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Abstract001

In the modern interconnected landscape, the002
proliferation of smart devices leads to the con-003
tinuous collection of extensive and varied per-004
sonal multi-modal data. This situation neces-005
sitates the development of sophisticated, per-006
sonalized, and device-aware services. Tradi-007
tional AI systems, mainly cloud-based, face008
considerable hurdles in adapting to the dynamic009
data flow between cloud services and devices.010
While HyperNetworks have enhanced perfor-011
mance and real-time processing over conven-012
tional fine-tuning approaches, they tend to be013
over-parameterized due to the underutilization014
of consistent data types. Our solution, Sta-015
bleSynthNet, is a novel system consisting of016
three components: Driver Contrastive Training,017
Template-Driver Extraction, and Offset-Driver018
Separation. This design uniquely separates the019
template parameter driver, which houses com-020
mon data characteristics, from the offset param-021
eter driver, where individual data specifics are022
stored. The resulting combined driver achieves023
an optimal mix of consistency and adaptability.024
Our extensive testing in the fields of video ques-025
tion answering and video retrieval has demon-026
strated the superior efficiency and effectiveness027
of StableSynthNet.028

1 Introduction029

In the current digital age, the widespread adop-030

tion of smart devices, encompassing everything031

from smartphones to the expansive Internet of032

Things network, is a fundamental aspect of daily033

life. These devices gather vast amounts of personal034

data in various forms such as text, images, and035

videos. This rich and varied data holds significant036

promise for providing highly personalized services.037

However, efficiently processing this ever-changing038

data to accurately reflect user preferences is a pri-039

mary challenge (Howard et al., 2019; Sandler et al.,040

2018; Howard et al., 2017).041

Currently, most AI systems operate in the cloud042
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and our proposed StableSynthNet.

and struggle to adjust to the distinct data character- 043

istics of each device due to the variable distribution 044

of data between the cloud and individual devices. 045

Therefore, to deliver high-quality, personalized ser- 046

vices, AI systems must be designed to continuously 047

evolve and adapt to the unique and fluctuating na- 048

ture of user-specific data. 049

A seemingly simple approach to bridge the gap 050

between cloud-based AI systems and individual de- 051

vices involves modifying the cloud model with data 052

from these devices, addressing the disparity in data 053

distribution. However, this method, known as fine- 054

tuning adaptation (FTA), faces several challenges. 055

FTA often requires extensive manual data labeling, 056

leading to delays in the AI system’s responsiveness. 057

This problem is exacerbated by the complexities of 058

interpreting multi-modal data, making FTA ineffi- 059

cient for real-time applications. Additionally, FTA 060

is prone to overfitting, especially in devices with 061

limited or highly specific data, which can degrade 062

the model’s performance across various devices 063

(Chen and Wang, 2021; Li et al., 2020; Yuan et al., 064

2022a,b; Zhang et al., 2020, 2021, 2023b). 065

Recently, HyperNetwork-based methodologies 066

(Dinh et al., 2022; Ha et al., 2017; Yi et al., 2023) 067

have gained traction as a means to enhance model 068
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generalization across diverse data distributions.069

These methodologies dynamically generate model070

parameters tailored to each individual data sam-071

ple’s unique distribution. However, when facing072

real-time samples with intense distribution fluc-073

tuations, HyperNetworks exhibit significant per-074

formance variability due to over-parameterization,075

leading to inefficiencies and complexities in model076

deployment and scalability. Additionally, Hyper-077

Networks require fine-grained features for optimal078

performance. Meanwhile, the high communication079

cost and slow speed between edge and cloud pre-080

vent the guaranteed upload speed of fine-grained081

features.082

To effectively address this challenge, our work083

introduces StableSynthNet, which decouples the084

Parametric Driver used to generate model param-085

eters in the HyperNetwork-based method into a086

Template Parametric Driver and an Offset Paramet-087

ric Driver. This approach avoids the shortcomings088

of over-parameterization caused by HyperNetwork-089

based rapid generalization of device models.090

The model is built on three basic pillars: Driver091

Contrastive Training, Template-Driver Extrac-092

tion, and Offset-Driver Separation. Driver Con-093

trast Training uses contrastive learning to move094

the Parametric Driver closer to the same type and095

farther from different types, improving separability.096

Template Driver Extraction focuses on creating097

diverse Template Parametric Drivers, each encap-098

sulating homogeneous information from a sample099

category. This driver utilizes information from sim-100

ilar samples, which existing HyperNetwork-based101

methods ignore. Offset-driver Separation ex-102

plores and establishes invariant representations in103

data. It dynamically updates the Template Paramet-104

ric Driver to improve its representation capabilities105

and separates the Shift Parametric Driver to achieve106

stability and generalization compatibility.107

Our work makes several key contributions:108

• We propose a unique framework, StableSynth-109

Net, that decouples model generalization from110

the pitfalls of over-parameterization, advanc-111

ing HyperNetwork-based methodologies.112

• The Template-Driver Extraction learns sta-113

ble multi-modal representations for Hyper-114

Network generalization. Driver Contrastive115

Training ensures intra-class compactness, and116

Offset-Driver Separation explores invariant117

representations.118

• Extensive experiments on video question an- 119

swering and video retrieval tasks verify the 120

efficiency and effectiveness of our method. 121

2 Related Works 122

Cloud-device Collaboration. In cloud-device col- 123

laboration, deep learning combines cloud resources 124

with on-device processing for enhanced perfor- 125

mance. Federated Learning, exemplified by Fe- 126

dAVG (Collins et al., 2022), faces scalability and 127

efficiency challenges. Methods like Multi-Path De- 128

vice Adaptation (Yan et al., 2022) improve on- 129

device model performance using cloud-based sam- 130

ples, bridging centralized training and decentral- 131

ized execution. DUET (Lv et al., 2023b) simplifies 132

model adaptation by pre-training components in 133

the cloud, reducing on-device computational de- 134

mands. IDEAL (Lv et al., 2023a) extends parame- 135

ter generation-based models to recommender sys- 136

tems, focusing on cross-domain recommendation 137

(Zhang et al., 2023a) for better model generaliza- 138

tion. However, HyperNetwork methods often face 139

instability and delays due to over-parameterization, 140

affecting training and deployment efficiency. To ad- 141

dress this, we introduce StableSynthNet, designed 142

to mitigate over-parameterization, ensuring stable 143

model adaptation and improved efficiency. This 144

enhances device model robustness and adaptability 145

in dynamic environments, advancing cloud-device 146

collaborative deep learning. 147

Domain Adaptation. Domain Adaptation (DA) 148

transfers a network trained on a labeled source 149

domain to a target domain, especially when their 150

data distributions differ. Techniques like maximum 151

mean discrepancy and correlation alignment reduce 152

distribution discrepancies to improve generaliza- 153

tion. Various methods, such as multi-stage (Zhang 154

et al., 2019; Chen et al., 2021) and gradual trans- 155

fer strategies (Chen et al., 2019), incrementally 156

align domains. Curriculum-based strategies (Shu 157

et al., 2019; Roy et al., 2021) structure adaptation 158

by increasing task complexity. Source-Free Do- 159

main Adaptation addresses privacy concerns by 160

operating without source domain data. DA has 161

been applied to tasks like action recognition (Wang 162

et al., 2023b), natural language processing (Mosal- 163

lanezhad et al., 2022), and object detection (Ahmed 164

et al., 2023; da Costa et al., 2022), demonstrating 165

its broad applicability. In summary, DA methods 166

align feature distributions to improve performance. 167

We propose StableSynthNet, a novel approach for 168
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device model generalization, enhancing robustness169

and adaptability across diverse domains.170

3 Method171

3.1 Preliminary172

Problem Formulation. For the on-Device Multi-173

modal Model Adaptation (DMMA) in the device-174

cloud collaboration system, we have access to a175

set of devices D = {d(i)}Nd
i=1, each device with its176

personal i.i.d multi-modal history samples SH(i)177

and multi-modal real-time samples SR(i) in cur-178

rent session, where Nd represents the number179

of devices. The goal of on-Device Multi-modal180

Model Adaptation is to generalize a trained cloud181

model Mg(·; Θg) learned from {SH(i)}Nd
j=1 to each182

specific local device model Md(i)(·; Θd(i)) condi-183

tioned on real-time samples SR(i) , where Θg and184

Θd(i) respectively denote the learned parameters185

for the cloud model and the i-th device model:186

StableSynthNet︸ ︷︷ ︸
DMMA Model

: Mg({SH(i)}Nd
i=1; Θg)︸ ︷︷ ︸

Cloud Model

→ Md(i)(SR(i) ; Θd(i))︸ ︷︷ ︸
Device Model

.
(1)187

Figure 2 illustrates the overview of our frame-188

work which consists of two modules to improve189

the generalization ability of the trained models on190

the device: (a) HyperNetwork-based generalization191

aims to learn a global benchmark model based on192

the history samples of all distributions and generate193

the network parameters for the distribution-specific194

device model based on the real-time device sam-195

ples; (b) StableSynthNet standardizes the input for196

the HyperNetwork across various multi-model sam-197

ples. (in Sec. 3.2).198

Model Pipeline. There are three steps in the199

pipeline of our framework: (1) Training the cloud200

model Mg(.), including the HyperNetwork-based201

generalization module and the StableSynthNet202

module, with the history samples SH . (2) Upload-203

ing the real-time samples SR(i) from the device204

side to the cloud side. Then, the cloud side model205

Mg(.) generates the personalized parameters for206

the device model Md(i)(.). (3) With the model207

parameters passed from the cloud side, the device208

model Md(i)(.) is updated and makes the final pre-209

diction based on the input read-time samples.210

Multi-modal Feature Extraction. We extract the211

multi-modal representation needed for the subse-212

quent processes from the input examples. Specifi-213

cally, given a real-time input video Vr and a corre- 214

sponding language query Qr, we employ the DeiT 215

(Touvron et al., 2021) as the visual feature extractor 216

and the BERT-base language model (Devlin et al., 217

2019) as the text encoder, obtaining Fv = {F i
v}

Nf

i=1, 218

which represents the features of all video frames 219

and Nf is the video frame number, and the seman- 220

tic feature Ft of the query. 221

We adopt the spatial-temporal positional em- 222

bedding and modality type embedding following 223

(Wang et al., 2023a) to the extracted features Fv 224

and Ft and get the corresponding embedded fea- 225

tures Ev = {Ei
v}

Nf

i=1 and Et. Then, the cross- 226

modal fusion module g(.) consisted of t trans- 227

former layers is employed to fuse the visual fea- 228

tures Ev and the language feature Et: 229

Fm = g(Ev, Et), (2) 230

where Fm = {F i
m}Nf

i=1 is the generated multi- 231

modal features after the feature fusion. 232

HyperNetwork-based Generalization. Adapting 233

the cloud model to real-time samples on a personal- 234

ized device usually includes on-device fine-tuning. 235

However, this can be challenging due to limited 236

training samples and annotations on the device. To 237

address this, we propose the HyperNetwork-based 238

generalization, a novel solution implemented as 239

a cloud service. This module processes images 240

captured by the device, generating device-specific 241

parameters. These parameters are meticulously 242

crafted to adapt to the distinct data distributions 243

encountered on each device. 244

Specifically, we further sample D(D > 1) 245

frames from Fm randomly, and average the in- 246

cluded D frames of multi-modal features into the 247

global representation Fg. Meanwhile, only one 248

frame is then randomly sampled, and its multi- 249

modal feature F i
m is uploaded from the device side 250

to the cloud side. Then, we project the feature F i
m 251

before it is further analyzed: 252

Θd = fh(fp(F
i
m)), (3) 253

where fp(.) represents the multi-layer perceptrons 254

and generates real-time sample embedding for 255

hyper-network (Dinh et al., 2022; Ha et al., 2017) 256

fh(.). The generated Θd is the parameters for a 257

single linear layer including both the linear weights 258

and bias, which will be passed to the device model. 259

The device model Md is updated with the model 260

parameters Θd and makes the prediction Pn for the 261
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Figure 2: Overall pipeline of our proposed StableSynthNet, which includes Driver Contrastive Training, Template-
Driver Extraction, and Offset-Driver Separation. StableSynthNet is deployed on the cloud and uniquely separates
the template parameter driver, which houses common data characteristics, from the offset parameter driver, where
individual data specifics are stored. Our approach achieves an optimal mix of consistency and adaptability.

input multi-model real-time sample:262

Pn = Md(Fg; Θd). (4)263

3.2 StableSynthNet264

StableSynthNet is designed to adapt to diverse265

multi-modal tasks using specific data inputs. How-266

ever, tasks like Video QA require transmitting large267

amounts of data (e.g., multiple frames or entire268

videos) to the HyperNetwork, leading to high com-269

munication costs and bandwidth requirements. To270

address this and improve HyperNetwork adaptabil-271

ity across multi-modal tasks, StableSynthNet stan-272

dardizes the input format for compatibility.273

With bandwidth limitations, an uploaded one-274

frame multi-modal representation can suffer signif-275

icant distribution shifts. To mitigate this, we use276

template-driver extraction to maximize discrimi-277

native power between categories. By measuring278

invariance within each category and dynamically279

updating the multi-modal template, StableSynth-280

Net ensures a consistent embedding space for ac-281

curate HyperNetwork-based generalization.282

Driver Contrastive Training. During the train-283

ing process, all history samples are directly saved284

on the cloud side and participated in the training285

process, following the setting of previous methods 286

(Yao et al., 2021). 287

Formally, given a sample si with category label 288

ai in the batch S = {sk}Ni=k, we can construct its 289

positive set PSi = {sk|ai = ak}k ̸=i and negative 290

set PN i = {sk|ai ̸= ak}k ̸=i. With the training 291

data, we use an InfoNCE loss to optimize the Sta- 292

bleSynthNet: 293

Lcl =
N∑
i=1

− log
fpos

fpos + fneg
. (5) 294

To further boost the sensitivity to different repre- 295

sentations of categories, we additionally introduce 296

an angular margin m for the positive pairs. For- 297

mally, we formulate fpos and fneg as: 298

fpos =
∑

sj∈PSi

ecos(θi,j+m)/T,

fneg =
∑

sg∈NGi

ecos(θi,g)/T,
(6) 299

where T is a temperature hyper-parameter, N is the 300

batch size, θi,j is the arc-cosine similarity between 301

the uploaded one-frame multi-modal features of si 302

and sj . 303
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Offset-Driver Separation. We propose the offset-304

driver separation to further promise the consistent305

representation of samples.306

Specifically, we say that a consistent represen-307

tation Φ : X → H elicits an invariant predictor308

ω across the positive set ε if there is an optimizer309

ω : H → Y simultaneously optimal for all samples310

from the positive set. The learning objective can be311

formulated as:312

ω ∈ argminω̄:H→Y O
e(ω,Φ). (7)313

Eq. 7 tries to learn a feature representation from314

Φ(·) that can induce an optimizer ω(·) which is315

simultaneously optimal for all e ∈ ε. Thus, we316

propose the invariant representation regularization317

which can be formulated as:318

Lirm =

N∑
i=1

λV ar(Li), (8)319

where Li = {Lcl (j) |ai = aj} denotes the loss320

values of samples from the positive set, and λ is a321

hyper-parameter. The minimization of variances322

of loss values encourages consistent representation323

learning for each category label (Arjovsky et al.,324

2020).325

Template-Driver Extraction. Specifically, we326

specify the total template space Ptype ∈ RV×Q,327

where V is the same as the size of multi-modal fea-328

ture embedding. Then we dynamically update the329

template space depending on the degree of invari-330

ance during the driver contrastive training process.331

Given a batch S, we can construct multiple pos-332

itive sets PS = {ps1, ps2, ..., psP } with different333

category labels, where P is the number of different334

category labels in the batch S.335

For every positive set in the PS with category ai,336

we obtain its average multi-modal representation337

embedding as follows:338

Hai
aver =

1

Nai

∑Nai

s=1hi, (9)339

where Nai denotes the number of samples with340

category label ai in the batch S, and hi denotes341

the multi-modal feature of sample. We average342

the summation of all multi-modal representations343

with the same category label in the batch to get the344

average feature embedding.345

With the help of observed invariant representa-346

tion, we update the template space for category347

label ai with a moving average approach:348


P ai
type = βP ai

type + (1− β)Hai
appr,

Hai
appr =

1

γV ar(Li)Nai︸ ︷︷ ︸
Approach Speed

(Hai
aver − P ai

type). (10) 349

where Hai
appr is formulated as below, and β and γ 350

are hyper-parameters: 351

During inference stage, in order to incorporate 352

the various distribution shifts into the feature of the 353

single video frame, we attempt to fuse the uploaded 354

feature F i
m with category label ai and its template 355

P ai
type. 356

We re-normalize the P ai
type to have the same 357

channel-wise mean and standard deviation as the 358

F i
m (Luo et al., 2020). This process can be formu- 359

lated as follows: 360

Υa(P ai
type, F

i
m) = δ(P ai

type)
(
F i
m−δ(F i

m)
γ(F i

m)

)
+ γ(P ai

type),

(11) 361

where δ(·) and γ(·) denotes channel-wise mean 362

and standard deviation operations, respectively. 363

Finally, the fused multi-modal feature is ob- 364

tained by the following process: 365

F ′ = λΥa(P ai
type, F

i
m) + (1− λ)F i

m, (12) 366

where the λ is a hyper-parameter. 367

The feature F ′ is applied to replace the global 368

representation of the input sample F i
m defined in 369

Eq. 3 for further prediction of the personalized 370

model parameters. 371

4 Experiment 372

4.1 Tasks and Implementation Details 373

Tasks. We evaluate our method on three tasks: (1) 374

Video-text Retrieval: We evaluate two sub-tasks 375

including video-to-text retrieval and text-to-video 376

retrieval. (2) Open-ended Video-question An- 377

swering: It requires answering questions accord- 378

ing to the context of the video. The answers are 379

originally in free-form natural language, but it is 380

a common practice to convert the task to a clas- 381

sification task by representing the answer with a 382

class label. (3) Multiple-choice Video-question 383

Answering: Given a video with a query and 5 can- 384

didate captions, the task is to find the one that fits 385

the query out of 5 possible candidates. 386
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Table 1: Results of our proposed method in Open-ended Video QA task. We evaluate our method on three datasets:
MSRVTT-QA, MSVD-QA, and TGIF. We adopt accuracy as the evaluation metric and the time delay is additionally
measured to show the efficiency of our proposed method. “F-linear" denotes only fine-tuning the classifiers after
the multi-modal feature extractor. “F-hyper" denotes only fine-tuning the classifiers and a simple hyper-network
without an adaptive generator.

Methods MSRVTT-QA MVSD-QA TGIF
Accuracy Time Delay Accuracy Time Delay Accuracy Time Delay

F-linear 13.6 ≥60000ms 17.3 ≥60000ms 2.73 ≥ 60000ms

Fine-tuning 36.7 ≥60000ms 34.3 ≥60000ms 54.7 ≥60000ms

F-hyper 11.1 ≥5.55ms 6.34 ≥3.71ms 19.6 ≥5.70ms

Ours 36.9 ≥5.55ms 35.3 ≥3.71ms 55.5 ≥5.70ms

Table 2: Performance comparison (Accuracy and la-
tency) between DUET and our method on three datasets.
MSR. denotes MSRVTT, MSV. denotes MSVD, and
TGI. denotes TGIF.

Meth.
MSR. MSV. TGI.

Acc. Lat. Acc. Lat. Acc. Lat.

DUET 33.4 1.80s 34.2 1.88s 55.2 2.00s

Ours 36.9 1.24s 35.3 1.16s 55.5 0.99s

4.2 Datasets387

For the open-ended Video QA task, we use the388

MSRVTT-QA dataset (Xu et al., 2017), MSVD-389

QA dataset (Xu et al., 2017) and the TGIF dataset390

(Li et al., 2016). For the multiple-choice Video QA391

task, we use the MSRVTT-QA dataset (Xu et al.,392

2017). For the video-text retrieval task, we experi-393

ment on the MSRVTT dataset (Xu et al., 2016).394

4.3 Evaluation Metrics395

Following previous works, we adopt accuracy for396

the open-ended Video QA task, and VR@K (video397

to text retrieval), TR@K (text to video retrieval) for398

the video-text retrieval task. For both of these two399

tasks, K is set to 1,2,5 respectively. Additionally,400

we calculate the number of learnable parameters in401

each model. Meanwhile, for the practical scenario402

of cloud-device collaboration, we also measure the403

time delay for the cloud-device communication404

process.405

Implementation Details. We use the All-in-One-406

Ti model (Wang et al., 2023a) as our baseline, in-407

tegrating DeiT (Touvron et al., 2021) as the visual408

backbone and BERT-base (Devlin et al., 2019) (us-409

ing only its embedding layers) as the semantic en-410

coder. Both the device and cloud models employ411

this multi-modal encoder. The parameter D is set412

to 3. During training, we use the AdamW optimizer413

with a polynomial decay scheduler, a learning rate 414

of 2e-5, and 10 epochs. For other modules, we 415

freeze the adaptive generator parameters, use the 416

AdamW optimizer with a learning rate of 1e-4, and 417

train for 40 epochs. During training, λ is set to 0.1, 418

and the hyper-network’s hidden layer size is 96 for 419

Open-ended and Multiple-choice VQA, and 256 420

for Video-text Retrieval. During inference, all pa- 421

rameters are frozen except for the last few dynamic 422

linear layers of the device model. The cloud model 423

and the device model share the same multi-modal 424

encoder parameters. The cloud generates dynamic 425

parameters using the hyper-network for the device 426

model to enhance generalization. 427

4.4 Performance Comparison 428

Baseline Methods. As the first to explore this field, 429

we design three baseline methods to demonstrate 430

the superiority of our proposed method. In Tab. 1, 431

we present the fine-tuning approach, fine-tuning 432

only the linear classifiers approach (F-linear), and 433

fine-tuning both the linear classifiers and the hyper- 434

network approach (F-hyper). (1) Fine-tuning ap- 435

proach: We add layers of MLPs after the multi- 436

modal feature extractor and fine-tune the entire 437

model. (2) F-linear: We freeze the parameters 438

in the multi-modal feature extractor and fine-tune 439

only the MLP layers. (3) F-hyper: We use a sim- 440

ple hyper-network without the adaptive generator 441

and fine-tune both the MLP layers and the hyper- 442

network. 443

(1) Open-ended Video-question Answering. For 444

Open-ended Video-question Answering, responses 445

are expressed in unrestricted natural language but 446

often transformed into a classification problem by 447

encoding answers as class labels. We incorporate 448

layers of MLPs with a hidden layer dimension of 96 449

after extracting multi-modal features. The MLP’s 450

output layer dimension varies with the label size of 451
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Table 3: Results of our method in Text-video Retrieval task. “VR@K" denotes the recall rate of video-to-text
retrieval, and “TR@K" presents the recall rate of text-to-video retrieval.

Methods
MSRVTT

VR@1 VR@5 VR@10 TR@1 TR@5 TR@10

F-linear 2.0 7.7 14.1 3.1 10.1 16.9

Fine-tuning 4.8 17.6 27.9 6.2 20.7 31.8

F-hyper 2.6 8.6 14.7 2.7 11.4 17.6

Ours 5.8 20.2 31.2 6.4 20.4 33.1

Table 4: Ablation studies of different numbers of sampled frames. We make the evaluation on three datasets in
Open-ended Video-question Answering task. “Time/Epoch" denotes the time of fine-tuning for each epoch.

Frames
MSRVTT-QA MSVD-QA TGIF

Accuracy Time/Epoch Accuracy Time/Epoch Accuracy Time/Epoch

2 36.1 740s 34.1 204s 54.3 245s

3 36.7 897s 34.3 228s 54.7 310s

4 37.0 1309s 34.3 318s 54.7 448s

5 37.1 2092s 34.0 377s 55.2 702s

the dataset, e.g., 1501 labels for the MSRVTT-QA.452

(2) Multiple-choice Video-question Answering.453

For Multiple-choice Video-question Answering,454

where questions and candidate answers are sen-455

tences, we concatenate the question and answer456

candidates using the [SEP] token. We predict the457

answer by selecting the candidate with the highest458

output logit.459

(3) Video-text Retrieval. For Video-text Retrieval,460

the retrieval process includes text-to-video and461

video-to-text retrieval. Each modality is extracted,462

followed by a comparative analysis. Predictions463

are generated through MLPs.464

Model Effectiveness. Tab. 1, Tab. 6, and Tab. 3465

highlight our method’s superiority over baseline466

approaches across various datasets and evaluation467

criteria. Our method consistently outperforms al-468

ternatives in nearly all aspects. The conventional469

fine-tuning method requires approximately 897 sec-470

onds per epoch on the MSRVTT dataset when se-471

lecting three frames from the entire video (Tab. 4).472

In contrast, our method achieves nearly real-time473

communication, reducing the time delay between474

the cloud and the device to as little as 5.55ms,475

depending on internet conditions. Moreover, our476

method surpasses the fine-tuning approach in per-477

formance, indicating superior fast generalization478

on personalized samples. As shown in Tab. 2, we 479

compare our method with the hypernetwork-based 480

method DUET (Lv et al., 2023b), which suffers 481

from overparameterization. Overparameterization 482

can improve generalization but also increases the 483

risk of overfitting, especially with noise and non- 484

representative features (Sankararaman et al., 2020). 485

Hypernetworks need to generate output parameters 486

for each image frame, incurring significant cloud 487

computing and communication costs. Our method 488

leverages single-frame video information, achiev- 489

ing commendable performance while substantially 490

reducing reasoning and training durations. Com- 491

pared to the conventional HyperNetwork approach 492

(DUET) (Lv et al., 2023b), which relies on a (5 × 493

192) shaped input and 28.2M FLOPs calculation, 494

our method uses only a (1 × 192) shaped input 495

and 0.62M FLOPs calculation, demonstrating su- 496

periority in both inference latency and accuracy, as 497

illustrated in Table 2. 498

Model Extensibility. Our proposed approach ex- 499

hibits the capacity to enhance accuracy while con- 500

currently reducing time delays across all datasets 501

associated with the three specific tasks. As delin- 502

eated in Tab. 3, our methodology yields a signifi- 503

cant performance improvement, particularly in the 504

domain of text-video retrieval. Our assessment 505
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Table 5: Time delay of our framework in different circumstances (various internet speeds) on different datasets.
“ ↑ ” denotes the upload process from the device to cloud. “ ↓ ” denotes the parameters downloaded from the cloud
to device.

Datasets Size 4G: 5MB/s 4G: 15MB/s 5G: 50MB/s 5G: 100MB/s

MSRVTT
↑:0.75KB
↓:568.5KB

↑:0.15ms
↓:111ms

↑:0.05ms
↓:37.0ms

↑:0.01ms
↓:11.1ms

↑:0.007ms
↓:5.55ms

MSVD
↑:0.75KB
↓:379.4KB

↑:0.15ms
↓:74ms

↑:0.05ms
↓:24.7ms

↑:0.01ms
↓:7.41ms

↑:0.007ms
↓:3.71ms

TGIF
↑:0.75KB
↓:583.8KB

↑:0.15ms
↓:114ms

↑:0.05ms
↓:38.0ms

↑:0.01ms
↓:11.4ms

↑:0.007ms
↓:5.70ms

Table 6: Results of our proposed framework in the
multiple-choice Video QA task.

Methods
MSRVTT-QA

Accuracy Time Delay

F-linear 3.58 ≥60000ms

Fine-tuning 75.6 ≥60000ms

F-hyper 46.0 ≥5.70ms

Ours 76.2 ≥5.70ms

encompasses a two-directional approach, address-506

ing both text-to-video retrieval and video-to-text507

retrieval. Remarkably, our method surpasses the508

majority of baseline methods, not only in terms509

of accuracy but also with respect to time delays.510

In the context of multiple-choice Video QA, our511

approach consistently asserts its superiority across512

all evaluation metrics. This is evident from the data513

presented in Tab. 6.514

4.5 Ablation Studies515

Number of Sampled Frames. In Tab. 4, we exam-516

ine how the number of sampled frames D affects re-517

sults and fine-tuning time per epoch in Open-ended518

Video-question Answering across three datasets.519

Using a batch size of 256 on a single A100 GPU520

(80G), we find that increasing frames significantly521

raises fine-tuning time per epoch. For instance, fine-522

tuning with two frames on MSRVTT-QA takes 740523

seconds, while five frames take 2092 seconds. Per-524

formance peaks at three or four frames, so we set D525

to three to balance performance and training cost.526

The HyperNetwork generates parameters based on527

the input sample distribution, with higher dimen-528

sional information helping to find more discrimi-529

native features. Increasing the number of frames 530

improves dynamic parameter performance but also 531

increases training time. Hence, three frames are 532

chosen to balance training time and performance. 533

Different Modules in Our Proposed Framework. 534

In Tab. 1, we introduce three baseline methods 535

to evaluate our framework. We compare the fine- 536

tuning model with our proposed model to demon- 537

strate its superiority. The "F-linear" model is 538

used for an ablation study of the classifiers post 539

multi-modal feature extraction, while the "F-hyper" 540

model examines the hyper-network and adaptive 541

generator. Notably, omitting the adaptive genera- 542

tor leads to sub-optimal performance, particularly 543

on datasets like MSRVTT-QA, MSVD-QA, and 544

TGIF, due to over-fitting and spurious correlations 545

between visual cues and predictions. Our adap- 546

tive generator significantly improves the hyper- 547

network’s performance by incorporating anchor- 548

frame distribution reasoning. 549

Time Delay between Cloud and Device in Vari- 550

ous Internet Conditions. Tab. 5 illustrates the time 551

delay associated with data transmission between 552

cloud services and devices under various internet 553

conditions. These scenarios represent older mobile 554

devices with limited or optimal 4G connectivity 555

and modern devices with basic or advanced 5G 556

connectivity. Our method shows significant im- 557

provements in time delay. 558

5 Conclusion 559

We developed an on-device multi-modal model 560

adaptation framework, which revolutionizes on- 561

device model adaptation for lightweight multi- 562

modal models. Rigorous testing has demonstrated 563

its efficacy and practicality across various scenarios 564

and datasets. 565
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6 Limitations566

The StableSynthNet framework, while showing567

great potential, may benefit from further explo-568

ration in terms of scalability, particularly in how it569

adapts to an expanding range of data diversity and570

volume. Additionally, its cross-domain applicabil-571

ity could be a subject for future research to ensure572

that the framework remains versatile across differ-573

ent application scenarios. The integration process574

with various existing systems might offer opportu-575

nities for smoother deployment, and the long-term576

maintenance of the model could be optimized for577

evolving data landscapes. Lastly, the ethical use578

and transparency of the model’s decision-making,579

as with any AI system, are important aspects that580

can be continually enhanced to build trust and en-581

sure responsible AI development.582
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