© © N O O A~ W N =

OpenReview Should be Protected and Leveraged as a
Community Asset for Research in the Era of LLMs

Anonymous Author(s)
Affiliation
Address

email

Abstract

In the era of large language models (LLMs), high-quality, domain-rich, and contin-
uously evolving datasets capturing expert-level knowledge, core human values, and
reasoning are increasingly valuable. This position paper argues that OpenRe-
view — the continually evolving repository of peer reviews, author rebuttals,
meta-reviews, and decision outcomes — should be leveraged more broadly
as a core community asset for advancing research in the era of LLMs. We
highlight three promising areas in which OpenReview can uniquely contribute:
enhancing the quality, scalability, and accountability of peer review processes; en-
abling meaningful, open-ended benchmarks rooted in genuine expert deliberation;
and supporting alignment research through real-world interactions reflecting expert
assessment, intentions, and scientific values. To better realize these opportunities,
we suggest the community collaboratively explore standardized benchmarks and
usage guidelines around OpenReview, inviting broader dialogue on responsible
data use, ethical considerations, and collective stewardship.

1 Introduction

The past years have witnessed an extraordinary shift in the role of data within machine learn-
ing [1} 2], especially with the recent advances of large language models (LLMs) [3H5]], which have
progressed from task-specific tools to general-purpose reasoning engines [6-8]]. As their capabilities
expand across domains, the role of data for training, evaluation, and alignment becomes even more
important [9-12]. The current wave of LLM development increasingly depends on high-quality,
human-centered feedback [13H17]], not only for fine-tuning and instruction adherence, but also for
assessing model behavior, identifying failure modes, and aligning outputs with human expecta-
tions [18H21]]. Yet many of the datasets used for these purposes remain limited in coverage [22],
synthetic in composition 23} [24], or static in structure [15]. As a result, they often fail to capture the
complexity, disagreement, and subtle reasoning that characterize authentic human judgment [25H28]].

At the same time, the powerful capabilities of LLMs are beginning to reshape scientific workflows
themselves [29H33]]. Tools based on LLMs such as ChatGPT are making research communication,
including literature reviews and even paper writing, more accessible [34H37]], hence accelerating
scientific output and contributing to a significant rise in the volume of submissions to top conferences.
Such a transformation has intensified pressure on the peer review system [38},139]. Conferences
now receive more than 10 thousands of submissions per cycle, and the human effort required to
maintain high-quality, fair, and constructive reviewing has become difficult to sustain. Given such
high pressure, the need for scalable assistance tools, better evaluation data, and models that can
understand or generate scholarly critique has grown [39-41]. However, large-scale, systematic
exploration regarding both the datasets and methodologies that enable LLMs to capture the richness
of peer review interactions is still missing [42-44].
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Figure 1: Left: an overview of the OpenReview data generation process; mid: this position paper argues
OpenReview supports three main valuable applications — regulating peer review, empowering LLM and
Agentic open-ended task research, and post-training for alignment and reasoning; right: highlighted research
opportunities around those use cases.

37 OpenRevievﬂ45], the public review platform widely used by conferences such as ICLR, NeurIPS,
ss and others, offers a unique opportunity to meet the needs of both sides. Contributed by the community
39 and continually expanding over time, OpenReview hosts large-scale, structured records of scientific
40 discussion, typically including paper submissions, reviewer assessments, author rebuttals, meta-
41 reviews, and final decisions. These interactions span multiple rounds and involve diverse expert
42 perspectives, making OpenReview an invaluable living dataset grounded in real-world scientific
43 research deliberation. And has the potential to enrich both data-centric LLM research and assist the
44 peer review system.

45 This position paper argues that OpenReview should be leveraged more broadly as a core
46 community asset for advancing research in the era of LLMs. We elaborate on three areas where
47 this dataset can provide immediate value:

48 1. A data-driven approach to improve the quality and scalability of peer review. OpenReview

49 provides a unique source of structured, expert-generated assessments that can be used to train
50 machine learning models to analyze and support the peer review process. Machine learning
51 models, including the state-of-the-art general purpose language models [46H49], may learn to
52 assist reviewers in drafting constructive feedback, calibrating scores, and identifying argumentative
53 gaps, as well as summarizing responses, checking code, or detecting unhelpful language. In the
54 face of rising submission volumes and reviewer fatigue, such tools could support more consistent,
55 fair, and informative evaluations. Equally important, improving and regularizing the review
56 process is a prerequisite for sustaining the long-term development of LLM-based systems that

57 depend on high-quality expert feedback [S0].
s8 2. Providing expert-generated benchmarks for LLM open-ended task evaluation and post-

59 training. Open-ended tasks such as academic writing, research evaluation, persuasion, or summa-
60 rization are increasingly recognized as central to the development of general-purpose Al systems
61 and the path toward superintelligence [51l]. However, both training and evaluating models on
62 such tasks remain challenging due to the open-ended nature and the lack of scalable, high-quality
63 human feedback [8]]. To this end, OpenReview offers a unique, high-quality resource: it contains
64 expert-curated, multi-dimensional evaluations of research contributions grounded in real-world
65 scientific progress. Its diverse content enables the design of benchmarks for open-ended tasks
66 such as writing [52], research evaluation [40], persuasion [53H55]], and summarization [16}56]],
67 providing valuable data for both open-ended LLM and agentic post-training and evaluation [57]].
68 3. Supporting multi-dimensional alignment and reasoning research through scientific writing
69 and discussion. Existing benchmarks for alignment and reasoning often rely on static, synthetic,
70 or crowd-sourced datasets that lack the depth and nuance of real expert deliberation [15| 58H62].
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ICLR Growth: Submissions, Reviewers, and Authors (2017-2025)
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Figure 2: Growth trends at ICLR (2017-2025) in submissions, authors, and reviewers. While the number of
reviewers has increased over time, it has not kept pace with the growth in submissions and authors, indicating a
growing strain on the peer review process. The reviewer number estimation is calculated according to the number
of submissions, the total number of reviews received, and the average reviewer workload of 3 per reviewer.

In contrast, OpenReview offers a setting that inherently involves alignment and reasoning through
evidence-based debate, disagreement, revision, and consensus building. This setting enables rich
evaluation tasks such as score justification via retrieval-based reasoning [63H66] and decision
prediction grounded in free-form critique [67]. These tasks can serve as realistic testbeds for
assessing how well LLMs can interpret, reason about, and align with expert judgments in the
scientific research domain. Moreover, the dialogic nature of OpenReview — spanning rebuttals,
conflicting views, and negotiated outcomes — offers a unique opportunity to study value pluralism,
debate-style alignment in the wild 53} 68-71].

To help realize the potential in and beyond those outlined use cases, we propose initial directions for
community-driven benchmark development and responsible data stewardship. Finally, we reflect on
alternative perspectives, aiming to spark productive dialogue on the challenges and risks of leveraging
the OpenReview as a core community asset.

2 The State of OpenReview Now: Scale, Opportunity, and Emerging Risks

This section examines the OpenReview platform through three perspectives. We begin with a
statistical overview of its scale and evolution, using ICLR as a case study. We then highlight its value
as a unique community-curated dataset for machine learning research, before turning to the structural
risks that threaten its long-term quality and integrity.

2.1 The Scale and Structure of Conference Data on OpenReview

OpenReview provides a centralized platform for peer review and community discussion at major
machine learning conferences, including ICLR, NeurIPS, and others. It preserves structured records
of submissions, reviews, rebuttals, and decisions, creating a longitudinal archive of real-world expert
deliberation under consistent guidelines.

To illustrate the scale of this platform, we focus on ICLR as a representative case. From 2017 to 2025,
the number of submissions grew from fewer than 500 to over 11,600 annually. The corresponding
number of authors increased from about 1,500 to 38,500, and the estimated number of reviewers
rose from under 1,000 to more than 18,300. Each submission typically receives three or more expert
reviews, resulting in tens of thousands of reviewer—author interactions each year. Figure[2]shows this
growth trajectory in authorship, reviewing, and participationE]

2.2 A Rapidly Growing Community Asset for Learning

Beyond its scale, OpenReview is distinguished by its unique data quality. Unlike synthetic or crowd-
sourced datasets, it captures expert-authored evaluations tied to real submissions and decisions,

2Data Source: ICLR 2021-2025 Fact Sheet [72H76], PaperCopilot [77].
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grounded in shared scientific norms. Each paper serves as a self-contained research scenario, typically
accompanied by multiple reviews, optional rebuttals, meta-reviews, and final outcomes.

Between 2017 and 2025, ICLR alone contributed over 36,000 such interaction threads, spanning both
accepted and rejected submissions. These interactions provide rich examples of open-ended scientific
exploration efforts. They illustrate how researchers conduct and evaluate solutions to open questions,
respond to disagreement, clarify claims, and finally construct consensus, making them highly suitable
for training and evaluating LLMs on scientific reasoning, argumentation, and alignment.

Moreover, OpenReview is a continuously evolving dataset. Each year brings new topics, new papers,
and new debates, reflecting both the state of research and the shifting consensus of the community.
This ongoing refresh ensures its competence as a benchmark for real-world LLM deployment. In
Table[I] we compare relevant tasks in the LLM post-training community to demonstrate the general
potential of the OpenReview dataset.

Table 1: Comparing datasets related to OpenReview. We will elaborate how to leverage OpenReview beyond
those tasks in Sec.3-5.

Dataset Task Size Expert Updates OpenEnded
See et al. [78] Summarization 310K v X v
Narayan et al. [79] Summarization 226K v X v
Yang et al. [80] Multi-hop QA 113K QA pairs X X v
Rajpurkar et al. [81] Comprehension 107K QA pairs X X X
Fan et al. [82] Long-form QA 270K threads X X v
Ziegler et al. [83] Preference Modeling 60K comparisons ~ X v
Bai et al. [15] Alignment / Dialogue 170K comparisons ~ X v
Kopf et al. [84] Dialogue / Alignment 10K trees, 161K msg ~ X v
Wang et al. [85] Argumentation 1K dialogues X X v
Kang et al. [56] Review, Decision 14.7K subs, 10.7K revs v X X
Bu et al. [86] Aspect Rating (zh) 46.7K reviews ~ X X
Purkayastha et al. [§7] Argumentation 23K ~ X v
Kennard et al. [88] Argumentation 506 threads v X X
Ruggeri et al. [89] Argumentation 41 dialogues v X v
OpenReview [43] All above 36K subs, 100K+ revs v v v

2.3 Quality Under Pressure — The Compounding Risk of Rapid Growth

While the growth of OpenReview presents significant opportunities, it also introduces structural
risks. The rapid increase in submission volume has not been matched by a proportional increase in
highly experienced reviewers. As conferences scale, an increasing fraction of reviews are written by
newer or less engaged participants. This trend raises concerns about the consistency, reliability, and
long-term stability of individual review signals, as well as the dataset quality and diversity [S0].

More precisely, the concern is not only that current reviewers may deviate from academic standards,
but that a growing number of untrained reviewers may internalize and reproduce biased practices,
gradually compounding the problem across generations. If evaluations are learned by imitation,
biased or inconsistent norms can propagate, leading to long-term degradation of review quality.

To formalize this concern, we present a Wright-Fisher model in Appendix [Al which illustrates how
misaligned reviewing behavior may propagate across generations.

Take Action Now. Our analysis suggests that early intervention is critical: corrective action
taken before problematic patterns become institutionalized is significantly more effective than
attempting to reverse them later. Proactive steps are thus essential to preserve long-term
alignment between reviewing practice and community values. Taking action now in the
early stage of the field’s expansion is more effective than taking action later on when
substandard review practices become the norm.

For OpenReview to remain a robust and trustworthy resource, its quality must be actively protected.
This includes better reviewer recruitment and training, as well as developing scalable, practical
machine learning methods for auditing and mitigating quality drift. The data itself, while valuable, is
only as good as the process that generates it.
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In the following sections, we will discuss three use cases of the OpenReview dataset, starting from
how to leverage the dataset to improve and regulate the peer review system, such that the long-term
quality of such a community asset can be guaranteed. We then highlight the potential of leveraging
such an asset in LLM post-training research, ranging from open-ended to alignment tasks.

3 Assisting and Protecting the Peer Review with OpenReview

3.1 Existing LLM-Assisted Peer Review in Conferences

In the previous section, we highlighted structural risks to the quality and stability of peer review.
These concerns have not gone unnoticed. In recent years, several major machine learning conferences
and publishers have begun integrating LLMs into their review workflows in response.

NeurIPS 2024 introduced a checklist assistant powered by LLMs to help authors ensure ethical
and methodological compliance [90]. At ICLR 2025, a Review Feedback Agent was deployed to
identify vague or unconstructive reviews and suggest targeted improvements [91]]. AAAT 2026 will
experiment with LLM-generated reviews and discussion summaries in the first stage of review [92].
Meanwhile, several academic publishers have begun piloting Al-assisted tools for content checking
and review drafting [93H95].

While most current systems operate with limited, hand-curated inputs, OpenReview provides an ideal
foundation for data-driven peer review research. In this section, we focus on concrete use cases where
such data can support the review system.

3.2 Practices and Opportunities for Data-Driven Support with OpenReview

We organize existing literature and potential opportunities with OpenReview according to functional
categories. In the following, we will use text boxes to highlight future work opportunities. The
high-level motivation of those approaches is rooted in the previous success of human-centered LLM
alignment research [[17, 15} [16], and data-driven decision modeling and explanation [96-100].

Principled Review Generation. Recent work has explored OpenReview for generating realistic peer
reviews. Yuan et al. [LO1]] and Wu et al. [102], for example, demonstrate that fine-tuning LLMs on
large-scale review corpora can lead to critiques that are more calibrated and grounded than those
produced by general-purpose models. These systems can be conditioned on paper content or specific
review dimensions, enabling targeted and context-aware feedback. However, most current systems
are designed to mimic human-written reviews without deeper integration with formal reviewing
guidelines or accountability structures. The challenge remains to ensure that generated reviews
uphold conference standards and provide actionable feedback in line with reviewer expectations.

Opportunity for Future Work. LLMs should be task-specifically aligned, calibrated when
leveraged in the review process. Commercial LLMs are generally optimized for user-friendliness
and helpfulness, often deviating from rigorous academic review guidelines. Future work
should explore structured prompting, rubric conditioning, or alignment objectives tailored
for review generation [44]]. In addition, LLM-generated reviews may support pre-submission
preparation [42], providing anticipatory critique to authors and supporting self-assessment
before formal peer review [92].

Review Quality Enhancement. Another line of research focuses on the quality of peer reviews
themselves. Early work, such as Kang et al. [56], proposed metrics for review helpfulness and score
prediction. More recently, classifiers trained on human preferences or meta-review feedback have
been developed to detect vague, biased, or uninformative reviews [103) [104]. Studies have also
examined hallucination and style inconsistencies in LLM-generated reviews [105H108]]. Despite
these advances, challenges remain in automatically evaluating review fairness, argument soundness,
or reviewer calibration.

Opportunity for Future Work. Inverse analysis techniques can help detect systematic deviation
from expected standards, including overconfidence, inconsistency, or subjective bias [97]. Future
efforts could explore calibration, value drift detection, and provide warning signals when the
value of reviews deviate significantly from guidelines [44].
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Enhancing Mutual Understanding between Reviewers and Authors. While much of the focus has
been on generating or evaluating individual reviews, peer review is ultimately a dialogue. The rebuttal
phase plays a crucial role in bridging perspectives between authors and reviewers. Recent datasets
such as DISAPERE [109]], Jiu-Jitsu [110], and ContraSciView [111] support tasks such as rebuttal
generation, stance classification, and discourse structure prediction, highlighting the interactional
nature of review.

Opportunity for Future Work. LLMs can serve as mediators to enhance communication in
the rebuttal process. For authors, they may clarify reviewer concerns, highlight overlooked
critiques, and assist in crafting respectful and persuasive responses for effective communication.
For reviewers, they may help interpret rebuttals and assess whether key feedback has been
adequately addressed, and effectively stimulate the discussions.

Consistency and Calibration. Efforts to correct score inconsistency across reviewers have drawn on
reviewer calibration and normalization techniques. For instance, Xu et al. [[112]] models reviewer-
specific scoring functions and applies monotonic transformations to improve comparability. These
methods aim to recover more faithful rankings than simple score averaging. Nonetheless, current
approaches often lack interpretability or real-time applicability. There is limited support for helping
reviewers understand their own biases or dynamically recalibrate scores based on peer context.

Opportunity for Future Work. More importantly and effectively, efforts could be made
to use LLM-based systems to assist reviewers in providing consistent and calibrated feed-
back, including providing comparative context and relevant arguments drawn from reviewer
cohorts [42]]. Technically, this may involve retrieval-based justification of scores and decision
explanation [63 164, 113} |114], or in-context learning reference sample selection [115,116].

Meta-Review Generation. Finally, meta-review generation has become a growing area of interest,
with benchmarks such as PeerSum [104], ORSUM [117], and MOPRD [118]] targeting summarizing
and concluding from multiple reviews and rebuttals. These systems must integrate conflicting
reviewer perspectives, identify dominant themes, and represent area chair judgment with fidelity. Still,
current general-purpose LLMs may fail to capture the nuanced reasoning behind disagreements or
the weight assigned to various critiques. There is also growing concern about the potential mismatch
between generated meta-reviews and actual reviewer consensus [39]].

Opportunity for Future Work. Improved modeling of review disagreement and viewpoint
clustering [68 [70] could enable more reliable meta-review generation. Future systems may
incorporate hybrid workflows where LLMs co-author drafts with area chairs, flag unresolved
conflicts, or highlight potential biases (e.g., delayed or biased feedback, ungrounded critiques)
throughout the discussion period to support better decision making.

4 OpenReview for Open-Ended Task Evaluation and Post-Training

4.1 Challenges for Open-Ended LLM and Agentic Tasks

Recent progress in LLMs has enabled systems that attempt to perform complex, multi-step, and high-
level tasks, often referred to as open-ended or agentic tasks [119,[120]]. These tasks are characterized
by the absence of a single correct answer, dependence on context, and the need for judgment,
reasoning, and creativity [52]. Examples include research paper writing, paper reviewing, persuasive
argumentation, hypothesis refinement, and code-based experimentation [121,[122]. Open-ended tasks
are defined not by accuracy or success alone, but by depth, coherence, exploration, and alignment
with human values and intentions.

This task category has received increasing attention with the rise of agent-based systems such as
DeepResearch, DeepSearch, and AutoDev, which aim to position LLMs as autonomous research
assistants capable of conducting literature reviews, designing experiments, debugging code, and
evaluating progress [8| 123 [124]. However, a major bottleneck in building and benchmarking such
systems lies in the lack of scalable, high-quality supervision. It remains difficult to evaluate whether a
model has conducted a "good" literature review or proposed a "promising" research idea, particularly
when using crowd-sourcing judgment [52} [121]].
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Scientific research, especially in machine learning, is itself an open-ended task. The process involves
formulating problems, iterating on designs, running experiments, interpreting results, engaging with
criticism, and ultimately persuading a community of experts. Despite this, most benchmarks for
evaluating LLMs remain synthetic, short-form, or not scalable, offering little insight into how models
would perform under the standards and expectations of actual research communities [121} [122]].

This gap motivates our focus on OpenReview as a valuable, underutilized resource. The rich
interactions on OpenReview suggest two distinct forms of supervision that are particularly suited for
open-ended task development.

4.2 Two Potential Supervision Streams from OpenReview

Scientific Demonstrations: Training LLMs to Do Research. Each submitted paper on OpenRe-
view can be viewed as a real-world demonstration of open-ended problem-solving. Papers span a wide
range of topics and contain full narratives of how authors design and communicate their contributions.
This includes technical framing, literature positioning, experimental results, and claim justification.
In aggregate, these documents offer structured demonstrations of how research is conceived, executed,
and defended [56].

Such examples can be used to train LLMs to follow the cognitive workflow of scientific research. In
particular, they can support training for complex capabilities such as multi-stage planning, tool use,
fact retrieval, and hypothesis revision. These capabilities align closely with the demands of emerging
agentic LLM frameworks [[125]]. While systems like ChatDev simulate these workflows [[126]], few
are grounded in real, high-quality demonstrations of how experts actually perform these tasks —
OpenReview offers a scalable source of such supervision.

Opportunity for Future Work. OpenReview’s corpus of research demonstrations can support
training of LLM agents to perform multi-step scientific reasoning under real-world constraints.
Future work may consider enhancing the agentic research capabilities of LLMs [8] using expert
scientific research demonstrations.

Structured Evaluations: Training LL.Ms to Evaluate Research. In addition to research demon-
strations, OpenReview also contains detailed records of how experts evaluate open-ended research
work. Reviews provide constructive feedback, numerical scores, and qualitative assessments, while
meta-reviews offer consensus summaries and rationales for decisions. Author responses further enrich
the discourse, revealing how researchers engage with critiques and attempt to clarify or defend their
contributions. These dual supervision signals are particularly valuable for developing and evaluating
general-purpose models intended to reason about, participate in, and evaluate complex open-ended
tasks given scientific standards. By learning from those debates, LLMs have the potential to gain the
capability to comprehensively evaluate open-ended research.

Opportunity for Future Work. OpenReview’s review traces can serve as supervision for
LLM-based evaluators trained to judge open-ended research quality. These include automated
meta-reviews, rebuttal critiques, and scoring models aligned with human preferences. With
those feedback-rich reward models for open-ended tasks, future work can better anchor and be
optimized for open-ended research.

5 OpenReview as High-Quality Dataset for Alignment and Reasoning

5.1 Challenges for Alignment and Reasoning Supervision

Alignment through Consensus-Seeking. Alignment research seeks to ensure that Al systems act
according to human values, preferences, satisfy human intentions, and guarantee safety [22. [127].
Recent advances in reinforcement learning from human feedback (RLHF) [14H16) [128H134] have
contributed to the success of LLMs in conversational systems [[14]. Yet many of these advances rely on
limited forms of supervision: crowd-sourcing annotations [26]], synthetic preferences [S9]], or binary
votes [135]]. These sources often fail to capture the complexity, depth, and disagreement inherent in
the multi-perspective and deliberative consensus-seeking processes of experts [129, 131} [136].
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Reasoning beyond Binary Tasks. On the other hand, reasoning ability has become the core in
enhancing the models’ performance on more general assistant tasks [137]. Contributing to such
progress, datasets such as GSMS8K [138]], MATH [139]], and HotpotQA [80] have driven rapid progress
in mathematical and multi-hop reasoning; techniques like (long-)chain-of-thought |66} 165, 1401 [7]
and retrieval-augmented methods [63} 64, [113]] have significantly improved model performance on
these structured tasks. However, many of these benchmarks are now nearly saturated by frontier
models [141]], focus on binary and verifiable tasks, and they predominantly focus on final answer
correctness rather than the quality or interpretability of reasoning processes [142 [143].

More fundamentally, current reasoning tasks are often limited by narrow scope, synthetic formulation,
or rigid answer structures [144H146l]. Most define a single ground-truth answer, which precludes
exploration of ambiguity, disagreement, or multi-agent deliberation, which are central to human
reasoning, but effective in eliciting deep thinking behaviors [[147,137]]. Although emerging datasets in
argumentative reasoning, such as DebateSum [148]] and OpenDebateEvidence [149], have expanded
the scope of evaluation to include summarization and contested claims, these resources remain rare
and are typically not grounded in scientific domain expert-generated contexts.

5.2 Opportunities with the OpenReview Dataset

In contrast, OpenReview offers a fundamentally different alignment and reasoning testbed. The
peer review process inherently involves dialogue in which multiple parties express values, critique
reasoning, and negotiate consensus. More importantly, those dialogues, in principle, should be
objective, centered around guidelines, and grounded in verifiable facts. Unlike existing alignment
datasets, which are largely subjective, static, and one-shot, OpenReview captures multi-round, multi-
agent interactions grounded in real, highly verifiable, and reproducible consequences. This makes it a
uniquely rich environment for alignment and reasoning research.

Learning to Reason from Expert Disagreement and Justification With OpenReview, models can
be trained to infer about the logic behind review scores by learning from rationales, a form of inverse
reasoning that links decisions to supporting arguments and context. The reviews themselves often
present well-defined reasoning chains that connect experimental design, observed outcomes, and
stated conclusions. These examples allow LLMs to practice multi-step reasoning, assess method-
ological soundness, and trace causal explanations. Moreover, OpenReview enables modeling how
reasoning develops through multiple rounds of interaction: authors respond to critiques, reviewers
clarify concerns, and final evaluations synthesize evolving viewpoints, offering a natural setting for
studying the rationale behind reasoning over time.

Opportunity for Future Work. Using OpenReview in future works, it’s possible to improve
models’ reasoning abilities by justifying numerical assessments, verifying scientific claims
through factual evidence, and adapting reasoning across multi-stage interactions.

Learning to Critically Align with Individual Preferences OpenReview provides a valuable foun-
dation for developing alignment strategies that move beyond superficial agreement. Unlike many
alignment datasets that prioritize helpfulness or user-pleasing responses, peer review process demands
that feedback remain grounded in correctness, rationality, and align with review guidelines, when
given diverse research contexts.

Each reviewer expresses their judgment through both numerical scores and detailed commentary,
guided by criteria such as novelty, technical soundness, and significance. These preferences are
dynamic and can shift in response to rebuttals and clarifications, offering supervision signals for
modeling alignment as a contextual and adaptive process.

Opportunity for Future Work. OpenReview enables the alignment of LLMs to offer diverse,
constructive, evidence-based critique. Rather than merely affirming user input, models can learn
to respectfully challenge flawed claims, explain counterarguments, and justify disagreement.
This supports the development of alignment systems that emphasize factual grounding, logical
reasoning, and responsible communication.
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6 A Call to Create Standardized Benchmarks Based on OpenReview

In this section, we turn to the foundational infrastructure required to realize their full potential:
standardized benchmarks and responsible community stewardship.

Despite its scale and richness, OpenReview remains underutilized as a research asset, primarily due to
the lack of well-defined tasks and shared evaluation pipelines. To address this gap, we propose that the
community collaboratively develop benchmarks in critical areas such as review quality assessment,
rebuttal generation, argument grounding, and meta-review summarization. And deploy developed
methods to intervene in the peer review system and improve its quality as soon as possible. These
tasks are directly tied to the health of the peer review process and, by extension, the integrity of the
dataset itself.

In parallel, more general tasks—including reviewer score prediction, open-ended task evaluation,
post-training, alignment, and reasoning enhancement—can also be standardized to support long-term
research. While these areas are essential to the development of LLMs, their delayed investigation is
less likely to compromise the quality or sustainability of OpenReview as a resource.

We call upon researchers, conference organizers, and practitioners—particularly those working
at the intersection of machine learning and language models—to jointly define, refine, and adopt
such benchmarks. This collaborative process must also engage with broader ethical considerations,
including the protection of author and reviewer privacy, responsible anonymization of sensitive
content, and the mitigation of representational biases. For example, research areas with more abundant
data may inadvertently dominate the training signal, potentially skewing the learned priorities of
evaluation models.

Ultimately, the continued value of OpenReview as a shared academic asset depends on proactive,
collective stewardship by the community it serves.

7 Alternative Views

LLM-based Review and Research. Some may argue that LLMs are becoming more and more
capable of finishing scientific research and evaluation, and should eventually replace human reviewers.
If models can predict review scores or generate critiques that approximate expert judgment, then
preserving human oversight might appear unnecessary or even inefficient. Our view: We argue
that peer review is not just a filtering mechanism, but a deliberative process that helps shape scien-
tific values and standards [150} [151]]. Over-reliance on automation risks eroding its collaborative
and interpretive nature [152) [153]]. LLMs, while powerful, are not reliable in reasoning with the
same contextual grounding or responsibility as human experts [[154}[155]]. Human reviewers must
remain responsible for interpreting and controlling LLM tools [[154]. Interactions between authors
and reviewers should stay dialogic and grounded in fairness, not reduced to rigid or opaque eval-
uations [[152]]. Moreover, systems must guard against hallucination, adversarial misuse, and bias
propagation [156H158]]. Evaluation frameworks built on OpenReview should align with scientific
values rather than model evaluation metrics [22, [106]].

Inconsistency of Peer Review Limits Its Usefulness for Alignment. One concern is that peer review
data may be too noisy or inconsistent to serve as a reliable supervision signal [159]. Reviewers often
disagree on paper quality, assign divergent scores, or emphasize different aspects of a submission.
Given this subjectivity, it may be argued that using such data for alignment could reinforce inconsistent
or unstable behaviors in LLMs. Our view: Rather than aiming for deterministic consensus, alignment
in this context involves modeling disagreement, grounding claims, and reasoning for underlying
conflicts. This perspective is increasingly emphasized in recent alignment literature [68l, [70]

Scientific Review Tasks May be Too Narrow to Generalize. Another possible objection is that
scientific reviewing and paper writing are narrow, domain-specific tasks that do not generalize to
broader LLM capabilities. Models trained on OpenReview may excel at research-related tasks but
fail to transfer to everyday use cases, limiting their value as general-purpose assistants. Qur view:
Research tasks serve as high-complexity instances of structured human reasoning, with grounded
stakes and verifiable outcomes. Learning from these tasks offers not only domain expertise but also
training in core cognitive patterns that generalize across domains. Recent success of DeepResearch-
type of products [8] explicitly aim to generalize research workflows into agentic LLM behaviors.
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A Long-lasting effect of low-quality reviews

Here, we provide a simplistic population genetic model to capture our intuition that a fast-growing
reviewer body’s lack of training can have a long-lasting effect even after the field matures by setting
up precedent. Note that this is an extremely simplified model, and we acknowledge that reviewer
quality is not binary and can depend on many factors.

We follow the standard Wright-Fisher model in population genetics. For each review round ¢, there
are (G; “good” reviews and B; bad reviews (in total Ny = G + By reviews). In generation ¢ + 1, for
Ni41 new reviews, we model them as generated randomly, with some level of preference. Formally

s s (o )

where s(t) is a factor for preference that could change over time, ideally s(¢) > 0 so that one has a
preference towards writing less bad reviews than simply replicating what was seen in the past cycle.
We define X; = %.

We can take a diffusion limit of the model, and the proportion of bad reviews can be approximated as
a Wright-Fisher SDE

Xt(l — Xt)

dX, = s(t) X, (1 — X;)dt + N(t)

dW, 2

where W; is a one-dimensional Brownian motion.

We numerically solve the corresponding Fokker-Planck equation for different N (¢) and intervention
s(t). We assume that N (¢) follow a logistic growth representing the usual maturing of the field. The
results are given in Fig[3] The takeaway message is that we need to act early in stopping the
trend of preferring low-quality reviews to prevent the downgrade of overall quality and setup
the precedent for the next generation to follow. The trend can still be reversed in a mid to late
stage, but requires more efforts (cf. first and last row in Fig[3] we need a longer period of selection if
we started late). It is useful even just to stop, instead of reverting, the current trend of preferring bad
reviews (cf. second row of Fig[3). The intuition behind these results is that if a once rare bad review
was fixed into the norm during the expansion of the field, it will be part of the norm and hard to be
filtered out in the future when the field grows even larger.
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Figure 3: Distribution of frequency of bad reviews under Wright-Fisher type of selection model. The three
stages of time are marked in red vertical lines in the first two panels. First column: model number of reviews,
Second: what selection we put at which time, Third-last: distribution of proportion of bad reviews.
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