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ABSTRACT

Deep reinforcement learning (DRL) has shown great promise in addressing multi-
objective combinatorial optimization problems. Nevertheless, the robustness of
DRL-based neural solvers remain insufficiently explored, especially across di-
verse and complex problem distributions. This work provides a novel preference-
based adversarial attack method, which aims to generate hard problem instances
that expose vulnerabilities of solvers. We measure the vulnerability of a solver
by evaluating the extent to which its performance in terms of hypervolume de-
teriorates when tested on hard instances. To mitigate the adversarial effect, we
propose a defense method that integrates hardness-aware preference selection into
training, leading to substantial improvements in solver robustness and generaliz-
ability. The experimental results on multi-objective traveling salesman problem
(MOTSP), multi-objective capacitated vehicle routing problem (MOCVRP), and
multi-objective knapsack problem (MOKP) verify that our attack method success-
fully learns hard instances for different solvers. Furthermore, our defense method
significantly strengthens the robustness and generalizability of neural solvers, de-
livering superior performance on hard or out-of-distribution instances.

1 INTRODUCTION

Deep reinforcement learning (DRL) has emerged as a transformative approach to address combi-
natorial optimization problems (COPs), which has attracted significant attention in recent years. Its
distinct advantages include exceptional computational efficiency, the ability to exploit intrinsic prob-
lem structures, and adaptability through iterative feedback-driven learning. Unlike supervised learn-
ing Zoph & Le (2017), DRL eliminates the dependence on labeled datasets. Moreover, compared to
heuristic and exact algorithms Xin et al. (2021), DRL demonstrates superior efficiency in identifying
near-optimal solutions in a reasonable computational time. These attributes make DRL particularly
effective in solving classical NP-hard COPs Mazyavkina et al. (2021) Kool et al. (2019) Kwon et al.
(2020) Li et al. (2021b), such as the traveling salesman problem (TSP), the knapsack problem (KP),
and the capacitated vehicle routing problem (CVRP), as well as their respective multi-objective
variants, known as multi-objective combinatorial optimization problems (MOCOPs).

Despite promising performance, current DRL models for COPs often experience significant degra-
dation when faced with instances that differ in distribution or size from their training instances,
highlighting their vulnerability to such variations. Hence, the robustness is a major concern to be
addressed in developing DRL models for enhancing out-of-distribution generalizability. For single-
objective COPs, previous studies Zhang et al. (2022) Lu et al. (2023) found that the performance of
DRL models tends to degrade under non-i.i.d. conditions. They mitigated the vulnerability using
different strategies, such as altering training strategies and refining model architectures.

For MOCOPs, current DRL models inherently suffer from the same robustness issue (see empirical
evidence in Section 3.3). When distributions of training and testing instances diverge, DRL models
are prone to overfitting to characteristics of the training distribution, limiting their generalizability
on out-of-distribution instances. However, the robustness of DRL models for MOCOPs has not been
studied, warranting further research to better understand their vulnerability to different distributions
and propose techniques for enhancing their robustness.
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In this paper, we first present a preliminary study on the robustness of DRL models for MOCOPs.
Our findings demonstrate the vulnerability of DRL models to distributional shifts by revealing a sig-
nificant impact of the underlying distribution of instances on the hypervolume (HV). This motivates
the need for methodologies to robustify DRL models for MOCOPs. Our main contributions can be
summarized as follows::

• We introduce a Preference-based Adversarial Attack (PAA) method to target DRL models
for MOCOPs. PAA undermines DRL models by generating hard instances that degrade
solutions of subproblems associated with specific preferences. The generated instances
effectively lower the quality of the Pareto fronts in terms of hypervolume.

• We propose a Dynamic Preference-augmented Defense (DPD) method to mitigate the im-
pact of adversarial attacks. By integrating a hardness-aware preference selection strategy
into adversarial training, DPD effectively alleviates the overfitting to restricted preference
spaces. It enhances the robustness of DRL models, thereby promoting their generalizability
across diverse distributions.

• We evaluate our methods on three classical MOCOPs: MOTSP, MOCVRP and MOKP. The
PAA method substantially impairs state-of-the-art DRL models, while the DPD method
enhances their robustness, resulting in strong out-of-distribution generalizability.

2 RELATED WORK

2.1 MOCOP SOLVERS

Algorithms to solve MOCOPs (or MOCOP solvers) are typically classified into exact, heuristic, and
learning-based methods. Exact algorithms provide Pareto-optimal solutions, but become compu-
tationally intractable for large-scale problems Florios & Mavrotas (2014) Halffmann et al. (2022).
Heuristic methods, particularly evolutionary algorithms Zhang & Li (2007b) Fang et al. (2020) Ke
et al. (2014) Seada & Deb (2015), effectively explore the solution space through crossover and mu-
tation operations Deb & Jain (2013) Tian et al. (2021), generating a finite set of approximate Pareto
solutions in acceptable time. However, their reliance on problem-specific, hand-crafted designs
limits their applicability Zhang & Li (2007a).

Learning-based solvers, particularly those based on deep reinforcement learning, have seen grow-
ing adoption in MOCOPs, largely due to their high performance and efficiency. Current research
on DRL-based neural solvers belongs mainly to two paradigms: one-to-one and many-to-one. In
the one-to-one paradigm, each subproblem is addressed by an individual neural solver Wu et al.
(2020) Li et al. (2021a) Zhang et al. (2021). In contrast, the many-to-one paradigm streamlines the
computational process by using a shared neural solver to handle multiple subproblems Lin et al.
(2022) Chen et al. (2024) Fan et al. (2024) Wu et al. (2024) Chen et al. (2025), which outperforms
the one-to-one paradigm and delivers state-of-the-art neural solvers. Among them, the efficient
meta neural heuristic (EMNH) Chen et al. (2024) learns a meta-model that is rapidly adapted to
each preference to solve its subproblem. The preference-conditioned multi-objective combinatorial
optimization (PMOCO) Lin et al. (2022) uses a hypernetwork to generate decoder parameters tai-
lored to each subproblem. The conditional neural heuristic (CNH) Fan et al. (2024) leverages dual
attention, while the weight embedding model with conditional attention (WE-CA) Chen et al. (2025)
employs feature-wise affine transformations, to enhance preference–instance interaction within the
encoder. Our study demonstrates that the proposed attack and defense framework is sufficiently
general to challenge and robustify models from all three categories.

2.2 ROBUSTNESS OF DRL MODELS FOR COPS

Robustness COPs have been studied from both theoretical and neural perspectives. From the the-
oretical side, Varma & Yoshida (2021) introduced the notion of average sensitivity, measuring the
stability of algorithmic outputs under edge deletions in classical COPs such as minimum cut and
maximum matching. On the neural side, several studies have investigated hard instance generation
and defense methods to improve the robustness of DRL solvers for COPs. For example, Geisler
et al. (2021) proposed an efficient and sound perturbation model that adversarially inserts nodes
into TSP instances to maximize the deviation between the predicted route and the optimal solution.
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Zhang et al. (2022) developed hardness-adaptive curriculum learning methods (HAC) to assess the
hardness of given instances and then generate hard instances during training based on the relative
difficulty of the solver. Lu et al. (2023) introduced a no-worse optimal cost guarantee (i.e., by
lowering the cost of a partial problem) and generated adversarial instances through edge modifica-
tions in the graph. In contrast to these approaches that focused on generating hard instances, Zhou
et al. (2024) focused on defending neural COP solvers, by an ensemble-based collaborative neural
framework designed to improve performance simultaneously in both clean and hard instances.

3 PRELIMINARIES

3.1 PROBLEM STATEMENT

The mathematical formulation of an MOCOP is generally given as:
min
π∈X

F (π) =
(
f1(π), f2(π), . . . , fm(π)

)
, (1)

where X represents the set of all feasible solutions, and F (π) is an m-dimensional vector of ob-
jective values. A solution π to an MOCOP is considered feasible if and only if it satisfies all the
constraints specified in the problem. For example, the MOTSP is defined on a graph G with a set of
nodes V = {0, 1, 2, . . . , n}. Each solution π = (π1, π2, . . . , πT ) is a tour consisting of a sequence
of nodes of length T , where πj ∈ V . The definitions of MOTSP, MOCVRP and MOKP are given
in Appendix B.

For multi-objective optimization problems, the goal is to find pareto-optimal solutions that simul-
taneously optimize all objectives. These pareto-optimal solutions aim to balance trade-offs under
different preferences for the objectives. In this paper, we use the following the Pareto concepts Qian
et al. (2013):

Definition 1 (Pareto Dominance). Let u, v ∈ X . The solution u is defined as dominating solution
v (denoted u ≺ v) if and only if, for every objective i where i ∈ {1, . . . ,m}, the objective value
fi(u) is less than or equal to fi(v), and there exists at least one objective j where j ∈ {1, . . . ,m},
such that fj(u) < fj(v).

Definition 2 (Pareto Optimality). A solution x∗ ∈ X is Pareto optimal if it is not dominated by any
other solution in X . Formally, there exists no solution x′ ∈ X such that x′ ≺ x∗. The set of all
Pareto-optimal solutions is referred to as the Pareto set P = {x∗ ∈ X | ∄x′ ∈ X such that x′ ≺ x∗}.
The projections of Pareto set into the objective space constitute Pareto front PF = {F (x) | x ∈ P}.

3.2 DECOMPOSITION

By scalarizing a multi-objective COP into a series of single-objective problems under different pref-
erences, decomposition is an effective strategy for obtaining the Pareto front in DRL models for
MOCOPs. Given a preference vector λ = (λ1, λ2, . . . , λm) ∈ Rm with λi ≥ 0 and

∑m
i=1 λi = 1,

the weighted sum (WS) and Tchebycheff decomposition (TCH) can be used to transform an MO-
COP into scalarized subproblems, which are solved to approximate the Pareto front.

WS Decomposition. WS decomposition minimizes convex combinations of m objective functions
under preference vectors, as defined below:

gw(π|λ) =
m∑
i=1

λifi(π), with π ∈ X . (1)

Tchebycheff Decomposition. Tchebycheff decomposition minimizes the maximum weighted dis-
tance between the objective values and an ideal point, defined as:

gt(π|λ, z∗) = max
1≤i≤m

λi|fi(π)− z∗i |, with π ∈ X , (2)

where z∗ = (z∗1 , z
∗
2 , . . . , z

∗
m) represents the ideal point, with z∗i = minπ∈X fi(π).

The decomposition strategy addresses an MOCOP by reducing it to a series of subproblems un-
der varying preferences. Given an instance x and a preference λ, neural MOCOP solvers learn a
stochastic policy pθ to approximate the Pareto solution π = (π1, π2, . . . , πT ), where θ represents
the learnable parameters.
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3.3 GLIMPSE OF ROBUSTNESS OF DRL SOLVERS

Figure 1: Results for Varying cDIST in Gaussian
Mixture Generator.

Given the unexplored robustness of DRL models
for MOCOPs, we first examined the performance
of two representative neural solvers, PMOCO Lin
et al. (2022) and CNH Fan et al. (2024), for MOTSP.
Both solvers are pretrained on clean 50-node bi-/tri-
objective TSP instances (as in the original papers).

Concretely, we create out-of-distribution test in-
stances using a Gaussian-mixture generator (see de-
tails in Appendix A) for evaluation. We vary cDIST ∈
{1, 5, 10, 20, 30, 40, 50}, where cDIST controls the
spatial spread of the clusters, which determines the
hardness of the instances. WS-LKH Tinós et al.
(2018) (the state-of-the-art solver for MOCOPs) was
used as a baseline for comparison. Figure 1 illus-
trates the HV gaps, representing the difference be-
tween the solutions produced by a neural solver and
those using WS-LKH:

Gap =
HVLKH −HVDRL

HVLKH
× 100. (3)

Our findings reveal that with increasing cDIST (indicating more difficult test instances), the perfor-
mance of the neural solvers deteriorates and the gap between their solutions and those provided by
WS-LKH widens. These results highlight a significant limitation that neural solvers trained on uni-
formly distributed instances struggle to maintain robustness as test instances become more diverse
and complex.

4 THE METHOD

In this section, we introduce a preference-based adversarial attack method to generate hard in-
stances to reflect the robustness of neural solvers. Furthermore, we propose a dynamic preference-
augmented defense method to robustify neual solvers. The sketch of the proposed adversarial attack
and defense methods is illustrated in Figure 2.

4.1 PREFERENCE-BASED ADVERSARIAL ATTACK (PAA)

Typically, neural solvers decompose an MOCOP into a series of subproblems under different pref-
erences, which are solved independently. According to Lin et al. (2022), if a neural solver can solve
subproblems (2) well with any preference λ, it can generate a good approximation to the whole
Pareto front for MOCOP. In this paper, we hypothesize that if a neural model does not effectively
approximate the solution of the subproblem under certain values of λ, the resulting approximation
of the Pareto front will be inadequate. Following this inspiration, we propose the PAA method to
attack neural solvers for MOCOPs. In particular, perturbations are tailored to the original data (i.e.,
clean instances) in accordance with respective preferences, resulting in hard instances aligned with
each specified preference. After identifying hard instances across varying preferences, we gather
them into a comprehensive set, which is used to systematically undermine the robustness of a neural
solver.

Without loss of generality, we evaluate the performance of a neural solver for each subproblem
by generating hard instances under the corresponding preference, which maximize a variant of the
reinforcement loss, defined as:

ℓ(x; θ) =
L(π | x)
b(x)

log pθ(π | x), (4)

where L(π | x) represents the loss of the subproblem with a given preference λ (e.g., using the
Tchebycheff decomposition as in Eq. (2)). b(x) is the baseline of L(π | x), which is calculated by
b(x) = 1

M

∑M
j=1 L(πj | x), where M is the number of sampled tours for a batch. x denotes the

4
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Figure 2: Attack and Defense of Neural Solvers for MOCOP.

problem-specific input, i.e., node coordinates in TSP. pθ(π | x) denotes the probability distribution
of the solution π, which is derived from a neural model parameterized by θ.

Subsequently, the input x corresponding to each preference undergoes the following iterative update:

x(t+1) = ΠN

[
x(t) + α · ∇x(t)ℓ(x(t); θ(t))

]
, (5)

where θ(t) denotes the best-performing model at iteration t, N represents the feasible solution space,
α is the step size, and ℓ(x(t); θ(t)) is the reinforcement loss defined in Eq.(4). At each iteration t,
the variable x(t) is updated by performing gradient ascent on the loss function ℓ(x; θ), with the
calculated gradients ∇x(t)ℓ(x(t); θ(t)) guiding the update step. The projection operator ΠN (·) is a
min-max normalization, ensuring the updated variables x(t+1) remains within a feasible solution
space N . The iterative process continues until the variable x(t) converges towards hard instances
for the current given preference.

In summary, the clean instances x are initially sampled from a uniform distribution, i.e., the distri-
bution of training instances used by neural solvers. Subsequently, we perturb clean instances using
our PAA method under respective preferences λ to generate diverse hard instances. Ultimately,
we gather these instances to construct the set of hard instances Dhard, which are used to assess the
robustness of the model.

4.2 DYNAMIC PREFERENCE-AUGMENTED DEFENSE (DPD)

To enhance the robustness of the model, we propose the DPD method, which leverages hard in-
stances Dhard and employs the hardness-aware preference selection method to train the MOCOP
solvers.

Perturbative Preference Generation. During the adversarial training phase, for each batch in an
epoch, we sample a subset of instances Dλ

hard from Dhard along with the corresponding preferences
λ. Given a preference vector λ = (λ1, λ2, . . . , λm), we generate a set of augmented preferences
{λ′

1, λ
′
2, . . . , λ

′
m} to explore the neighborhood of λ. These augmented preferences are dynamically

adjusted to emphasize regions where the model exhibits weaker performance. For each preference
vector λ, its augmented preferences are computed as:

λ′
i = Perturb(λ, δi), (6)

where δi ∼ Uniform(−ϵ, ϵ) is a small random perturbation. i reflects the index of the perturbed
preference vector.

Since the perturbation may result in a preference vector that does not satisfy the constraint∑m
k=1 λ

′
i,k = 1, a normalization step is applied to ensure validity:

λ′
i,k =

λ′raw
i,k∑m

j=1 λ
′raw
i,j

, ∀k ∈ {1, . . . ,m}, (7)

where λ′raw
i,k represents the raw preference value after perturbation. By incorporating the nor-

malization step, the generated preferences remain within the valid preference space, ensuring∑m
k=1 λ

′
i,k = 1 for all augmented preferences.

Hardness-aware Preference Selection. For each augmented preference λ′
i and hard instance x ∈

Dλ
hard, the neural solver makes an inference to derive a specific Tchebycheff value (Tch). Tch(λ′

i)

5
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Algorithm 1 Adversarial Training Framework
Input: pre-trained model θ, preference set Λ = {λk}Pk=1, hard instances Dhard = ∅, epochs E, batch size B,
number of perturbed preferences N , optimizer ADAM, size of mini-batches per epoch M
Output: Updated model parameters θ
1: for t = 1 to E do ▷ Epoch loop
2: Generate Dclean with uniform distribution.
3: for k = 1 to P do
4: Select preference λk ∈ Λ.
5: Generate dadv,k for Dclean using preference λk via PAA.
6: Dhard = Dhard ∪ dadv,k.
7: end for
8: Dtrain = Dhard ∪ Dclean.
9: for j = 1 to M do ▷ Mini-batch loop

10: Sample mini-batch B ⊂ Dtrain of size B, each with preference λj .
11: for i = 1 to N do ▷ Preference augmentation
12: Generate λ′

i using (6) and (7) and estimate Tch values for λ′
i using B.

13: end for
14: Select λadv according to Eqs. (8) and (9).
15: Compute gradient∇J (θ) using λadv and B (Eq. (11)).
16: Update parameters: θ ← ADAM(θ,∇J (θ)).
17: end for
18: end for

quantifies the quality of the solution generated by the model with preference λ′
i, where a smaller

Tch(λ′
i) indicates a better quality solution for this preference. Tch(λ′

i) are processed using the
following softmax function to compute a relevance score for each preference:

P (λ′
i) =

exp(−Tch(λ′
i))∑N

j=1 exp(−Tch(λ′
j))

. (8)

The preferences λ′
i that produce the poorest solutions (i.e., the highest Tch(λ′

i)) are selected for
further optimization. N in Eq.(8) denotes the total number of augmented preference vectors.

The preferences associated with the lowest relevance scores, as identified through P (λ′
i), signify

regions that cause lower performance of the solver. These preferences are prioritized for further
being involved in the optimization, aiming to improve the robustness and generalizability of the
model across diverse preferences. The preference with the smallest P (λ′

i) is selected for further
optimization:

λ′
adv = argmin

i
P (λ′

i). (9)

For the selected adversarial preference λ′
adv, the original hard instances Dλ

hard are reused for training.
For each instance x ∈ Dλ

hard, the loss function is recalibrated as:

L(x | λ′
adv) = max

1≤k≤m
λ′

adv,k · |fk(x)− z∗k|. (10)

Training Framework. The proposed adversarial training framework is detailed in Algorithm 1.
Each epoch in our training framework comprises two phases: the attack phase and the defense
phase. During the attack phase, hard instances tailored to individual preferences are generated and
subsequently aggregated for further training. In the defense phase, neural MOCOP solvers are
trained on constructed instances. The optimization process employs the REINFORCE algorithm
Williams (1992) to minimize the loss, which is formulated as follows.

∇J (θ) = Eπ∼pθ, s∼Dtrain, λadv∼Sλ

[(
L(π | s, λadv)− Lb(s, λadv)

)
· ∇ log pθ(π | s, λadv)

]
(11)

where Lb(s, λadv) is used as a baseline to reduce the variance in the estimation of the gradient.
Monte Carlo sampling is used to approximate this expectation, where diverse training samples and
randomly selected preferences are used iteratively to optimize the model parameters.

6
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5 EXPERIMENTS

In this section, we conduct a comprehensive set of experiments on four MOCOPs (Appendix B):
bi-objective TSP (Bi-TSP), tri-objective TSP (Tri-TSP), bi-objective CVRP (Bi-CVRP), and bi-
objective KP (Bi-KP) to thoroughly analyze and evaluate the effectiveness of the proposed attack
and defense methods. All experiments are executed on a server equipped with an Intel(R) Xeon(R)
Silver 4214R CPU @ 2.40GHz and an RTX 3090 GPU.

5.1 BASELINES AND SETTINGS

Instance Distributions for Evaluation. To evaluate the efficacy of the proposed attack approach,
we benchmark against four typical instance distributions (clean uniform, log-normal (0,1) with mod-
erate skewness, beta (2,5) with bounded asymmetry, and gamma (2,0.5) with high skewness) as well
as ROCO Lu et al. (2023), a learning-based attack method that perturbs graph edges under a no-
worse-optimum guarantee and trains an agent with PPO Schulman et al. (2017) to maximize solver
degradation.

Evaluation Setup for Targeted Solvers. We target state-of-the-art neural MOCOP solvers, namely
Conditional Neural Heuristic CNH1 , Meta Neural Heuristic EMNH 2 Chen et al. (2024), and
Preference-Based Neural Heuristic PMOCO3. We selected these solvers as they all adopt POMO
Kwon et al. (2020) as the base model for solving single-objective subproblems. For fair compar-
isons, we adopt WS (weighted sum) scalarization across all methods. To establish the baseline for
the relative optimality gap, we approximate the Pareto front using two non-learnable solvers: WS-
LKH for MOTSP and MOCVRP, and weighted-sum dynamic programming (WS-DP) for MOKP.

Metrics. To evaluate the proposed attack and defense methods, the average HV Audet et al. (2021)
and the average optimality gap are employed. HV provides a comprehensive measure of both the
diversity and convergence of solutions, while the gap quantifies the relative difference in HV com-
pared to the first baseline solver.

Implementations. We evaluate PMOCO, CNH, and EMNH using their pre-trained models. Hard
instances are generated with 101 and 105 uniformly sampled preferences for the bi- and tri-objective
settings, respectively, with 100 clean samples per preference, yielding 10,100 and 10,500 instances.
Training uses 10,000 clean samples plus hard instances per epoch, with 3 gradient steps (step size
0.01) over 200 epochs. An ablation on these parameters is given in Appendix C. For testing, 200
Gaussian instances are constructed with cDIST ∈ [10, 20, 30, 40, 50]. Other settings (e.g., learning
rate, batch size) follow their original papers.

5.2 ATTACK PERFORMANCE

From Table 1, it can be observed that perturbations based on log-normal, beta, and gamma distri-
butions generally have little effect on reducing the HV value of the solution set. In particular, these
perturbations produce higher HV values across various solvers compared to clean instances. This
indicates that conventional disturbances struggle to substantially impair the performance of solvers
such as WS-LKH and WS-DP. Furthermore, the discrepancies between the solutions generated by
these neural solvers and the conventional solver under these distributions are consistently smaller
than those observed for clean instances. Hence, despite the heterogeneous nature of these distribu-
tions, neural solvers demonstrate robust capabilities to maintain high-quality solutions. In contrast,
PAA generates problem distributions that significantly reduce HV values in both classical and neu-
ral MOCOP solvers, demonstrating strong and consistent attack effect across all problems and sizes.
Notably, it achieves the best attack effect over all cases in Bi-KP.

Furthermore, the HV gaps of different solvers on hard instances generated by PAA and on clean in-
stances are considerably larger. For example, on Bi-CVRP50, the attack against EMNH yields a gap
of 4.73%, while on Bi-KP100, the attack against PMOCO reaches 7.09%, significantly exceeding
the attack effects by instances generated by the other methods.

1https://github.com/mingfan321/CNH/
2https://github.com/bill-cjb/EMNH
3https://github.com/Xi-L/PMOCO
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Table 1: Optimality Gap Analysis for Attack Performance. Bold values indicate the best performance.

Method Size
Optimality Gap (%)

Clean instances LogNormal(0,1) Beta(2, 5) Gamma(2, 0.5) ROCO-RL PAA
HV (↓) Gap (↑) HV(↓) Gap (↑) HV(↓) Gap (↑) HV (↓) Gap (↑) HV(↓) Gap (↑) HV (↓) Gap (↑)

Bi-TSP

WS-LKH 20 0.5118 - 0.8503 - 0.6566 - 0.7348 - 0.5627 - 0.4675 -
50 0.5757 - 0.8760 - 0.7012 - 0.7768 - 0.6231 - 0.5608 -

100 0.6799 - 0.9123 - 0.7201 - 0.7771 - 0.7094 - 0.6824 -
EMNH 20 0.5042 1.48% 0.8482 0.25% 0.6514 0.79% 0.7301 0.64% 0.5568 1.05% 0.4591 1.79%

50 0.5671 1.49% 0.8731 0.33 % 0.6954 0.83% 0.7750 0.23% 0.6141 1.44% 0.5502 1.89%
100 0.6653 2.15% 0.9034 0.97% 0.7119 1.14% 0.7726 0.58% 0.6914 2.53% 0.6665 2.33%

PMOCO 20 0.5038 1.55% 0.8477 0.31% 0.6485 1.25% 0.7291 0.73% 0.5535 1.64% 0.4584 1.95%
50 0.5651 1.85% 0.8691 0.78% 0.6951 0.88% 0.7708 0.77% 0.6113 1.88% 0.5498 1.96%

100 0.6571 3.34% 0.8948 1.92% 0.7035 2.33% 0.7705 0.84% 0.6946 2.09% 0.6603 3.23%
CNH 20 0.5061 1.11% 0.8499 0.04% 0.6557 1.81% 0.7321 0.36% 0.5536 1.62 % 0.4603 1.54%

50 0.5669 1.53% 0.8722 0.43% 0.6949 0.89% 0.7721 0.60% 0.6124 1.72% 0.5507 1.80%
100 0.6682 1.64% 0.9049 0.81% 0.7130 0.98% 0.7741 0.38% 0.6957 1.93% 0.6621 2.12%

Bi-CVRP

WS-LKH 20 0.2466 - 0.7145 - 0.8164 - 0.7158 - 0.3225 - 0.2450 -
50 0.3140 - 0.7255 - 0.8361 - 0.7285 - 0.3690 - 0.3402 -

100 0.2408 - 0.7265 - 0.7435 - 0.7252 - 0.3782 - 0.2705 -
EMNH 20 0.2404 2.51% 0.6955 2.66% 0.8022 1.74% 0.6958 2.79% 0.3149 2.33% 0.2354 3.92%

50 0.3048 2.93% 0.7179 1.05% 0.8235 1.51% 0.7090 2.68% 0.3609 2.18% 0.3241 4.73%
100 0.2309 4.11% 0.7240 0.34% 0.7363 0.97% 0.7149 0.04% 0.3709 1.93% 0.2588 4.32%

PMOCO 20 0.2415 2.07% 0.7090 0.77% 0.8139 0.31% 0.7100 0.77% 0.3133 2.84% 0.2401 2.00%
50 0.3081 1.88% 0.7220 0.48% 0.8330 0.37% 0.7224 0.84% 0.3573 3.17% 0.3286 3.41%

100 0.2307 4.19% 0.7248 0.23% 0.7375 0.81% 0.7050 2.77% 0.3703 2.08% 0.2591 4.21%
CNH 20 0.2457 0.36% 0.7149 -0.06% 0.8157 0.08% 0.7140 0.25% 0.3168 1.77% 0.2404 1.87%

50 0.3090 1.59% 0.7250 0.07% 0.8340 0.25% 0.7291 -0.08% 0.3615 2.02% 0.3295 3.15%
100 0.2393 0.62% 0.7235 0.41% 0.7389 0.62% 0.7179 1.00% 0.3718 1.69% 0.2597 3.99%

Bi-KP

WS-DP 50 0.7122 - 0.6809 - 0.6851 - 0.8138 - - - 0.6212 -
100 0.8283 - 0.6628 - 0.6046 - 0.8012 - - - 0.6483 -
200 0.6384 - 0.5799 - 0.5922 - 0.7799 - - - 0.3929 -

EMNH 50 0.7270 -2.07% 0.6883 -1.09% 0.6821 0.44% 0.8093 0.55% - - 0.5918 4.73%
100 0.8571 -3.47% 0.6827 -3.00% 0.6189 -2.36% 0.7984 0.35% - - 0.6056 6.59%
200 0.6299 1.33% 0.5803 -0.01% 0.6074 -2.57% 0.7894 -1.22% - - 0.3838 2.32%

PMOCO 50 0.7251 -1.81% 0.6969 -2.35% 0.6808 0.63% 0.8231 -1.14% - - 0.5901 5.00%
100 0.8549 -3.22% 0.7058 -6.49% 0.6241 -3.21% 0.8181 -2.11% - - 0.6023 7.09%
200 0.6295 1.39% 0.5769 0.52% 0.6019 -1.64% 0.7706 1.19% - - 0.3816 2.88%

CNH 50 0.7313 -2.68% 0.6982 -2.54% 0.7023 -2.51% 0.8251 -1.39% - - 0.5957 4.10%
100 0.8608 -3.93% 0.7028 -6.04% 0.6239 -3.19% 0.8194 -2.27% - - 0.6094 6.00%
200 0.6301 1.30% 0.5822 -0.39% 0.6127 -3.46% 0.7853 -0.69% - - 0.3857 2.24%

Tri-TSP

WS-LKH 20 0.3279 - 0.7841 - 0.5065 - 0.6156 - 0.3740 - 0.2615 -
50 0.3557 - 0.8049 - 0.5462 - 0.6647 - 0.4229 - 0.3161 -

- 100 0.4599 - 0.8663 - 0.6392 - 0.7392 - 0.4874 - 0.4490 -
EMNH 20 0.3218 1.86% 0.7753 1.12% 0.5039 0.51% 0.6119 0.60% 0.3679 1.63% 0.2549 2.52%

50 0.3418 3.90% 0.7942 1.33% 0.5402 1.09% 0.6499 2.23% 0.4070 3.74% 0.3022 4.39%
100 0.4412 4.07% 0.8309 4.08% 0.6114 4.35% 0.7118 3.71% 0.4659 4.41% 0.4296 4.32%

PMOCO 20 0.3228 1.54% 0.7799 0.52% 0.5020 0.88% 0.6114 0.68% 0.3675 1.73% 0.2563 1.98%
50 0.3425 3.72% 0.7968 1.01% 0.5337 2.28% 0.6512 2.03% 0.4089 3.29% 0.3031 4.13%

100 0.4349 5.42% 0.8324 3.92% 0.6141 3.93% 0.7112 3.78% 0.4620 5.21% 0.4237 5.63%
CNH 20 0.3241 1.15% 0.7804 0.47% 0.5036 0.57% 0.6126 0.48% 0.3681 1.58% 0.2579 1.37%

50 0.3433 3.48% 0.7984 0.80% 0.5408 0.98% 0.6574 1.09% 0.4080 3.52% 0.3042 3.76%
100 0.4401 4.31% 0.8417 2.84% 0.6180 3.31% 0.7164 3.08% 0.4641 4.77% 0.4253 5.27%

ROCO-RL shows non-trivial attack capability on a few instances (e.g., a notable 4.41% gap against
EMNH on Tri-TSP100), yet PAA consistently surpasses it in most MOCO problems, achieving
superior attack performance. This indicates that PAA explicitly exposes the vulnerabilities of di-
verse neural MOCOP solvers, underscoring its effectiveness in challenging solvers across MOCO
problems of different sizes and types.

5.3 DEFENSE PERFORMANCE

To evaluate our defense method, we conducted comparative experiments on EMNH, PMOCO, and
CNH trained on uniformly distributed clean instances, alongside their DPD variants trained under
the proposed framework. We also included WE-CA Chen et al. (2025), a recent neural solver that
employs feature-wise affine transformations at the encoder level, as a state-of-the-art baseline for
robustness evaluation. All models (with or without DPD) were evaluated in Gaussian instances.
The results are reported in Table 2. As shown, DPD-defended solvers (PMOCO-DPD, CNH-DPD,
EMNH-DPD, WE-CA-DPD) consistently enhance the performance of neural solvers, achieving
overall improvements on all problems. Remarkably, on Bi-TSP20 and Bi-CVRP100, WE-CA-DPD
and CNH-DPD achieve the first and second best results, respectively. The improvement is partic-
ularly evident on Bi-CVRP100, where WE-CA-DPD improves HV by 2.23% over WS-LKH, the
largest gain among all solvers.

In addition, CNH-DPD achieves the best result on Bi-CVRP50. The strong and consistent Bi-
CVRP results indicate that models with encoder-level preference-instance interaction mechanism
(e.g., CNH, WE-CA) exhibit the most pronounced improvements under DPD. In particular, CNH-
DPD and WE-CA-DPD deliver leading performance on Bi-CVRP20/50/100.

Regarding the meta-learning–based solver, EMNH-DPD improves EMNH performance and pro-
duces the best result (HV 0.6885, with a runtime of 5.29s) on Tri-TSP20, as well as second-best re-
sults on Tri-TSP50 and Tri-TSP100. This demonstrates the versatility of DPD in enhancing solvers
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Table 2: Optimality Gap Analysis for Defense Performance. Bold values indicate the best performance in the
respective metric. Underlined values indicate the second-best performance in the respective metric.

Method Instance 20 Nodes 50 Nodes 100 Nodes
HV (↑) Gap (↓) Time (↓) HV (↑) Gap (↓) Time(↓) HV (↑) Gap (↓) Time (↓)

WS-LKH

Bi-TSP

0.8873 - 4.30m 0.8660 - 38.47m 0.8365 - 3.19h
EMNH 0.8742 1.48% 6.12s 0.8649 0.13% 9.42s 0.8265 1.19% 30.09s
EMNH-DPD 0.8894 -0.23% 6.38s 0.8697 -0.43% 9.15s 0.8317 0.57% 30.25s
PMOCO 0.8779 1.06% 7.11s 0.8566 1.08% 11.33s 0.8248 1.40% 30.87s
PMOCO-DPD 0.8867 0.07% 8.44s 0.8654 0.06% 13.29s 0.8360 0.06% 32.08s
CNH 0.8794 0.89% 7.32s 0.8587 0.84% 12.03s 0.8294 0.85% 34.76s
CNH-DPD 0.8871 0.02% 8.67s 0.8660 0.00% 15.22s 0.8373 -0.09% 33.57s
WE-CA 0.8803 0.78% 7.33s 0.8591 0.79% 10.52s 0.8304 0.72% 31.34s
WE-CA-DPD 0.8886 -0.14% 7.29s 0.8674 -0.16% 10.17s 0.8377 -0.14% 31.41s
WS-LKH

Bi-CVRP

0.5743 - 6.44m 0.5314 - 44.82m 0.5157 - 4.03h
EMNH 0.5558 3.22% 6.03s 0.5278 0.67% 16.11s 0.5048 2.11% 40.29s
EMNH-DPD 0.5772 -0.50% 6.72s 0.5319 -0.09% 16.88s 0.5258 -1.96% 40.75s
PMOCO 0.5526 3.78% 6.39s 0.5219 1.79% 18.02s 0.5015 2.75% 47.21s
PMOCO-DPD 0.5763 -0.35% 6.51s 0.5308 0.11% 17.44s 0.5173 -0.31% 47.93s
CNH 0.5564 3.11% 7.23s 0.5289 0.47% 19.55s 0.5071 1.67% 52.16s
CNH-DPD 0.5794 -0.88% 7.65s 0.5386 -1.35% 19.98s 0.5261 -2.01% 51.49s
WE-CA 0.5572 2.97% 6.41s 0.5292 0.41% 16.43s 0.5109 0.93% 44.24s
WE-CA-DPD 0.5803 -1.04% 6.23s 0.5382 -1.27% 16.37s 0.5272 -2.23% 43.72s
WS-DP

Bi-KP

0.5832 - 17.45m 0.4948 - 1.42h 0.6783 - 4.23h
EMNH 0.5817 0.26% 5.32s 0.4858 1.81% 17.46s 0.6682 1.49% 40.23s
EMNH-DPD 0.5828 0.06% 5.38s 0.4903 0.91% 18.45s 0.6718 0.96% 40.74s
PMOCO 0.5809 0.39% 7.22s 0.4803 2.93% 16.87s 0.6653 1.91% 48.31s
PMOCO-DPD 0.5829 0.05% 7.88s 0.4897 1.03% 17.94s 0.6712 1.04% 48.92s
CNH 0.5820 0.21% 8.17s 0.4845 2.08% 19.12s 0.6683 1.47% 54.11s
CNH-DPD 0.5832 0.00% 8.49s 0.4901 0.95% 19.46s 0.6742 0.60% 53.74s
WE-CA 0.5823 0.15% 7.24s 0.4852 1.94% 16.18s 0.6691 1.35% 45.72s
WE-CA-DPD 0.5829 0.05% 7.53s 0.4913 0.70% 17.44s 0.6752 0.46% 44.43s
WS-LKH

Tri-TSP

0.6864 - 6.03m 0.6151 - 55.14m 0.4978 - 3.71h
EMNH 0.6719 2.11% 5.12s 0.5831 5.20% 9.43s 0.4829 2.99% 30.31s
EMNH-DPD 0.6885 -0.31% 5.29s 0.6144 0.11% 9.67s 0.4960 0.36% 30.52s
PMOCO 0.6708 2.27% 6.18s 0.5954 3.20% 11.22s 0.4825 3.07% 30.32s
PMOCO-DPD 0.6817 0.68% 7.08s 0.6079 1.17% 12.34s 0.4930 0.96% 32.21s
CNH 0.6791 1.06% 7.32s 0.6049 1.65% 12.67s 0.4872 2.13% 33.86s
CNH-DPD 0.6877 -0.18% 8.11s 0.6127 0.39% 15.42s 0.4938 0.80% 33.14s
WE-CA 0.6793 1.03% 6.33s 0.6051 1.63% 12.45s 0.4876 2.04% 31.41s
WE-CA-DPD 0.6862 0.03% 7.43s 0.6133 0.29% 13.09s 0.4952 0.52% 31.49s

across distinct learning paradigms. We further tested DPD to defend neural solvers against the hard
instances generated by ROCO-RL, which also exhibited evident robustness improvement (see Ap-
pendix D for details).

In terms of computational efficiency, DPD-defended solvers require considerably less runtime com-
pared to non-learnable solvers. For example, WS-DP requires 17.45 minutes to reach the best HV
value on Bi-KP, while CNH-DPD in only 8.49 seconds achieves the same. To further validate
the robustness of our framework, we evaluated DPD on six Bi-TSP benchmark instances from
TSPLIB Reinelt (1991), as well as two large-scale test sets (n = 150/200) (see Appendices E
and F). Overall, these results demonstrate that DPD substantially enhances the robustness of neural
solvers, yielding strong generalization to larger problem sizes and distribution shifts.

6 CONCLUSIONS

In this paper, we investigate the robustness and performance of state-of-the-art neural MOCOP
solvers under diverse hard and clean instances distributions. We proposed an innovative attack
method that effectively generates hard (challenging) problem instances, measuring the vulnerability
in solver’s performance by reducing HV values and increasing optimality gaps compared to base-
line methods. Furthermore, we also proposed a defense method leverages adversarial training with
hardness-aware preference selection, showing improved robustness across various solvers and tasks.
These two methods contribute to solving multi-objective optimization challenges by enhancing the
robustness and generalizability of neural solvers, leading to more robust solutions. In the future, we
aim to extend our method to address dynamic real-world MOCOP instances, integrating domain-
specific constraints, and improving generalizability in online environments.
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A GAUSSIAN MIXTURE GENERATOR

Instead of uniformly distributing the nodes, the Gaussian mixture generator partitions them into clus-
ters, enabling the creation of TSP instances with varying levels of difficulty. The process begins by
determining the number of clusters, nc, sampled from a discrete uniform distribution U(cmin, cmax),
where cmin and cmax denote the minimum and maximum number of clusters, respectively. Following
Zhang et al. (2022), we set cmin = 3 and cmax = 7 in our experiments. Each node is assigned to one
of the nc clusters with equal probability, ensuring a balanced distribution. The center of each cluster
is represented as µi = (µi1, µi2), where µi1 and µi2 denote the x- and y-coordinates of the cluster
center, respectively. These coordinates are uniformly sampled as:

µi ∼ U([0, cDIST]
2), (12)

where cDIST controls the spread of the clusters.

The coordinates of each node, xi, are drawn from a Gaussian distribution N(µci , I), where µci
represents the center of the cluster ci to which node i belongs and I is the identity covariance
matrix. This ensures that nodes within the same cluster are spatially close to their cluster center. To
standardize the coordinates, we apply min-max normalization to scale all nodes into a unit square
[0, 1]2:

x̃i =
xi −min(X)

max(X)−min(X)
, (13)

where min(X) and max(X) are computed dimension-wise across the entire set of nodes X . This
normalization ensures consistency across instances.

By introducing cluster-based distributions, the Gaussian mixture generator generates TSP instances
with diverse spatial structures and controlled levels of complexity, offering a more realistic evalua-
tion of algorithmic robustness compared to uniform sampling.

B MULTI-OBJECTIVE COMBINATORIAL OPTIMIZATION
PROBLEMS

Multi-Objective combinatorial optimization problems (MOCOPs) extend classical optimization
problems by incorporating multiple objectives. This section explores three key problems: the Multi-
Objective Traveling Salesman Problem (MOTSP), the Multi-Objective Capacitated Vehicle Routing
Problem (MOCVRP), and the Multi-Objective Knapsack Problem (MOKP), each involving the op-
timization of competing objectives under specific constraints.

B.1 MULTI-OBJECTIVE TRAVELING SALESMAN PROBLEM (MOTSP)

MOTSP is an extension of the classic single-objective Traveling Salesman Problem (TSP). In
MOTSP, M objectives are considered, with each objective represented by a distinct set of node
coordinates. The aim is to find a tour π, which is a cyclic permutation of the nodes, that simultane-
ously minimizes the costs across all objectives:

minL(π|s) = min(L1(π|s), L2(π|s), . . . , LM (π|s)), (14)

where Li(π|s) denotes the cost for the i-th objective and is calculated as:

Li(π|s) = ci(π(n), π(1)) +

n−1∑
j=1

ci(π(j), π(j + 1)). (15)

Here, ci(j, k) represents the cost of moving from node j to node k under the i-th objective. The
solution to MOTSP often involves trade-offs as it requires minimizing all objective functions simul-
taneously.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B.2 MULTI-OBJECTIVE VEHICLE ROUTING PROBLEM (MOCVRP)

MOCVRP aims to optimize two objectives simultaneously: minimizing the total length of the route,
which is the sum of distances traveled by all vehicles, and minimizing the makespan, defined as the
length of the longest route. This problem involves a depot node and multiple customer nodes, each
with a specific demand qi. A fleet of vehicles, each with a fixed capacity D, starts and ends its routes
at the depot, ensuring that the total demand on any route satisfies the constraint

∑
qi ≤ D.

The total route length can be mathematically formulated as

min f1(π) =

K∑
k=1

nk∑
i=1

dπk(i),πk(i+1), (16)

where K denotes the number of vehicles, nk is the number of customer nodes in the k-th route, and
dπk(i),πk(i+1) is the distance between consecutive nodes in the route. The makespan, representing
the longest route among all vehicles, is expressed as

min f2(π) = max
k∈{1,...,K}

nk∑
i=1

dπk(i),πk(i+1). (17)

In addition, the solution must satisfy two key constraints. Each customer must be visited exactly
once, and all routes must start and end at the depot. This problem models real-world scenarios
where optimizing operational efficiency and resource utilization is critical in multi-vehicle delivery
systems.

B.3 MULTI-OBJECTIVE KNAPSACK PROBLEM (MOKP)

The Knapsack Problem (KP) is a classic problem in combinatorial optimization, and MOKP is an
extension of KP, involving m objectives and n items. The goal of this problem is to maximize the
values of multiple objective functions:

f(x) = max(f1(x), f2(x), . . . , fm(x)), (18)

where each objective function is defined as

fi(x) =

n∑
j=1

vijxj . (19)

The constraints are given by
n∑

j=1

wjxj ≤ W, with xj ∈ {0, 1}. (20)

Each item has a weight wj and m different values vij , where i = 1, 2, ...,m. The knapsack has a
maximum weight capacity W , and the objective is to select a set of items such that their total weight
does not exceed the capacity W , while maximizing the sum of values for each objective.

C ABLATION STUDY

Ablation studies were conducted on critical hyperparameters of the proposed attack method, with
experiments performed on three-objective 50-node TSP instances.

C.1 IMPACT OF GRADIENT ITERATION COUNTS

The iteration count t in Equation (5) of the mian paper is varied from 1 to 10 to evaluate its impact
on the HV values and the gap relative to the LKH. As illustrated in Figure 4, the gap peaks at t = 3
and t = 8, with the maximum observed at t = 3. Consequently, t = 3 is selected in our experiment
to balance computational efficiency and performance analysis.
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Figure 3: HV Gaps for Different α.

C.2 IMPACT OF GRADIENT UPDATE PARAMETERS

The radar graph 3 illustrates the relationship between the step size α in Equation (5) of the main
paper and their HV gaps, showing that the gap reaches its maximum values in α = 0.01. Therefore,
to maximize the effectiveness of the attack, α = 0.01 is adopted in our experiments.

Figure 4: Impact of Iteration Counts on HV and
Gap.

Figure 5: Benchmark Performance Comparison
on HV Metric.

D ROBUST TRAINING ON ROCO-ADVERSARIAL INSTANCES

Setup. We adopt an offline setting where ROCO is used to pre-generate a pool of adversarial
instances, which are then used together with clean data in our DPD framework. For each problem
and size, we define a preference grid Λ (Bi-objective: |Λ|=101; Tri-objective: |Λ|=105) and draw
M clean instances per λ ∈ Λ from the uniform distribution used in the original solvers. Running
ROCO on these clean instances under WS scalarization produces an adversarial set for each λ;
pooling them yields DROCO

hard . To ensure fairness, the per-λ ROCO budget (number of adversarial
instances or wall-clock time) is matched across λ and aligned with the budget used in our PAA
experiments.

Training. In each epoch, we build the training set

Dtrain = Dclean ∪ DROCO
hard .

Mini-batches are sampled by stratified sampling over λ and data source (clean vs. ROCO), with
a default 1:1 ratio. We keep the DPD pipeline unchanged: for each mini-batch we generate N
perturbed preferences {λ′

i}Ni=1 in an ϵ-neighborhood of the batch preference and renormalize them
to the simplex; we compute Tchebycheff values for {λ′

i}, form relevance scores via Eq. (8), pick
the weakest preference λ′

adv by Eq. (9), and update the policy by REINFORCE using Eq. (11). All
other optimization hyperparameters (optimizer, learning rate, batch size, RL baselines) follow the
corresponding original solvers.

14
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Evaluation protocol. We evaluate on Gaussian-mixture test sets (200 instances per setting) with
cluster spread cDIST ∈ {10, 20, 30, 40, 50} for Bi-TSP and Bi-CVRP at node sizes {20, 50, 100}.
Metrics include mean HV (higher is better), mean relative HV gap (lower is better) computed against
WS-LKH (MOTSP/MOCVRP).

Results. As shown in Table 3, ROCO-trained models (our solvers trained with DROCO
hard under DPD)

consistently improve HV and reduce optimality gaps over counterparts trained without DPD, while
incurring negligible runtime overhead, validating that offline ROCO-adversarial data, when fed
through our DPD scheme, yields robust gains under distribution shift.

Table 3: Defense performance when training with ROCO-adversarial instances.

Method Defense Bi-TSP (50 nodes) Bi-CVRP (50 nodes)
HV ↑ Gap ↓ Time ↓ HV ↑ Gap ↓ Time ↓

PMOCO None 0.8566 1.08% 11.33s 0.5219 1.79% 18.02s
PMOCO ROCO-DPD 0.8583 0.88% 13.41s 0.5271 0.81% 18.11s
PMOCO PAA-DPD 0.8654 0.06% 13.29s 0.5308 0.11% 17.44s
CNH None 0.8587 0.84% 12.03s 0.5289 0.47% 19.55s
CNH ROCO-DPD 0.8632 0.32% 16.04s 0.5345 −0.58% 19.23s
CNH PAA-DPD 0.8660 0.0% 15.22s 0.5386 -1.35% 19.98s

E BENCHMARK EVALUATIONS

Similarly to previous studies Li et al. (2021a) Fan et al. (2024), we evaluated the performance of
our DPD framework on six Bi-TSP100 benchmark instances4: kroAB100, kroAC100, kroAD100,
kroBC100, kroBD100 and kroCD100, which were constructed by combining instances from the
kroA100, kroB100, kroC100, and kroD100 instances.

As illustrated in Figure 5, models trained on the hard instances consistently outperform those trained
on the clean instances in all the problem instances. The CNH-DPD model achieves the HV values
among the learned models, closely approaching the exact PF. In particular, in kroAC100, PMOCO-
DPD and CNH-DPD achieve HV values that are 1.4% and 1.7% higher than those of PMOCO and
CNH, respectively. In kroBC100 and kroBD100, the HV values for DPD-enhanced models are
within 0.1% of the exact PF, demonstrating their competitive performance and robustness. These
results underscore the effectiveness of the proposed approach in handling diverse instance distribu-
tions and enhancing solver adaptability under adversarial conditions.

F GENERALIZATION STUDY

We evaluate the generalization capability of DPD on two types of larger scale test instances
(n = 150/200) including clean instances and mixed Gaussian instances. As illustrated in Table 4,
our model demonstrates remarkable robustness across both test scenarios while maintaining strong
performance under varying instance distributions.

Table 4: Comparison of Bi-TSP performance with n = 150 and n = 200 on 200 clean and Mix Gaussian test
instances.

Method Clean Instances Gaussian Instances
Bi-TSP (n = 150) Bi-TSP (n = 200) Bi-TSP (n = 150) Bi-TSP (n = 200)

HV Gap Time HV Gap Time HV Gap Time HV Gap Time
WS-LKH 0.7149 - 13h 0.7490 - 22h 0.8506 - 13h 0.8790 - 22h
PMOCO 0.7028 1.69% 55.38s 0.7318 2.29% 1.52m 0.8367 1.63% 55.87s 0.8608 2.07% 1.52m
PMOCO-DPD 0.7091 0.81% 57.22s 0.7327 2.17% 1.59m 0.8430 0.89% 57.22s 0.8660 1.47% 1.59m
CNH 0.7043 1.48% 57.45s 0.7324 2.21% 1.53m 0.8379 1.49% 57.49s 0.8598 2.18% 1.53m
CNH-DPD 0.7104 0.63% 58.33s 0.7374 1.54% 2.02m 0.8427 0.92% 58.36s 0.8649 1.60% 2.05m

4https://sites.google.com/site/kflorios/motsp?pli=1
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