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ABSTRACT

Medical imaging is crucial for diagnosing a patient’s health condition, and accu-
rate segmentation of these images is essential for isolating regions of interest to
ensure precise diagnosis and treatment planning. Existing methods primarily rely
on bounding boxes or point-based prompts, while few have explored text-related
prompts, despite clinicians often describing their observations and instructions in
natural language. To address this gap, we first propose a RAG-based free-form text
prompt generator, that leverages the domain corpus to generate diverse and realistic
descriptions. Then, we introduce FLanS, a novel medical image segmentation
model that handles various free-form text prompts, including professional anatomy-
informed queries, anatomy-agnostic position-driven queries, and anatomy-agnostic
size-driven queries. Additionally, our model also incorporates a symmetry-aware
canonicalization module to ensure consistent, accurate segmentations across vary-
ing scan orientations and reduce confusion between the anatomical position of an
organ and its appearance in the scan. FLanS is trained on a large-scale dataset
of over 100k medical images from 7 public datasets. Comprehensive experi-
ments demonstrate the model’s superior language understanding and segmentation
precision, along with a deep comprehension of the relationship between them,
outperforming SOTA baselines on both in-domain and out-of-domain datasets.

1 INTRODUCTION

Medical imaging is crucial in healthcare, providing clinicians with the ability to visualize and assess
anatomical structures for both diagnosis and treatment. Organ segmentation is vital for numerous
clinical applications, including surgical planning and disease progression monitoring (Wang et al.,
2022b; Du et al., 2020; Shamshad et al., 2023). However, accurately segmenting organs and tissues
from these medical images, i.e., medical image segmentation (MIS), remains a significant challenge
due to the variability in patient positioning, imaging techniques, and anatomical structures (Pham
et al., 2000; Xiao & Sun, 2021). Recent advancements in large foundation models, such as Segment
Anything Model (SAM) (Kirillov et al., 2023) and MedSAM (Wu et al., 2023), have shown promise
in achieving more accurate and faster MIS. These models often require the users to input a predefined
category name, a box, or a point as a prompt. However, in real-world scenarios, clinicians often rely
on natural language commands to interact with medical images, such as “Highlight the right kidney”
or “Segment the largest organ”. An accurate segmentation model with flexible text comprehension
capability is therefore essential for a wide range of clinical applications.

The first challenge lies in the development of a segmentation model that can handle text
prompts (Zhao et al., 2024), offering greater flexibility and adaptability in real-world clinical environ-
ments. Unlike traditional models that rely on bounding boxes (Bboxes) or point prompts, this method
should allow clinicians to use free-form natural language commands and streamline the diagnostic
process by enabling intuitive, verbal interactions. For free-form text, we provide two conceptual
definitions as follows: (1) Anatomy-Informed Segmentation, where the user has explicit knowledge
of the organ or relevant pathology to be segmented; (2) Anatomy-Agnostic Segmentation, where
the user lacks medical knowledge about a specific organ or CT scan and hence queries based on
positional information, organ sizes or other visible characteristics. This scenario is more common for
individuals such as students or patients without formal medical training. An exemplar illustration is
shown below 1:

1All of the images in this paper are best view in color.
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(1) Gallbladder

(2) Liver

Example (1) : Anatomy-Informed Segmentation: An ab-
dominal CT scan is recommended to evaluate for the pres-
ence of gallstones or any fluid accumulation around the
gallbladder. — This professional diagnosis snippet indicates
the most cared segmentation area is: Gallbladder.
Example (2): Anatomy-Agnostic Segmentation: I would
love to have the leftmost organ segmented in this CT scan. —
This description is agnostic to the medical name of the or-
gan, but it indicates the segmentation target from positional
semantics: Liver.

To learn a free-form text-supportive MIS model, text prompt generation towards the groundtruth
mask is a primary step. Instead of using labor-intensive manual labeling to match with the masks, we
propose a retrieval augmented generation (RAG) fashion (Lewis et al., 2020) method that automates
text query generation using corpus embeddings collected from three resources (clinical expert records,
non-expert queries, and synthetic queries). This approach guarantees that the generated query prompts
capture various forms of language use across different demographic groups. Based on the text queries,
we propose FLanS, a free-form language-based segmentation model that can accurately interpret and
respond to free-form prompts either professional or straightforward, ensuring accurate segmentation
across a variety of query scenarios.

Another challenge in text-based medical imaging segmentation arises from the variability in scan
orientation. Factors such as patient positioning (e.g., supine vs. prone), different imaging planes
(axial, coronal, sagittal), reconstruction algorithms and settings, and the use of portable imaging
devices in emergency settings can cause organs to appear in unexpected locations or orientations.
The scan orientations even differ between well-preprocessed datasets, such as AbdomenCT-1K (Ma
et al., 2022) and BTCV (Gibson et al., 2018), as shown in Fig. 1. This variability can confuse
segmentation models, making it difficult to distinguish between the anatomical position of an organ
and its appearance in a scan. For instance, the right kidney may appear either on the left or the right
side of a rotated scan, leading to inaccurate segmentations. To address this challenge, we integrate
the symmetry-aware canonicalization module as a crucial step in our model architecture (Kaba et al.,
2022; Mondal et al., 2023), which ensures the model produces consistent segmentations regardless
of the scan’s orientation, enhancing its accuracy across diverse medical images (Cohen & Welling,
2016; Weiler & Cesa, 2019). Additionally, incorporating symmetry improves sample efficiency and
generalizability, which is well-suited for medical imaging tasks where labeled datasets are limited
(Wang et al., 2022a; 2021; Zhu et al., 2022; Thomas et al., 2018).

Our key contributions in this paper are summarized as follows:
• We employ RAG techniques for free-form text prompt generation for various anatomical structures

containing diverse anatomy-informed and anatomy-agnostic queries. Stems from the vectorized
embedding of clinical reports, produced query data employs the realistic tones and word usage.

• We present a novel medical image segmentation model, FLanS, that exhibits a deep understanding
of the relationship between text descriptions and medical images. It uniquely supports free-form
text segmentation and employs a symmetry-aware canonicalization module to handle variability
in scan orientation, as in Table. 1.

• Our model training uses ∼100k medical images from 7 public datasets, covering 24 organs, along
with diverse text prompts. This ensures the model generalizes across diverse anatomical structures
and clinical scenarios and can be easily extended to new organs with upcoming datasets.

• We demonstrate the FLanS’s effectiveness on both in-domain and out-of-domain datasets, and
perform ablation studies to validate the contributions of each component in our model design.

2 RELATED WORK

Medical Image Segmentation Medical image segmentation (MIS) aims at accurately delineating
anatomical structures in medical images. Traditionally, MIS methods tend to segment the correct
regions from an image that accurately reflects the input query (Azad et al., 2024). The researchers
improve the performance of MIS methods by either optimizing segmentation network design for
improving feature representations (Chen et al., 2018b; Zhao et al., 2017; Chen et al., 2018a; Gu et al.,
2020), or improving optimization strategies, e.g., proposing better loss functions to address class
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Table 1: FLanS uniquely supports all prompt types,
including free-form text, and is symmetry-aware.

Model Prompt Type Symmetry
Aware

Label Point Bbox Text
SAM-U (Deng et al., 2023) ✘ ✔ ✔ ✘ ✘

SAMed (Zhang & Liu, 2023) ✘ ✔ ✔ ✘ ✘
AutoSAM (Hu et al., 2023) ✘ ✔ ✔ ✘ ✘
MedSAM (Ma et al., 2024) ✘ ✔ ✔ ✘ ✘

MSA (Wu et al., 2023) ✘ ✔ ✔ ✘ ✘
Universal (Liu et al., 2023b) ✔ ✘ ✘ ✘ ✘

FLanS (ours) ✔ ✔ ✔ ✔ ✔

AbdomenCT-1K BTCVCHAOSAbdomenCT-1K

Liver on the left Liver on the right Spine on the bottom Spine on the top

Figure 1: Example CT images from differ-
ent datasets show significant variations in
orientation, which highlight the need for a
symmetry-aware (equivariant) model to en-
sure consistent segmentation performance
across diverse scan orientations.

imbalance or refining uncertain pixels from high-frequency regions to improve the segmentation
quality (Xue et al., 2020; Shi et al., 2021; You et al., 2022). However, they require a pre-known
medical region from the user as an input for segmentation on where it is expected to be segmented and
a precise match between the segment’s name and the labels used in the training set, restricting their
flexibility in real-world application. Another category of methods are SAM-based approaches (Kir-
illov et al., 2023; Ma et al., 2024; Zhu et al., 2024) that mainly rely on the Bboxes or points as
prompts for segmentation. While such methods do not need strict labels, they neglect the descriptive
understanding of the image, revealing a deficiency in performing arbitrary description-based seg-
mentation, in comparison, our method handles well in Labels, free-form Text prompts without losing
ability of Point and Bbox, as shown in the Table. 1.

Text Prompt Segmentation Text prompt segmentation, also referred to as expression segmenta-
tion (Hu et al., 2016), utilizes natural language expressions as input prompts for image segmentation
tasks Liu et al. (2023a), moving beyond the traditional reliance on class label annotations (Liu et al.,
2021), such as nn-Unet (Isensee et al., 2018), and Swin-unet (Cao et al., 2022). Early research in this
area employed CNNs and RNNs for visual and textual feature extraction, which were later combined
through feature fusion for segmentation (Li et al., 2018). The success of attention mechanisms further
inspired a new line of work (Shi et al., 2018; Ye et al., 2019). More recently, transformer-based
architectures have improved segmentation performance by using either carefully designed encoder-
based feature fusion modules (Feng et al., 2021; Yang et al., 2022; Kim et al., 2022) or decoder-based
approaches (Wang et al., 2022c; Lüddecke & Ecker, 2022; Ding et al., 2021). Among these, (Zhou
et al., 2023) introduced a text-promptable mask decoder for efficient surgical instrument segmentation.
However, no existing work has focused on free-form language segmentation for diagnosis-related
medical imaging tasks as introduced in this work.

Equivariant Medical Imaging Equivariant neural networks ensure that their features maintain
specific transformation characteristics when the input undergoes transformations, and they have
achieved significant success in various image processing tasks (Cohen & Welling, 2016; Weiler &
Cesa, 2019; Cohen et al., 2019; Bronstein et al., 2021). Recently, equivariant networks have also been
applied to medical imaging tasks, including classification (Winkels & Cohen, 2018), segmentation
(Kuipers & Bekkers, 2023; Elaldi et al., 2024; He et al., 2021), reconstruction (Chen et al., 2021), and
registration (Billot et al., 2024). Equivariance can be incorporated in different ways, such as through
parameter sharing (Finzi et al., 2021), canonicalization (Kaba et al., 2022), and frame averaging
(Puny et al., 2021). In our work, since we leverage a pretrained segmentation network, we achieve
equivariance/invariance through canonicalization (Mondal et al., 2023), which, unlike other methods,
does not impose architectural constraints on the prediction network.

3 METHODOLOGY

In this section, we introduce a paradigm to equip the segmentation model with free-form language
understanding ability while maintaining high segmentation accuracy. It employs the RAG framework
to generate text prompts based on real world clinical diagnosis records. The generated free-form
queries, anchored on the corresponding organ labels, are used to train a text encoder capable of
efficiently interpreting the segmentation intentions (e.g., different interested organs disclosed in
anatomy-informed or anatomy-agnostic prompts) and guiding the segmentation network. We also
incorporate a canonicalization module, which can transform input images with arbitrary orientations
into a learned canonical frame, allowing the model to produce consistent predictions regardless of the
input image orientation.
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Preliminaries of SAM Architecture SAM (Kirillov et al., 2023) contains three main parts: (1) an
image encoder that transforms images into image embeddings; (2) a prompt encoder that generates
prompt embeddings; (3) a mask decoder that outputs the expected segmentation mask based on
the image and prompt embeddings. Given a corresponding input medical image x ∈ X and a
relevant prompt p ∈ Px. The image encoder embeds x into zx that zx = EncoderX (x), similarly the
prompt embedding zp = EncoderP(p). The mask decoder predicts the segmentation result (mask)
by m̂p

x = Decoder(zx, zp). While the SAM model provides EncoderP for spatial prompts (e.g. Bbox
or point), the integration of text-based prompts has been less explored. In text-based medical images
segmentation, natural language prompts require specialized learning to effectively capture clinical
terminology and segmentation intent.

3.1 THE RETRIEVAL AUGMENTED QUERY GENERATOR

Anatomy-Informed Query To equip a MIS model M with language comprehension abilities,
it is essential to prepare a suitable natural language query 2 corpus C in correspondence with the
target organ label set L = {l1, l2, ...ln}, where l1 = Liver, l2 = Kidney, etc., as in Appendix Fig. 9.
Since manual annotation is time-consuming and can be biased towards individual linguistic habits,
we designed a RAG-based free-form text prompts generator to automate this process. RAG allows
pre-trained LLMs to retain their free-form language generation capabilities while incorporating
domain-specific knowledge and style from the provided data source S. We collect corpus from
three types of data sources. Two of these, S1 = Domain Expert, S2 = Non-Expert, serve as the
corpus set to simulate various styles of descriptions for segmentation purposes,. The third source,
S3 = Synthetic, is directly generated by GPT-4o to imitate descriptions for segmentation purposes.

Chunks

…

…
…

Embedding

Domain Corpus

+
…Prompt

Labels LLM

Queries

Liver
kidney
… 

G

ℒ

𝑆!
𝑆"
𝑆#

Figure 2: The RAG Free-form Query Generator.
The domain corpus, from the EMRs embedding,
completes the retrieval augmentation and enhances
the LLMs with the clinical way of query.

For S1 = Domain Expert, we collected over
7,000 reports written by doctors and identified
4,990 clinical diagnosis records that are relevant
to 24 labeled organs for this study. After de-
identification, we embed such Electronic Med-
ical Records (EMRs) into semantic vector space
through Med-BERT (Rasmy et al., 2021), which
outperforms the general language embedding
models such as Bert or GPTs in the bioinformat-
ics context understandings. Then, we built a re-
trieval augmented generation fashion generator
agent G, as shown in Fig. 2, provided with med-
ical domain corpus and practitioner’s language
usage preference. It retains the original LLM’s
natural language ability such as sentences ex-
tension and rephrasing. Finally, we construct a
query prompt template: “System: You are an agent able to query for segmenting label {Liver} in this
{CT} scan. Please write the query sentence and output it.” Given a label li = Liver, where l ∈ L
regarding an arbitrary organ label with CT modality, the G produces a free-form query qil , this query
is taken as prompt in the later text-aware segment model training. E.g., “(1) Examine this CT scan to
determine the extent of hepatic damage present. (2) As the symptoms suggest cirrhosis, we should
analyze the related part in this CT scan for any signs of the disease”. These retrieved augmented
results show that the interested organ may not always be explicitly mentioned, but can be inferred
based on terms like ‘cirrhosis’ and ‘hepatic’, which are all liver-specific illnesses in clinical practice.

For S2 = Non-Expert, we collected queries from people without medical training who lack knowledge
of the anatomy structures to formulate the segmentation queries. For S3 = Synthetic, the corpus is
directly generated by LLMs. Both S2 and S3 are combined with S1 and processed by G to produce
diverse and rich expression text queries for any given organ.

Anatomy-Agnostic Query Anatomy-agnostic queries are crucial for training models to handle
more plain descriptions (i.e., positions, sizes) that lack explicit organ names or related anatomy
information. To align the anatomy-agnostic queries, Q, with training images and their ground
truth masks, we follow the process shown in Fig. 3. Given a training sample x, we first retrieve

2Throughout the paper, we use the terms “query” and “prompt” interchangeably.
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spatial information for each of its mask m
(i)
x using Bboxes, deriving spatial categories based on

their positions and sizes, k ∈ K, where the set K = {k1∗, k2∗, . . . , k6∗} represents six categories:
largest, smallest, left-most, right-most, upmost, and bottom. The RAG generator G then extends this
information into full language descriptions for the masks that belong to one of these six categories,
generating anatomy-agnostic text queries to augment Px for each x ∈ X . This pipeline, as Fig. 3,
ensures sufficient anatomy-agnostic queries are provided to train the model to segment the accurate
organ masks without needing to know the organ label names.

largest
smallest
left-most
right-most
upmost

bottom

I want to segment the largest organ in this image?                   Id:4 
What is the smallest organ that can be observed in the CT scan?  Id:5
In the examination, the most left organ seems strange, segment it. Id:2
Please segment the right-most organ visible in the medical image. Id:4
Identify and segment the uppermost organ in this CT scan slice. Id:1
Segment the organ positioned at the lowest point of the CT scan. Id:3

G

+

Id:1

Id:2

Id:3

Id:4

Id:5

K𝑚!

Figure 3: Spatial features extracted from the Bboxes of ground truth masks are processed by the RAG
query generator G to produce anatomy-agnostic queries.

3.2 FREE-FORM LANGUAGE SEGMENTATION FOR MEDICAL IMAGES

After generating a large corpus of free-form text queries via our retrieval augmented query generator,
the next step is to align these queries with medical imaging segmentaion tasks.

Anatomy-Informed Segmentation For free-form anatomy-informed text prompts, the text encoder
must learn embeddings that group similar organ segmentation intents together while clearly separating
unrelated intents in distinct semantic clusters. We adopt the CLIP (Radford et al., 2021) as the
foundation of text encoder for its capability of understanding semantics. Given a text prompt p ∈ Px

associated with the image x, the CLIP text encoder converts it into an embedding vector tp in a shared
embedding space: tp = EncoderP(p) ∈ RD, where D is the dimensionality of the text embedding
space. To further strengthen the model’s ability to differentiate between organ segmentation, we
introduce an intention head on top of the text embeddings by CLIP. This head is a linear layer
Wcls ∈ RC×D, where C = 24 is the number of organ class. The intention logits yp are derived for
each encoded vector tp: yp = Wclstp + bcls. Given a corresponding medical image embedding zx,
we train the model by following loss function:

L = argmin
{Wcls,bcls,WE ,WD,WP }

1

|X |
∑
x∈X

1

|Px|
∑
p∈Px

[LDice(m̂
p
x,m

p
x) +Lce(m̂

p
x,m

p
x) +Lce(yp, lp)] (1)

where m̂p
x = Decoder(zx, tp) and mp

x are predicted and ground truth masks. lp ∈ [0, ..., 23] is the
ground truth organ class for the prompt. WE , WD and WP represent the image encoder, decoder
and CLIP text encoder weights, respectively. We use both Dice loss LDice and cross-entropy loss Lce
for predicted masks. The classification loss Lce(yp, lp) encourages the model to correctly classify
organs based on text prompts, ensuring the text embedding aligns with the intended organ class.

Anatomy-Agnostic Segmentation For anatomy-agnostic descriptions, which do not explicitly
mention specific organs but instead focus on spatial attributes (e.g., “leftmost”, “largest”), the model
must learn from spatial features kx ∈ K to pair with the corresponding mask mk

x for every x ∈ X .
Anatomy-agnostic queries share the same embedding space as anatomy-informed queries, but kx is
not necessarily associated with a specific organ. In this case, we use the same loss function as shown
in Eq. 1 but without the last classification term.

3.3 SEMANTICS-AWARE CANONICALIZATION LEARNING

We incorporate roto-reflection symmetry (Cohen & Welling, 2016) into our architecture for two
key reasons: 1) Organs and anatomical structures can appear in various orientations and positions
due to differences in patient positioning, imaging techniques, or inherent anatomical variations.
Equivariance ensures that the model’s segmentation adapts predictably to transformations of the input
image. 2) We aim to ensure our model reliably interprets and segments organs that have positional
terms in their names, such as “left” or “right kidney” from text prompts regardless of the scan’s
orientation, thereby enhancing the model’s robustness and accuracy.
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Free-from
Text Prompt

FrozenLearnable: Please examine gallstones from this CT scan.

: I would like to segment the leftmost organ.

p1 pn…

Text Embedding Intention Embedding

…

…

…

…

…

…

Prompt Encoder

Text 
Encoder 

Bbox-based

*
*

Point-based

Text-based (ours)

Point

*
*

*

Bbox

𝐻
!"
#

Mask 
Decoder 

Arbitrarily-oriented 
Image Input

𝛒𝐢𝐧(𝐡&𝟏(𝒙))

𝒙

Image 
Encoder 

Image Embedding

𝛦 !"#$%#& : Spatial Encoder
𝐻 %'$ : Intention Head Layer

Canonicalized & Encoded Image

𝛦 ()*#!*+

Canonicalized Network

Text

Encoded Prompt

Figure 4: The architecture of our proposed model FLanS. First, given a set of free-form text prompts
p1..., pn, the text encoder gets the text embedding, and then passes through the learned Intention
Head Layer that maps the embedding to a space with explicit intention probabilities, which is useful
for the FLanS model weight updating as in Eq. 1. Second, we have trained a Canonicalized Network
that transforms any medical image with arbitrary orientation into a canonicalization space, making
sure the encoded image aligns with the standard clinical practice to avoid ambiguity. Third, the
encoded prompts (either spatial info such as Point, Bbox, or Free-form text data), together with the
encoded image, will be processed with mask decoder and output the expected masks.

Following Kaba et al. (2022); Mondal et al. (2023), we train a separate canonicalization network
h : X 7→ G, where X represents the medical image sample space, G represents the desired group,
and h is equivariant to G. This network generates group elements that transform input images into
canonical frames, standardizing the image orientation before applying the prediction function. The
Eq. 2 shows how this canonicalization process maps the transformed input back to a common space
where the segmentation prediction network p operates,

f(x) = ρout(h(x)) p(ρin(h
−1(x))x, t) (2)

Where p is the segmentation prediction network (composed of the Image Encoder and Mask Decoder
in Figure 12), t is the text prompt embedding produced by our text encoder, and ρin and ρout are input
and output representations. The segmented images or masks produced by p can be transformed back
with ρout(h(x)) as needed. Without this transformation, f is invariant; otherwise, it is equivariant.
Thus, the FLanS architecture visualized in Figure 12 is invariant. We use ESCNN (Cesa et al., 2022)
to build the canonicalization network. This approach has the advantage of removing the constraint
from the main prediction network and placing it on the network that learns the canonicalization
function. Appendix A provides a detailed introduction of symmetry and equivariant networks.

As the entire architecture achieves invariance or equivariance through canonicalization, the model
produces the same segmentation or consistently transforms the segmentation according to the trans-
formed input. In other words, the model always segment the same areas of interest regardless of
the image’s orientation with the same text prompt. For example, as long as the ground truth “right
kidney” mask of a CT image has been shown to the model once, no matter how the orientation of the
CT image and the location of the right kidney changes, the model will always segment the same area.

However, without proper training, h(x) might map different images to inconsistent canonical frames,
causing a distribution shift in the inputs to the prediction network and affecting performance. Thus,
training the canonicalization network togther with the segmentation prediction network is essential to
ensure consistent mapping to the desired frame. It is worth noting that users can choose to disable the
canonicalizer when working with anatomy-agnostic prompts, as the segmented organ may differ if
the original image is not in the canonical frame. The decision depends on whether the user wants to
segment the original or the canonicalized image, as the model will segment whatever image is fed
into the image encoder based on the provided text prompts.

3.4 TRAINING STRATEGY

We employ a three-stage training strategy for FLanS: 1) Learning canonicalization: we train
the canonicalization network independently using FLARE22 training samples applied with random
transformations from the O(2) group. The network is optimized using MSE loss between the canoni-
calized samples and their original counterparts. This encourages the canonicalization network to map
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transformed samples back to their canonical orientations as seen in the FLARE22 dataset, preventing
it from selecting arbitrary orientations that could degrade the performance of the prediction network.
2) Learning text-prompted segmentation: we train FLanS with the queries from Generator G as
introduced in Section 3.1, without the canonicalization network on the original scans, using both
anatomy-informed and anatomy-agnostic prompts. This ensures that the segmentation network learns
to respond accurately to different types of prompts without interference from canonicalization and
data augmentation. 3) Learning augmentation and alignment: In the final stage, we perform joint
training on all scans, applied with random O(2) transformations. Since the canonicalization network
may not always generate the exact canonical orientation the segmentation network is accustomed
to in the beginning, this serves as a form of free augmentation for the segmentation networks. Over
time, the canonicalization and segmentation networks align.

4 EXPERIMENT

4.1 DATASETS AND EXPERIMENTS SETUP

Image Datasets To develop an effective organ segmentation model, we collected 1,437 CT scans
from 7 public datasets, covering 24 partially labeled organs. Of these, 1,089 scans from MSD An-
tonelli et al. (2022), BTCV (Gibson et al., 2018), WORD (Luo et al., 2021), AbdomenCT-1K (Ma
et al., 2022), FLARE22 (Ma et al., 2023), and CHAOS (Kavur et al., 2019) are used for training. The
rest 65 scans, consisting of 10% of the FLARE22 dataset (in-domain), the official validation set of
WORD (in-domain), and the official test set of RAOS (Luo et al., 2024) (out-of-domain), were used
to evaluate model performance. To standardize the quality and reduce domain gaps across datasets,
we applied pre-processing techniques such as slice filtering and intensity scaling to all CT scans. The
finalized dataset comprised 91,344 images for training and validation, and 9,873 for testing. Detailed
information on the dataset statistics and pre-processing steps are in Appendix B.

Text Datasets Our text dataset was constructed using two types of queries: anatomy-agnostic and
anatomy-informed. First, for each image, we identified organs corresponding to 6 representative
positions: leftmost, rightmost, topmost, bottom, smallest, and largest. For each of these 6 position
indicators, 100 anatomy-agnostic queries were generated, resulting in a set of 600 queries to serve
as anatomy-agnostic segmentation prompts.3 Second, for each organ, we generated 480 anatomy-
informed queries in an expertise-driven style using the RAG query generator. By combining both
anatomy-agnostic and anatomy-informed queries, we formed a text dataset comprising 12,120 unique
queries for model training. During testing, a comprehensive text set was used, containing both
in-domain and out-of-domain queries. Specifically, we generated 30 RAG-generated expertise-style
queries (25%, in-domain), 30 human-generated non-expertise-style queries (25%, out-of-domain),
and 60 RAG-generated non-expertise-style queries (50%, out-of-domain) for each organ, forming a
test set of 120 queries per organ and 2,880 queries across all organs. Detailed information on the
generation of the text queries is in Appendix B.

Experiment Setup All experiments were conducted on an AWS ml.p3dn.24xlarge instance
equipped with 8 V100 GPUs, each with 32 GB of memory. We used a batch size of 16 and
applied the CosineAnnealingLR learning rate scheduler, initializing the learning rate for all modules
at 0.0001. The AdamW optimizer was employed for training. A small D8 equivariant canonical-
ization network was used, consisting of 3 layers, a hidden dimension of 8, and a kernel size of 9.
To maintain consistency across the input and output formats, all scans from different datasets were
resized to 1024×1024 and both predicted and ground truth masks were resized to 256×256 for
fair comparison. For images with a single channel, the channel was duplicated to 3. All models’
performance on the test sets is reported using both the Dice coefficient (Taha & Hanbury, 2015) and
normalized surface distance (Heimann & Meinzer, 2009) .

4.2 ANATOMY-INFORMED SEGMENTATION

We first compare our model, FLanS, with the SOTA baselines on a held-out subset of the FLARE22
training set (FLARE), the public WORD validation set (WORD), and RAOs cancer CT images
(RAOS). Both FLARE22 and WORD serve as in-domain test sets, while RAOS is an out-of-domain

3To ensure accurate position-to-organ mapping, position-driven organ-agnostic queries were applied only to
images containing more than nine labeled organs during training.
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Figure 5: Left: Segmentation with anatomy-informed prompts. We could observe that FLanS can
precisely segment the organ described in free-form text prompts, while other baselines make mistakes
in identifying the organs. Right: Segmentation with anatomy-agnostic prompts. We could observe
that the FLanS is texture-aware, descriptions of the sizes and positions can be understood, and is
competitively accurate to the direct Bbox segment.

Table 2: Anatomy-Informed Segmentation Results: FLanS consistently outperforms baselines on
both organ name and free-form text prompts segmentation tasks, demonstrating superior language
understanding and segmentation accuracy across in-domain and out-of-domain datasets, even when
applied with random transformations.

Organ Name FLARE WORD RAOS TransFLARE TransWORD TransRAOS

Dice NSD Dice NSD Dice NSD Dice NSD Dice NSD Dice NSD

CLIP+MedSAM 0.473 0.518 0.411 0.446 0.475 0.440 0.388 0.417 0.357 0.437 0.352 0.399
MedCLIP+MedSAM 0.557 0.516 0.466 0.510 0.419 0.320 0.485 0.415 0.342 0.378 0.336 0.336

Universal Model 0.649 0.697 0.512 0.408 0.442 0.301 0.380 0.290 0.299 0.278 0.200 0.201
FLanS 0.908 0.956 0.837 0.884 0.852 0.883 0.898 0.949 0.835 0.875 0.847 0.879

Free Form FLARE WORD RAOS TransFLARE TransWORD TransRAOS

Dice NSD Dice NSD Dice NSD Dice NSD Dice NSD Dice NSD

CLIP+MedSAM 0.425 0.468 0.381 0.347 0.402 0.400 0.342 0.434 0.356 0.456 0.339 0.357
MedCLIP+MedSAM 0.696 0.557 0.473 0.518 0.365 0.424 0.483 0.501 0.239 0.241 0.307 0.331

Universal Model — — — — — — — — — — — —
FLanS 0.912 0.958 0.830 0.889 0.854 0.885 0.896 0.942 0.833 0.888 0.865 0.899

test set, as neither our model nor the baselines were trained on this dataset. Although the original test
sets already contain scans with varying orientations, we further evaluated the models’ robustness by
applying random O(2) transformations to the three test sets, creating additional sets: TransFLARE,
TransWORD, and TransRAOS. More importantly, we tested the models using Anatomy-Informed
text prompts, which included two types: purely organ names and free-form text descriptions.

As for the baselines, the Universal Model (Liu et al., 2023b) is the only published medical
imaging foundation model that considers free-form text descriptions. This model integrates text
description embeddings during training, while segmentation at the testing and inference stages is
performed using organ IDs. Consequently, we evaluate this model with prompts consisting solely
of organ names. Another widely used approach for text-prompt segmentation involves combining
CLIP-based models (Radford et al., 2021) with segmentation models (Li et al., 2024; Wang et al.,
2024). In these methods, segmentation models first generate potential masks based on a set of random
bounding box or point prompts that span the entire image. CLIP-based models then embed both
the text prompt and the cropped images from these masks. The final mask is selected based on the
highest similarity between the cropped image embedding and the text embedding. To cover this
approach, we include two additional baselines: 1) CLIP + MedSAM, where MedSAM (Wu et al.,
2023) is SAM (Kirillov et al., 2023) fine-tuned on medical imaging datasets; and 2) MedCLIP +
MedSAM, where MedCLIP (Wang et al., 2022d), a contrastive learning framework trained on diverse
medical image-text datasets, is paired with MedSAM for segmentation.

As we can see from Table 2, FLanS achieves superior performance in segmenting based on organ
name. More importantly, FLanS significantly outperforms the baselines on free-form text prompts
segmentation, where the baselines struggle with more complex language input. This suggests that
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training with diverse free-form text prompts enhances the model’s ability to understand language and
the relationship between text descriptions and medical images. Furthermore, FLanS maintains high
Dice and NSD scores on the transformed test sets thanks to the help of the canonicalization network.
The left panel of Fig. 5 visualizes the segmentations generated by the best baseline and FLanS,
alongside their corresponding text prompts, illustrating our model’s superior language understanding
and segmentation accuracy.

4.3 ANATOMY-AGNOSTIC SEGMENTATION

Table 3: Anatomy-Agnostic Segmentation Results: Com-
parison of FLanS using positional and size information text
prompts vs. MedSAM and SAM2 using Bboxes or points.
FLanS achieves competitive or superior performance across
both in-domain and out-of-domain test sets.

Methods FLARE WORD RAOS (OOD)

Dice NSD Dice NSD Dice NSD

SAM2-large (Point-prompt) 0.585 0.652 0.534 0.551 0.488 0.497
SAM2-large (Bbox-prompt) 0.873 0.906 0.848 0.802 0.818 0.749
MedSAM (Bbox-prompt) 0.887 0.872 0.783 0.781 0.697 0.681
FLanS (Free-form text) 0.844 0.841 0.855 0.853 0.851 0.850

To evaluate our model’s ability to
understand anatomy-agnostic text
prompts, we tested its segmenta-
tion performance using prompts
that contain only positional or size-
related information. To the best of
our knowledge, no existing model
is designed to handle anatomy-
agnostic text prompts. Therefore,
we chose state-of-the-art MedSAM
(Wu et al., 2023) (SAM fine-tuned
on medical imaging datasets) and
the latest SAM2 (Ravi et al., 2024)
as baselines. However, instead of text prompts, these models were provided with ground-truth organ
Bboxes or point prompts. Our goal in this experiment is for FLanS to achieve comparable results to
the baselines because FLanS is only given text prompts with positional or size information while the
baselines are given the bounding box or point prompts of ground truth organ.

As shown in Table 3, FLanS the best or second-best performance across both in-domain and out-
of-domain test sets. MedSAM performs well on the FLARE and WORD test sets but struggles on
the RAOS test set due to the lack of training on that dataset. SAM2, when provided with bounding
box prompts, consistently performs well across all test sets and demonstrates strong generalizability.
However, its performance significantly degrades with point prompts, likely because medical scans
lack the distinct edges present in the datasets SAM2 was originally trained on. The right panel of
Fig. 5 visualizes the segmentations produced by the best baseline and FLanS, along with their
corresponding anatomy-agnostic text prompts. It demonstrates that FLanS can reliably segment the
correct organs based on the provided positional or size information, such as largest and lower right.

4.4 ABLATION STUDY ON THE MODEL ARCHITECTURE

Figure 6: The model without canon-
icalization incorrectly highlights the
left kidney due to confusion between
anatomical position (“right kidney”)
and the organ’s appearance on the
right side of the image.

Table 4: Ablation study: prediction performance of FLanS
and its variants with progressively removed components on
the FLARE22 original and transformed test sets. Each row
represents a version of the model with one additional compo-
nent removed.

Model Variants Canonicalized Test Set Transformed Test Set

Dice NSD Dice NSD

FLanS (full model) 0.901±0.003 0.953±0.008 0.895±0.010 0.951±0.002
– Canonicalization 0.865±0.010 0.896±0.011 0.685±0.012 0.728±0.014

– Data Augmentation 0.883±0.012 0.930±0.017 0.289±0.011 0.328±0.019
– Trainable ImgEncoder 0.748±0.009 0.845±0.016 0.301±0.009 0.283±0.017

– Classification Loss 0.718±0.036 0.831±0.029 0.271±0.020 0.234±0.049

We conducted an ablation study of FLanS on the FLARE22 dataset (Ma et al., 2023) to understand the
contribution of each component, as presented in Table 4. Using an 80%-10%-10% train-validation-test
split on the public FLARE22 training set, we evaluate the models’ performance on both the held-out
test set and a transformed test set, which contained samples applied with random transformations
from O(2). Table 4 shows the prediction performance of FLanS and its variants, with components
progressively removed. The results highlight that each component plays a crucial role in the model’s
overall performance. Notably, while data augmentation improved the model’s robustness to random
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transformations, it slightly reduced performance on the canonical test set, as the model had to handle
various transformations. However, by canonicalization network, the segmentation backbone focuses
specifically on canonicalized medical images, thus achieving the best performance on both test sets.

4.5 EFFECTIVE UNDERSTANDING OF FREE-FORM TEXT PROMPTS

Fig. 7 left visualizes the t-SNE embeddings of free-form text prompts corresponding to all 13
FLARE22 data classes, including liver, right kidney, spleen, and others. The text prompt encoder
effectively clusters these prompts, revealing anatomically structured semantics. This demonstrates
FLanS has a strong capability in understanding and distinguishing free-form text prompts.

Figure 7: Left: t-SNE visualization of the free-form text prompt embedding space. Our method can
effectively distiguish between different organ related queries. Right: Canonicalized CT scans from
D4 and D8 canonicalization networks for a batch of randomly transformed scans from the FLARE22
dataset. Medical images can be successfully transformed back to an aligned canonicalization space.

4.6 EFFECTIVENESS OF THE CANONICALIZATION

The right side of Fig. 7 shows the canonicalized CT scans from D4 and D8 canonicalization networks
for a batch of original scans from the FLARE22 dataset applied with random transformations from
O(2) group. As the group order of the canonicalization network increases, the scans become more
consistently aligned to a particular canonical orientation. The canonicalization networks use a shallow
architecture with three layers, a hidden dimension of 8, and a kernel size of 9, demonstrating that
even a simple network with a larger kernel can effectively achieve canonicalization.

More importantly, applying canonicalization before feeding the scans into the main segmentation
network and making the entire architecture equivariant or invarianthelps prevent confusion caused by
positional terms in the organ name. A text-prompt segmentation model understands positional cues
such as “left” vs “right” but it may get confused between the anatomical position and the organ’s
appearance in the scan. For example, Fig. 6 shows segmentation predictions from models with and
without canonicalization, given the anatomy-informed text prompt, “Highlight the right renal organ.”
Since the CT scan is not in the standard orientation, the right kidney appears on the left side of the
image. Without canonicalization, the non-equivariant model incorrectly segments the left kidney,
which appears on the right side. Our model can make consistent predictions of the right kidney
regardless of the scan’s orientation, allowing it to focus on learning the critical features of the organs.

5 CONCLUSION

In this work, we presented FLanS, a novel medical image segmentation model capable of handling
diverse free-form text prompts, including both anatomy-informed and anatomy-agnostic descriptions.
By integrating equivariance, our model ensures accurate and consistent segmentation across varying
scan orientations, addressing a critical challenge in medical imaging. We also developed a RAG
query generator for both realistic and synthetic prompt generation, and trained FLanS on over 100k
medical images from 7 public datasets, covering 24 organ categories. FLanS outperforms baselines
in both in-domain and out-of-domain tests, demonstrating superior language understanding and
segmentation accuracy. Future works including extend FLanS to multi-organ segmentation tasks
and further enhance RAG generator with multimodal data.

REPRODUCIBILITY STATEMENT

Our code and dataset details are available at this anonymous repository 4

4https://anonymous.4open.science/r/SegmentAsYouWish-16F4/README.md
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A EQUIVARIANCE AND SYMMETRY

Equivariant neural networks are designed to explicitly incorporate symmetries that are present in
the underlying data. Symmetries, often derived from first principles or domain knowledge, such as
rotational or translational invariance, allow the network to process inputs in a way that is consistent
with these transformations. This is particularly important when the ground truth functions respect such
symmetries, as the incorporation of these properties can significantly enhance model performance
and generalization.

Group A group of symmetries or simply group is a set G together with a binary operation ◦ : G×
G → G called composition satisfying three properties: 1) identity: There is an element 1 ∈ G such
that 1◦g = g◦1 = g for all g ∈ G; 2) associativity: (g1◦g2)◦g3 = g1◦(g2◦g3) for all g1, g2, g3 ∈ G;
3) inverses if g ∈ G, then there is an element g−1 ∈ G such that g ◦ g−1 = g−1 ◦ g = 1.

Examples of groups include the dihedral groups D4 (symmetries of a square) and D8 (symmetries of
an octagon), as well as the orthogonal group O(2), which represents all rotations and reflections in
2D space. Both D4 and D8 are discrete subgroups of O(2).

Representation A group representation defines how a group action transforms elements of a vector
space by mapping group elements to linear transformations on that space. More specifically, a group
representation of a group G on a vector space V is is a homomorphism: ρ : G → GL(X), where
GL(X) is the group of invertible linear transformations on V . This means for any g1, g2 ∈ G, ρ is a
linear transformation (often represented by a matrix) such that the group operation in G is preserved:

ρ(g1g2) = ρ(g1)ρ(g2) (3)

Equivariance Formally, a neural network is said to be equivariant to a group of transformations G
if applying a transformation from the group to the input results in a corresponding transformation to
the output. Mathematically, for a function f : X → Y to be G-equivariant, the following condition
must hold:

f(ρin(g)(x)) = ρout(g)f(x) (4)

for all x ∈ X and g ∈ G, where ρin : G → GL(X) and ρout : G → GL(Y ) are input and output
representations (Bronstein et al., 2021). Invariance is a special case of equivariance where the output
does not change under the group action. This occurs when the output representation ρout(g) is trivial.
Figure 8 visualize how the equivariant and invariant networks work.

Figure 8: An equivariant model (left) ensures that its output transforms in a specific, predictable way
under a group of transformations applied to the input, preserving the structure of the transformation
(e.g., rotating the input results in a correspondingly rotated output). In contrast, an invariant model
(right) produces an output that remains unchanged regardless of any transformations applied to the
input from the same group.

Equivariance via weight-sharing One of the primary approaches to incorporating symmetry into
neural networks is through weight sharing (Satorras et al., 2021; Cohen et al., 2018; Wang et al.).
This approach enforces equivariance by constraining the network’s architecture so that the weights
are shared across different group elements. For example, in G-convolutions (Cohen & Welling,
2016), the same set of weights is shared across the transformed versions of the input, ensuring that
the network’s predictions remain consistent under those transformations. In a layer of G-steerable
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CNNs (Weiler & Cesa, 2019), a set of equivariant kernel bases is precomputed based on the input
and output representations, and the convolution kernel used is a linear combination of this equivariant
kernel basis set, where the coefficients are trainable. Similar approaches can also be used to develop
equivariant graph neural networks (Geiger & Smidt, 2022). These architectures directly modify the
network’s layers to be equivariant, ensuring that each layer processes symmetries in a way that is
aligned with the desired group. While powerful, this approach imposes architectural constraints,
which may limit the flexibility of the network and prevent leveraging large pretrained models.

Equivariance via canonicalization An alternative to weight sharing is incorporating symmetry
through canonicalization (Kaba et al., 2022; Mondal et al., 2023), where, instead of modifying the
network’s architecture to handle symmetries, the input data is transformed into a canonical form.
In this approach, a separate canonicalization network, which is itself equivariant, preprocesses the
input, transforming it into a standard, or canonical, representation. This canonicalized input is
then passed to a standard prediction network that does not need to be aware of the symmetries. If
the corresponding inverse transformation is applied to the output of the prediction network, the
entire model becomes equivariant; otherwise, the model remains invariant. This method has several
advantages. First, it does not require altering the architecture of the prediction network, allowing for
the use of large pre-trained models without modification. Second, by ensuring that the input data is in
a canonical form, the prediction network only needs to learn the mapping from the canonical input to
the output, without needing to learn all transformed samples. This can lead to improved performance
and robustness, especially in scenarios where the prediction task does not naturally align with the
symmetry group or where architectural constraints might hinder performance. Thus, in our work,
we leverage canonicalization to achieve equivariance in the segmentation task. By transforming the
input into a canonical form using a simple equivariant canonicalization network, we ensure that our
prediction network remains unconstrained and can fully utilize its capacity for learning without the
need for architectural modifications. This approach offers the benefits of symmetry-aware processing
while maintaining the flexibility and power of unconstrained neural network architectures.

B DETAILED DATASET DESCRIPTION

Image Data Collection and Preprocessing For model development and evaluation, we collected
1,437 CT scans from 7 public datasets. A detailed summary of the datasets is provided in Table 5. In
total, 24 organs are labled in the assembled datasets, with a strong focus on segmentation targets in the
abdominal region. The organ class distribution across the datasets is shown in Fig 9. To standardize
quality and reduce domain gaps, we applied a preprocessing pipeline to all datasets. Specifically, we
mapped the Hounsfield unit range [-180, 240] to [0, 1], clipping values outside this range. To address
dimension mismatches between datasets, masks, and images, all scans and masks were resized to
1024 × 1024. The 3D scan volumes were sliced along the axial plane to generate 2D images and
corresponding masks. To ensure labeling quality, organ segments with fewer than 1,000 pixels in
3D volumes or fewer than 100 pixels in 2D slices were excluded. The finalized dataset consisted of
101,217 images, with 91,344 (90.25%) used for training and validation, and 9,873 (9.75%) reserved
for testing.

Table 5: Overview of the datasets used in this study.

Dataset # Training
scans

# Testing
scans

Annotated organs1

AbdomenCT-1K 722 — Liv, Kid, Spl, Pan
MSD2 157 — Lun, Spl
WORD 100 20 Liv, Spl, LKid, RKid, Sto, Gal, Eso, Pan, Duo, Col, Int, LAG, RAG, Rec, Bla, LFH,

RFH
FLARE22 40 5 Liv, RKid, Spl, Pan, Aor, IVC, RAG, LAG, Gal, Eso, Sto, Duo, LKid
CHAOS 40 — Liv
BTCV 30 — Spl, RKid, LKid, Gal, Eso, Liv, Sto, Aor, IVC, PVSV, Pan, RAG, LAG
RAOS3 — 40 Liv, Spl, LKid, RKid, Sto, Gal, Eso, Pan, Duo, Col, Int, LAG, RAG, Rec, Bla, LFH,

RFH, Pro, SV
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Test Data Creation Different from existing work that solely chases for a higher segmentation
accuracy, in this paper, we expect to evaluate the segment model’s performance in dual tasks: The
free-form text understanding ability and segmentation ability.

Figure 9: Distribution of labeled organs across the collected datasets. The image count for each organ
and its corresponding ratio is marked in the plot.

In order to verify the model’s ability to understand the language descriptions, we construct a query
dataset (test set) from two resources: 1. Real-world human queries; 2. LLM-generated synthetic
queries. For the first kind of real-world queries, we have two groups of annotators, Domain Expert
and Non-Expert. Domain experts are from clinical hospitals who provide the query materials from
their daily diagnosis notes, this group of people tends to use professional vocabulary, and their
intention might not be explicitly expressed in a professional report, such as in the report, the doctor
writes ‘Concerns in the hepatic area that warrant a more focused examination’, which implicitly
means the ‘liver is the area of interest under certain symptom’. Another group of query providers is
the non-expert, who are not specialized in clinical or equipped with medical specialties. We explain
to this group of people that their task is to write a sentence and show the intention of segmenting
the target organ/tissue in a CT scan, e.g., the liver. This aspect of real queries represents a more
general and non-specialist approach to expressing the need for segmentation (such as in the student
learning scenarios). Apart from real query data, we incorporate synthetic test queries to enlarge the
test samples and add randomness in various expressions. The synthetic test is generated by GPT-4o
following the template shown below:

The Prompt Template to Generate Synthetic Queries.

System Description: You are a doctor with expert knowledge of organs.

Task Description: Now you are making a diagnosis of a patient on the CT scan over {body part}.
You find a potential problem on {organ name} and want to see more details in this area, please query
for segmentation by free-form text. Please make sure to deliver the segment target explicitly, and you
are encouraged to propose various expressions.

Format: {segmentation query}, {explain reason}.

Example: Given that, {body part} is abdomen and {organ name} is liver.

1For simplicity, the following abbreviations are used: Liv (liver), Kid (kidney), Spl (spleen), Pan (pancreas),
Col (colon), Int (intestine), Sto (stomach), LKid (left kidney), RKid (right kidney), Aor (aorta), Eso (esophagus),
IVC (inferior vena cava), Duo (duodenum), RAG (right adrenal gland), LHF (left head of femur), Bla (bladder),
Rec (rectum), Gal (gallbladder), LAG (left adrenal gland), RHF (right head of femur), PVSV (portal vein and
splenic vein), Pro (prostate), and SV (seminal vesicles).

2Only the lung and spleen subsets from MSD were used.
3We used CancerImages (Set1) from RAOS as our out-of-domain test set. To avoid overlap, any scans in

RAOS that were extended from WORD were excluded from testing.
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Your response should be something like: {Please identify the liver for me for more analysis.}
{Because elevated liver enzymes alanine aminotransferase (ALT) in the blood tests might indicate
liver inflammation or damage}.

Output: {Placeholder}

The overall structure of the test dataset is shown in Figure 10. It consists of 25% expert queries, 25%
normal queries, and half synthetic queries. In total, we have 2880 (24 organs x10 queries x3 x2x2)
text queries. Each of the queries is labeled with the correct organ name to segment. This will be used
to evaluate the ability of our learned TextEncoder model to understand correct intentions based on
free-form language description.

At the same time, the organ names are connected to another segmentation test set, which contains
several (how many) medical images such as CT scans, MRIs, etc. And stand on the results of
interest-category identification, we conduct further segmentation result analysis, including the normal
segmentation precision study, and also the equivariant identified segmentation study.

[Real]
Expert Queries:

‘Concerns in the hepatic area 
that warrant a more focused 
examination.’

[Real]
Normal Queries:

‘I want to get the liver area.’
‘Can you show me the liver?’

[Synthetic]
Template based free-form 
query generation: 

‘I am interested in a detailed 
view that isolates the liver 
from surrounding tissues and 
organs, as I have observed a 
potential issue in this area on 
the CT scan.’ 

Liver

Language 
Test Set

Expert 
25%

Non-expert
25%

Synthetic 
50%

Figure 10: The Language Test Set for Verifying the Query Understanding Ability. It contains three
aspects of components, real data - expert group, real data - non-expert group, and synthetic data.

Figure 11: Positional prompt dataset provider split, we take the slices with more than α labels, where
we set α = 8 in this illustration (while 13 is the total label amount) as a split threshold, ensure that
the slice used for training the label-agnostic provides sufficient semantics in the image content, such
as left, upmost or largest, etc. Similarly, we process the other datasets such as BTCV and WORD.
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C TRAINING DETAILS

In the training process, we provide details of the configuration files and instructions below:

All experiments were conducted on an AWS ml.p3dn.24xlarge instance equipped with 8 V100 GPUs,
each with 32 GB of memory. We used a batch size of 16 and applied the CosineAnnealingLR learning
rate scheduler, initializing the learning rate for all modules at 0.0001. The AdamW optimizer was
employed for training. A small D8 equivariant canonicalization network was used, consisting of 3
layers, a hidden dimension of 8, and a kernel size of 9. To maintain consistency across the input and
output formats, all scans from different datasets were resized to 1024×1024 and both predicted and
ground truth masks were resized to 256×256 for fair comparison. For images with a single channel,
the channel was duplicated to 3. All models’ performance on the test sets is reported using both the
Dice coefficient (Taha & Hanbury, 2015) and normalized surface distance following the existing
work (Heimann & Meinzer, 2009).

D ATTENTION MAP

In this section, we demonstrate the attention map to visualize the correlation between text embedding
and image embedding.

These attention maps based on atonamy-agnostic prompts not only address the first reviewer’s query
about plotting the relationship between text and images but also counter the second reviewer’s concern
that ’our method seems capable of inferring which organ is desired given a text prompt and images.

For example, consider the attention map generated with the prompt ‘segment the part located at the
topmost portion’ it does not highlight just one organ. Instead, all organs at the top are highlighted.
This demonstrates that our model is not merely overfitting data to infer a specific organ; rather, it has
a deep understanding of the text and its relationship to the medical image.

Figure 12: The examples of attention maps in FLanS segmentation tasks. The attention maps are
computed based on the scaled product of text embedding from the text encoder and image embedding
from the image encoder.

E MORE USE CASE DEMONSTRATIONS

In this sections, we provide more examples of segmentation results, ranging from the Anatomy-
Informed to Anatomy-Agnostic ones. In Anatomy-Informed segmentation, we conduct two versions
of illustration, first, we show the simplest (organ name is explicitly described in the prompt) segmen-
tation, as shown in Fig. 15, and to add on more complexity and showcase how FLanS is beneficial
for real-world clinical use cases, we take the diagnosis data from pseudonymized real EMR (eletronic
medical record) data in Fig. 13, FLanS is able to detect the organ from the long and redundant
descriptive symptoms and provide accurate segmentation, this is especially useful for providing
diagnosis assistance based on doctors’ notes. And last, we show size lated Anatomy-Agnostic
segmentations as in Fig. 14.
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Our model effectively identifies organ: aorta, which is implied (no need to directly mention it as required by 
traditional label based models) in the real EMR description on the symptoms of a patient (pseudonymized). 
This inference is performed in real-time inference, fast and accurate.

Our model effectively identifies organ: liver, from a free-form description. The text does not need any 
format restrictions, as long as it describes a certain illness or symptom, the model is able to provide a 
segmentation, regardless of redundant information or concise prompts, which is generalizable and convenient.

Figure 13: The implicit Anatomy-Informed demonstration on a deployed version of the FLanS
model, it provides real-time inference ability and can be robust to any format type of the prompts,
either lengthy or redundant, it can still perform effectively to identify the most cared organ. In this
image, two examples of a real EMR record data is provided (personal information such as name
and age is pseudonymized.) We could observe that, even sometimes the actual label is not explicitly
described as in upper half of this image, the model can perform segmentation accurately because it
has seen the semantic similar corpus in the training period, and aligned these symptom related texts
with the correct segmentation area.
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Our model effectively identifies the largest organ (anatomy agnostic). Since the user prompt is “How about 
the largest”, which is very casual and simple, our model can still detect the intention (queried feature) and 
try to analyze the image’s context (such as areas of organs), and provide the most relevant segmentation. 

Our model effectively identifies the smallest organ in this CT image (anatomy agnostic). This is suitable for 
the use case that, for students’ educational purpose, or anyone without medical background knowledges, such 
as patients wants to learn about their organ conditions, etc.    

Figure 14: The Anatomy-Agnostic demonstration on a deployed version of the FLanS model, this
feature is specially designed for a larger group of users who cares about the medical image scannings,
but lacks the professional background knowledge, such as students, and patients. This supports
the segmentation with the size relevant or positional relevant prompts, the above figures shows that
FLanS is able to successfully segment those largest, smallest organs in the provided scans.
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Our model effectively identifies the anatomy informed (with explicit organ names) in this image. 
This was a simple task when solely performed segmentation using pure label text, however, the 
traditional methods is easily influenced by the redundant information or extra descriptions, leading 
to a confused intention and cause segmentation performance drop. In comparison, our method can 
flexibly understand the segment-intention with any kind of text descriptions, and performs 
comparatively to those trained on simple labels, providing more convenient prompt interactions. 

① ②

③ ④

Figure 15: The explicit Anatomy-Informed demonstration on a deployed version of the FLanS
model, in this figure, we showcase four examples of segmentation results by organ names relevant
prompts. In the prompt content, it mentions the organ names, so as to instruct the segment action. As
in the ① and ②, the model segment spleen and aorta successfully. And as shown in the ③ and
④, the model is also able to distinguish the right kidney and left kidney regardless of the
angle and position of the scan is taken, enforced by the canonicalization module as introduced in the
Section 3.3.
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Figure 16: This image provides an extra analysis on the corner case detection. As shown in this
image, there exist situations in blurry, low-quality meta data leading to the invisibility of an organ,
or that an organ does not exist. FLanS is able to detect such cases and provide feedback that The
organ queried is likely not existing in this image!. This is realized by a filter layer of function upon
the predicted Probability for an organ area, the threshold is set to α = 0.5. One can easily tune the
parameter based on the actual require confidence of the FLanS.
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