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Abstract

In the modern interconnected landscape, the
proliferation of smart devices leads to the con-
tinuous collection of extensive and varied per-
sonal multi-modal data. This situation neces-
sitates the development of sophisticated, per-
sonalized, and device-aware services. Tradi-
tional Al systems, mainly cloud-based, face
considerable hurdles in adapting to the dynamic
data flow between cloud services and devices.
While HyperNetworks have enhanced perfor-
mance and real-time processing over conven-
tional fine-tuning approaches, they tend to be
over-parameterized due to the underutilization
of consistent data types. Our solution, Sta-
bleSynthNet, is a novel system consisting of
three components: Driver Contrastive Training,
Template-Driver Extraction, and Offset-Driver
Separation. This design uniquely separates the
template parameter driver, which houses com-
mon data characteristics, from the offset param-
eter driver, where individual data specifics are
stored. The resulting combined driver achieves
an optimal mix of consistency and adaptability.
Our extensive testing in the fields of video ques-
tion answering and video retrieval has demon-
strated the superior efficiency and effectiveness
of StableSynthNet.

1 Introduction

In the current digital age, the widespread adop-
tion of smart devices, encompassing everything
from smartphones to the expansive Internet of
Things network, is a fundamental aspect of daily
life. These devices gather vast amounts of personal
data in various forms such as text, images, and
videos. This rich and varied data holds significant
promise for providing highly personalized services.
However, efficiently processing this ever-changing
data to accurately reflect user preferences is a pri-
mary challenge (Howard et al., 2019; Sandler et al.,
2018; Howard et al., 2017).

Currently, most Al systems operate in the cloud
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Figure 1: The pipeline of HyperNetwork-based Method
and our proposed StableSynthNet.

and struggle to adjust to the distinct data character-
istics of each device due to the variable distribution
of data between the cloud and individual devices.
Therefore, to deliver high-quality, personalized ser-
vices, Al systems must be designed to continuously
evolve and adapt to the unique and fluctuating na-
ture of user-specific data.

A seemingly simple approach to bridge the gap
between cloud-based Al systems and individual de-
vices involves modifying the cloud model with data
from these devices, addressing the disparity in data
distribution. However, this method, known as fine-
tuning adaptation (FTA), faces several challenges.
FTA often requires extensive manual data labeling,
leading to delays in the Al system’s responsiveness.
This problem is exacerbated by the complexities of
interpreting multi-modal data, making FTA ineffi-
cient for real-time applications. Additionally, FTA
is prone to overfitting, especially in devices with
limited or highly specific data, which can degrade
the model’s performance across various devices
(Chen and Wang, 2021; Li et al., 2020; Yuan et al.,
2022a,b; Zhang et al., 2020, 2021, 2023b).

Recently, HyperNetwork-based methodologies
(Dinh et al., 2022; Ha et al., 2017; Yi et al., 2023)
have gained traction as a means to enhance model



generalization across diverse data distributions.
These methodologies dynamically generate model
parameters tailored to each individual data sam-
ple’s unique distribution. However, when facing
real-time samples with intense distribution fluc-
tuations, HyperNetworks exhibit significant per-
formance variability due to over-parameterization,
leading to inefficiencies and complexities in model
deployment and scalability. Additionally, Hyper-
Networks require fine-grained features for optimal
performance. Meanwhile, the high communication
cost and slow speed between edge and cloud pre-
vent the guaranteed upload speed of fine-grained
features.

To effectively address this challenge, our work
introduces StableSynthNet, which decouples the
Parametric Driver used to generate model param-
eters in the HyperNetwork-based method into a
Template Parametric Driver and an Offset Paramet-
ric Driver. This approach avoids the shortcomings
of over-parameterization caused by HyperNetwork-
based rapid generalization of device models.

The model is built on three basic pillars: Driver
Contrastive Training, Template-Driver Extrac-
tion, and Offset-Driver Separation. Driver Con-
trast Training uses contrastive learning to move
the Parametric Driver closer to the same type and
farther from different types, improving separability.
Template Driver Extraction focuses on creating
diverse Template Parametric Drivers, each encap-
sulating homogeneous information from a sample
category. This driver utilizes information from sim-
ilar samples, which existing HyperNetwork-based
methods ignore. Offset-driver Separation ex-
plores and establishes invariant representations in
data. It dynamically updates the Template Paramet-
ric Driver to improve its representation capabilities
and separates the Shift Parametric Driver to achieve
stability and generalization compatibility.

Our work makes several key contributions:

* We propose a unique framework, StableSynth-
Net, that decouples model generalization from
the pitfalls of over-parameterization, advanc-
ing HyperNetwork-based methodologies.

* The Template-Driver Extraction learns sta-
ble multi-modal representations for Hyper-
Network generalization. Driver Contrastive
Training ensures intra-class compactness, and
Offset-Driver Separation explores invariant
representations.

» Extensive experiments on video question an-
swering and video retrieval tasks verify the
efficiency and effectiveness of our method.

2 Related Works

Cloud-device Collaboration. In cloud-device col-
laboration, deep learning combines cloud resources
with on-device processing for enhanced perfor-
mance. Federated Learning, exemplified by Fe-
dAVG (Collins et al., 2022), faces scalability and
efficiency challenges. Methods like Multi-Path De-
vice Adaptation (Yan et al., 2022) improve on-
device model performance using cloud-based sam-
ples, bridging centralized training and decentral-
ized execution. DUET (Lv et al., 2023b) simplifies
model adaptation by pre-training components in
the cloud, reducing on-device computational de-
mands. IDEAL (Lv et al., 2023a) extends parame-
ter generation-based models to recommender sys-
tems, focusing on cross-domain recommendation
(Zhang et al., 2023a) for better model generaliza-
tion. However, HyperNetwork methods often face
instability and delays due to over-parameterization,
affecting training and deployment efficiency. To ad-
dress this, we introduce StableSynthNet, designed
to mitigate over-parameterization, ensuring stable
model adaptation and improved efficiency. This
enhances device model robustness and adaptability
in dynamic environments, advancing cloud-device
collaborative deep learning.

Domain Adaptation. Domain Adaptation (DA)
transfers a network trained on a labeled source
domain to a target domain, especially when their
data distributions differ. Techniques like maximum
mean discrepancy and correlation alignment reduce
distribution discrepancies to improve generaliza-
tion. Various methods, such as multi-stage (Zhang
et al., 2019; Chen et al., 2021) and gradual trans-
fer strategies (Chen et al., 2019), incrementally
align domains. Curriculum-based strategies (Shu
et al., 2019; Roy et al., 2021) structure adaptation
by increasing task complexity. Source-Free Do-
main Adaptation addresses privacy concerns by
operating without source domain data. DA has
been applied to tasks like action recognition (Wang
et al., 2023b), natural language processing (Mosal-
lanezhad et al., 2022), and object detection (Ahmed
et al., 2023; da Costa et al., 2022), demonstrating
its broad applicability. In summary, DA methods
align feature distributions to improve performance.
We propose StableSynthNet, a novel approach for



device model generalization, enhancing robustness
and adaptability across diverse domains.

3 Method

3.1 Preliminary

Problem Formulation. For the on-Device Multi-
modal Model Adaptation (DMMA) in the device-
cloud collaboration system, we have access to a
set of devices D = {d(?) }?idl, each device with its
personal i.i.d multi-modal history samples Sy
and multi-modal real-time samples Sy in cur-
rent session, where Ny represents the number
of devices. The goal of on-Device Multi-modal
Model Adaptation is to generalize a trained cloud
model M, (+; ©) learned from {S ;) };-\iil to each
specific local device model M ;) (+; © 40:)) condi-
tioned on real-time samples Sp:), where ©4 and
© ) respectively denote the learned parameters
for the cloud model and the i-th device model:

StableSynthNet : M, ({S; }1Y%:0,)
DMMA Model

Clouﬁ\lodel (1)
— My (Sr); Og)) -

Device Model

Figure 2 illustrates the overview of our frame-
work which consists of two modules to improve
the generalization ability of the trained models on
the device: (a) HyperNetwork-based generalization
aims to learn a global benchmark model based on
the history samples of all distributions and generate
the network parameters for the distribution-specific
device model based on the real-time device sam-
ples; (b) StableSynthNet standardizes the input for
the HyperNetwork across various multi-model sam-
ples. (in Sec. 3.2).

Model Pipeline. There are three steps in the
pipeline of our framework: (1) Training the cloud
model M,(.), including the HyperNetwork-based
generalization module and the StableSynthNet
module, with the history samples Sg. (2) Upload-
ing the real-time samples Sy from the device
side to the cloud side. Then, the cloud side model
M,(.) generates the personalized parameters for
the device model M ;) (.). (3) With the model
parameters passed from the cloud side, the device
model M y(; (.) is updated and makes the final pre-
diction based on the input read-time samples.

Multi-modal Feature Extraction. We extract the
multi-modal representation needed for the subse-
quent processes from the input examples. Specifi-

cally, given a real-time input video V,. and a corre-
sponding language query ()., we employ the DeiT
(Touvron et al., 2021) as the visual feature extractor
and the BERT-base language model (Devlin et al.,

2019) as the text encoder, obtaining F, = {Fg}f\ifl,
which represents the features of all video frames
and Ny is the video frame number, and the seman-
tic feature F; of the query.

We adopt the spatial-temporal positional em-
bedding and modality type embedding following
(Wang et al., 2023a) to the extracted features F,
and F; and get the corresponding embedded fea-
tures B, = {Ef)}f\[:fl and E;. Then, the cross-
modal fusion module g(.) consisted of ¢ trans-
former layers is employed to fuse the visual fea-

tures F, and the language feature Ej:

Fm :g(Equt)a (2)

where F,, = {Fi} is the generated multi-
modal features after the feature fusion.
HyperNetwork-based Generalization. Adapting
the cloud model to real-time samples on a personal-
ized device usually includes on-device fine-tuning.
However, this can be challenging due to limited
training samples and annotations on the device. To
address this, we propose the HyperNetwork-based
generalization, a novel solution implemented as
a cloud service. This module processes images
captured by the device, generating device-specific
parameters. These parameters are meticulously
crafted to adapt to the distinct data distributions
encountered on each device.

Specifically, we further sample D(D > 1)
frames from F;,, randomly, and average the in-
cluded D frames of multi-modal features into the
global representation F,. Meanwhile, only one
frame is then randomly sampled, and its multi-
modal feature F’, is uploaded from the device side
to the cloud side. Then, we project the feature £,
before it is further analyzed:

Oa = fu(fo(F)), 3)

where f,(.) represents the multi-layer perceptrons
and generates real-time sample embedding for
hyper-network (Dinh et al., 2022; Ha et al., 2017)
fn(.). The generated © is the parameters for a
single linear layer including both the linear weights
and bias, which will be passed to the device model.

The device model M, is updated with the model
parameters O, and makes the prediction P, for the
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Figure 2: Overall pipeline of our proposed StableSynthNet, which includes Driver Contrastive Training, Template-
Driver Extraction, and Offset-Driver Separation. StableSynthNet is deployed on the cloud and uniquely separates
the template parameter driver, which houses common data characteristics, from the offset parameter driver, where
individual data specifics are stored. Our approach achieves an optimal mix of consistency and adaptability.

input multi-model real-time sample:

P = My(Fy; 04).

“4)

3.2 StableSynthNet

StableSynthNet is designed to adapt to diverse
multi-modal tasks using specific data inputs. How-
ever, tasks like Video QA require transmitting large
amounts of data (e.g., multiple frames or entire
videos) to the HyperNetwork, leading to high com-
munication costs and bandwidth requirements. To
address this and improve HyperNetwork adaptabil-
ity across multi-modal tasks, StableSynthNet stan-
dardizes the input format for compatibility.

With bandwidth limitations, an uploaded one-
frame multi-modal representation can suffer signif-
icant distribution shifts. To mitigate this, we use
template-driver extraction to maximize discrimi-
native power between categories. By measuring
invariance within each category and dynamically
updating the multi-modal template, StableSynth-
Net ensures a consistent embedding space for ac-
curate HyperNetwork-based generalization.
Driver Contrastive Training. During the train-
ing process, all history samples are directly saved
on the cloud side and participated in the training

process, following the setting of previous methods
(Yao et al., 2021).

Formally, given a sample s; with category label
a; in the batch S = {53}, , we can construct its
positive set P.S; = {si|a; = a }r-; and negative
set PN; = {sp|a; # ai}r+;. With the training
data, we use an InfoNCE loss to optimize the Sta-
bleSynthNet:

N

Lcl = Z_IOg

i=1

f pos

_— 5
fpos+fneg ©)

To further boost the sensitivity to different repre-
sentations of categories, we additionally introduce
an angular margin m for the positive pairs. For-
mally, we formulate fj,s and fpcq as:

fpos — Z ecos(Gi’j+m)/T7

SjGPSi (6)
fneg = Z ecos(am)/T?

SQENGl'

where T is a temperature hyper-parameter, N is the
batch size, ¢; ; is the arc-cosine similarity between
the uploaded one-frame multi-modal features of s;
and s;.



Offset-Driver Separation. We propose the offset-
driver separation to further promise the consistent
representation of samples.

Specifically, we say that a consistent represen-
tation ® : X — H elicits an invariant predictor
w across the positive set ¢ if there is an optimizer
w : H — Y simultaneously optimal for all samples
from the positive set. The learning objective can be
formulated as:

w € argming. g—y O¢(w, P). @)

Eq. 7 tries to learn a feature representation from
®(-) that can induce an optimizer w(-) which is
simultaneously optimal for all e € . Thus, we
propose the invariant representation regularization
which can be formulated as:

N
Lirm = Y _ AVar (L"), (8)
=1

where L' = {L¢ (j) |a; = a;} denotes the loss
values of samples from the positive set, and A is a
hyper-parameter. The minimization of variances
of loss values encourages consistent representation
learning for each category label (Arjovsky et al.,
2020).
Template-Driver Extraction. Specifically, we
specify the total template space Pjype € RV*Q,
where V' is the same as the size of multi-modal fea-
ture embedding. Then we dynamically update the
template space depending on the degree of invari-
ance during the driver contrastive training process.

Given a batch .S, we can construct multiple pos-
itive sets PS = {ps1, psa, ..., psp} with different
category labels, where P is the number of different
category labels in the batch S.

For every positive set in the P.S with category a;,
we obtain its average multi-modal representation
embedding as follows:

1 a;

= o Loci i ©)
where N% denotes the number of samples with
category label a; in the batch .S, and h; denotes
the multi-modal feature of sample. We average
the summation of all multi-modal representations
with the same category label in the batch to get the
average feature embedding.

With the help of observed invariant representa-
tion, we update the template space for category
label a; with a moving average approach:

HY

aver

Ptayipg = 6Pt(2%)e + (1 - ﬁ)nggpm

, 1 , ‘
Hppr = W(H&er = Pge)- (10)
—

Approach Speed

where Hgy . is formulated as below, and 5 and
are hyper-parameters:

During inference stage, in order to incorporate
the various distribution shifts into the feature of the
single video frame, we attempt to fuse the uploaded
feature I, with category label a; and its template
Pt‘;’be.

We re-normalize the P;,, to have the same
channel-wise mean and standard deviation as the
F!, (Luo et al., 2020). This process can be formu-

lated as follows:

Ta‘(Pt(;jpw F;n> = 6(‘Ptaylpe) (%ﬁj‘;ﬁz)) + V(Pt(;lﬁe)a
(11)
where §(-) and ~y(-) denotes channel-wise mean
and standard deviation operations, respectively.
Finally, the fused multi-modal feature is ob-
tained by the following process:

F' = \Ya(P¥, ,F.)+ (1 - NE!,

type’ ~ m

(12)

where the ) is a hyper-parameter.

The feature F’ is applied to replace the global
representation of the input sample F, defined in
Eq. 3 for further prediction of the personalized
model parameters.

4 Experiment

4.1 Tasks and Implementation Details

Tasks. We evaluate our method on three tasks: (1)
Video-text Retrieval: We evaluate two sub-tasks
including video-to-text retrieval and text-to-video
retrieval. (2) Open-ended Video-question An-
swering: It requires answering questions accord-
ing to the context of the video. The answers are
originally in free-form natural language, but it is
a common practice to convert the task to a clas-
sification task by representing the answer with a
class label. (3) Multiple-choice Video-question
Answering: Given a video with a query and 5 can-
didate captions, the task is to find the one that fits
the query out of 5 possible candidates.



Table 1: Results of our proposed method in Open-ended Video QA task. We evaluate our method on three datasets:
MSRVTT-QA, MSVD-QA, and TGIF. We adopt accuracy as the evaluation metric and the time delay is additionally
measured to show the efficiency of our proposed method. “F-linear" denotes only fine-tuning the classifiers after
the multi-modal feature extractor. “F-hyper" denotes only fine-tuning the classifiers and a simple hyper-network

without an adaptive generator.

Mothods | MSRVTT-QA | MVSD-QA | TGIF
cHhods | Accuracy | TimeDelay | Accuracy | TimeDelay | Accuracy | Time Delay
Flinear | 136 | >60000ms | 173 | >60000ms | 273 | >60000ms
Fine-tuning | 36.7 | >60000ms | 343 | >60000ms | 54.7 |  >60000ms
F-hyper | 11.1 | >5.55ms | 6.34 | >3.71ms | 19.6 | >5.70ms
Ours | 36.9 | >5.55ms | 353 | >3.71ms | 55.5 | >5.70ms

Table 2: Performance comparison (Accuracy and la-
tency) between DUET and our method on three datasets.
MSR. denotes MSRVTT, MSV. denotes MSVD, and
TGI. denotes TGIF.

Meth, | MSR. | MSV. | TGL
e ‘Acc.‘ Lat. ‘Acc.‘ Lat. ‘Acc.‘ Lat.

DUET | 334 | 1.80s | 34.2 | 1.88s | 55.2 | 2.00s
Ours |36.9 | 1.24s|35.3 | 1.16s | 55.5 | 0.99s

4.2 Datasets

For the open-ended Video QA task, we use the
MSRVTT-QA dataset (Xu et al., 2017), MSVD-
QA dataset (Xu et al., 2017) and the TGIF dataset
(Li et al., 2016). For the multiple-choice Video QA
task, we use the MSRVTT-QA dataset (Xu et al.,
2017). For the video-text retrieval task, we experi-
ment on the MSRVTT dataset (Xu et al., 2016).

4.3 Evaluation Metrics

Following previous works, we adopt accuracy for
the open-ended Video QA task, and VR@K (video
to text retrieval), TR @K (text to video retrieval) for
the video-text retrieval task. For both of these two
tasks, K is set to 1,2,5 respectively. Additionally,
we calculate the number of learnable parameters in
each model. Meanwhile, for the practical scenario
of cloud-device collaboration, we also measure the
time delay for the cloud-device communication
process.

Implementation Details. We use the All-in-One-
Ti model (Wang et al., 2023a) as our baseline, in-
tegrating DeiT (Touvron et al., 2021) as the visual
backbone and BERT-base (Devlin et al., 2019) (us-
ing only its embedding layers) as the semantic en-
coder. Both the device and cloud models employ
this multi-modal encoder. The parameter D is set
to 3. During training, we use the AdamW optimizer

with a polynomial decay scheduler, a learning rate
of 2e-5, and 10 epochs. For other modules, we
freeze the adaptive generator parameters, use the
AdamW optimizer with a learning rate of le-4, and
train for 40 epochs. During training, A is set to 0.1,
and the hyper-network’s hidden layer size is 96 for
Open-ended and Multiple-choice VQA, and 256
for Video-text Retrieval. During inference, all pa-
rameters are frozen except for the last few dynamic
linear layers of the device model. The cloud model
and the device model share the same multi-modal
encoder parameters. The cloud generates dynamic
parameters using the hyper-network for the device
model to enhance generalization.

4.4 Performance Comparison

Baseline Methods. As the first to explore this field,
we design three baseline methods to demonstrate
the superiority of our proposed method. In Tab. 1,
we present the fine-tuning approach, fine-tuning
only the linear classifiers approach (F-linear), and
fine-tuning both the linear classifiers and the hyper-
network approach (F-hyper). (1) Fine-tuning ap-
proach: We add layers of MLPs after the multi-
modal feature extractor and fine-tune the entire
model. (2) F-linear: We freeze the parameters
in the multi-modal feature extractor and fine-tune
only the MLP layers. (3) F-hyper: We use a sim-
ple hyper-network without the adaptive generator
and fine-tune both the MLP layers and the hyper-
network.

(1) Open-ended Video-question Answering. For
Open-ended Video-question Answering, responses
are expressed in unrestricted natural language but
often transformed into a classification problem by
encoding answers as class labels. We incorporate
layers of MLPs with a hidden layer dimension of 96
after extracting multi-modal features. The MLP’s
output layer dimension varies with the label size of



Table 3: Results of our method in Text-video Retrieval task. “VR@K" denotes the recall rate of video-to-text
retrieval, and “TR@K" presents the recall rate of text-to-video retrieval.

Methods | MSRVTT
RO [TVR@l | VR@5 | VR@I0 | TR@I | TR@5 | TR@IO
Flinear | 20 | 77 | 141 | 31 | 1001 | 169
Fine-tuning | 48 | 176 | 279 | 62 | 207 | 318
F-hyper | 26 | 86 | 147 | 27 | 114 | 176
Ours | 58 | 202 | 312 | 64 | 204 | 331

Table 4: Ablation studies of different numbers of sampled frames. We make the evaluation on three datasets in
Open-ended Video-question Answering task. “Time/Epoch" denotes the time of fine-tuning for each epoch.

Frames | MSRVTT-QA | MSVD-QA | TGIF
| Accuracy | Time/Epoch | Accuracy | Time/Epoch | Accuracy | Time/Epoch
2 | 361 | 740 | 341 | 204s | 543 | 245s
3| 367 | 897 | 343 | 228 | 547 |  310s
4 | 370 | 1309 | 343 | 318 | 547 | 448s
5 | 371 | 2092 | 340 | 377 | 552 | 702s

the dataset, e.g., 1501 labels for the MSRVTT-QA.

(2) Multiple-choice Video-question Answering.
For Multiple-choice Video-question Answering,
where questions and candidate answers are sen-
tences, we concatenate the question and answer
candidates using the [SEP] token. We predict the
answer by selecting the candidate with the highest
output logit.

(3) Video-text Retrieval. For Video-text Retrieval,
the retrieval process includes text-to-video and
video-to-text retrieval. Each modality is extracted,
followed by a comparative analysis. Predictions
are generated through MLPs.

Model Effectiveness. Tab. 1, Tab. 6, and Tab. 3
highlight our method’s superiority over baseline
approaches across various datasets and evaluation
criteria. Our method consistently outperforms al-
ternatives in nearly all aspects. The conventional
fine-tuning method requires approximately 897 sec-
onds per epoch on the MSRVTT dataset when se-
lecting three frames from the entire video (Tab. 4).
In contrast, our method achieves nearly real-time
communication, reducing the time delay between
the cloud and the device to as little as 5.55ms,
depending on internet conditions. Moreover, our
method surpasses the fine-tuning approach in per-
formance, indicating superior fast generalization

on personalized samples. As shown in Tab. 2, we
compare our method with the hypernetwork-based
method DUET (Lv et al., 2023b), which suffers
from overparameterization. Overparameterization
can improve generalization but also increases the
risk of overfitting, especially with noise and non-
representative features (Sankararaman et al., 2020).
Hypernetworks need to generate output parameters
for each image frame, incurring significant cloud
computing and communication costs. Our method
leverages single-frame video information, achiev-
ing commendable performance while substantially
reducing reasoning and training durations. Com-
pared to the conventional HyperNetwork approach
(DUET) (Lv et al., 2023b), which relies on a (5 x
192) shaped input and 28.2M FLOPs calculation,
our method uses only a (1 x 192) shaped input
and 0.62M FLOPs calculation, demonstrating su-
periority in both inference latency and accuracy, as
illustrated in Table 2.

Model Extensibility. Our proposed approach ex-
hibits the capacity to enhance accuracy while con-
currently reducing time delays across all datasets
associated with the three specific tasks. As delin-
eated in Tab. 3, our methodology yields a signifi-
cant performance improvement, particularly in the
domain of text-video retrieval. Our assessment



Table 5: Time delay of our framework in different circumstances (various internet speeds) on different datasets.
“ 47 denotes the upload process from the device to cloud. “ | ” denotes the parameters downloaded from the cloud

to device.

Datasets | Size | 4G:5MB/s | 4G:15MB/s | 5G:50MB/s | 5G:100MB/s
1:0.75KB 1:0.15ms 1:0.05ms 1:0.01ms 1:0.007ms

MSRVTT 4:568.5KB $:111ms 4:37.0ms $:11.1ms 4:5.55ms

MSVD 1:0.75KB 1:0.15ms 1:0.05ms 1:0.01ms 1:0.007ms
4:379.4KB $:74ms $:24.7Tms $:7.41ms $:3.71ms

TGIF 1:0.75KB 7:0.15ms 1:0.05ms 1:0.01ms 7:0.007ms
4:583.8KB $:114ms $:38.0ms $:11.4ms 4:5.70ms

Table 6: Results of our proposed framework in the
multiple-choice Video QA task.

Methods Accurell\(/:ls R\‘]Tr;i%‘: Delay
F-linear | 358 | >60000ms
Fine-tuning | 756 | >60000ms
F-hyper ‘ 46.0 ‘ >5.70ms
Ous | 762 | >570ms

encompasses a two-directional approach, address-
ing both text-to-video retrieval and video-to-text
retrieval. Remarkably, our method surpasses the
majority of baseline methods, not only in terms
of accuracy but also with respect to time delays.
In the context of multiple-choice Video QA, our
approach consistently asserts its superiority across
all evaluation metrics. This is evident from the data
presented in Tab. 6.

4.5 Ablation Studies

Number of Sampled Frames. In Tab. 4, we exam-
ine how the number of sampled frames D affects re-
sults and fine-tuning time per epoch in Open-ended
Video-question Answering across three datasets.
Using a batch size of 256 on a single A100 GPU
(80G), we find that increasing frames significantly
raises fine-tuning time per epoch. For instance, fine-
tuning with two frames on MSRVTT-QA takes 740
seconds, while five frames take 2092 seconds. Per-
formance peaks at three or four frames, so we set D
to three to balance performance and training cost.
The HyperNetwork generates parameters based on
the input sample distribution, with higher dimen-
sional information helping to find more discrimi-

native features. Increasing the number of frames
improves dynamic parameter performance but also
increases training time. Hence, three frames are
chosen to balance training time and performance.
Different Modules in Our Proposed Framework.
In Tab. 1, we introduce three baseline methods
to evaluate our framework. We compare the fine-
tuning model with our proposed model to demon-
strate its superiority. The "F-linear" model is
used for an ablation study of the classifiers post
multi-modal feature extraction, while the "F-hyper"
model examines the hyper-network and adaptive
generator. Notably, omitting the adaptive genera-
tor leads to sub-optimal performance, particularly
on datasets like MSRVTT-QA, MSVD-QA, and
TGIF, due to over-fitting and spurious correlations
between visual cues and predictions. Our adap-
tive generator significantly improves the hyper-
network’s performance by incorporating anchor-
frame distribution reasoning.

Time Delay between Cloud and Device in Vari-
ous Internet Conditions. Tab. 5 illustrates the time
delay associated with data transmission between
cloud services and devices under various internet
conditions. These scenarios represent older mobile
devices with limited or optimal 4G connectivity
and modern devices with basic or advanced 5G
connectivity. Our method shows significant im-
provements in time delay.

5 Conclusion

We developed an on-device multi-modal model
adaptation framework, which revolutionizes on-
device model adaptation for lightweight multi-
modal models. Rigorous testing has demonstrated
its efficacy and practicality across various scenarios
and datasets.



6 Limitations

The StableSynthNet framework, while showing
great potential, may benefit from further explo-
ration in terms of scalability, particularly in how it
adapts to an expanding range of data diversity and
volume. Additionally, its cross-domain applicabil-
ity could be a subject for future research to ensure
that the framework remains versatile across differ-
ent application scenarios. The integration process
with various existing systems might offer opportu-
nities for smoother deployment, and the long-term
maintenance of the model could be optimized for
evolving data landscapes. Lastly, the ethical use
and transparency of the model’s decision-making,
as with any Al system, are important aspects that
can be continually enhanced to build trust and en-
sure responsible Al development.
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