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Abstract

This paper studies a new event knowledge ex-
traction task, Event Chain Mining. Given mul-
tiple documents on a super event, it aims to
mine a series of salient events in a temporal
order. For example, the event chain of super
event Mexico Earthquake in 2017 is {earth-
quake hit Mexico, destroy houses, kill people,
block roads }. This task can help readers cap-
ture the gist of texts quickly, thereby improving
reading efficiency and deepening text compre-
hension. To address this task, we regard an
event as a cluster of different mentions of sim-
ilar meanings. By this way, we can identify
the different expressions of events, enrich their
semantic knowledge and enhance order infor-
mation among them. Taking events as the basic
unit, we propose a novel and flexible unsuper-
vised framework, EMINER. Specifically, we
extract event mentions from texts and merge
those of similar meanings into a cluster as an
event. Then, essential events are selected and
arranged into a chain in the order of their oc-
currences. We then develop a testbed for the
proposed task, including a human-annotated
benchmark and comprehensive evaluation met-
rics. Extensive experiments are conducted to
verify the effectiveness of EMINER in terms of
both automatic and human evaluations.

1 Introduction

Generally, a lot of unstructured text data can be
regarded as a chain of salient events arranged in
order (Forster, 1985; Abbott, 2020). Therefore, ex-
tracting event chain knowledge from texts is a cru-
cial step in text understanding. Currently, various
event-centric tasks has gained significant interest,
such as event relation extraction (Han et al., 2019;
Wang et al., 2020; Ahmad et al., 2021), salient
event identification (Liu et al., 2018; Wilmot and
Keller, 2021), and event process understanding
(Zhang et al., 2020a; Chen et al., 2020). However,
most of these studies highly rely on expert anno-
tations. The annotation process is expensive and

Super Event : Mexico Earthquake in 2017

A strong of Mexico on Monday,
including a newborn boy, damaging dozens of houses and
blocking loads.

This quake was pretty strong. Families in the area are really scared
because of the whole experience of November 2012. There are houses

destroved.

A strong 6.9-magnitude _on Monday
- including a newborn baby at a hospital - and
injuring dozens.

The epicenter was just two kilometers from the Mexican town of Puerto

Madero, and 200 kilometers from Guatemala City.

A strong on Monday,

and sparking reports of at least four deaths.
"This quake was pretty strong. There are houses destroyed", said Luis
Rivera, governor of the San Marcos region, which was also hit by a 7.4
magnitude earthquake in late 2012 that killed 48 people.
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Figure 1: An example of the event chain mining task.
There are three documents on Mexico Earthquake in
2017. They all mention salient events. We underline all
the event mentions and mark those of similar meanings
in the same color. Below is the event chain.

time-consuming. Some studies (Weber et al., 2018;
Li et al., 2020) attempt to alleviate this problem
under an unsupervised setting. They extract event
schemas from large corpus as prior knowledge to
assist downstream tasks, such as story generation
(Yao et al., 2019), question answering (Reddy et al.,
2019), and reading comprehension (Zhang et al.,
2021a). However, there still lacks relevant research
on automatic mining of event chains. Such a task
can provide a brief summary and help readers to
capture the skeleton of texts quickly.

To this end, we propose a new task of knowledge
extraction, Event Chain Mining. It aims to mine a
series of salient events in a temporal order, which
can serve as a concise highlight of texts. Specif-
ically, given a super event!, multiple documents
usually report it from different perspectives. More-
over, these reports usually share the most salient
events among their texts. For example, Figure 1

'A super event is a more coarse-grained event by itself.
We use this term to distinguish it from events.



shows three documents on a super event, Mexico
Earthquake in 2017. Most of them mention four
essential events in the earthquake, including earth-
quake hit Mexico, damage houses, kill people, and
block roads. These events can provide a sequential
highlight of how this disaster occurred. With such a
chain of salient events, readers can grasp the pivotal
context of the text quickly, thus improving reading
efficiency and deepening reading comprehension.

This observation leads to the Event Chain Min-
ing problem, which poses the following challenges:
(1) variability of events. An event can be ex-
pressed in different descriptions. For example, in
Figure 1, earthquake rocked southern Mexico and
earthquake hit southern Mexico are two different
mentions, but actually they describe similar mean-
ings in Mexico Earthquake. If an event chain in-
cludes both events, it will lead to information re-
dundancy. (2) salience inequality of events. Not
all events are equally important. Some events can
be too general and contain little information, such
as say it. Others could be too specific, not closely
tied to the main points, such as The state has 3.44
million people. We should filter out these events
and leave salient ones when mining an event chain.
(3) conflict of event relations. Multiple documents
have different narrative styles and report the devel-
opment of events in different order. For example,
some texts record events according to the occur-
rence order. Others first introduce the effect and
then explain the causes. Thus, when it comes to a
conflict, it become more difficult to determine the
temporal relations between events.

To address these challenges, we regard an event
as a cluster of mentions with similar meanings.
By this way, there are three significant benefits.
First, it naturally helps the first challenge — different
expressions of the same event. Second, it enhances
event semantics by with including multiple related
mentions, which makes it easier to deepen event
understanding and recognize salient events. Third,
it enriches order information between events. By
introducing multiple mentions, more clues about
event relations can be obtained from the contexts.
As aresult, event ordering can be more convincing
with the support from the majority of mentions.

Based on these, we propose a novel unsupervised
event chain mining framework, EMINER, which
contains four major steps. Specifically, given a set
of related texts on the same super event, we first
decompose them into multiple event mentions. We

elaborate frequently-occurring syntactic patterns
and extract all possible event mentions. Then, event
mentions of similar meanings are merged into clus-
ters as distinct events. The event mention merging
problem are formulated as an online text stream
clustering task without requiring a fixed number
of clusters. After that, we measure the salience of
events to select salient ones according to event fre-
quency counting. Finally, those salient events are
arranged in a chain according to their occurrences
in original texts.

Motivated by the importance of this task, we re-
annotate an existing multi-document dataset (Mi-
randa et al., 2018) to develop a new benchmark for
evaluating event chain mining systems. For multi-
ple documents on a super event, we manually an-
notate salient events as a brief summary. Besides,
we propose a comprehensive evaluation system,
which evaluates from multiple perspectives, such
as event semantics and sequential orders. Based
on these, we conducted extensive experiments in
terms of both automatic and human evaluations.
The results verify our framework can actually pro-
duce a chain of salient events to guide people to
understand texts.

Contributions. The major contributions of this
paper are summarized as follows: (1) a new task,
Event Chain Mining, summarizing the skeleton
of texts by extracting event chains, is proposed;
(2) a novel unsupervised framework, EMINER, is
designed to overcome the aforementioned chal-
lenges and address this problem automatically; (3)
a benchmark dataset and a comprehensive evalu-
ation system are developed for this task; and (4)
extensive experiments verify the effectiveness of
the proposed framework in terms of both automatic
and human evaluations.

2 Problem Formulation

In this section, we first introduce some important
concepts and then present our task definition. An
event mention, is a phrase that contains multiple
words {wi,ws,...,w,}, where z is the number
of words, and w1, wo, ..., w,, are all in the vo-
cabulary. A pair of words (w;,w;) in an event
mention m may follow a specific syntactic relation.
An event is a cluster of event mentions in similar
meanings {mi,ma, ..., m,}, where x is the num-
ber of mentions in event e. A super event refers to
a more coarse-grained event described by multiple
documents. A salient event is that can provide suf-



ficient and important information about the super
event. As to an event chain, it stands for a series of
salient events arranged in the order of occurrence.
Task Definition. Given a set of documents D on a
super event, our task of event chain mining is to pro-
duce a sequence of salient events {e1, e, ..., e},
which can give a brief summary of the texts. n is
the number of events.

Intuitively, humans are accustomed to under-
standing texts in a sequential order instead of mod-
eling a relation graph. Thus, our task aims to mine
an event chain. However, notably, our proposed
method can also extract the partial order relation-
ship among events to form a relation graph (intro-
duced in the next section) As to complex event re-
lation graph modeling, we leave it as future work.

3 Framework

The proposed framework, EMINER, outlines the
event chain mining task in four major steps: (1)
event mention extraction, (2) event mention merg-
ing, (3) salient event selection, and (4) salient event
ordering. The architecture is illustrated in Figure 2.

3.1 Event Mention Extraction

We adopt a lightweight method to extract event
mentions in texts without relying on manually-
labeled training data. It aims to decomposing texts
into multiple event mentions. For example, there
is a sentence about Mexico Earthquake in 2017:
A strong earthquake shook Mexico on Monday,
killing at least three people and damaging dozens
of buildings. It mainly contains three event men-
tions, earthquake shook Mexico, killing people and
damaging buildings. To handle the complex struc-
ture of event mentions, we elaborate frequently-
occurring syntactic patterns inspired by (Zhang
et al., 2020b). By pattern matching, all possible
event mentions are extracted from texts based on
sentence dependency tree structures.

Specifically, given a sentence, we first use a de-
pendency parser’ to obtain its dependency parse
tree. As the centers of event mentions are verbs, we
extract all verbs from each sentence. We hope to
ensure that all the extracted event mentions are se-
mantically complete and frequently occurring with-
out being too complicated. Therefore, we elaborate
57 syntactic patterns based on those in Zhang et al.
(2020Db) (selected syntactic patterns are showed in

https://nlp.stanford.edu/software/
stanford-dependencies.html

Appendix). For each verb, we check its dependent
words and their dependency label. If they match
one of the syntactic patterns, we extract the cor-
responding words as an event mention. To make
event mention contain more details, we give pri-
ority to more complex patterns. That is, once a
pattern is exactly matched, we will no longer con-
sider the remaining simpler ones. By such an strat-
egy, all possible event mentions can be extracted
from texts. Notably, we treat the sentences with
clauses equally. So this method can decompose
long sentences completely into event mentions.

3.2 Event Mention Merging

In this step, we merge similar event mentions into
the same cluster, which is indispensable for the
framework. To improve generalization capability
for different topics or texts, the number of clusters
should not be fixed. Thus, we formulate the event
mention merging as a short text stream clustering
task (Yin et al., 2018; Chen et al., 2019; Kumar
et al., 2020). Specifically, event mentions are re-
garded as a stream and each of them is processed
incrementally. In each process, for a mention, we
decide whether to add it to an existing cluster or
create a new cluster. Then, we update the corre-
sponding cluster to prepare for subsequent events.
For example, there are three mentions, kill peo-
ple, damage houses and destroy homes. Initially,
we create a new cluster for the first mention kill
people. Then, when damage houses comes, there
is an existing cluster {kill people}. Since this men-
tion is not related to the cluster, we still create a
new cluster for it. Thus, there exist two clusters
now, {kill people} and {damage houses}. Later,
for the third mention, we compare the probability
of it joining these two clusters and creating a new
one. This mention was decided to be grouped into
the second cluster. Finally, we obtain two clusters,
{kill people} and {damage houses, destroy homes}.
Such an evolutionary clustering can automati-
cally increase the number of clusters with event
mentions. Nonetheless, it comes to three questions:
(1) how to represent and update a cluster; (2) how
to estimate the probabilities of a mention belonging
to existing clusters and a new cluster; and (3) how
to avoid the mention order affecting the clustering
process. We will solve these problems in turn.

3.2.1 Cluster Feature

We first represent an event with the cluster feature
(CF) vector, which essentially is a cluster with its
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Figure 2: Architecture of EMINER. Given multiple documents on a super event, we decompose texts into event
mentions and merge those of similar meanings into a cluster as an event. Then essential events are selected and
arranged into a chain according to their occurrences. For the convenience of presentation, the events in the last two

steps are represented by a representative mention.

event mentions. The CF vector of an event is de-
fined as a tuple { ﬁ, Ne, Te ¢, Where f; contains
a list of mention frequencies in event e; n. is the
number of mentions in event ¢; and x. is the num-
ber of words in event e. The cluster feature vector
presents desirable addition and deletion properties.

* Addition Property. A mention m can be effi-
ciently added to cluster e by updating its CF
vector as follows.

f&=f"+ N, Ywem,
Ne = Ne + 1, (D)
Te = Te + Nim.

* Deletion Property. A mention m can be effi-
ciently deleted from cluster e by updating its
CF vector as follows.

f=fr =Ny NYwem

Ne = Ne — 1, 2)

Te = Te — Nim,
where N and N, are the number of occurrences
of word w in mention m and the total number
of words in mention m, respectively, and N,,, =
> wem Nom. Besides, f is the number of occur-
rence of word w in cluster e. With the addition and
deletion properties, we can update the CF vectors
when a cluster includes or excludes a mention.

3.2.2 Model Formulation

We assume the mentions are generated by the
Dirichlet Process Multinational Mixture (DPMM)
model (Yin and Wang, 2016). Its generative pro-

cess is as follows.
0y ~GEM(1,7),

e | 0 ~Mult(9),
N | B~Dir(B) k=1,...,00,
m | e, AN}z, ~p(m[Ne).

3)

Here, when generating mention m, the model
first selects a mixture component (cluster e) ac-
cording to the mixture weights. Then mention m is
generated by the selected mixture component (clus-
ter e) from distribution p (m | N.). 0 is generated
by a stick-breaking construction (Teh, 2010). N
are also generated by a Dirichlet distribution (Teh,
2010). v and S are two hyper-parameters.

Following Kumar et al. (2020), the probability
of mention m generated by cluster e is:

p(em:e|67m7aaﬂ)
o< e
D—1+aD
Mo 7 FE+B+5 1Y
[Erze+VB+i—1

IR .
<1—0—neZSzm(m,mi)>.

i=1

In the above equation, the first term represents
completeness of the cluster. A new mention gives
priority to clusters with more mentions. Thus, al-
though the number of clusters can be unlimited,
only a limited number of clusters will be created.
Here, n. is the number of mentions contained by
the cluster e, D is the number of current mentions
in the existing clusters, and « is the concentration
parameter of the model.

The second term defines the term occurrence be-
tween a cluster and a mention. It is based on multi-
nomial distribution with psuedo weight of words
B. xm and f}* represent total number of words and
term frequency of word w in mention m, respec-
tively. The symbol f” is the term frequency of the
word w in the cluster e. The current vocabulary



size of the model is represented by V, and . is the
number of words in the cluster e.

The third term reflects semantic similarity be-
tween a cluster and a mention. For a mention m, we
calculate the average semantic similarity between
each mention m{ in the cluster e. Here, given a
pair of mentions, Sim(-) is the function for their
semantic similarity scores. Following Zhang et al.
(2020c), we first use a pretrained language model
(Devlin et al., 2019) to obtain contextual represen-
tations of the two mentions. Then, their similarity
is computed as a sum of cosine similarities between
their word embeddings.

So far, we have defined the probability of a men-
tion choosing an existing cluster. Then we have
to consider the probability for a mention to cre-
ate a new cluster. By following the DPMM, the
probability of creating a new cluster is as follows.

plem =K+1]|em,a,pB)

D-1+aD [[5(VB+i-1)
where K is the number of the existing clusters;

aD denotes the pseudo number of clusters related

mentions, and [ is the pseudo term frequency of
each word (exist in mention) of the new cluster.

X

3.23

Following Yin et al. (2018), our merging method
allows processing each event mention incremen-
tally and updating the model accordingly. Initially,
it creates a new cluster for the first mention. We
initialize the cluster feature of this new cluster with
the first mention. Later, for each event mention, it
either belongs to an existing cluster or generates a
new cluster. It depends on the corresponding prob-
ability computed with Eqgs. (4) and (4). We choose
the cluster with the highest probability. The CF
vector of this cluster is updated according to the
addition property. In this way, we can detect new
clusters more naturally without a fixed number of
clusters. Based on this process, we can obtain the
initial clustering result.

Since all the mentions are processed one by one,
their order may affect the clustering results. There-
fore, to improve the robustness of the model, we
then update the clustering results. For each men-
tion, we delete it from its current cluster with the
deletion property. Then, we reassign it to an exist-
ing cluster or create a new cluster for it. According
to Egs. (4) and (4), the choice with the highest
probability will be made.

Merging Process

3.3 Salient Event Selection

In this step, we filter too general or too specific
events, thereby selecting salient ones. Since each
event is involved with multiple event mentions, it
helps to enhance event semantic understanding. For
example, Jessica said on conference is a general
event mention with specific arguments. Existing
frequency-based methods (Shen et al., 2021; Zhang
et al., 2021b) might fail to handle it. However, with
the help of typical general mentions in the same
cluster, such as it says, the selection algorithm can
filter it more easily.

Based on this observation, we define the salience
score for an event cluster. All the mentions of this
event are taken into consideration. An event is
valued high if its mentions occur frequently in the
original texts and rarely exist in a general-domain
background corpus. Computationally, given an
event e, we define its salience as follows:

N
1
Salience(e) = i Z Salience(m;)
i=1

1 & Nps

=% ;(1 + log(freq(m.))?) lOg(bsf(mi) ),
where m; is a mention of event e, and [V is the
number of the mentions. Besides, freq(m;) de-
notes the frequency of mention m;, [V is the num-
ber of background texts, and bs f (w) refers to the
background text frequency of mention m;.

3.4 Salient Event Ordering

Finally, we arrange the salient events in a partial
order according to original texts. We compare the
relative order of describing these events in the texts.
Notably, the basic unit of reordering is an event, a
cluster of multiple mentions. Therefore, the rela-
tions of different mentions in different document
might come into conflict. To handle this problem, a
multi-document multi-mention voting mechanism
is introduced. In the other word, we makes the
decision supported by the majority of mentions in
most texts. Specifically, the order of an event e is
defined as: Ny

1 .
Order(e) = N, Z min index(d;, m), @

where Ny is the nurln_bler of related texts. d; rep-
resents the i-th text, m is a mention for event e,
and index(d;, m) refers to the index of mention m
in the event sequences extracted from the text d;.
By comparing the order of each event, we can rank
them in order and produce a salient event sequence.

Despite multiple mentions in multiple docu-
ments enrich order information between events,



the description style of texts still limits us. If flash-
backs are frequently used in texts, we require more
external knowledge to make a smarter judgement
of event ordering. We leave this as future work.

4 Experiments

In this section, we conduct both automatic and hu-
man evaluations to show EMINER can mine mean-
ingful event chains from unstructured texts, which
can assist people to acquire information quickly.

4.1 Dataset

We re-annotate an existing multi-document dataset
(Miranda et al., 2018) to develop a new benchmark.
This benchmark involves 100 super events and ap-
proximately 2,000 articles. For each super event,
there are about 20 articles describing it on average.
The average number of words in an article is about
420. We manually annotate 5-10 salient events as a
brief summary. For the sake of convenience, each
event is described with one mention. Each mention
includes less than 10 words to ensure the brevity.
Our annotation team consists of 3 graduate stu-
dents in NLP. For each super event, the annota-
tors are required to read all the related articles and
write a chain of events. Annotated events should
be mentioned by most of the related articles. Be-
sides, the whole event chain should make readers
understand the main plot of this super event without
original texts. Each annotated chain is required to
be reviewed by another annotator, after which they
discuss and revise until reaching an agreement.

4.2 Baselines

Currently, there is no existing approach to solve
the event chain mining task. Therefore, we re-
place each module in EMINER with related meth-
ods as the baselines. For mention extraction: ASER
(Zhang et al., 2020b) proposes a lightweight event
extractor based on syntactic pattern matching. For
mention merging: (1) HDBSCAN (Mclnnes et al.,
2017) is a hierarchical density-based spatial clus-
tering method. (2) OSDM (Kumar et al., 2020) is
an online semantic-enhanced dirichlet model for
short text stream clustering. These two methods
do not require fixing the number of clusters. For
event selection: ETDISC provides a frequency-
based salient word selector and we expand it to fil-
ter event mentions. For event ordering: SymTime
(Zhou et al., 2021) is a neuro-symbolic temporal
reasoning pretrained model, which can determain

the order between events.

We also present a randomly produced event
chain as the lower-bound for this task. Besides, due
to the lead bias problem in the news domain (Zhong
et al., 2019), we introduce LEAD as a strong base-
line. It refers to extracting all events from the first
several sentences of the texts as a chain.

4.3 Evaluation Metrics

We build a comprehensive evaluation system,
which evaluates the quality of the produced event
chains from multiple perspectives. Motivated by
Lin (2004), we propose three kinds of event-based
ROUGE F1 scores, including ERouge-1, ERouge-
2, and ERouge-3. Specifically, similar to ROUGE,
we evaluate how much percentage of events, event
pairs, and the longest common event subsequence
in the induced chains is covered by the human-
provided references. Since each event contains
multiple mentions, we measure the overlap of all
the mention pairs in two mentions, and then take
the average as the similarity of two event.

Following Zhang et al. (2020a), we provide two
overlap standards of two event mentions to bet-
ter understand the mining quality, "String Match"
and "Hypernym Allowed". The first standard re-
quires all words in the produced mention to be the
same as the referent mention. This setting is rather
strict. The second standard allows the hypernyms
of words in mentions to relax the restrictions on
comparison. For example, two event mentions,
damage houses and damage buildings, are count as
a match. This setting help check if our framework
select relevant events.

4.4 Automatic Evaluation

Following Glavas et al. (2014) and Zhang et al.
(2020a), we provide two settings to make the eval-
uation comprehensive: (1) Basic: evaluate events
based on only verbs; (2) Advanced: evaluate events
based on all words. From Table 1, in these two
settings, we can see the improvement of ERouge
scores when adopting our proposed framework to
mine event chains compared with RANDOM and
LEAD. In addition, we replace the four compo-
nents in our framework with similar methods. Com-
pared with ASER, our extractor is better at process-
ing long sentences. Based on this, EMINER show a
clear advantage in the subsequent steps. In addition,
although the two comparative clustering methods
also work, our method is superior in all three ER-
ouge scores. Moreover, filtering events instead of



Basic Setting

String Match Hypernym Allowed
Models ERouge-1  ERouge-2  ERouge-L  ERouge-1  ERouge-2  ERouge-L
RANDOM 4.2500 0.0759 2.7500 12.1428 3.5298 7.9702
LEAD 10.8095 1.9076 9.4345 16.3273 4.3404 15.3630
Extraction — ASER 11.6959 2.1267 10.3818 15.8928 4.6829 14.3520
Merging — HDBSCAN 17.6547 4.2562 13.3154 22.1130 7.4998 15.1488
Merging — OSDM 14.3928 29125 13.7678 21.5297 5.5713 18.4761
Selection — ETDISC 15.0357 3.0548 12.9880 22.8928 7.4044 16.2440
Ordering — SYMTIME 17.4047 4.5829 13.7797 23.9166 7.6342 16.5773
EMINER 18.3690 5.1104 14.1904 24.7916 8.5698 16.9880
Advanced Setting
String Match Hypernym Allowed
Models ERouge-1  ERouge-2  ERouge-L  ERouge-1  ERouge-2  ERouge-L
RANDOM 1.6250 0.3489 1.1250 4.5833 1.2721 3.5833
LEAD 9.6369 1.6723 8.8869 13.5654 2.9875 11.8154
Extraction — ASER 9.0315 0.9354 8.8290 13.4234 2.5079 10.3810
Merging — HDBSCAN 13.1607 3.1103 10.3214 15.4940 3.7529 13.5714
Merging — OSDM 11.7678 1.8730 11.1428 15.5654 3.0450 14.2261
Selection — ETDISC 10.2380 1.5888 9.0238 15.2083 2.7651 12.5654
Ordering — SYMTIME 13.5714 2.7329 10.9464 14.7440 39113 14.1190
EMINER 14.2440 3.1839 12.1904 16.7916 4.2603 15.7380

Table 1: Experimental results. Basic Setting refers to only evaluating the verb for each event while Advanced Setting
refers to evaluating all the words. String Match and Hypernym Allowed are two overlap standards of two event
mentions. The first requires all words to be the same and the second allows the hypernyms to relax the restrictions.

mentions can introduce more semantic information,
which plays an important role in selecting salient
events. Finally, although SYMTIME is a powerful
pretrained temporal model, it fails to utilize rich
relation information between multiple mentions.
Thus, EMINER can achieve better results.

4.5 Ablation Study

We remove each component from our full frame-
work to verify its importance for the event chain
mining task. Without event mention merging, we
regard each mention as an event, and then perform
event selection and ordering. If event selection is
detached, the merged events are ordered according
to their occurrences. After removing event order-
ing, we directly compare the selected salient events
with human references.

The experiment results are showed in Table 2.
Our framework can already obtain a relatively high
performance compared to the variant without merg-
ing. It reveals the significance of identifying similar
event mentions, which can reduce information re-
dundancy. Besides, removing the selection compo-
nent affects the results sightly. It is supposed that,
due to the lead bias problem, most salient events
are arranged at the front of the chain after order-
ing. In addition, the obvious drop of the ERouge-L
score in the fourth row reflects the important role

Model ERouge-1 ERouge-2 ERouge-L
EMINER 16.7916 4.2603 15.7380

- Merging 7.6785 0.8554 7.4743

- Selection  12.1011 2.5872 10.7619

- Ordering  15.5654 3.0450 14.2261

Table 2: Ablation Study (Hypernym Allowed in Ad-
vanced Setting). ‘-’ means removing the component
from the full framework.

that event ordering plays in this task.

4.6 Case Study

Table 3 shows two interesting examples with su-
per events, event chains produced by our method
and the corresponding groundtruth. Notably, for
the convenience of presentation, here we show a
representative event mention rather than all men-
tions for each event. By case study, we want to
verify the effectiveness and analyze the limitations
of our framework. We can see that our method
can successfully discover most of salient events for
a super event. For example, in the first case, the
occurrence and consequences of this earthquake
have been saved in the event chain. However, in
the second case, it fails to determine the correct
order between events. The effect, fireman were
arrested, is arranged before the causes, start fire
and kill people. Because our method orders events
based on the description in the original text. When
flashbacks are frequently used, it may not be able



Mexico Earthquake in 2017
| Groundtruth

Produced Events

earthquake happened earthquake rocked mexico
left person dead damaged houses
triggered landslide kill people
destroyed houses trigger landslides
blocked roads blocked roads

Former Firefighter Arrested for Starting Fires
Produced Events | Groundtruth

fireman were arrested
fire destroyed homes
killed people

turned into fire

body found inside home

fireman started fires

fire destroyed homes

left people dead

arrested man on suspicion
fire burned miles over week

Table 3: Case study. There are two cases including the
super events (in bold), the outputs of EMINER, and the
human-annotated groundtruth.

to arrange events according to their occurrences.
In this case, more external knowledge is needed to
assist event ordering. We leave it as future work.

4.7 Human Evaluation

To better understand the model performance, we
also conduct human evaluation. Specifically, we
ask 10 graduate students to rank six different event
chains (produced by our framework, its variants,
and groundtruth) according to three metrics: rele-
vance, informativeness, and coherence to the texts.
Ranking first means the best performance on this
metric. We randomly select 20 samples from our
dataset for evaluation. The results are provided
in Table 4. From the perspective of relevance, our
framework can output more relevant event chains to
the super events. Compared with Selection — ET-
DISC, other methods can mine more relevant and
salient events thanks to event-based selection intro-
ducing more semantic information. In terms of the
informativeness metrics, our framework substan-
tially extract distinct events and reduce information
redundancy when comparing to other baselines.
The capacity of grasp different events in similar
meanings is largely responsible for this improve-
ment. However, Merging — HDBSCAN performs
poorly on the informativeness because it lacks se-
mantic knowledge to identify synonyms in the men-
tions. Coherence depends on whether event chains
can reflect the plot of texts smoothly. Benefit from
rich event relationships, event-based ordering can
obtains high scores. However, the performance of
all automatic models is still far from the human-
annotated answers.

Model Relev. Infor. Cohen.

Merging - HDBSCAN 4.14 454 321
Selection — ETDISC  4.66 3.28 3.52
Ordering - SYMTIME 2.84 3.53 4.37
EMINER 213 256 285

Reference 1.23  1.09 1.05

Table 4: Results of human evaluation by ranking. Relev.,
Infor., and Cohen. represent relevance, informativeness
and coherence to original texts, respectively. Reference
refers to the human-annotated event chains.

5 Related Work

Considering the importance of events in under-
standing unstructured texts, many efforts have been
devoted to represent and understand events. Han
et al. (2019); Wang et al. (2020); Ahmad et al.
(2021) pay attention on event relation extraction
and predicting. Salient event identification is also
a popular research topic. (Liu et al., 2018; Jin-
dal et al., 2020; Wilmot and Keller, 2021). Apart
from these, there have been recent interests in event
process understanding (Zhang et al., 2020a; Chen
et al., 2020). However, most of these studies highly
rely on expensive expert annotations.

Some studies (Weber et al., 2018; Li et al., 2020)
alleviate this problem under an unsupervised set-
ting. The pioneer work (Chambers and Jurafsky,
2008) induces event chains as a new representa-
tion of structured knowledge. Chambers and Ju-
rafsky (2008) and Radinsky and Horvitz (2013)
extended such event chain modeling for news pre-
diction and timeline construction. Berant et al.
(2014) extracted events and their relationships in
biological processes for biological reading com-
prehension. More recently, Zhang et al. (2021a)
models salience-aware event chains for narrative
understanding. These studies extract event schemas
from a large amount of texts as prior knowledge to
assist downstream tasks (Yao et al., 2019; Reddy
et al., 2019). However, there still lacks relevant
research on automatic mining of event chains.

6 Conclusion

In this paper, we propose a new task, Event Chain
Mining, to summarize the skeleton of texts by ex-
tracting event chains. To address it automatically,
a novel unsupervised framework EMINER is sug-
gested. Besides, we develop a benchmark dataset
and a comprehensive evaluation system for this
task. Extensive experiments verify the effective-
ness of the proposed framework and the quality of
the produced event chains.
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A Appendix
A.1 Example of Event Mention Patterns

To better understand our event extraction approach,
we list some specific patterns and examples in Ta-
ble 5.

A.2 Implementation details

We implement EMINER using PyTorch (Ketkar,
2017). The experiments are conducted on 8
NVIDIA TITAN Xp GPUs. For event mention
extraction, we give priority to matching the respon-
sible patterns to extract as many details as possi-
ble. The extracted events will not overlap. For
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Pattern Example

ni-nsubj-vi people die
ni-nsubj-vi-dobj-na earthquake hit Mexico
ni1-nsubj-vi-rcomp-a residents felt scared
ni-nsubj-vi-rcomp-ve-dobj-ne he wants to drink water
ni-nsubjpass-vi people was injured

Table 5: Several event mention patterns and the corre-
sponding examples. (‘v’ stands for verbs, ‘n’ stands
for nouns, and ‘a’ stands for adjectives. ‘nsubj’, ‘dobj’,
‘xcomp’, and ‘nsubjpass’ are syntactic relations)

event mention merging, we set o« = 0.3, 8 = 0.03,
and the number of iterations to 10. All the ex-
tracted events are grouped. We do not manually
de-duplicate events. For salient event selection, we
select those events with salience scores ranked in
the top 20, which can cover the main content of the
texts. For salient event ordering, we score and rank
each salient event. The number of events finally
output is the same as the groundtruth.
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