99% 30.31s
EMNH-DPD 0.6885 -0.31% 5.29s 0.6144 0.11% 9.67s 0.4960 0.36% 30.52s
PMOCO 0.6708 2.27% 6.18s 0.5954 3.20% 11.22s 0.4825 3.07% 30.32s
PMOCO-DPD 0.6817 0.68% 7.08s 0.6079 1.17% 12.34s 0.4930 0.96% 32.21s
CNH 0.6791 1.06% 7.32s 0.6049 1.65% 12.67s 0.4872 2.13% 33.86s
CNH-DPD 0.6877 -0.18% 8.11s 0.6127 0.39% 15.42s 0.4938 0.80% 33.14s
WE-CA 0.6793 1.03% 6.33s 0.6051 1.63% 12.45s 0.4876 2.04% 31.41s
WE-CA-DPD 0.6862 0.03% 7.43s 0.6133 0.29% 13.09s 0.4952 0.52% 31.49s

across distinct learning paradigms. We further tested DPD to defend neural solvers against the hard
instances generated by ROCO-RL, which also exhibited evident robustness improvement (see Ap-
pendix D for details).

In terms of computational efficiency, DPD-defended solvers require considerably less runtime com-
pared to non-learnable solvers. For example, WS-DP requires 17.45 minutes to reach the best HV
value on Bi-KP, while CNH-DPD in only 8.49 seconds achieves the same. To further validate
the robustness of our framework, we evaluated DPD on six Bi-TSP benchmark instances from
TSPLIB Reinelt (1991), as well as two large-scale test sets (n = 150/200) (see Appendices E
and F). Overall, these results demonstrate that DPD substantially enhances the robustness of neural
solvers, yielding strong generalization to larger problem sizes and distribution shifts.

6 CONCLUSIONS

In this paper, we investigate the robustness and performance of state-of-the-art neural MOCOP
solvers under diverse hard and clean instances distributions. We proposed an innovative attack
method that effectively generates hard (challenging) problem instances, measuring the vulnerability
in solver’s performance by reducing HV values and increasing optimality gaps compared to base-
line methods. Furthermore, we also proposed a defense method leverages adversarial training with
hardness-aware preference selection, showing improved robustness across various solvers and tasks.
These two methods contribute to solving multi-objective optimization challenges by enhancing the
robustness and generalizability of neural solvers, leading to more robust solutions. In the future, we
aim to extend our method to address dynamic real-world MOCOP instances, integrating domain-
specific constraints, and improving generalizability in online environments.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Charles Audet, Jean Bigeon, Dominique Cartier, Sébastien Le Digabel, and Ludovic Salomon. Per-
formance indicators in multiobjective optimization. European Journal of Operational Research,
292(2):397–422, 2021.

Jinbiao Chen, Jiahai Wang, Zizhen Zhang, Zhiguang Cao, Te Ye, and Siyuan Chen. Efficient meta
neural heuristic for multi-objective combinatorial optimization. Advances in Neural Information
Processing Systems, 36, 2024.

Jinbiao Chen, Zhiguang Cao, Jiahai Wang, Yaoxin Wu, Hanzhang Qin, Zizhen Zhang, and Yue-Jiao
Gong. Rethinking neural multi-objective combinatorial optimization via neat weight embedding.
In International Conference on Learning Representations (ICLR), 2025.

Kalyanmoy Deb and Himanshu Jain. An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part i: solving problems with box con-
straints. IEEE transactions on evolutionary computation, 18(4):577–601, 2013.

Mingfeng Fan, Yaoxin Wu, Zhiguang Cao, Wen Song, Guillaume Sartoretti, Huan Liu, and Guohua
Wu. Conditional neural heuristic for multiobjective vehicle routing problems. IEEE Transactions
on Neural Networks and Learning Systems, 2024.

Wei Fang, Qiang Zhang, Jun Sun, and Xiaojun Wu. Mining high quality patterns using multi-
objective evolutionary algorithm. IEEE Transactions on Knowledge and Data Engineering, 34
(8):3883–3898, 2020.

Kostas Florios and George Mavrotas. Generation of the exact pareto set in multi-objective trav-
eling salesman and set covering problems. Applied Mathematics and Computation, 237:1–
19, 2014. ISSN 0096-3003. doi: https://doi.org/10.1016/j.amc.2014.03.110. URL https:
//www.sciencedirect.com/science/article/pii/S0096300314004810.

Simon Geisler, Johanna Sommer, Jan Schuchardt, Aleksandar Bojchevski, and Stephan Günnemann.
Generalization of neural combinatorial solvers through the lens of adversarial robustness. arXiv
preprint arXiv:2110.10942, 2021.

Pascal Halffmann, Luca E Schäfer, Kerstin Dächert, Kathrin Klamroth, and Stefan Ruzika. Exact
algorithms for multiobjective linear optimization problems with integer variables: A state of the
art survey. Journal of Multi-Criteria Decision Analysis, 29(5-6):341–363, 2022.

Liangjun Ke, Qingfu Zhang, and Roberto Battiti. A simple yet efficient multiobjective combinatorial
optimization method using decompostion and pareto local search. IEEE Trans on Cybernetics, 44
(10):1808–1820, 2014.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations (ICLR), 2019.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. In Advances in
Neural Information Processing Systems (NeurIPS), 2020.

Kaiwen Li, Tao Zhang, and Rui Wang. Deep reinforcement learning for multiobjective optimization.
IEEE Transactions on Cybernetics, 51(6):3103–3114, 2021a. doi: 10.1109/TCYB.2020.2977661.

Kaiwen Li, Tao Zhang, and Rui Wang. Deep reinforcement learning for multiobjective optimization.
IEEE Transactions on Cybernetics, 51(6):3103–3114, 2021b.

Xi Lin, Zhiyuan Yang, and Qingfu Zhang. Pareto set learning for neural multi-objective combinato-
rial optimization. arXiv preprint arXiv:2203.15386, 2022.

Han Lu, Zenan Li, Runzhong Wang, Qibing Ren, Xijun Li, Mingxuan Yuan, Jia Zeng, Xiaokang
Yang, and Junchi Yan. Roco: A general framework for evaluating robustness of combinatorial
optimization solvers on graphs. In The Eleventh International Conference on Learning Represen-
tations, 2023.

10

https://www.sciencedirect.com/science/article/pii/S0096300314004810
https://www.sciencedirect.com/science/article/pii/S0096300314004810

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning
for combinatorial optimization: A survey. Computers & Operations Research, 134:105400, 2021.

Chao Qian, Yang Yu, and Zhi-Hua Zhou. An analysis on recombination in multi-objective evolu-
tionary optimization. Artificial Intelligence, 204:99–119, 2013.

Gerhard Reinelt. Tsplib—a traveling salesman problem library. ORSA Journal on Computing, 3(4):
376–384, 1991. doi: 10.1287/ijoc.3.4.376.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Haitham Seada and Kalyanmoy Deb. A unified evolutionary optimization procedure for single,
multiple, and many objectives. IEEE Transactions on Evolutionary Computation, 20(3):358–369,
2015.

Ye Tian, Langchun Si, Xingyi Zhang, Ran Cheng, Cheng He, Kay Chen Tan, and Yaochu Jin. Evo-
lutionary large-scale multi-objective optimization: A survey. ACM Computing Surveys (CSUR),
54(8):1–34, 2021.

Renato Tinós, Keld Helsgaun, and Darrell Whitley. Efficient recombination in the lin-kernighan-
helsgaun traveling salesman heuristic. In International Conference on Parallel Problem Solving
from Nature, pp. 95–107. Springer, 2018.

Nithin Varma and Yuichi Yoshida. Average sensitivity of graph algorithms. In Proceedings of the
2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 684–703. SIAM, 2021.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3-4):229–256, 1992.

Hong Wu, Jiahai Wang, and Zizhen Zhang. Modrl/d-am: Multiobjective deep reinforcement learn-
ing algorithm using decomposition and attention model for multiobjective optimization. arXiv
preprint arXiv:2002.05484, 2020. URL https://arxiv.org/abs/2002.05484.

Yaoxin Wu, Mingfeng Fan, Zhiguang Cao, Ruobin Gao, Yaqing Hou, and Guillaume Sartoretti. Col-
laborative deep reinforcement learning for solving multi-objective vehicle routing problems. In
Proceedings of the 23rd International Conference on Autonomous Agents and Multiagent Systems,
AAMAS ’24, pp. 1956–1965, Richland, SC, 2024. International Foundation for Autonomous
Agents and Multiagent Systems. ISBN 9798400704864.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Neurolkh: Combining deep learn-
ing model with lin-kernighan-helsgaun heuristic for solving the traveling salesman problem.
In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, volume 34, pp. 7472–7483. Curran
Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/
paper/2021/file/3d863b367aa379f71c7afc0c9cdca41d-Paper.pdf.

Qingfu Zhang and Hui Li. Moea/d: A multiobjective evolutionary algorithm based on decomposi-
tion. IEEE Transactions on Evolutionary Computation, 11(6):712–731, 2007a.

Qingfu Zhang and Hui Li. Moea/d: A multiobjective evolutionary algorithm based on decomposi-
tion. IEEE Transactions on evolutionary computation, 11(6):712–731, 2007b.

Yongxin Zhang, Jiahai Wang, Zizhen Zhang, and Yalan Zhou. Modrl/d-el: Multiobjective deep
reinforcement learning with evolutionary learning for multiobjective optimization. arXiv preprint
arXiv:2107.07961, 2021. URL https://doi.org/10.48550/arXiv.2107.07961.

Zeyang Zhang, Ziwei Zhang, Xin Wang, and Wenwu Zhu. Learning to solve travelling sales-
man problem with hardness-adaptive curriculum. arXiv preprint arXiv:2204.03236, 2022. URL
https://doi.org/10.48550/arXiv.2204.03236. AAAI 2022.

Jianan Zhou, Yaoxin Wu, Zhiguang Cao, Wen Song, Jie Zhang, and Zhiqi Shen. Collaboration!
towards robust neural methods for routing problems. arXiv preprint arXiv:2410.04968, 2024.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 4207–4215, 2017.

11

https://arxiv.org/abs/2002.05484
https://proceedings.neurips.cc/paper_files/paper/2021/file/3d863b367aa379f71c7afc0c9cdca41d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/3d863b367aa379f71c7afc0c9cdca41d-Paper.pdf
https://doi.org/10.48550/arXiv.2107.07961
https://doi.org/10.48550/arXiv.2204.03236

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A GAUSSIAN MIXTURE GENERATOR

Instead of uniformly distributing the nodes, the Gaussian mixture generator partitions them into clus-
ters, enabling the creation of TSP instances with varying levels of difficulty. The process begins by
determining the number of clusters, nc, sampled from a discrete uniform distribution U(cmin, cmax),
where cmin and cmax denote the minimum and maximum number of clusters, respectively. Following
Zhang et al. (2022), we set cmin = 3 and cmax = 7 in our experiments. Each node is assigned to one
of the nc clusters with equal probability, ensuring a balanced distribution. The center of each cluster
is represented as µi = (µi1, µi2), where µi1 and µi2 denote the x- and y-coordinates of the cluster
center, respectively. These coordinates are uniformly sampled as:

µi ∼ U([0, cDIST]
2), (12)

where cDIST controls the spread of the clusters.

The coordinates of each node, xi, are drawn from a Gaussian distribution N(µci , I), where µci
represents the center of the cluster ci to which node i belongs and I is the identity covariance
matrix. This ensures that nodes within the same cluster are spatially close to their cluster center. To
standardize the coordinates, we apply min-max normalization to scale all nodes into a unit square
[0, 1]2:

x̃i =
xi −min(X)

max(X)−min(X)
, (13)

where min(X) and max(X) are computed dimension-wise across the entire set of nodes X . This
normalization ensures consistency across instances.

By introducing cluster-based distributions, the Gaussian mixture generator generates TSP instances
with diverse spatial structures and controlled levels of complexity, offering a more realistic evalua-
tion of algorithmic robustness compared to uniform sampling.

B MULTI-OBJECTIVE COMBINATORIAL OPTIMIZATION
PROBLEMS

Multi-Objective combinatorial optimization problems (MOCOPs) extend classical optimization
problems by incorporating multiple objectives. This section explores three key problems: the Multi-
Objective Traveling Salesman Problem (MOTSP), the Multi-Objective Capacitated Vehicle Routing
Problem (MOCVRP), and the Multi-Objective Knapsack Problem (MOKP), each involving the op-
timization of competing objectives under specific constraints.

B.1 MULTI-OBJECTIVE TRAVELING SALESMAN PROBLEM (MOTSP)

MOTSP is an extension of the classic single-objective Traveling Salesman Problem (TSP). In
MOTSP, M objectives are considered, with each objective represented by a distinct set of node
coordinates. The aim is to find a tour π, which is a cyclic permutation of the nodes, that simultane-
ously minimizes the costs across all objectives:

minL(π|s) = min(L1(π|s), L2(π|s), . . . , LM (π|s)), (14)

where Li(π|s) denotes the cost for the i-th objective and is calculated as:

Li(π|s) = ci(π(n), π(1)) +

n−1∑
j=1

ci(π(j), π(j + 1)). (15)

Here, ci(j, k) represents the cost of moving from node j to node k under the i-th objective. The
solution to MOTSP often involves trade-offs as it requires minimizing all objective functions simul-
taneously.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B.2 MULTI-OBJECTIVE VEHICLE ROUTING PROBLEM (MOCVRP)

MOCVRP aims to optimize two objectives simultaneously: minimizing the total length of the route,
which is the sum of distances traveled by all vehicles, and minimizing the makespan, defined as the
length of the longest route. This problem involves a depot node and multiple customer nodes, each
with a specific demand qi. A fleet of vehicles, each with a fixed capacity D, starts and ends its routes
at the depot, ensuring that the total demand on any route satisfies the constraint

∑
qi ≤ D.

The total route length can be mathematically formulated as

min f1(π) =

K∑
k=1

nk∑
i=1

dπk(i),πk(i+1), (16)

where K denotes the number of vehicles, nk is the number of customer nodes in the k-th route, and
dπk(i),πk(i+1) is the distance between consecutive nodes in the route. The makespan, representing
the longest route among all vehicles, is expressed as

min f2(π) = max
k∈{1,...,K}

nk∑
i=1

dπk(i),πk(i+1). (17)

In addition, the solution must satisfy two key constraints. Each customer must be visited exactly
once, and all routes must start and end at the depot. This problem models real-world scenarios
where optimizing operational efficiency and resource utilization is critical in multi-vehicle delivery
systems.

B.3 MULTI-OBJECTIVE KNAPSACK PROBLEM (MOKP)

The Knapsack Problem (KP) is a classic problem in combinatorial optimization, and MOKP is an
extension of KP, involving m objectives and n items. The goal of this problem is to maximize the
values of multiple objective functions:

f(x) = max(f1(x), f2(x), . . . , fm(x)), (18)

where each objective function is defined as

fi(x) =

n∑
j=1

vijxj . (19)

The constraints are given by
n∑

j=1

wjxj ≤ W, with xj ∈ {0, 1}. (20)

Each item has a weight wj and m different values vij , where i = 1, 2, ...,m. The knapsack has a
maximum weight capacity W , and the objective is to select a set of items such that their total weight
does not exceed the capacity W , while maximizing the sum of values for each objective.

C ABLATION STUDY

Ablation studies were conducted on critical hyperparameters of the proposed attack method, with
experiments performed on three-objective 50-node TSP instances.

C.1 IMPACT OF GRADIENT ITERATION COUNTS

The iteration count t in Equation (5) of the mian paper is varied from 1 to 10 to evaluate its impact
on the HV values and the gap relative to the LKH. As illustrated in Figure 4, the gap peaks at t = 3
and t = 8, with the maximum observed at t = 3. Consequently, t = 3 is selected in our experiment
to balance computational efficiency and performance analysis.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 3: HV Gaps for Different α.

C.2 IMPACT OF GRADIENT UPDATE PARAMETERS

The radar graph 3 illustrates the relationship between the step size α in Equation (5) of the main
paper and their HV gaps, showing that the gap reaches its maximum values in α = 0.01. Therefore,
to maximize the effectiveness of the attack, α = 0.01 is adopted in our experiments.

Figure 4: Impact of Iteration Counts on HV and
Gap.

Figure 5: Benchmark Performance Comparison
on HV Metric.

D ROBUST TRAINING ON ROCO-ADVERSARIAL INSTANCES

Setup. We adopt an offline setting where ROCO is used to pre-generate a pool of adversarial
instances, which are then used together with clean data in our DPD framework. For each problem
and size, we define a preference grid Λ (Bi-objective: |Λ|=101; Tri-objective: |Λ|=105) and draw
M clean instances per λ ∈ Λ from the uniform distribution used in the original solvers. Running
ROCO on these clean instances under WS scalarization produces an adversarial set for each λ;
pooling them yields DROCO

hard . To ensure fairness, the per-λ ROCO budget (number of adversarial
instances or wall-clock time) is matched across λ and aligned with the budget used in our PAA
experiments.

Training. In each epoch, we build the training set

Dtrain = Dclean ∪ DROCO
hard .

Mini-batches are sampled by stratified sampling over λ and data source (clean vs. ROCO), with
a default 1:1 ratio. We keep the DPD pipeline unchanged: for each mini-batch we generate N
perturbed preferences {λ′

i}Ni=1 in an ϵ-neighborhood of the batch preference and renormalize them
to the simplex; we compute Tchebycheff values for {λ′

i}, form relevance scores via Eq. (8), pick
the weakest preference λ′

adv by Eq. (9), and update the policy by REINFORCE using Eq. (11). All
other optimization hyperparameters (optimizer, learning rate, batch size, RL baselines) follow the
corresponding original solvers.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Evaluation protocol. We evaluate on Gaussian-mixture test sets (200 instances per setting) with
cluster spread cDIST ∈ {10, 20, 30, 40, 50} for Bi-TSP and Bi-CVRP at node sizes {20, 50, 100}.
Metrics include mean HV (higher is better), mean relative HV gap (lower is better) computed against
WS-LKH (MOTSP/MOCVRP).

Results. As shown in Table 3, ROCO-trained models (our solvers trained with DROCO
hard under DPD)

consistently improve HV and reduce optimality gaps over counterparts trained without DPD, while
incurring negligible runtime overhead, validating that offline ROCO-adversarial data, when fed
through our DPD scheme, yields robust gains under distribution shift.

Table 3: Defense performance when training with ROCO-adversarial instances.

Method Defense Bi-TSP (50 nodes) Bi-CVRP (50 nodes)
HV ↑ Gap ↓ Time ↓ HV ↑ Gap ↓ Time ↓

PMOCO None 0.8566 1.08% 11.33s 0.5219 1.79% 18.02s
PMOCO ROCO-DPD 0.8583 0.88% 13.41s 0.5271 0.81% 18.11s
PMOCO PAA-DPD 0.8654 0.06% 13.29s 0.5308 0.11% 17.44s
CNH None 0.8587 0.84% 12.03s 0.5289 0.47% 19.55s
CNH ROCO-DPD 0.8632 0.32% 16.04s 0.5345 −0.58% 19.23s
CNH PAA-DPD 0.8660 0.0% 15.22s 0.5386 -1.35% 19.98s

E BENCHMARK EVALUATIONS

Similarly to previous studies Li et al. (2021a) Fan et al. (2024), we evaluated the performance of
our DPD framework on six Bi-TSP100 benchmark instances4: kroAB100, kroAC100, kroAD100,
kroBC100, kroBD100 and kroCD100, which were constructed by combining instances from the
kroA100, kroB100, kroC100, and kroD100 instances.

As illustrated in Figure 5, models trained on the hard instances consistently outperform those trained
on the clean instances in all the problem instances. The CNH-DPD model achieves the HV values
among the learned models, closely approaching the exact PF. In particular, in kroAC100, PMOCO-
DPD and CNH-DPD achieve HV values that are 1.4% and 1.7% higher than those of PMOCO and
CNH, respectively. In kroBC100 and kroBD100, the HV values for DPD-enhanced models are
within 0.1% of the exact PF, demonstrating their competitive performance and robustness. These
results underscore the effectiveness of the proposed approach in handling diverse instance distribu-
tions and enhancing solver adaptability under adversarial conditions.

F GENERALIZATION STUDY

We evaluate the generalization capability of DPD on two types of larger scale test instances
(n = 150/200) including clean instances and mixed Gaussian instances. As illustrated in Table 4,
our model demonstrates remarkable robustness across both test scenarios while maintaining strong
performance under varying instance distributions.

Table 4: Comparison of Bi-TSP performance with n = 150 and n = 200 on 200 clean and Mix Gaussian test
instances.

Method Clean Instances Gaussian Instances
Bi-TSP (n = 150) Bi-TSP (n = 200) Bi-TSP (n = 150) Bi-TSP (n = 200)

HV Gap Time HV Gap Time HV Gap Time HV Gap Time
WS-LKH 0.7149 - 13h 0.7490 - 22h 0.8506 - 13h 0.8790 - 22h
PMOCO 0.7028 1.69% 55.38s 0.7318 2.29% 1.52m 0.8367 1.63% 55.87s 0.8608 2.07% 1.52m
PMOCO-DPD 0.7091 0.81% 57.22s 0.7327 2.17% 1.59m 0.8430 0.89% 57.22s 0.8660 1.47% 1.59m
CNH 0.7043 1.48% 57.45s 0.7324 2.21% 1.53m 0.8379 1.49% 57.49s 0.8598 2.18% 1.53m
CNH-DPD 0.7104 0.63% 58.33s 0.7374 1.54% 2.02m 0.8427 0.92% 58.36s 0.8649 1.60% 2.05m

4https://sites.google.com/site/kflorios/motsp?pli=1

15

https://sites.google.com/site/kflorios/motsp?pli=1

	Introduction
	Related Work
	MOCOP Solvers
	Robustness of DRL Models for COPs

	Preliminaries
	Problem Statement
	Decomposition
	Glimpse of Robustness of DRL Solvers

	The Method
	Preference-based Adversarial Attack (PAA)
	Dynamic Preference-augmented Defense (DPD)

	Experiments
	Baselines and Settings
	Attack Performance
	Defense Performance

	Conclusions
	Gaussian Mixture Generator
	MULTI-OBJECTIVE COMBINATORIAL OPTIMIZATION PROBLEMS
	Multi-Objective Traveling Salesman Problem (MOTSP)
	Multi-Objective Vehicle Routing Problem (MOCVRP)
	Multi-Objective Knapsack Problem (MOKP)

	Ablation Study
	Impact of Gradient Iteration Counts
	Impact of Gradient Update Parameters

	Robust Training on ROCO-Adversarial Instances
	Benchmark Evaluations
	Generalization Study

