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ABSTRACT

We present MultiNeRF1, a novel 3D watermarking method that enables the em-
bedding of multiple uniquely keyed watermarks within images rendered by a sin-
gle Neural Radiance Field (NeRF) model while maintaining high visual quality.
Our approach extends the TensoRF NeRF model by incorporating a dedicated
watermark grid alongside the existing geometry and appearance grids. This en-
sures higher watermark capacity without entangling watermark signals with scene
content. We propose a FiLM-based conditional modulation mechanism that dy-
namically activates watermarks based on input identifiers, allowing multiple in-
dependent watermarks to be embedded and extracted without requiring model
retraining. We validate MultiNeRF on the NeRF-Synthetic and LLFF datasets,
demonstrating statistically significant improvements in robust capacity without
compromising rendering quality. By generalizing single-watermark NeRF meth-
ods into a flexible multi-watermarking framework, MultiNeRF provides a scalable
solution for securing ownership and attribution in 3D content.

Figure 1: MultiNeRF embeds multiple watermarks within the representation learned by a NeRF
model (TensoRF) at training time. Watermarks are keyed by a unique ID specified at rendering time
to trigger the embedding of the watermark into the image independent of the viewing position.

1 INTRODUCTION

Neural Radiance Fields (NeRFs) (Mildenhall et al., 2021) have become a powerful high-fidelity 3D
scene representation method, enabling photorealistic novel view synthesis. Their uses include online
gaming, immersive experiences, and large-scale metaverse environments (Fabra et al., 2024; Zhang,
2024; Li et al., 2022). However, this also introduces new challenges in intellectual property (IP)
protection, as NeRF models – which can be expensive to produce – can be easily shared or leaked,
whether representing products, scenes, or avatars. Establishing the provenance of a NeRF model is
crucial for asserting ownership and rights, helping to mitigate these risks, and even opening up novel
compensation frameworks for their reuse (Collomosse & Parsons, 2024).

Digital watermarking has been a cornerstone of IP protection for visual media, including images
(Zhu et al., 2018; Fernandez et al., 2022; Bui et al., 2023a) and video (Fernandez et al., 2024).
However, these methods fall short in the NeRF context because they protect only the 2D outputs
(the rendered images) rather than the underlying 3D representation itself. Recent work has therefore
focused on watermarking models directly, for example, text-to-image diffusion models Fernandez
et al. (2023) and NeRFs (Luo et al., 2023; Zhang et al., 2024; Jang et al., 2024; Song et al., 2024).

1This research was funded by DECaDE under the UKRI Grant EP/T022485/1.
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Embedding watermark signals into the NeRF representation itself ensures persistent identification
of models even under novel rendering viewpoints.

This paper introduces MultiNeRF, a novel framework for conditionally embedding multiple water-
marks within a NeRF model. Existing NeRF watermarking techniques are limited to encoding a
single watermark within the rendered image, typically with low capacity (e.g., 16–48 bits). Even
within the broader image watermarking literature Zhu et al. (2018); Tancik et al. (2020); Fernan-
dez et al. (2022); Bui et al. (2023a) it is difficult to surpass capacities of this magnitude order (i.e.,
< 100 bits), whilst maintaining acceptable visual quality for creative use cases. However, this is
insufficient even to accommodate a URL e.g., to an end-user license agreement. NeRF raises the in-
triguing possibility of embedding multiple distinct watermarks within a single model, each of which
may bear only small capacities but which, taken together, can encode higher payload capacities.
Further, multiple independently keyed watermarks admit scenarios requiring multiple licenses or
stakeholders (Figure 1). For example, in collaborative environments such as co-developed meta-
verse worlds, different contributors may need distinct watermarks to establish ownership or track
usage. Our technical contributions are:

1. Watermark Grid. We introduce a dedicated watermark grid alongside the existing ge-
ometry and appearance grids of the learned NeRF representation. This grid prevents the
entanglement of the encoded watermark with scene content, improving watermark capac-
ity and preserving rendering quality whilst adding only a small model size overhead.

2. Conditional Modulation. We introduce FiLM-based modulation Perez et al. (2018), ap-
plying a lightweight input embedding network to encode watermark-specific identifiers and
dynamically control the activation of watermark features. This enables the conditional ren-
dering of multiple watermarks within the same NeRF model.

Figure 3 illustrates our architecture to achieve multiple watermark embedding. We train the modified
NeRF model end-to-end, using a pre-trained HiDDeN decoder (Zhu et al., 2018) as the base model
for watermark retrieval. To ensure robustness, we augment training with differentiable noise sources.
We later show (Sec. 5) our approach to deliver statistically significant improvements in capacity (i.e.,
the ability to store many watermarks with high bit accuracy), without significant quality change. We
demonstrate this for two standard NeRF datasets of multiple scenes (NeRF-Synthetic Mildenhall
et al. (2021) and LLFF Mildenhall et al. (2019)), so extending NeRF watermarking into a more
flexible paradigm suitable for real-world collaborative and commercial settings.

2 RELATED WORK

Visual Watermarking and Media Provenance. Traditional watermarking techniques embed infor-
mation in the spatial Taha et al. (2022); Ghazanfari et al. (2011) or frequency domains Navas et al.
(2008); Li & Wang (2007); Pevnỳ et al. (2010). Deep watermarking methods such as HiDDeN Zhu
et al. (2018), StegaStamp Tancik et al. (2020), RoSteALS Bui et al. (2023b), SSL Fernandez et al.
(2022), and TrustMark Bui et al. (2023a) use learned embedding networks to improve impercepti-
bility and robustness against common transformations. Watermarking has been used to help trace
digital content’s provenance (including ownership and rights) in combination with cryptographic
metadata standards e.g., C2PA. These standards attach signed metadata to digital assets, but meta-
data is frequently removed during redistribution. Watermarking provides a complementary approach
by embedding identifiers directly into content, allowing provenance to persist even when metadata
is stripped Collomosse & Parsons (2024); MultiNeRF explores NeRF watermarking to achieve the
same goal.

Watermarking NeRF models. While deep watermarking has been extensively studied for 2D im-
ages and videos, its application to 3D generative models, such as NeRFs, is relatively new. Con-
ventional 2D watermarking fails to ensure persistence across novel viewpoints, leading to recent
research into NeRF watermarking methods Luo et al. (2023); Zhang et al. (2024); Jang et al. (2024);
Song et al. (2024). CopyRNeRF Luo et al. (2023) embeds watermark signals in the color feature
field to ensure extraction from arbitrary viewpoints, while NeRFProtector Song et al. (2024) fo-
cuses on embedding watermark from the start of training a NeRF scene. WateRF Jang et al. (2024)
introduces a frequency-based embedding, enhancing resilience to noise and compression. Existing
NeRF watermarking methods are constrained by limited capacity and the inability to handle multiple
watermarks, which we address with MultiNeRF.

Watermarking in Generative Models. With the rise of generative models in images Aditya et al.
(2022), video Ho et al. (2022), and 3D asset creation Mildenhall et al. (2021), protecting model IP
has become a key concern. Model provenance methods include watermarking of training data As-
nani et al. (2024); Sablayrolles et al. (2020), model fingerprinting Zhang et al. (2021), and proactive
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Figure 2: MultiNeRF extends TensoRF by introducing a watermark grid Aw alongside the geom-
etry Aσ and appearance Ac grids. Unique watermark IDs (1..n) are first encoded via a learnable
embedding network into compact vectors that are then transformed into per-channel scaling (γ) and
shifting (β) parameters. These parameters modulate the watermark grid’s features, ensuring that
each distinct message is selectively activated and merged with the appearance grid during inference.

tagging techniques Wang et al. (2021). Recent work in diffusion model watermarking, such as Sta-
ble Signature Fernandez et al. (2023), introduces an in-model watermarking approach that fine-tunes
the decoder of a latent diffusion model to embed robust identifiers directly into generated images.
Other methods, such as Tree-Ring Wen et al. (2023), inject patterns into the noise initialization step
of diffusion models to provide provenance guarantees. MultiNeRF extends these approaches to 3D
by embedding provenance signals into NeRF representations, ensuring watermark persistence across
novel views while enabling multiple uniquely keyed watermarks within a single model.

3 PRELIMINARIES (TENSORF)

This paper builds on TensoRF Chen et al. (2022), a popular explicit tensor-based representation for
neural radiance fields (NeRFs). Unlike the traditional NeRF Mildenhall et al. (2021), which relies
on multi-layered perceptions (MLPs), TensoRF Chen et al. (2022) represents a scene as a set of
factorized tensors: the geometry grid, denoted by Gσ ∈ RI×J×K , which encodes the volume density
σ at each voxel in the 3D grid; and the appearance grid Gc ∈ RI×J×K×P , which encodes the view-
dependent color c; where I, J, K represent the resolutions of the feature grid along the X, Y, Z axes.
P denotes the number of appearance feature channels. Given a 3D location x = (x, y, z) ∈ R3 and a
view direction d, by trilinear interpolation is applied to sample the two grids and the corresponding
density σ and color c is estimated by:

σ, c = (Gσ(x), S(Gc(x),d)) (1)

Where S is a decoding function, the decoding function can be either a small MLP or Spherical
Harmonic (SH) function that covers the appearance features and view direction to an RGB color.
The trilinearly interpolated grids Gσ and Gc are represented as:

Gσ(x) =
∑
r

∑
m

Am
σ,r(x), Gc(x) = B

(⊕[
Am

c,r(x)
]
m,r

)
(2)

Where, Am
σ,r(x) and Am

c,r(x) are factorized components of the density and appearance tensors,
indexed by mode m and rank r. B matrix acts as a global appearance dictionary that captures
correlations across the scene. While

⊕
denotes the concatenation of tensor components.

TensoRF employs differentiable volume rendering. It integrates the radiance values along the rays
cast through the scene, which samples Q points along the ray. Given a ray passing through a 3D
point, the final pixel color C is computed as:

C =

Q∑
q=1

τq (1− exp(−σq∆q)) cq (3)

where, σq and cq are the density and color of the sampled point xq , ∆q is the step size along the ray,
and τq is the transmittance.

τq = exp

(
−

q−1∑
p=1

σp∆p

)
(4)
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4 METHODOLOGY

Since the TensoRF decomposes a scene into two separate grids for geometry and appearance, Multi-
NeRF extends this framework to encode a watermark with a further dedicated grid. In contrast to
prior approaches that embed only a single watermark (e.g., Jang et al. (2024); Song et al. (2024)),
our method accommodates multiple distinct messages, each identified by a unique key (ID) which
forms an additional model input. Figure 2 provides a high-level overview of the proposed pipeline.

4.1 CONSTRUCTING THE WATERMARKING MODULE

As NeRF models only take position and view direction as inputs to the model, we need an input
embedding layer to condition the NeRF and embed the watermark accordingly, allowing it to switch
between different watermark messages. We let I(n) be the integer IDs, each corresponding to a
distinct watermark message M(n), and introduce a learnable embedding layer Emb() which maps
I(n) to en a 16 dimensional message vector.

en = Emb(I(n)) (5)
Where Emb is a learnable small MLP, and en is the embedding vector, which will serve as a condi-
tion to modulate and thereby select from multiple learned watermarks.

Watermark Grid. TensoRF (Chen et al., 2022) decomposes a scene into two explicit 3D grids: Gσ
for geometry (density) and Gc for appearance (color). Directly embedding the watermark into the
existing appearance grid Gc would risk entangling watermark features with scene color, potentially
degrading both. We propose an additional grid Gw, of the same spatial resolution (I × J ×K) but
containing watermark-specific feature channels. Given, at any 3D location x = (x, y, z),

w(x) =
⊕[

Am
w,r(x)

]
m,r

(6)

Watermark modulation. A design challenge in embedding multiple watermarks is ensuring that
the model ‘activates’ only the selected watermark’s features. To this end, we draw inspiration from
FiLM (Perez et al., 2018); its FiLM layer can influence the feature space computation using feature-
wise affine transform based on external information. In our context, as we want to embed multiple
watermarks, our external information is the embedded watermark ID, i.e., en. Our watermark mod-
ulation has a modulator network, which in our case is a learnable linear layer Mod(), which takes
en as input and outputs a pair of modulation parameters to scale and shift the feature space of the
watermark features: scale γn and shift βn:

[γn, βn] = Mod(en), (7)

Thus, each w(x) channel is conditioned based on the embedding en. We then compute:

w′(x) = γn ⊙w(x) + βn, (8)

Where ⊙ is the Hadamard product. The resulting w′(x) represents the modulated watermark fea-
tures specific to I(n). Intuitively, γn and βn activate certain dimensions of the watermark grid
differently for each watermark ID.

Merging watermark and appearance. To incorporate these modulated watermark features with
appearance, we pass only Gc(x) and viewing direction to the S MLP, which is a color decoding
function of TensoRF (see Chen et al. (2022) for details), and we apply the modulated watermark
features to the last linear layer of the S MLP:

c̃(x) = S(Gc(x),w
′(x),d), (9)

where c̃(x) is now a watermark color at location x. The rest of TensoRF’s volume rendering pro-
ceeds unchanged. Because each ID yields different {γn, βn},, the final color c̃(x) implicitly contains
an ID-specific watermark pattern. As a result, any novel view rendered from the watermarked NeRF
model will contain an embedded signature that can be extracted with the watermark decoder.

Differentiable Augmentation layer. To promote robustness against image attacks, we train with
differentiable augmentations on the fully rendered image. Each image is transformed by a small
set of augmentations (brightness, contrast, color jiggle, gaussian blur, gaussian noise, hue, poster-
ize, RGB shift, saturation, median blur, box blur, motion blur, sharpness, and differentiable JPEG
compression) before passing them into the watermark decoder function. Formally, if Ĩ is the full
rendered image, we apply a random pair of augmentations from A from a set of {A1, ..., Am}.:

Î = A(Ĩ), (10)

where Î is an augmented image, and we pass this image to the watermark decoder.
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Figure 3: MultiNeRF training process A learnable encoder transforms multiple distinct watermark
IDs into compact embedding vectors. TensoRF is trained with a HiDDEN decoder module end-to-
end with rendered images passing through differentiable noise augmentations. Perceptual (12) and
patch-based (13) reconstruction losses balance visual quality against a message loss (11).

4.2 TRAINING MULTINERF TO EMBED WATERMARKS

We begin by training a TensoRF NeRF model, using the geometry and appearance grids to initialize
those parts of our MultiNeRF architecture. We perform a separate initialization of the watermark
decoder training a HiDDeN decoder following (Zhu et al., 2018). Other parts of our architecture are
initialized with white noise, and training proceeds in two phases.

Phase 1. We begin by first freezing the watermark decoder D. We generate a random watermark
ID I(n), with mn the ground truth message for n − th ID. For each training iteration, we render a
full-resolution image I ∈ RH×W×3. As directly injecting watermarks into the spatial domain can be
vulnerable to image compression, we apply a level 2 decomposition of Discrete Wavelet Transform
(DWT) on the rendered image (after Jang et al. (2024)) and use the LL2 sub-band as it retains the
majority of the energy and broad structural features. This sub-band image (denoted ILL2

) is then
passed to the watermark decoder D obtaining a decoded message m′

n. A BCE loss is calculated
between secrets mn and m′

n:
Lsecret = BCE(mn,m

′
n) (11)

Alongside the secret loss Lsecret, we also calculate a perceptual loss Lpercept via Watson-VGG
(Czolbe et al., 2020) to create a total loss for this first phase of training:

Linit = λmLsecret + λiLpercept (12)

Phase 2. Training continues end-to-end via a patch-based process using deferred backpropagation
(Zhang et al., 2022). As optimizing at a full resolution in each iteration can be memory-intensive.
Therefore, we make patches and re-render the images from those patches. A patch loss Lpatch is
then calculated, which uses the RGB loss across the rendered pixels, SSIM loss, and total variation
regularization:

Lpatch = λrgbLRGB + λTV LTV + λSSIMLSSIM (13)
We unfreeze the decoder D and introduce the differentiable augmentations A at each iteration on
the rendered image, on which the 2-level DWT is applied and is passed into the watermark decoder
D.

5 EXPERIMENTS AND DISCUSSION

5.1 EXPERIMENTAL SETUP

Datasets: We train and evaluate our method using the Nerf-Synthetic Mildenhall et al. (2021) (here-
after, SYN) and the LLFF datasets Mildenhall et al. (2019). SYN consists of eight representative
scenes: chair, drums, ficus, hotdog, lego, materials, mic, ship; and the LLFF dataset consists of eight
scenes: fern, flower, fortress, horns, leaves, orchids, room, trex. In all evaluations, we train and test
MultiNeRF using the partitions of those public datasets.

Baselines: As no multiple watermark frameworks are available for NeRFs, we evaluate our proposed
method against two state-of-the-art NeRF watermarking methods for the single watermarking task:
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WateRF (Jang et al., 2024) and NeRFProtector (Song et al., 2024). For fair comparisons, we use the
models that those baselines have implemented in their methods; for WateRF, we choose TensoRF
(Chen et al., 2022) as the NeRF model, and for NeRFProtector (Song et al., 2024) we use Instant-
NGP (Müller et al., 2022). As no prior work embeds multiple watermarks into a single NeRF,
we tune WateRF (Jang et al., 2024) by adding an input embedding layer to condition it to embed
multiple watermarks (denoted ‘WateRF-modified’).

Metrics: We use bit accuracy to evaluate the accuracy of the decoder for a given capacity. For visual
quality, we measure PSNR, SSIM (Wang et al., 2004), and LPIPS (Zhang et al., 2018) distances
between the ground truth and watermarked image.

Training setup: MultiNeRF is implemented in PyTorch and trained with a batch size of 1 on a single
NVIDIA RTX 4080. The ADAM optimizer (Kingma, 2014) is used with β1 = 0.9 and β2 = 0.99,
and an exponential learning rate decay is applied. All the grid parameters are optimized with an
initial learning rate of 0.02, and the basis matrix for all grids has a learning rate of 1e− 3.

5.2 SINGLE WATERMARK EMBEDDING EVALUATION

We evaluate two variants of our model trained with (MultiNeRF-Noised) and without (MultiNeRF)
noise augmentations. All methods embed a single 48-bit message. As the quality is slightly affected
by different messages, we average over 50 sets of unique watermarks and report the average results
for all the synthetic and LLFF datasets. We enforce a minimum Hamming distance between the wa-
termark messages to ensure embedded messages are distinct. Note that NeRFProtector reported on
only 3 scenes from SYN and LLFF datasets (Song et al., 2024). Using the official implementation,
we cannot reconstruct 3 of the full set of scenes (ficus, flower, leaves) and omit these outliers from
their average.

Table 1 shows that MultiNeRF achieves a mean bit accuracy of 93.18% on SYN outperforming both
WateRF (91.51%) and NeRFProtector (90.81%); and like WaterRF saturates performance on LLLF
at ∼ 99%. Whilst the noised variant (MultiNeRF-Noised) exhibits slightly lower bit accuracies in
some scenes, this is traded for improved robustness (c.f. subsec.5.4). MultiNeRF generally achieves
comparable quality and slightly higher accuracy at the single watermarking task.

Table 1: Comparing raw bit accuracy ↑ (no error correction) of the proposed method (MultiNeRF) to
baseline methods (NeRFProtector, WaterRF) for the single message task on datasets: SYN (upper)
and LLFF datasets (lower). Values to 2 d.p.

Method (on SYN) Avg. Chair Drums Ficus Hotdog Lego Materials Mic Ship

WateRF (Jang et al., 2024) 91.51 98.31 92.19 79.83 96.21 93.16 82.33 95.92 94.10
NeRFProtector (Song et al., 2024) 90.81 96.41 89.73 - 93.47 90.12 84.05 90.39 91.54
MultiNeRF (ours) 93.18 98.35 95.14 83.06 96.97 94.86 85.16 96.89 95.03
MultiNeRF-Noised (ours) 89.70 92.60 93.61 78.60 94.36 92.49 83.54 89.72 92.65

Method (on LLFF) Avg. Fern Flower Fortress Horns Leaves Orchids Room Trex

WateRF (Jang et al., 2024) 99.32 99.75 99.56 99.95 99.92 99.53 96.07 99.89 99.91
NeRFProtector (Song et al., 2024) 95.73 94.68 - 99.58 98.77 - 82.23 99.73 99.37
MultiNeRF (ours) 99.23 99.39 99.48 99.82 99.87 99.68 95.92 99.77 99.88
MultiNeRF-Noised (ours) 98.55 99.04 99.05 99.90 99.86 99.28 91.81 99.65 99.81

Table2 shows that quality is equivocal for the baselines versus MultiNeRF, which attains an average
PSNR of 30.83 dB for SYN and 26.78 dB for the LLFF dataset. We are slightly higher (SSIM,
PSNR) or lower (LPIPS) than our baselines on some metrics. Overall, we conclude that MultiNeRF
is comparable in quality and slightly outperforms bit accuracy for the single watermarking task.

5.3 EVALUATING MULTIPLE WATERMARK EMBEDDING

We evaluate the model setting of embedding multiple distinct watermarks within a single NeRF
model. Since all baselines target a single watermark per model, we have adapted WateRF into a
accepting an input variable to select on watermark and trained it as a baseline (WateRF-modified).
Each watermark has a 16-bit capacity, and we embed multiple watermarks into a single model.

Figure 6 presents the average bit accuracy across the SYN and LLFF datasets for varying numbers
of unique watermarks per model. For SYN, WateRF-modified returns a random response (50% bit
accuracy) for 32 watermarks and onwards versus MultiNeRF at 70% bit accuracy on 32 watermarks,
which degrades to a random response at 64 watermarks. Similarly, for LLFF, we observe that both
methods start with similar bit accuracies at 2 watermarks, with WateRF-modified dropping to ran-
dom response at 32 watermarks, whilst MultiNeRF achieves 82% bit accuracy at 32 watermarks
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Table 2: Comparing visual quality metrics (LPIPS ↓, PSNR ↑, SSIM ↑) of MultiNeRF to baselines
(NeRFProtector, WateRF) for single message task on SYN and LLFF datasets. Values to 2 d.p.

LPIPS (Lower is better)

Method (on SYN) Avg. Chair Drums Ficus Hotdog Lego Materials Mic Ship

WateRF 0.04 0.02 0.05 0.02 0.03 0.02 0.04 0.02 0.08
NeRFProtector 0.08 0.04 0.07 - 0.08 0.03 0.08 0.05 0.19
MultiNeRF (ours) 0.04 0.02 0.05 0.02 0.04 0.02 0.04 0.02 0.08
MultiNeRF-Noised (ours) 0.04 0.02 0.06 0.03 0.04 0.02 0.04 0.03 0.09

Method (on LLFF) Avg. Fern Flower Fortress Horns Leaves Orchids Room Trex

WateRF 0.10 0.13 0.09 0.07 0.08 0.12 0.17 0.06 0.06
NeRFProtector 0.07 0.10 - 0.07 0.15 - 0.08 0.05 0.06
MultiNeRF 0.09 0.14 0.09 0.06 0.08 0.12 0.18 0.05 0.07
MultiNeRF-Noised (ours) 0.10 0.14 0.09 0.07 0.08 0.12 0.17 0.08 0.06

PSNR (Higher is better)

Method (on SYN) Avg. Chair Drums Ficus Hotdog Lego Materials Mic Ship

WateRF 30.58 32.33 25.30 31.04 33.61 32.74 28.45 31.94 29.30
NeRFProtector 28.44 31.40 24.41 - 32.51 31.00 26.20 30.61 23.00
MultiNeRF (ours) 30.83 32.81 25.58 31.22 34.12 32.83 28.15 32.05 29.87
MultiNeRF-Noised (ours) 30.61 32.59 25.38 30.64 34.07 33.14 28.16 31.35 29.53

Method (on LLFF) Avg. Fern Flower Fortress Horns Leaves Orchids Room Trex

WateRF 26.31 25.08 27.60 30.26 27.88 20.96 19.98 31.30 27.43
NeRFProtector 26.08 27.58 - 28.13 23.05 - 20.19 30.73 26.83
MultiNeRF (ours) 26.78 24.99 27.53 30.20 28.15 20.97 19.99 34.68 27.70
MultiNeRF-Noised (ours) 26.36 24.89 27.45 30.45 28.05 20.97 19.96 31.48 27.65

SSIM (Higher is better)

Method (on SYN) Avg. Chair Drums Ficus Hotdog Lego Materials Mic Ship

WateRF 0.94 0.96 0.93 0.97 0.96 0.96 0.93 0.97 0.87
NeRFProtector 0.91 0.95 0.90 - 0.94 0.95 0.90 0.96 0.78
MultiNeRF (ours) 0.95 0.97 0.93 0.97 0.96 0.96 0.93 0.97 0.88
MultiNeRF-Noised (ours) 0.94 0.97 0.93 0.96 0.96 0.97 0.93 0.97 0.88

Method (on LLFF) Avg. Fern Flower Fortress Horns Leaves Orchids Room Trex

WateRF 0.82 0.80 0.83 0.87 0.87 0.73 0.64 0.93 0.90
NeRFProtector 0.85 0.87 - 0.87 0.77 - 0.74 0.91 0.89
MultiNeRF (ours) 0.82 0.80 0.84 0.88 0.88 0.73 0.64 0.94 0.91
MultiNeRF-Noised (ours) 0.83 0.80 0.84 0.88 0.89 0.73 0.64 0.94 0.91

Figure 4: Visual artifacts (colored ripples) present in WateRF-modified versus MultiNeRF.

and 68% at 64 watermarks. The error bars confirm a significant bit accuracy improvement using
MultiNeRF for the multiple watermarking task (i.e., p < 0.0001 for both SYN and LLFF).

Figure 5 shows all methods performed with similar visual quality, and the error bars indicate no
statistically significant difference in quality between the methods. Table 3 illustrates the trade-off
between model size and performance for 16 watermarks. Compared to TensoRF (Chen et al., 2022),
introducing a watermark grid increases parameter count and storage overhead by ∼ 12%.

5.4 EVALUATING WATERMARK ROBUSTNESS

Robustness evaluation was performed on the SYN/Lego scene, and results averaged for 50 different
watermarks embedded into the model. Figure8, plots bit accuracy vs the types of attacks used i.e.
cropping, blur, JPEG compression, etc. The MultiNeRF-Noised model has greater bit accuracy on
these attacks vs. baselines and a 3% bit lower accuracy than MultiNeRF.
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Figure 5: Evaluating the visual quality of MultiNeRF vs. baseline WateRF-modified for the multi-
watermarking task: LPIPS (top); PSNR (mid.); SSIM (bot.).

Figure 6: Evaluating bit accuracy ↑ of MultiNeRF versus baseline WateRF-modified for the multi-
watermarking task. Accuracies averaged for SYN (left) and LLFF (right) datasets. Performance is
significantly higher for MultiNeRF beyond the single watermarking case.

5.5 ABLATION STUDY

We present ablation experiments to validate the design choices in MultiNeRF (Table 3) conducted
on the Lego scene with 16 watermarks per model. First, we remove the proposed watermark grid
(-GRID), which falls back to an MLP to encode the watermark information. Without a separate
spatial grid, bit accuracy drops to 51.60%, suggesting that an explicit grid provides higher capacity
for multiple watermarks. We also examine the effect of removing modulation (-FiLM), causing
a drop from 82.79 to 70 %. We explored a training simplification where the watermark grid is
learned without adjusting the appearance or geometry grid (Gσ frozen), showing that bit accuracy
suffers when we do not allow the appearance parameters to adapt. Another variation injects the
FiLM-modulated features into earlier layers (+EARLY) of MLP rather than the last layer. While
the bit accuracy (78.04%) remains high, visual quality suffers e.g., as with WateRF-modified, scene
reflections are absent.
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Figure 7: Visualizing the imperceptible watermark residual (bottom, amplified) introduced by Multi-
NeRF between the ground truth (top) and watermarked image (middle).

Figure 8: Evaluating the robustness to various degrading transformations for the proposed Multi-
NeRF method trained with (-noised) and without noise augmentations to baselines WateRF and
NeRFProtector for watermarking a single message (averaged for 50 runs over Lego).

Table 3: Left: Ablation Study of MultiNeRF (abbrev. MN), evaluating the impact of key compo-
nents. Right: Comparison of performance gain (accuracy) versus size increase. Figures to 2.d.p.

Method Bit Acc. ↑ PSNR ↑ LPIPS ↓ SSIM ↑

MN(-GRID)(+MLP) 51.60 35.50 0.01 0.98
MN(-FiLM)(-GRID) 66.28 33.57 0.02 0.97
MN(-FiLM) 70.00 34.69 0.01 0.97
MN Gσ frozen 67.72 34.56 0.01 0.97
MN(+EARLY) 78.04 34.29 0.02 0.97
MN(-GRID) 66.35 33.79 0.02 0.97
MN (ours) 82.79 34.03 0.01 0.97

Method Bit Acc. ↑ Size (MB) ↓ Params (M) ↓

TensoRF - 68.6 17.75
MN-GRID-FiLM 66.28 68.8 17.76
MN (ours) 82.79 77.1 19.98

6 CONCLUSION

We presented MultiNeRF, the first NeRF watermarking technique to embed multiple conditional
watermarks simultaneously within a NeRF (TensoRF) model. MultiNeRF achieves competitive
watermark embedding performance at single message watermarking while introducing the novel
capability of multiple watermark support. This increases effective model capacity because the wa-
termark grid enables multiple messages to be simultaneously encoded without degrading the visual
quality. FiLM-based modulation enables selection between the distinct watermarks at rendering
time. Future work could explore learnable perceptual metrics or NeRF-specific benchmarks to help
better quantify artifacts introduced by watermark embedding. As NeRFs continue to evolve and find
new applications, frameworks like MultiNeRF will play an essential role in securing the intellec-
tual property rights of 3D content creators, and their integration with emerging media provenance
standards presents another future direction.
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termarking Images in Self-Supervised Latent Spaces. In Proc. ICASSP, pp. 3054–3058. IEEE,
2022.
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