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Abstract

With the continuous evolution of AI-generated images, the generalized detection of
them has become a crucial aspect of AI security. Existing detectors have focused on
cross-generator generalization, while it remains unexplored whether these detectors
can generalize across different image scenes, e.g., images from different datasets
with different semantics. In this paper, we reveal that existing detectors suffer from
substantial accuracy drops in such cross-scene generalization. In particular, we
attribute their failures to “semantic artifacts” in both real and generated images,
to which detectors may overfit. To break such “semantic artifacts”, we propose a
simple yet effective approach based on conducting an image patch shuffle and then
training an end-to-end patch-based classifier. We conduct a comprehensive open-
world evaluation on 31 test sets, covering 7 Generative Adversarial Networks, 18
(variants of) Diffusion Models, and another 6 CNN-based generative models. The
results demonstrate that our approach outperforms previous approaches by 2.08%
(absolute) on average regarding cross-scene detection accuracy. We also notice the
superiority of our approach in open-world generalization, with an average accuracy
improvement of 10.59% (absolute) across all test sets.

1 Introduction

Recently, the rapid development of AI-generated image technology has led to the emergence of
synthetic images on the internet, raising significant concerns about AI security. These images
exhibit remarkable diversity due to the continuous introduction of new generative architectures,
e.g., from Generative Adversarial Networks (GANs) [1], Variational Auto-Encoders (VAEs) [2], to
Diffusion Models (DMs) [3]. For now, Internet users can easily generate a large number of exquisite
images using text prompts. As the quality and variety of these synthetic images continue to advance,
developing a universal detector for fake images becomes a crucial aspect of AI security.

To determine whether an image is synthetic, existing studies typically train a binary classifier to assess
the authenticity of an unknown image during inference. Previous methods have primarily focused on
cross-generator detection. For instance, Wang et al. [4] developed a ResNet50 trained on images
from proGAN [5], and then tested it on different GAN variants. Intriguingly, their findings suggested
that aggressive augmentation strategies could significantly enhance the classifier’s generalization
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ability. However, some recent studies [6, 7] have shown that Wang’s approach does not extend well
to images synthesized by unseen DMs, even when DM-generated images are included in the training
set. To address the problem of this cross-generator generalization, recent advancements have focused
on refining detection algorithms [8], using large-scale pre-trained models [7, 9, 10], and augmenting
or obtaining diverse datasets [11, 12]. In addition, Corvi et al. [13] demonstrated that images of one
specific generative model contain unique artifacts that differ from those of other generators. These
“generator artifacts” are particularly distinct between generators with different architectures, such as
DMs and GANs, providing a promising avenue for improving cross-generator generalization.

Despite these efforts, it remains unexplored whether these detectors can generalize across different
image scenes, e.g., images from different datasets with different semantics. Notably, Dogoulis et
al. [14] have discussed a similar setting. However, their study focuses solely on different concept
classes (e.g., objects) and does not consider a wider range of content. To fill this research gap, we
propose a more comprehensive cross-scene problem and solution.

By analyzing the residual spectrum of images, we identify a significant challenge arising from the
“semantic artifacts" in both real and generated images. Our findings reveal that images from different
datasets contain unique artifacts, which can be inherited by generative models. During the training,
existing detectors tend to overfit the specific artifacts of the training data, resulting in substantial
accuracy drops in cross-scene generalization. For example, classifiers trained on images generated by
Latent Diffusion trained on LAION struggle to generalize to images generated by the same diffusion
method trained on FFHQ. Intriguingly, while “semantic artifacts” significantly impact the decrease in
accuracy, the Average Precision of detectors remains high. This issue was also observed in [12], but
comprehensive exploration is lacking.

To address this challenge, our work focuses on mitigating the impact of “semantic artifacts” for
generalized AI-generated image detection. Specifically, we experimentally find that detectors based
on deep networks tend to focus more on the global semantics of images, implying their classification
may rely on specific scenes. To counter this, we propose a simple yet effective approach based
on conducting an image patch shuffle and then training an end-to-end patch-based classifier. Our
approach aims to extract artifacts of generators in a local patch while breaking the global “semantic
artifacts”. Meanwhile, by reducing receptive fields, our approach minimizes the excessive learning
of “generator artifacts”, benefiting cross-generator detection. To comprehensively evaluate the
generalization ability of our approach, we conduct an open-world evaluation on 31 test sets, covering
7 Generative Adversarial Networks, 18 (variants of) Diffusion Models, and another 6 CNN-based
generative models. Our experiments demonstrate the effectiveness of our approach across extensive
evaluations. Our main contributions can be summarized as follows:

• We innovatively identify “semantic artifacts” in cross-scene AI-generated image detection,
which leads to poor generalization performance of existing detectors.

• We propose a simple yet effective patch-based approach, aiming at breaking the “semantic
artifacts” for generalization detection. By extracting local features, our detector is able to
reduce the impact of global semantics in images.

• Extensive experiments validate the effectiveness of our approach with an improvement of
3.81% average accuracy (absolute) in cross-scene detection (6 variants of Latent Diffusion
with different real datasets) and an improvement of 6.74% average accuracy (absolute) in
open-world generalization (all 31 test sets).

2 Related Work

2.1 Generative Models

Generative models aim at learning to create new samples from a given dataset, with the fundamental
goal of capturing the underlying probability distribution mapping. Prominent approaches in this
field include Variational Auto-Encoders (VAEs) [2], Auto-regressive Models [15], Flows-based
Models [16], Generative Adversarial Networks (GANs) [1], and Diffusion Models (DMs) [16]. Early
methods like GANs have achieved impressive realism in image synthesis on specific categories,
leading to the development of the proGAN/styleGAN series [17, 18].
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More recently, DM-based synthesis methods, exemplified by Latent Diffusion [19], have rapidly
advanced in text-to-image generation. Breakthroughs like Stable Diffusion, DALL·E 2 [20], and
Imagen [21] are released in quick succession. These large-scale image synthesis models have
significantly expanded the application scope of image synthesis, enriching the semantic content and
stylistic features of generated images. The evolution makes the detection of AI-generated images
increasingly complex and challenging.

2.2 Detecting Synthetic Images

Prior to the advent of advanced DMs, a significant body of forgery detection research focused on
images generated by GANs. Early detection methods targeted local artifacts present in synthetic im-
ages, including distortions in facial tampered landmarks [22] or inconsistencies in head postures [23].
In [24], it was demonstrated that global artifacts in synthesized images differ markedly from com-
mon artifacts found in modern digital devices. Additionally, the up-sampling operations prevalent
in most GAN architectures tend to produce distinct peaks in the spectral profiles of synthesized
images [25, 26], offering another avenue for detecting fake images.

A noteworthy question that arises is whether these methods are also effective in detecting DM-
generated images. Wang [4] suggests that simple classifiers when trained with aggressive data
augmentation on proGAN images, can be adapted to other unseen models. Ojha [7] use a fixed
pre-trained CLIP:ViT-L/14 to extract image features, while Sha [27] incorporate hint information and
utilize multimodal inputs (text prompts and images) to enhance performance. Tan et al. [8] introduce
the concept of neighboring pixel relationships as a means to capture and characterize the generalized
structural artifacts stemming from up-sampling operations. In particular, recent studies [28, 29]
have identified significant differences in the frequency spectra of images synthesized by GANs and
DMs, impacting the generalization capability of existing detectors. Interestingly, a common issue
is observed when detectors are extended to unknown data [12]. Specifically, these detectors will
show a disparity where high Average Precision is accompanied by low accuracy. Our analysis of
generalization detection of AI-generated images reveals a similar problem, showing performance
imbalances when dealing with different semantics.

3 Methodology

3.1 Artifacts Analysis

To develop a universal detector for AI-generated images, it is crucial to thoroughly examine the
distinctive artifacts of synthetic images generated by various generative models. Inspired by [4, 13, 7],
we start our analysis by visualizing the frequency spectra of different image distributions. This
exploration aims to uncover any unique or intriguing properties of the artifacts associated with
different generators or scenes.

In line with the experimental design in [30, 29], we randomly select a set of images with a quantity of
I = 1000 for each image source and utilize the denoising filter D(xi) from [31] to extract the noise
residuals ri of an original image xi:

ri(m,n) = xi(m,n)−D(xi(m,n)) i = 1, 2, ..., I (1)

Then, we start from the Fourier transform F of the noise residuals of the M ×N image:

Fi(k, l) =

M∑
m=1

N∑
n=1

ri(m,n)e−j2π( k
M m+ l

N n) (2)

where, k and l represent the frequency domain coordinates. To obtain the artifacts of the image
source, we take the average power spectrum S of all single images from it:

Sx(k, l) =
1

I

I∑
i=1

|Fi(k, l)|2 (3)

We use images from our test sets (see Section 4.1) to conduct preliminary experiments for analysis of
the artifacts in both synthetic and real images.
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Figure 1: Generator artifacts: noise residuals power spectrum of images from 9 generative models and 1 real
dataset. Top row: 5 Diffusion Models. Bottom row: 2 GANs, cycleGAN and starGAN, 2 CNN-based generators,
Deepfake and CRN, and 1 real dataset, LAION.

Figure 2: Semantic artifacts: noise residuals power spectrum of images from different scenes. Top row: 5 real
datasets. Bottom row: 5 generative models in corresponding scenes, deepfake, SITD, and 3 variants of Latent
Diffusion on CelebA, FFHQ, and LAION.

Generator artifacts. Figure 1 shows the noise residuals power spectrum of generated images.
For GANs, we have observed periodic artifacts in the spectrum, identified as checkerboard artifacts
produced by up-sampling [25]. Similar artifacts are also observed in some DMs, such as DALL·E 2
and Latent Diffusion. These DMs employ an auto-encoder architecture to compress images into latent
space features, resulting in periodic artifacts akin to those found in GANs. While other CNN-based
generators, e.g., Deepfake or CRN, exhibit unique artifacts that are significantly different from
GANs or DMs. Interestingly, although cycleGAN and starGAN are both based on GAN architecture,
they still show some differences in the spectrum. Overall, images from different generators exhibit
different artifacts and generated images with unique artifacts might lead detectors to overfit during
training, thereby failing to recognize distinct artifacts of cross-generator data. We term these artifacts
as “generator artifacts."

Semantic artifacts. Figure 2 shows the noise residuals power spectrum of real and synthetic images
from 5 distinct scenes (FaceForensics, Raw Camera, CelebA, FFHQ, LAION). To our surprise,
artifacts are also observed in real images. For example, compared to LAION, CelebA and FFHQ
exhibit artifacts around the center of the spectrum while Raw Camera displays artifacts similar to the
periodic artifacts in GANs. Meanwhile, our findings suggest that these artifacts can be inherited by
generative models (see Deepfake trained on FaceForensics, SITD trained on Raw Camera, and Latent
Diffusion trained on CelebA/FFHQ/LAION). These artifacts might originate from the semantics
of the images or the preprocessing methods of the datasets. For example, CelebA and FFHQ share
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Training Metrics Test

Bedroom Church

Bedroom
Acc. (Real) 99.80 100.0
Acc. (Fake) 100.0 0.00
AP 100.0 99.90

Church
Acc. (Real) 100.0 100.0
Acc. (Fake) 0.00 100.0
AP 98.20 100.0

Table 1: Cross-scene detection experiments
on ResNet-50 models from ForenSynths [4].
We use 2 sets of training images on differ-
ent scenes, Bedroom and Church, to retrain
the detectors. Detection accuracy (Acc.) (at
a threshold of 50%) and Average Precision
(AP) are reported.

Training Acc.@ Test w/o patch shuffle Test w/ patch shuffle

Bedroom Church Bedroom Church

Bedroom

50% 99.99 50.00 100.0 51.18
10% 99.99 50.00 100.0 56.11
1% 99.96 50.07 99.94 69.24
0.1% 99.87 50.97 99.61 82.45
0.01% 99.27 62.03 97.94 91.59
0.001% 95.18 85.43 91.92 97.01

Church

50% 50.00 100.0 94.15 100.0
10% 50.04 100.0 99.29 100.0
1% 52.67 99.96 98.71 99.96
0.1% 77.42 99.77 94.47 99.69
0.01% 95.32 99.29 84.64 96.99
0.001% 86.49 96.17 72.61 88.96

Table 2: Accuracy (at different thresholds) results of ResNet-
50 models. We report the performance of the ResNet-50
models with and without the implementation of Patch Shuffle.
Patch Shuffle is employed during both training and testing.

Figure 3: The visualization of CAM extracted from different detectors on Bedroom or Church images. Warmer
color indicates a higher probability.

similar artifacts around the center of the spectra since both contain images of human faces. Notably,
although FaceForensics is also a dataset of human faces, its significantly different preprocessing
method (cropped from video and resized) results in unique artifacts. We term these artifacts as
“semantic artifacts."

3.2 Analysis of the Impact of Semantic Artifacts

Many previous researches [10, 12, 8] have focused primarily on cross-generator detection of AI-
generated images and have made good efforts on generalization across “generator artifacts”. However,
it remains unexplored whether these detectors can generalize on cross-scene detection, especially
since we have found that “semantic artifacts” have many properties similar to “generator artifacts”.
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Figure 4: Pipeline of our approach. First, for pre-processing, we divide the input image into patches and shuffle
these patches to obtain a randomized sequence. Then, we train a patch-based convolutional network for feature
extraction. Finally, we flatten these features into a one-dimensional vector and then apply a linear classifier for
classification.

To explore the impact of “semantic artifacts”, we conduct several preliminary experiments using the
existing paradigm [4]. This method is widely adopted in current studies [12, 10], where researchers
train a ResNet-50 using images from only one generator to detect images from other generators.

Specifically, we use 2 sets of datasets for cross-scene tests. We randomly select 15000 images from
LSUN bedroom and LSUN church, respectively, and generate 15000 images by SDXL-Turbo using
prompts of “A photo of a bedroom” and “A photo of a church” respectively (10000 as training set
and 5000 as test set). We train the detectors respectively on two training sets and evaluate them on
cross-scene detection.

In Table 1, we report the accuracy (Acc.) and Average Precision (AP) of the 2 detectors on different
scenes. As we can see, the detectors perform exceptionally well (almost 100%) on images with the
same semantics as the training set. However, when tested on cross-scene images, the detectors suffer
from significant drops in Acc. (near 0.00%) for generated images. Interestingly, the AP remains
high, indicating that the detectors can still differentiate between real and fake images, although
the distinction in scores between real and fake images is relatively minor. To further analyze the
reasons for the low Acc., we report the Acc. results at different thresholds in Table 2. Typically,
the threshold for determining whether an input image is real or fake is set to 50% in this task.
However, in Table 2, we observe that the optimal threshold for AI-generated image detection is
exceptionally low, ranging from 0.01% (from Church to Bedroom) to even 0.001% (from Bedroom
to Church). This demonstrates that the average score of fake images with different semantics is
extremely low and the score difference between real and fake images is minimal. Unfortunately, such
a low threshold may lead to an increase in false alarms when handling various images. Furthermore,
the optimal thresholds vary across different scenes, e.g., 0.01% from Church to Bedroom and 0.001%
from Bedroom to Church. Therefore, simply adjusting the threshold does not resolve the issue of
cross-scene generalization.

We attribute the poor performance of the existing paradigm to the overfitting of semantic artifacts
during training. To address this, we simply apply Patch Shuffle as preprocessing to break the global
semantics of images. The results are shown in Table 2. As observed, there is an improvement in Acc.
at each threshold from Bedroom to Church, indicating a larger difference in scores between real and
fake images. Moreover, from Church to Bedroom, the Acc. at the 50% threshold reaches 94.15%,
highlighting the possibility of using Patch Shuffle to mitigate the impact of “semantic artifacts”.

Figure 3 reports the visualization of CAM extracted from detectors on generated images of Bedroom
or Church. Notably, detectors without Patch Shuffle struggle to focus on generated artifacts of images
from different scenes. Due to the detector’s limited ability to capture specific semantic content, there
are almost no active regions in CAM of images from different scenes, e.g., (b)-3, (b)-4, (c)-1, (c)-2 in
Figure 3. In contrast, detectors with Patch Shuffle demonstrate more active regions, unaffected by
specific semantic content, e.g., (d)-3, (d)-4, (e)-1, (e)-2 in Figure 3.
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3.3 Approach

The primary goal for cross-scene generalization is to break the impact of “semantic artifacts". In
our preliminary experiments, simple Patch Shuffle has proven to be an effective method. However,
overfitting still exists, e.g., from Bedroom to Church, the Acc. at 50% threshold of detectors with
Patch Shuffle is 51.18% (see Table 2). We hypothesize that the deep residual structure of ResNet-50
promotes the extraction of overall semantic information. Although Patch Shuffle has been applied,
the detectors still learn some semantic features between patches. A strong piece of evidence is that
the visualization of CAM extracted from ResNet-50 with Patch Shuffle shows large, contiguous areas
of activated regions, e.g., (d) and (e) in Figure 3, rather than discrete, point-like activated regions
seen in our approach, e.g., (f) in Figure 3.

Based on this hypothesis, we propose a simple yet effective approach based on conducting an image
Patch Shuffle and then training an end-to-end patch-based classifier. The whole pipeline of our
approach is shown in Figure 4.

Pre-processing. First, given an input image X , we divide it into several patches of size P × P :

{pi} = Segment(X,P ) i = 1, 2, ...,M ×M (4)

where M ×M is the total number of patches obtained after segmentation. We further shuffle these
patches to obtain a randomized sequence {pj}(j = 1, 2, ...,M ×M), which aims to break the global
“semantics artifacts".

Patch-based feature extraction. We employ a patch-based convolutional network C for feature
extraction, which is designed to accept only one single patch as input, aiming at extracting local
features. For each patch pj , we first apply a convolutional layer C0 to extract an initial feature map
F0. Subsequently, a series of same-convolutional blocks {Cn} are used for deep feature encoding.

F0 = C0(pj) (5)

Fn = Cn(Fn−1), n = 1, 2, ..., N (6)

where N is a hyper-parameter representing the number of same-convolutional blocks. After encoding,
the feature map is downsampled through 3 basicblocks.

Linear classifier. The features of each patch {FN} are reassembled into a feature sequence L. We
flatten the feature sequence into a one-dimensional vector v, followed by a linear classifier L:

ŷ = L(v) (7)

We optimize the whole pipeline (including both the feature extractor and linear classifier) using binary
cross-entropy loss:

BCE(y, ŷ) = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (8)

where y represents the true labels, and ŷ represents the predictions.

4 Experiments

4.1 Experimental Settings

Training dataset. To evaluate detectors’ generalization capability, the standard practice is restricting
the training data to images from only one generator and scene. We employ the generated images
from DiffusionDB [32]. The training set consists of 48,000 images generated by Stable Diffusion
v1.4 using prompts from Internet Users and 48,000 real images from LAION-5B [33]. To ensure
a consistent basis for comparison, we also employ the training set of ForenSynths [4], in line with
experimental design in [7, 10, 8], as an ablation experiment in Section A.3.1.

Test datasets. To evaluate the generalization of baselines and our approach, we conduct a com-
prehensive open-world evaluation on 31 test sets, covering 7 Generative Adversarial Networks, 18
(variants of) Diffusion Models, and another 6 CNN-based generative models.
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• Diffusion Models. We collect DMs, including iDDPM [34], DDIM [35], PNDM [36],
Guided-Diffusion (ADM) [37], RDM [38], Latent Diffusion (LDM) [19], Stable Diffusion
v1.4 (SDv1) and v2.1 (SDv2), GLIDE [39], and DALL·E 2 [20]. We sample images from
their variants of 6 real datasets, including LSUN-bedroom, LSUN-church [40], CelebA [41],
FFHQ [17], ImageNet [42], and LAION-5B [33]. Details refer to Section A.7.

• Generative Adversarial Networks. The test sets include fake images generated by 7 GANs
from ForenSynths [4], including proGAN [5], styleGAN, styleGAN2 [17], bigGAN [43],
cycleGAN [44], starGAN [45], and gauGAN [46].

• Other CNN-based generative models. The test sets include fake images generated by 6
other CNN-based generative models from ForenSynths [4], including CRN [47], IMLE [48],
SAN [49], SITD [50], deepfake [51], and WFIR [52].

Methods Variants
Cross-Scene Open-World

Avg. Acc. mAP Avg. Acc. mAP

CNN (CVPR’20)
Blur+JEPG (0.1) 53.66 63.40 56.23 65.27
Blur+JEPG (0.5) 54.16 67.02 55.34 64.13

PatchFor (ECCV’20)
ResNet18 66.13 74.67 57.68 63.76
Xception 69.91 75.26 57.82 64.27

F3Net (ECCV’20)
F3Net 65.21 81.49 56.97 68.87
LFS 57.53 79.36 55.07 76.66
Both 56.82 85.39 53.93 74.54

Durall (CVPR’20)
SVM 64.23 59.80 55.87 53.76
LR 68.28 64.81 59.15 53.74

DIRE (ICCV’20)
CelebA-SDv2 63.19 69.93 57.05 63.81

ImageNet-ADM 58.35 66.73 54.32 59.07
LSUN-ADM 66.64 65.66 56.29 56.70

Dogoulis (MAD’23)
Top 10k 52.70 55.75 53.59 56.96
Top 24k 51.91 57.76 53.25 60.35

Ojha (CVPR’23) CLIP:ViT-L/14+FC 66.38 79.36 67.12 81.28
LGrad (CVPR’23) - 62.91 80.99 57.69 76.91
NPR (CVPR’24) - 90.44 94.84 75.38 88.76

Ours
Resizing 94.25 96.28 82.12 88.36

Zero padding 92.52 95.58 85.97 90.00

Table 3: Results of cross-scene generalization and open-
world generalization. For cross-scene generalization,
we average the results on 6 variants of Latent Diffu-
sion (LSUN-Bedroom, LSUN-Church, ImageNet, CelebA,
FFHQ, LAION). For open-world generalization, we average
the results on all 31 test sets (including 18 DMs, 7 GANs,
and 6 CNN-based generators). Bold represents the best and
underline represents the second best. More Detailed results
are shown in Table 4 and Table 5.

Detector baselines. We perform com-
parisons of our approach with exist-
ing popular and state-of-the-art detectors
on our open-world datasets, including
Durall (CVPR 2020) [53], CNNDetec-
tion (CVPR 2020) [4], PatchFor (ECCV
2020) [6], F3Net (ECCV 2020) [54],
Dogoulis (MAD’23) [14], DIRE (ICCV
2023) [55], Ojha (CVPR 2023) [7], LGrad
(CVPR 2023) [10], NPR (CVPR 2024) [8].
We re-implement baselines [53, 4, 6, 54, 7,
10, 8] with the official codes using our train-
ing set, and adopt the official pre-trained
weights of baselines [55].

Implementation details. Our approach is
implemented using the PyTorch on NVIDIA
A100 40GB Tensor Core GPU. During the
training, we perform zero padding on the
images to ensure the shorter edge is 256
pixels (resizing is also used as another
pre-processing pipeline for ablation), and
then randomly crop the images to 256x256.
Each image will be horizontally or vertically
flipped with a probability of 50% as data aug-
mentation. The number of same-convolution
blocks N is set to 18 and the size of each
patch P is set to 32. The detector is trained
using the Adam optimizer and early-stop strategy with an initial learning rate of 1e− 4, a minimum
learning rate of 1e − 6, and a batch size of 64. We separate 5,000 images from the training set
to serve as the validation set. We use the accuracy (Acc.) and the Average Precision (AP) as the
evaluation metrics, with a particular emphasis on Acc. as our primary metric, because as discussed in
Section 3.2, the AP metric may not fully reflect the problem of cross-scene generalization.

4.2 Experimental Results

Cross-scene generalization. We first report the cross-scene detection results in Table 3. We average
the results on 6 variants of Latent Diffusion (LSUN-Bedroom, LSUN-Church, ImageNet, CelebA,
FFHQ, LAION). The results demonstrate that most detectors suffer from performance drops on cross-
scene images, even though the images are generated by models with the same structure. Particularly,
the gap between AP and Acc. can be observed in several baselines, e.g., CNN (54.16% Acc. and
67.02% AP), Ojha (66.38% Acc. and 79.36% AP), F3Net (56.82% Acc. and 85.39% AP), LGrad
(62.91% Acc. and 80.99% AP), which is consistent with our analysis in Section 3.2. As a comparison,
the best baseline NPR and our approach show little gap between Acc. and AP. Considering that
NPR uses Neighboring Pixel Relationships as features, which benefits breaking the global semantic
artifacts, its high performance (90.44% Acc. and 94.84% AP) aligns with our hypothesis. Despite
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Methods Variants
Bedroom Church ImageNet CelebA FFHQ LAION Average

DDIM iDDPM PNDM LDM DDIM PNDM LDM LDM ADM LDM RDM LDM DALLE2 GLIDE LDM SDv1 SDv2 SDv2-HR
Acc. AP

Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc.

CNN
Blur+JEPG(0.1) 52.80 50.70 50.85 55.60 50.85 51.10 50.00 52.10 50.65 52.95 47.40 49.60 49.40 50.40 61.68 87.30 72.65 60.70 55.37 65.20

Blur+JEPG(0.5) 50.75 52.00 50.20 52.75 50.75 50.35 50.35 52.60 49.95 57.40 48.05 50.90 50.00 50.15 60.93 84.40 75.50 66.40 55.75 66.91

PatchFor
ResNet18 69.85 46.35 68.00 73.55 77.45 72.40 57.20 56.15 40.65 77.10 63.65 64.45 47.80 55.05 68.33 67.35 49.80 44.80 61.11 68.83

Xception 50.10 51.35 50.15 51.95 51.30 50.15 50.75 66.80 49.95 95.90 50.00 54.80 50.70 60.00 99.25 99.35 68.40 67.95 62.16 69.14

F3Net
F3Net 50.15 50.00 50.00 50.15 50.15 50.00 50.00 60.35 42.55 89.05 52.85 76.85 50.45 49.95 64.88 86.20 76.70 84.20 60.25 77.31

LFS 50.10 50.20 50.10 50.80 50.05 50.10 51.25 54.05 31.20 76.15 50.30 52.10 52.85 56.50 60.83 67.10 58.70 85.95 55.46 82.89

Both 50.00 50.05 50.00 50.00 50.00 50.00 50.00 51.75 47.25 65.35 50.00 67.45 50.00 52.60 56.38 71.10 63.75 80.65 55.91 83.09

Durall
SVM 65.10 54.40 57.90 66.90 57.60 62.00 60.00 49.20 44.60 78.00 40.80 68.40 43.10 50.40 62.90 64.10 59.10 57.80 57.91 55.30

LR 55.40 44.90 50.50 62.30 53.80 49.70 69.60 49.20 47.40 89.30 44.50 82.70 39.30 53.80 56.60 51.10 50.90 42.50 55.19 54.62

DIRE
CelebA-SDv2 58.40 61.20 55.60 63.55 64.15 82.15 71.80 72.80 45.40 83.25 81.55 37.30 45.63 57.85 50.45 54.55 53.50 59.36 61.03 70.01

ImageNet-ADM 50.00 51.70 49.70 47.90 51.85 51.90 49.25 73.95 42.70 81.80 81.45 50.05 54.22 63.95 47.14 43.85 45.95 52.77 55.01 60.90

LSUN-ADM 50.00 49.95 50.40 50.20 50.60 51.00 50.45 96.65 46.30 99.90 100.0 49.65 52.01 53.25 53.01 53.30 53.85 75.67 60.34 61.92

Dogoulis
Top 10k 50.20 56.25 50.35 50.35 52.50 47.05 50.90 57.45 53.85 46.90 44.65 48.15 50.40 50.40 62.43 85.40 81.95 60.85 55.56 60.77

Top 24k 50.35 51.30 49.90 50.10 51.30 49.45 49.95 53.15 52.20 47.25 46.15 49.55 51.40 51.30 61.48 89.10 82.20 59.90 55.34 63.49

Ojha CLIP:ViT-L/14+FC 58.05 82.15 55.30 54.10 67.15 54.35 59.65 68.10 48.80 81.15 60.90 66.40 66.18 64.60 68.87 86.10 77.60 66.10 65.86 79.51

LGrad - 56.90 59.90 54.20 51.15 51.60 54.25 50.35 58.10 36.65 96.90 64.25 57.95 53.75 58.10 63.03 77.65 68.60 68.71 60.11 85.78

NPR - 52.80 56.90 54.60 99.75 59.20 54.60 83.65 92.30 44.15 99.90 97.55 68.45 77.28 90.15 98.60 96.20 94.85 89.30 78.35 94.08

Ours
Resizing 99.30 83.00 99.00 98.95 99.65 99.55 99.30 79.50 13.55 99.95 95.95 89.25 79.95 84.15 98.57 98.65 92.50 91.45 89.01 93.58

Zero padding 99.40 80.40 98.65 93.45 96.70 98.20 82.70 97.40 26.70 99.95 93.15 81.95 88.83 89.90 99.69 99.70 97.60 98.90 90.18 93.64

Table 4: Cross-Diffusion generalization results. We evaluate the detectors on all 18 variants of Diffusion Models.

Methods Variants
proGAN cycleGAN bigGAN styleGAN styleGAN2 gauGAN starGAN deepfake SITD SAN CRN IMLE WFIR Average

Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. AP

CNN
Blur+JEPG(0.1) 51.00 50.00 49.60 49.80 51.16 65.95 50.20 62.25 51.11 56.62 74.45 85.35 48.80 57.41 65.38
Blur+JEPG(0.5) 52.25 49.28 49.85 51.25 52.87 66.51 50.00 60.90 53.06 49.09 60.55 69.85 46.60 54.77 60.28

PatchFor
ResNet18 54.25 52.73 53.35 52.65 59.26 62.92 58.70 56.95 46.67 50.23 43.50 46.90 49.95 52.93 56.73
Xception 52.00 51.21 51.70 50.75 50.44 65.68 50.15 50.05 49.72 50.23 50.00 50.00 51.70 51.82 57.53

F3Net
F3Net 50.00 46.89 52.15 49.35 51.51 65.88 51.10 70.00 46.11 47.72 49.95 50.15 50.65 52.42 57.18
LFS 64.25 50.45 50.75 50.20 53.06 65.06 50.15 50.00 50.00 39.95 57.25 68.65 59.15 54.53 68.04
Both 50.25 50.00 49.85 49.95 47.66 65.51 50.00 55.40 41.94 47.95 50.10 51.05 55.90 51.20 62.70

Durall
SVM 21.20 58.20 55.40 57.70 73.80 49.40 94.70 50.00 19.50 16.20 45.20 52.20 96.30 53.06 51.63
LR 80.50 56.70 54.40 57.20 74.50 48.90 79.00 55.90 82.00 76.40 57.30 65.00 52.40 64.63 52.51

DIRE
CelebA-SDv2 48.44 53.80 49.80 52.55 54.65 19.65 50.95 50.05 49.43 65.50 64.15 63.50 47.50 51.54 55.24

ImageNet-ADM 53.13 52.70 48.25 53.65 57.65 66.60 49.00 49.90 50.57 51.00 51.10 52.45 57.95 53.38 56.53
LSUN-ADM 52.34 50.45 50.65 51.65 51.10 50.90 49.85 50.00 50.00 51.25 50.00 50.00 50.50 50.67 49.46

Dogoulis
Top 10k 51.00 49.55 49.50 48.05 48.93 65.99 50.00 50.00 43.06 50.91 48.40 56.05 49.75 50.86 51.68
Top 24k 50.25 48.94 49.25 49.10 48.70 66.02 50.05 49.95 36.67 56.39 48.95 51.40 49.05 50.36 56.01

Ojha CLIP:ViT-L/14+FC 91.25 74.90 79.05 84.75 71.25 73.05 72.30 62.05 49.72 64.38 50.50 53.15 68.90 68.87 83.74
LGrad - 59.75 54.62 49.10 55.40 55.57 65.99 52.75 51.80 35.56 51.14 52.85 62.20 59.60 54.33 64.63
NPR - 94.75 93.14 62.65 61.05 85.82 85.79 99.55 51.70 58.33 56.62 58.05 58.05 61.00 71.27 81.38

Ours
Resizing 86.50 84.77 89.85 90.25 88.85 91.46 96.50 66.80 10.28 60.00 47.90 58.55 71.85 72.58 81.12

Zero padding 79.75 88.37 85.20 95.20 71.54 60.66 99.55 70.65 61.94 86.25 74.80 80.05 87.70 80.13 84.97

Table 5: Cross-GAN/CNN generalization results. We evaluate the detectors on all 7 Generative Adversarial
Networks and 6 CNN-based generative models.

this, our approach still outperforms the SOTA generalization performance, showcasing higher Avg.
Acc. and mAP metrics, which reach 92.52% and 95.58% (based on zero padding).

Open-world generalization. Table 3 also presents the Avg. Acc. and mAP metrics of detectors
across the 31 test sets. The open-world evaluation results demonstrate an improvement in Avg. Acc.
of our approach, outperforming Ojha and NPR by 18.85% and 10.59% respectively. This indicates
the significance of breaking semantic artifacts and focusing on local features in generalized detection.
The visualization result, e.g., the discrete, point-like activated regions in Figure 3 (f), further confirms
the effectiveness of our approach that predominantly focuses on learning local features. Detailed
results of our open-world experiments are presented in two groups.

• Cross-Diffusion generalization. Table 4 presents Acc. and mAP results across images from
18 (variants of) Diffusion Models. The results demonstrate the outstanding performance of
our approach on cross-Diffusion evaluation. Our approach reaches an Avg. Acc. of 90.18%,
outperforming the best baseline NPR (78.35%). Notably, most baselines show their poor
performance on the unconditional generation scene, e.g., Bedroom and Church. We attribute
it to a strong scene change, where there is a significant difference between the txt2img
generation scene (training set) and the unconditional generation scene (test sets). In addition,
the gap between Acc. and AP still exists, e.g., NPR (78.35% Avg. Acc. and 94.08% mAP).

• Cross-GAN/CNN generalization. Table 5 presents the Acc. and mAP metrics of detectors
across images from 7 Generative Adversarial Networks and another 6 CNN-based generative
models. As we see, most detectors suffer from performance degradation on cross-GAN/CNN
Generalization, which is expected because these generators use a different architecture from
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the Diffusion Model (training set). Nevertheless, our approach still shows advantages with
SOTA accuracy while Ojha has SOTA mAP but the gap between Acc. and AP still exists.

Effect of pre-processing pipeline. So far, we have seen excellent generalizability in our patch-
based method. We next explore in depth the influence of pre-processing pipelines on artifact altering
and detection. Specifically, we adopt both image padding and resizing during pre-processing. Tables
4 and 5 demonstrate the superior results of zero padding compared to resizing, especially in cross-
GAN/CNN generalization. In particular, the performance of our approach using padding has been
largely boosted on SITD, SAN, CRN, IMEL, and WFIR compared to resizing. It can be attributed to
their high image resolution, which introduces variations in artifacts and the loss of low-level features
when resizing is applied. Meanwhile, Figure 5 in Section A.4 also supports this finding by showing
that the frequency features of SITD (with image resolution of over 4,000×3,000) images change a
lot after resizing. In summary, these results suggest that zero padding can preserve more low-level
features in images, which benefits generalized detection.

Methods
Cross-Diffusion Cross-GAN/CNN Open-World

Avg. Acc. mAP Avg. Acc. mAP Avg. Acc. mAP

P=64; N=0 81.53 87.48 63.55 66.42 73.99 78.65

P=64; N=3 82.71 89.15 68.85 73.37 76.90 82.53

P=64; N=6 86.34 90.96 74.27 80.40 81.28 86.53

P=64; N=9 86.17 91.17 74.06 80.75 81.09 86.80
P=64; N=12 87.09 91.85 73.37 79.52 81.34 86.68

P=64; N=15 88.40 92.85 67.83 76.36 79.77 85.93

P=64; N=18 88.60 92.43 67.96 72.93 79.95 84.25

P=64; N=21 88.91 93.03 70.19 76.49 81.06 86.09

P=64; N=24 87.10 91.65 67.70 72.28 78.97 83.53

Table 6: Ablation study results on model depth.

Methods
Cross-Diffusion Cross-GAN/CNN Open-World

Avg. Acc. mAP Avg. Acc. mAP Avg. Acc. mAP

P=64; N=18 88.60 92.43 67.96 72.93 79.95 84.25

P=48; N=18 88.58 92.08 70.78 76.79 81.11 85.67

P=32; N=18 89.01 93.58 72.58 81.12 82.12 88.36
P=16; N=18 84.35 91.29 67.13 77.41 77.13 85.47

Table 7: Ablation study results on patch size.

Effect of model depth and patch size.
We next delve into the interplay between
receptive field and generalization abil-
ity. Specifically, we adjust the number
of same-convolution blocks (N ), to vary
the receptive field size and the quantity
of parameters in the feature extractor (no-
tably, resizing is used as preprocessing
in the experiments because it does not
affect the global receptive field). Ta-
ble 6 reports the Avg. Acc. and mAP
results across different N values. The re-
sults demonstrate that both too-shallow
(N=0) and too-deep (N=24) layers re-
sult in performance degradation due to
underfitting and overfitting, respectively.
Intriguingly, the best N value for Cross-
Diffusion generalization is 21 while the
best for cross-GAN/CNN generalization
is 6. Considering that images of the train-
ing set are generated by the Diffusion
Model, we attribute the results to the fact
that a shallow model might learn less
from “generator artifacts” of training images and perform better on cross-generator detection. Con-
versely, this strategy will disrupt its fitting of in-domain artifacts, resulting in worse detection of
in-domain datasets. Then, we conduct experiments to explore the effect of different patch sizes. The
P value represents the size of each patch, which determines the number of patches and the degree of
breaking global semantic artifacts. Table 7 reports the Avg. Acc. and mAP metrics across different P
values. As expected, a larger P value, e.g., P=48 or P=64, enlarges the receptive field, potentially
exacerbating overfitting issues. Conversely, a too-small patch size, e.g., P=16, can lead to significant
underfitting. This finding is encouraging, as it aligns with the effect of model depth and benefits a
deeper investigation into the mechanisms of generalized detection.

5 Conclusion

In this paper, we introduce the concept of “semantic artifacts” in the generalization detection of
AI-generated images. We analyze the existence and impact of “semantic artifacts” in cross-scene
detection through extensive experiments. Our results demonstrate that existing detectors suffer
significant drops in accuracy when applied to images with different semantics, which we attribute
to overfitting during training. To address this issue, we propose a simple yet effective approach
that utilizes Patch Shuffle and trains an end-to-end patch-based classifier to break the “semantic
artifacts” in images. Extensive experiments on 31 test sets validate the effectiveness of our approach,
demonstrating our contributions to the universal detection of AI-generated images.
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A Appendix

A.1 Limitations

This study has potential limitations. The effect estimates in the model are based on interventional and
prospective observational studies. They are therefore subject to biases and confounding that may have
influenced our model estimates. For instance, in Section 3.1, we qualitatively analyze the existence
of semantic artifacts through visualization experiments and hypothesize that semantic artifacts might
originate from the semantics of the images or the preprocessing methods of the datasets, where deeper
theoretical proof is needed. In the future, we should develop quantitative metrics to systematically
measure and evaluate semantic artifacts in image datasets.

A.2 Broader Impact

This paper introduces a new method for enhancing the detection of AI-generated images. Socially,
the research positively impacts security by better detecting synthetic media, thus mitigating risks like
misinformation and fraud. However, it could also spur the development of more elusive generative
models and raise privacy concerns if misapplied.

A.3 Ablation Experiments

A.3.1 Ablation studies on training data source.

To ensure a consistent basis for comparison, we also employ the training set of ForenSynths [4], in
line with baselines [7, 10, 8]. The training set consists of 20 distinct categories, each comprising
18,000 synthetic images generated using ProGAN, alongside an equal number of real images sourced
from the LSUN dataset.

Table 8 reports the Avg. Acc. and mAP results of detectors on our test sets. As expected, most
detectors show better performance on cross-GAN/CNN generalization, due to the training set of
proGAN. Despite this, our approach shows the best Avg. Acc. on cross-Diffusion, cross-GAN/CNN,
and Open-World evaluation, which indicates the effectiveness of breaking semantic artifacts even on
different datasets and the SOTA generalization ability of our approach.

A.3.2 Ablation studies on training set size

Table 9 reports the Avg. Acc. and mAP results of our approach with different numbers of accessible
training images. As expected, the increase in training set size will result in the improvement of

Methods Variants
Cross-Diffusion Cross-GAN/CNN Open-World

Avg. Acc. mAP Avg. Acc. mAP Avg. Acc. mAP

CNN
Blur+JEPG(0.1) 54.28 69.03 81.07 93.31 65.51 79.21
Blur+JEPG(0.5) 50.89 67.40 75.97 91.44 61.40 77.48

PatchFor
ResNet18 66.57 80.02 74.29 85.71 69.81 82.41
Xception 71.63 83.50 75.70 86.34 73.34 84.69

F3Net
F3Net 53.82 61.64 76.23 89.67 63.21 73.40
LFS 70.72 84.98 74.84 80.89 72.37 83.27
Both 67.89 86.15 75.58 82.94 71.11 84.80

Durall
SVM 52.34 53.82 52.38 50.07 52.36 52.25
LR 50.69 52.18 58.95 49.01 54.15 50.85

DIRE
CelebA-SDv2 61.03 70.01 51.54 55.24 57.05 63.81

ImageNet-ADM 55.01 60.90 53.38 56.53 54.32 59.07
LSUN-ADM 60.34 61.92 50.67 49.46 56.29 56.70

Ojha CLIP:ViT-L/14+FC 70.02 83.24 80.40 86.98 74.37 84.81
NPR - 74.36 89.22 73.66 78.35 74.07 84.66
Ours P=32; N=18 81.80 85.58 81.80 85.07 81.80 85.37

Table 8: Open-world generalization results of detectors train on the dataset from ForenSynths [4]. Italic means
that we adopt the pre-trained weights of DIRE, which are trained on diffusion-generated images, while other
detectors are trained on proGAN-generated images.
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Methods
Cross-Diffusion Cross-GAN/CNN Open-World

Avg. Acc. mAP Avg. Acc. mAP Avg. Acc. mAP
Training images = 10k 80.00 88.26 67.24 73.54 74.65 82.09
Training images = 20k 81.20 90.34 69.36 79.42 76.24 85.76
Training images = 40k 88.84 93.45 70.60 80.00 81.19 87.81
Training images = 80k 88.93 93.87 71.67 82.06 81.69 88.92

Table 9: Ablation study results on training set size.

Loss Feature Classifier Open-World
Avg. Acc.

BCE Loss Patch-Based Linear 82.12
MSE + BCE Loss Patch-Based Linear 78.18

BCE Loss Fused Linear 69.51
BCE Loss Patch-Based Self-Attention + Linear 79.95

Table 10: Ablation study results on other components.

generalization. However, as the size of the training set reaches a certain scale, e.g., training images =
40k, such improvements gradually diminish.

A.3.3 Other ablation studies

We consider that during the denoising process of Diffusion Models, the generated images might
become overly "clean", lacking the environmental noise present in real-world scenes. To address this,
we employ a loss for image denoising task on our patch-based feature extraction network instead of
using Binary CrossEntropy (BCE) Loss. In the first stage, each patch is added with Gaussian noise of
a certain intensity y = x+ v before being input into our feature extraction network. Then we use a
Conv layer after the same-convolutional blocks to obtain the noise residual R(y), thereby restoring
the unnoticed patch x′ = y − R(y). We optimize the feature extractor by comparing the restored
patch with the original patch by Mean Squared Error (MSE):

LMSE =
1

2N

N∑
i=1

||R(yi)− (yi − xi)||2F (9)

where N represents the number of noisy-clean training patch pairs. Then, we optimize the linear
classifier by BCE loss.

Additionally, we compare several other ablations: 1) Adding self-attention to the shuffled patch
sequence before our linear classifier. 2) Using a pre-trained ResNet18 to extract global image features
and fuse them with patch-based features for classification.

Our experimental results are shown in Table 10, where we notice that: A. When optimizing with
MSE loss, we observe a decline in detection performance, which we attribute to two main reasons: 1)
The added noise to the patches does not effectively replicate environmental noise. 2) This approach
is not well-suited for images from GANs or other CNN-based generative models. B. The use of
Self-Attention leads to reduced effectiveness, which might be due to the increase in model depth,
inadvertently causing overfitting to artifacts. C. Using ResNet-18 for global feature extraction results
in accuracy drops because this will introduce global semantic artifacts.

A.4 Visualization of the effect of pre-processing pipelines

In this section, to better understand the impact of Patch Shuffled on artifacts, we analyze the noise
residuals power spectra of shuffled images as well as image patches. As shown in Figure 5, these
visualizations support our original hypothesis. Specifically, based on the visualization of shuffled
images, most artifacts are removed during the patch shuffling. For instance, the distinct artifacts
between CelebA and LAION or between LDM-CelebA and LDM-LAION are significantly reduced.
In addition, the visualizations of image patches reveal an intriguing finding that low-frequency
features are weakened but high-frequency features (corresponding to artifacts) are enhanced.
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Figure 5: Additional noise residuals power spectrum of images from 4 real datasets (Faceforensics++, Raw
Camera, CelebA, LAION) and 4 generative models (Deepfake, SITD, LDM-CelebA, LDM-LAION). As
suggested by the reviewer, we consider 3 preprocessing operations from rows 2 to 4.

Figure 6: Additional CAM visualizations of real images for bedroom or church, where the label is "0". As
expected, almost no region is activated, aligning with the high Acc. results of real images in Table 1.

A.5 Visualizations of CAM extracted on real images

In this section, to better demonstrate the performance of the detector in cross-scene settings, the CAM
visualizations of all the detectors on real images (i.e., with the label "0") are provided (see Figure 6).
The visualizations show almost no activated regions, which aligns with the high Acc. results of real
images in cross-scene settings (see Table 1).

A.6 Analysis on Radial Spectrum

To refine the differences in spectral characteristics of various images, we analyze the radial power
spectrum of image residual noise from different datasets. As usual, we obtain the Fourier transform
Sx(u, v) of the noise residuals from 1,000 images and normalize them (by dividing them by their
maximum value). Then, we average the amplitude of frequency components with the same radial
distance r =

√
u2 + v2 in the spectrum:

S(r) =
1

N(r)

∑
√
u2+v2=r

|Fi(u, v)| (10)
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where N(r) represents the number of frequency components at radius r, which goes from 0 to 1 in
180 discrete steps. u and v respectively represent the radial and lateral distances from the center of
the spectrum. we categorize the radial spectra into low (10 60), mid (70 120), and high (130 180)
frequency bands.

Figure 7 displays our experimental results, where the left column shows the low-frequency band
results, the middle column for mid-frequency, and the right column for high-frequency. Rows 1 to
4 respectively exhibit the results for LAION, LSUN, ImageNet, CelebA, and their corresponding
synthetic images, while Row 5 displays the results for LDM synthetic images trained on different
datasets, and Row 6 shows results for different real dataset images.

In the results from Rows 1 to 4, we notice that most generative models exhibit characteristics close to
real images in the low-frequency band. In the mid-frequency band, the differences become noticeable
and are significantly amplified in the high-frequency band, indicating that the detection of synthetic
images is traceable. On the other hand, we observe that real images always seem to exhibit smoother
and more natural variations across all frequency bands. This is more evident in the results of the sixth
row, where all classes of real images show the same trend and also have less jitter. In Row 5, we find
that the frequency-level artifacts of generative models are concentrated at the highest components,
and models using the same architecture tend to produce similar trends in variation. We observe similar
trends in other results, such as DALLE2, SD-v1, and SD-v2 (Row 1); ADM (Row 3); and starGAN
(Row 4). One explanation for this is that generative models with partly identical structures tend to
produce similar artifact features. Nevertheless, when faced with a variety of generative methods, these
artifacts will show significant differences, which further impact the generalizability of the classifier.

A.7 Dataset Collection

We collect and sample a variety of DM-based generative models in chronological order of their
release. 1) iDDPM [34], DDIM [35], and PNDM [36], which use the standard U-Net architecture
and unconditional generation. 2) Guided-Diffusion (ADM) [37] and RDM [38], which use class-
conditional generation. 3) Latent Diffusion (LDM) [19], Stable Diffusion v1.4 (SDv1) and v2.1
(SDv2), GLIDE [39], and DALL·E 2 [20] which use auto-encoders to edit images in latent space for
txt2img generation. To explore detectors’ cross-scene performance, we included variants of these
DMs trained on 6 real image datasets: 1) LSUN-bedroom, LSUN-church [40], CelebA [41], and
FFHQFFHQ [17] used for unconditional models; 2) ImageNet [42] used for class-conditional models,
3) LAION-5B [33] used for txt2img models. For class-conditional models, we uniformly sampled
from each category, and for txt2img models, we used text from LAION as the prompts.

iDDPM2 We take the officially released iDDPM model pre-trained on LSUN bedroom and sample
the synthetic images with DDPM sampler and Linear noise schedule. The number of diffusion steps
is 1000. All the images are generated directly to 256× 256.

DDIM We use the implementation of DDIM pre-trained on LSUN bedroom and church from
https://github.com/luping-liu/PNDM and sample the synthetic images with DDIM sampler and Linear
noise schedule. The number of diffusion steps is 1000 with a speed of 50. All the images are
generated directly to 256× 256.

PNDM3 We take officially released PNDM models pre-trained on LSUN bedroom and church.
Following the official code, we sample the synthetic images with F-PNDM sampler and Linear noise
schedule. The number of diffusion steps is 1000 with a speed of 50. All the images are generated
directly to 256× 256.

ADM4 We take the officially released class-conditional Guided-Diffusion model pre-trained on
ImageNet and sample the synthetic images with DDIM sampler and Linear noise schedule. The
diffusion steps are 1000 and the respacing timesteps are 250. For each category (a total of 1000
categories) we generate images on average. All the images are generated directly to 256× 256.

2https://github.com/openai/improved-diffusion
3https://github.com/luping-liu/PNDM
4https://github.com/openai/guided-diffusion
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RDM5 We take the officially released Guided-Diffusion model pre-trained on CelebA and sample
the synthetic images with DDPM sampler in the first stage and Blurring sampler in the second stage.
The number of first steps is 256 and the second is 200. All the images are generated directly to
256× 256.

5https://github.com/THUDM/RelayDiffusion

Figure 7: Radial spectrum power density. We calculate the radial spectra of different settings and divide them
into 3 parts: low-frequency (left), mid-frequency (middle), and high-frequency (right). The x-axis represents
the frequency components and the y-axis represents the power intensity of those components. Rows 1 to 4
show the results of images from LAION, LSUN, ImageNet, CelebA, and the generative models trained on
the corresponding dataset. Row 5 shows the results of images from different LDM variants trained on LSUN,
ImageNet, CelebA, FFHQ, and LAION. Row 6 shows the results of images from 10 different real datasets.
Special artifacts of the generated model are more visible in the high-frequency range.
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LDM6 We take officially released Latent Diffusion models pre-trained on CelebA-HQ, FFHQ,
LSUN bedroom and church, ImageNet and LAION. Following the official code, we sample the
synthetic images with DDIM sampler. The number of diffusion steps is 200. For each category of the
ImageNet variant, we generate images on average and use prompts from LAION-High-Resolution
and a CFG scale of 5.0 for the LAION variant. All the images are generated directly to 256× 256.

SD-v17 We take officially released Stable Diffusion v1.4 pre-trained on LAION and sample the
synthetic images with DDIM sampler. The number of diffusion steps is 200. We use prompts from
LAION-High-Resolution and a CFG scale of 5.0 for txt2img generation. All the images are generated
directly to 256× 256.

SD-v28 We take officially released Stable Diffusion v2.1 models pre-trained on LAION and sample
the synthetic images with DDIM sampler. The number of diffusion steps is 200. We use prompts
from LAION-High-Resolution and a CFG scale of 5.0 for txt2img generation. All the images are
generated directly to 256× 256 and 768× 768.

GLIDE9 We take the officially released GLIDE model and the corresponding upsampler. Following
the official code, we sample the synthetic images with the default settings. The respacing timesteps
of GLIDE are 250 and the steps of the upsampler are 100. We use prompts from LAION-High-
Resolution for txt2img generation. All the images are generated to 64× 64 and then upsampled to
256× 256.

DALL·E210 We take the implementation of DALL·E 2 pre-trained on LAION and sample the
synthetic images with the default settings. We use prompts from LAION-High-Resolution for txt2img
generation. All the images are generated directly to 256× 256.

6https://github.com/CompVis/latent-diffusion
7https://github.com/CompVis/stable-diffusion
8https://github.com/Stability-AI/stablediffusion
9https://github.com/luping-liu/PNDM

10https://github.com/LAION-AI/dalle2-laion
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Please refer to Section 1. At the end of the Introduction, our main contributions
are summarised.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Section A.1.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please refer to Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: The data used in this study is proprietary and contains sensitive information,
which cannot be disclosed or shared publicly. However, we ensure reproducibility through
the detailed methodologies and parameters described in our paper, alongside the provided
code in supplementary materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please refer to Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Our approach and all baselines use a unified seed for experimentation. Error
bars are not reported due to expensive computation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In Section 4.1, we provide information on the GPU hardware used in the
experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeuroIPS Code of Ethics and checked the paper in every
respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper thoroughly discusses both the potential positive and negative societal
impacts of the technology. Please refer to Section A.2
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: All employed models and data in the paper adhere to established guidelines
and restrictions.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the original papers that produced the code or dataset used in the
paper and state the version of the asset used, include URLs. Please refer to References and
Section A.7.

Guidelines:state which version of the asset is used and, if possible, include a URL.

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Details of our provided code are submitted via structured templates in supple-
mentary material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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