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Abstract

This paper studies a new event knowledge ex-001
traction task, Event Chain Mining. Given mul-002
tiple documents on a super event, it aims to003
mine a series of salient events in a temporal004
order. For example, the event chain of super005
event Mexico Earthquake in 2017 is {earth-006
quake hit Mexico, destroy houses, kill people,007
block roads }. This task can help readers cap-008
ture the gist of texts quickly, thereby improving009
reading efficiency and deepening text compre-010
hension. To address this task, we regard an011
event as a cluster of different mentions of sim-012
ilar meanings. By this way, we can identify013
the different expressions of events, enrich their014
semantic knowledge and enhance order infor-015
mation among them. Taking events as the basic016
unit, we propose a novel and flexible unsuper-017
vised framework, EMINER. Specifically, we018
extract event mentions from texts and merge019
those of similar meanings into a cluster as an020
event. Then, essential events are selected and021
arranged into a chain in the order of their oc-022
currences. We then develop a testbed for the023
proposed task, including a human-annotated024
benchmark and comprehensive evaluation met-025
rics. Extensive experiments are conducted to026
verify the effectiveness of EMINER in terms of027
both automatic and human evaluations.028

1 Introduction029

Generally, a lot of unstructured text data can be030

regarded as a chain of salient events arranged in031

order (Forster, 1985; Abbott, 2020). Therefore, ex-032

tracting event chain knowledge from texts is a cru-033

cial step in text understanding. Currently, various034

event-centric tasks has gained significant interest,035

such as event relation extraction (Han et al., 2019;036

Wang et al., 2020; Ahmad et al., 2021), salient037

event identification (Liu et al., 2018; Wilmot and038

Keller, 2021), and event process understanding039

(Zhang et al., 2020a; Chen et al., 2020). However,040

most of these studies highly rely on expert anno-041

tations. The annotation process is expensive and042

    A strong earthquake hit the border of Mexico on Monday, killing at least 
three people, including a newborn boy, damaging dozens of houses and 
blocking loads. 
    This quake was pretty strong.  Families in the area are really scared 
because of the whole experience of November 2012.  There are houses 
destroyed, 

Super Event : Mexico Earthquake in 2017

Event Chain

earthquake hit Mexico damage house kill people block road

    A strong 6.9-magnitude earthquake rocked southern Mexico on Monday 
killing at least three people - including a newborn baby at a hospital - and 
injuring dozens. 
    The epicenter was just two kilometers from the Mexican town of Puerto 
Madero, and 200 kilometers from Guatemala City.
    A strong earthquake hit southern Mexico on Monday, damaging houses, 
blocking loads and sparking reports of at least four deaths.  
    "This quake was pretty strong.  There are houses destroyed", said Luis 
Rivera, governor of the San Marcos region, which was also hit by a 7.4 
magnitude earthquake in late 2012 that killed 48 people.

Figure 1: An example of the event chain mining task.
There are three documents on Mexico Earthquake in
2017. They all mention salient events. We underline all
the event mentions and mark those of similar meanings
in the same color. Below is the event chain.

time-consuming. Some studies (Weber et al., 2018; 043

Li et al., 2020) attempt to alleviate this problem 044

under an unsupervised setting. They extract event 045

schemas from large corpus as prior knowledge to 046

assist downstream tasks, such as story generation 047

(Yao et al., 2019), question answering (Reddy et al., 048

2019), and reading comprehension (Zhang et al., 049

2021a). However, there still lacks relevant research 050

on automatic mining of event chains. Such a task 051

can provide a brief summary and help readers to 052

capture the skeleton of texts quickly. 053

To this end, we propose a new task of knowledge 054

extraction, Event Chain Mining. It aims to mine a 055

series of salient events in a temporal order, which 056

can serve as a concise highlight of texts. Specif- 057

ically, given a super event1, multiple documents 058

usually report it from different perspectives. More- 059

over, these reports usually share the most salient 060

events among their texts. For example, Figure 1 061

1A super event is a more coarse-grained event by itself.
We use this term to distinguish it from events.
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shows three documents on a super event, Mexico062

Earthquake in 2017. Most of them mention four063

essential events in the earthquake, including earth-064

quake hit Mexico, damage houses, kill people, and065

block roads. These events can provide a sequential066

highlight of how this disaster occurred. With such a067

chain of salient events, readers can grasp the pivotal068

context of the text quickly, thus improving reading069

efficiency and deepening reading comprehension.070

This observation leads to the Event Chain Min-071

ing problem, which poses the following challenges:072

(1) variability of events. An event can be ex-073

pressed in different descriptions. For example, in074

Figure 1, earthquake rocked southern Mexico and075

earthquake hit southern Mexico are two different076

mentions, but actually they describe similar mean-077

ings in Mexico Earthquake. If an event chain in-078

cludes both events, it will lead to information re-079

dundancy. (2) salience inequality of events. Not080

all events are equally important. Some events can081

be too general and contain little information, such082

as say it. Others could be too specific, not closely083

tied to the main points, such as The state has 3.44084

million people. We should filter out these events085

and leave salient ones when mining an event chain.086

(3) conflict of event relations. Multiple documents087

have different narrative styles and report the devel-088

opment of events in different order. For example,089

some texts record events according to the occur-090

rence order. Others first introduce the effect and091

then explain the causes. Thus, when it comes to a092

conflict, it become more difficult to determine the093

temporal relations between events.094

To address these challenges, we regard an event095

as a cluster of mentions with similar meanings.096

By this way, there are three significant benefits.097

First, it naturally helps the first challenge – different098

expressions of the same event. Second, it enhances099

event semantics by with including multiple related100

mentions, which makes it easier to deepen event101

understanding and recognize salient events. Third,102

it enriches order information between events. By103

introducing multiple mentions, more clues about104

event relations can be obtained from the contexts.105

As a result, event ordering can be more convincing106

with the support from the majority of mentions.107

Based on these, we propose a novel unsupervised108

event chain mining framework, EMINER, which109

contains four major steps. Specifically, given a set110

of related texts on the same super event, we first111

decompose them into multiple event mentions. We112

elaborate frequently-occurring syntactic patterns 113

and extract all possible event mentions. Then, event 114

mentions of similar meanings are merged into clus- 115

ters as distinct events. The event mention merging 116

problem are formulated as an online text stream 117

clustering task without requiring a fixed number 118

of clusters. After that, we measure the salience of 119

events to select salient ones according to event fre- 120

quency counting. Finally, those salient events are 121

arranged in a chain according to their occurrences 122

in original texts. 123

Motivated by the importance of this task, we re- 124

annotate an existing multi-document dataset (Mi- 125

randa et al., 2018) to develop a new benchmark for 126

evaluating event chain mining systems. For multi- 127

ple documents on a super event, we manually an- 128

notate salient events as a brief summary. Besides, 129

we propose a comprehensive evaluation system, 130

which evaluates from multiple perspectives, such 131

as event semantics and sequential orders. Based 132

on these, we conducted extensive experiments in 133

terms of both automatic and human evaluations. 134

The results verify our framework can actually pro- 135

duce a chain of salient events to guide people to 136

understand texts. 137

Contributions. The major contributions of this 138

paper are summarized as follows: (1) a new task, 139

Event Chain Mining, summarizing the skeleton 140

of texts by extracting event chains, is proposed; 141

(2) a novel unsupervised framework, EMINER, is 142

designed to overcome the aforementioned chal- 143

lenges and address this problem automatically; (3) 144

a benchmark dataset and a comprehensive evalu- 145

ation system are developed for this task; and (4) 146

extensive experiments verify the effectiveness of 147

the proposed framework in terms of both automatic 148

and human evaluations. 149

2 Problem Formulation 150

In this section, we first introduce some important 151

concepts and then present our task definition. An 152

event mention, is a phrase that contains multiple 153

words {w1, w2, . . . , wz}, where z is the number 154

of words, and w1, w2, . . . , wm are all in the vo- 155

cabulary. A pair of words (wi, wj) in an event 156

mention m may follow a specific syntactic relation. 157

An event is a cluster of event mentions in similar 158

meanings {m1,m2, . . . ,mx}, where x is the num- 159

ber of mentions in event e. A super event refers to 160

a more coarse-grained event described by multiple 161

documents. A salient event is that can provide suf- 162
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ficient and important information about the super163

event. As to an event chain, it stands for a series of164

salient events arranged in the order of occurrence.165

Task Definition. Given a set of documents D on a166

super event, our task of event chain mining is to pro-167

duce a sequence of salient events {e1, e2, . . . , en},168

which can give a brief summary of the texts. n is169

the number of events.170

Intuitively, humans are accustomed to under-171

standing texts in a sequential order instead of mod-172

eling a relation graph. Thus, our task aims to mine173

an event chain. However, notably, our proposed174

method can also extract the partial order relation-175

ship among events to form a relation graph (intro-176

duced in the next section) As to complex event re-177

lation graph modeling, we leave it as future work.178

3 Framework179

The proposed framework, EMINER, outlines the180

event chain mining task in four major steps: (1)181

event mention extraction, (2) event mention merg-182

ing, (3) salient event selection, and (4) salient event183

ordering. The architecture is illustrated in Figure 2.184

3.1 Event Mention Extraction185

We adopt a lightweight method to extract event186

mentions in texts without relying on manually-187

labeled training data. It aims to decomposing texts188

into multiple event mentions. For example, there189

is a sentence about Mexico Earthquake in 2017:190

A strong earthquake shook Mexico on Monday,191

killing at least three people and damaging dozens192

of buildings. It mainly contains three event men-193

tions, earthquake shook Mexico, killing people and194

damaging buildings. To handle the complex struc-195

ture of event mentions, we elaborate frequently-196

occurring syntactic patterns inspired by (Zhang197

et al., 2020b). By pattern matching, all possible198

event mentions are extracted from texts based on199

sentence dependency tree structures.200

Specifically, given a sentence, we first use a de-201

pendency parser2 to obtain its dependency parse202

tree. As the centers of event mentions are verbs, we203

extract all verbs from each sentence. We hope to204

ensure that all the extracted event mentions are se-205

mantically complete and frequently occurring with-206

out being too complicated. Therefore, we elaborate207

57 syntactic patterns based on those in Zhang et al.208

(2020b) (selected syntactic patterns are showed in209

2https://nlp.stanford.edu/software/
stanford-dependencies.html

Appendix). For each verb, we check its dependent 210

words and their dependency label. If they match 211

one of the syntactic patterns, we extract the cor- 212

responding words as an event mention. To make 213

event mention contain more details, we give pri- 214

ority to more complex patterns. That is, once a 215

pattern is exactly matched, we will no longer con- 216

sider the remaining simpler ones. By such an strat- 217

egy, all possible event mentions can be extracted 218

from texts. Notably, we treat the sentences with 219

clauses equally. So this method can decompose 220

long sentences completely into event mentions. 221

3.2 Event Mention Merging 222

In this step, we merge similar event mentions into 223

the same cluster, which is indispensable for the 224

framework. To improve generalization capability 225

for different topics or texts, the number of clusters 226

should not be fixed. Thus, we formulate the event 227

mention merging as a short text stream clustering 228

task (Yin et al., 2018; Chen et al., 2019; Kumar 229

et al., 2020). Specifically, event mentions are re- 230

garded as a stream and each of them is processed 231

incrementally. In each process, for a mention, we 232

decide whether to add it to an existing cluster or 233

create a new cluster. Then, we update the corre- 234

sponding cluster to prepare for subsequent events. 235

For example, there are three mentions, kill peo- 236

ple, damage houses and destroy homes. Initially, 237

we create a new cluster for the first mention kill 238

people. Then, when damage houses comes, there 239

is an existing cluster {kill people}. Since this men- 240

tion is not related to the cluster, we still create a 241

new cluster for it. Thus, there exist two clusters 242

now, {kill people} and {damage houses}. Later, 243

for the third mention, we compare the probability 244

of it joining these two clusters and creating a new 245

one. This mention was decided to be grouped into 246

the second cluster. Finally, we obtain two clusters, 247

{kill people} and {damage houses, destroy homes}. 248

Such an evolutionary clustering can automati- 249

cally increase the number of clusters with event 250

mentions. Nonetheless, it comes to three questions: 251

(1) how to represent and update a cluster; (2) how 252

to estimate the probabilities of a mention belonging 253

to existing clusters and a new cluster; and (3) how 254

to avoid the mention order affecting the clustering 255

process. We will solve these problems in turn. 256

3.2.1 Cluster Feature 257

We first represent an event with the cluster feature 258

(CF) vector, which essentially is a cluster with its 259
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A strong earthquake 
shook the border 
with Mexico on 
Monday, killing at 
least three people, 
damaging dozens of 
buildings… 

Doc 2 
…  

-> (destroy home)  
-> (trigger landslides) 

Doc 1 
(quake shook border)  

-> (kill people)  
-> (damage building) 

…

Doc 3 
…  

-> (people died) 
-> (he said)  

-> (receive treatment) 

(he said)
(survey said)
(it is reported)

(destroy house) 
(home suffer damage) 

(damage houses) 
(damage homes)

(people die) 
(quake claimed lives) 

(kill people)

1. Extract Event 2. Merge Event 3. Filter Event

Event                   Score 

  damage houses                   
  kill people                                
  block road                
  quake hit 

… 

  it felt 
  discuss issues 
  he said 

0.47 
0.38 
0.32 
0.26 

0.05 
0.04 
0.01

4. Reorder Event

Figure 2: Architecture of EMINER. Given multiple documents on a super event, we decompose texts into event
mentions and merge those of similar meanings into a cluster as an event. Then essential events are selected and
arranged into a chain according to their occurrences. For the convenience of presentation, the events in the last two
steps are represented by a representative mention.

event mentions. The CF vector of an event is de-260

fined as a tuple
{
f⃗e, ne, xe

}
, where f⃗e contains261

a list of mention frequencies in event e; ne is the262

number of mentions in event e; and xe is the num-263

ber of words in event e. The cluster feature vector264

presents desirable addition and deletion properties.265

• Addition Property. A mention m can be effi-266

ciently added to cluster e by updating its CF267

vector as follows.268
fw
e = fw

e +Nw
m, ∀w ∈ m,

ne = ne + 1,

xe = xe +Nm.

(1)269

• Deletion Property. A mention m can be effi-270

ciently deleted from cluster e by updating its271

CF vector as follows.272
fw
e = fw

e −Nw
m, ∀w ∈ m

ne = ne − 1,

xe = xe −Nm,

(2)273

where Nw
m and Nm are the number of occurrences274

of word w in mention m and the total number275

of words in mention m, respectively, and Nm =276 ∑
w∈mNw

m. Besides, fw
e is the number of occur-277

rence of word w in cluster e. With the addition and278

deletion properties, we can update the CF vectors279

when a cluster includes or excludes a mention.280

3.2.2 Model Formulation281

We assume the mentions are generated by the282

Dirichlet Process Multinational Mixture (DPMM)283

model (Yin and Wang, 2016). Its generative pro-284

cess is as follows.285
θ | γ ∼GEM(1, γ),

e | θ ∼Mult(θ),

Nk | β ∼ Dir(β) k = 1, . . . ,∞,

m | e, {Nk}∞k=1 ∼ p (m | Ne) .

(3)286

Here, when generating mention m, the model 287

first selects a mixture component (cluster e) ac- 288

cording to the mixture weights. Then mention m is 289

generated by the selected mixture component (clus- 290

ter e) from distribution p (m | Ne). θ is generated 291

by a stick-breaking construction (Teh, 2010). Nk 292

are also generated by a Dirichlet distribution (Teh, 293

2010). γ and β are two hyper-parameters. 294

Following Kumar et al. (2020), the probability 295

of mention m generated by cluster e is: 296

p (em = e | e,m, α, β)

∝
(

ne

D − 1 + αD

)
·(∏

w∈m

∏fw
m

j=1 f
w
e + β + j − 1∏xm

i=1 xe + V β + i− 1

)
·(

1 +
1

ne

ne∑
i=1

Sim (m,me
i )

)
.

297

In the above equation, the first term represents 298

completeness of the cluster. A new mention gives 299

priority to clusters with more mentions. Thus, al- 300

though the number of clusters can be unlimited, 301

only a limited number of clusters will be created. 302

Here, ne is the number of mentions contained by 303

the cluster e, D is the number of current mentions 304

in the existing clusters, and α is the concentration 305

parameter of the model. 306

The second term defines the term occurrence be- 307

tween a cluster and a mention. It is based on multi- 308

nomial distribution with psuedo weight of words 309

β. xm and fw
m represent total number of words and 310

term frequency of word w in mention m, respec- 311

tively. The symbol fw
e is the term frequency of the 312

word w in the cluster e. The current vocabulary 313
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size of the model is represented by V , and xe is the314

number of words in the cluster e.315

The third term reflects semantic similarity be-316

tween a cluster and a mention. For a mention m, we317

calculate the average semantic similarity between318

each mention me
i in the cluster e. Here, given a319

pair of mentions, Sim(·) is the function for their320

semantic similarity scores. Following Zhang et al.321

(2020c), we first use a pretrained language model322

(Devlin et al., 2019) to obtain contextual represen-323

tations of the two mentions. Then, their similarity324

is computed as a sum of cosine similarities between325

their word embeddings.326

So far, we have defined the probability of a men-327

tion choosing an existing cluster. Then we have328

to consider the probability for a mention to cre-329

ate a new cluster. By following the DPMM, the330

probability of creating a new cluster is as follows.331

p (em = K + 1 | e⃗, m⃗, α, β)

∝ αD

D − 1 + αD
·
∏

w∈m

∏fw
m

j=1(β + j − 1)∏xm
i=1(V β + i− 1)

,
332

where K is the number of the existing clusters;333

αD denotes the pseudo number of clusters related334

mentions, and β is the pseudo term frequency of335

each word (exist in mention) of the new cluster.336

3.2.3 Merging Process337

Following Yin et al. (2018), our merging method338

allows processing each event mention incremen-339

tally and updating the model accordingly. Initially,340

it creates a new cluster for the first mention. We341

initialize the cluster feature of this new cluster with342

the first mention. Later, for each event mention, it343

either belongs to an existing cluster or generates a344

new cluster. It depends on the corresponding prob-345

ability computed with Eqs. (4) and (4). We choose346

the cluster with the highest probability. The CF347

vector of this cluster is updated according to the348

addition property. In this way, we can detect new349

clusters more naturally without a fixed number of350

clusters. Based on this process, we can obtain the351

initial clustering result.352

Since all the mentions are processed one by one,353

their order may affect the clustering results. There-354

fore, to improve the robustness of the model, we355

then update the clustering results. For each men-356

tion, we delete it from its current cluster with the357

deletion property. Then, we reassign it to an exist-358

ing cluster or create a new cluster for it. According359

to Eqs. (4) and (4), the choice with the highest360

probability will be made.361

3.3 Salient Event Selection 362

In this step, we filter too general or too specific 363

events, thereby selecting salient ones. Since each 364

event is involved with multiple event mentions, it 365

helps to enhance event semantic understanding. For 366

example, Jessica said on conference is a general 367

event mention with specific arguments. Existing 368

frequency-based methods (Shen et al., 2021; Zhang 369

et al., 2021b) might fail to handle it. However, with 370

the help of typical general mentions in the same 371

cluster, such as it says, the selection algorithm can 372

filter it more easily. 373

Based on this observation, we define the salience 374

score for an event cluster. All the mentions of this 375

event are taken into consideration. An event is 376

valued high if its mentions occur frequently in the 377

original texts and rarely exist in a general-domain 378

background corpus. Computationally, given an 379

event e, we define its salience as follows: 380

Salience(e) =
1

N

N∑
i=1

Salience(mi)

=
1

N

N∑
i=1

(1 + log(freq(mi))
2) log(

Nbs

bsf(mi)
),

381

where mi is a mention of event e, and N is the 382

number of the mentions. Besides, freq(mi) de- 383

notes the frequency of mention mi, Nbs is the num- 384

ber of background texts, and bsf(w) refers to the 385

background text frequency of mention mi. 386

3.4 Salient Event Ordering 387

Finally, we arrange the salient events in a partial 388

order according to original texts. We compare the 389

relative order of describing these events in the texts. 390

Notably, the basic unit of reordering is an event, a 391

cluster of multiple mentions. Therefore, the rela- 392

tions of different mentions in different document 393

might come into conflict. To handle this problem, a 394

multi-document multi-mention voting mechanism 395

is introduced. In the other word, we makes the 396

decision supported by the majority of mentions in 397

most texts. Specifically, the order of an event e is 398

defined as: 399

Order(e) =
1

Nd

Nd∑
i=1

min
m∈e

index(di,m), (4) 400

where Nd is the number of related texts. di rep- 401

resents the i-th text, m is a mention for event e, 402

and index(di,m) refers to the index of mention m 403

in the event sequences extracted from the text di. 404

By comparing the order of each event, we can rank 405

them in order and produce a salient event sequence. 406

Despite multiple mentions in multiple docu- 407

ments enrich order information between events, 408
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the description style of texts still limits us. If flash-409

backs are frequently used in texts, we require more410

external knowledge to make a smarter judgement411

of event ordering. We leave this as future work.412

4 Experiments413

In this section, we conduct both automatic and hu-414

man evaluations to show EMINER can mine mean-415

ingful event chains from unstructured texts, which416

can assist people to acquire information quickly.417

4.1 Dataset418

We re-annotate an existing multi-document dataset419

(Miranda et al., 2018) to develop a new benchmark.420

This benchmark involves 100 super events and ap-421

proximately 2,000 articles. For each super event,422

there are about 20 articles describing it on average.423

The average number of words in an article is about424

420. We manually annotate 5-10 salient events as a425

brief summary. For the sake of convenience, each426

event is described with one mention. Each mention427

includes less than 10 words to ensure the brevity.428

Our annotation team consists of 3 graduate stu-429

dents in NLP. For each super event, the annota-430

tors are required to read all the related articles and431

write a chain of events. Annotated events should432

be mentioned by most of the related articles. Be-433

sides, the whole event chain should make readers434

understand the main plot of this super event without435

original texts. Each annotated chain is required to436

be reviewed by another annotator, after which they437

discuss and revise until reaching an agreement.438

4.2 Baselines439

Currently, there is no existing approach to solve440

the event chain mining task. Therefore, we re-441

place each module in EMINER with related meth-442

ods as the baselines. For mention extraction: ASER443

(Zhang et al., 2020b) proposes a lightweight event444

extractor based on syntactic pattern matching. For445

mention merging: (1) HDBSCAN (McInnes et al.,446

2017) is a hierarchical density-based spatial clus-447

tering method. (2) OSDM (Kumar et al., 2020) is448

an online semantic-enhanced dirichlet model for449

short text stream clustering. These two methods450

do not require fixing the number of clusters. For451

event selection: ETDISC provides a frequency-452

based salient word selector and we expand it to fil-453

ter event mentions. For event ordering: SymTime454

(Zhou et al., 2021) is a neuro-symbolic temporal455

reasoning pretrained model, which can determain456

the order between events. 457

We also present a randomly produced event 458

chain as the lower-bound for this task. Besides, due 459

to the lead bias problem in the news domain (Zhong 460

et al., 2019), we introduce LEAD as a strong base- 461

line. It refers to extracting all events from the first 462

several sentences of the texts as a chain. 463

4.3 Evaluation Metrics 464

We build a comprehensive evaluation system, 465

which evaluates the quality of the produced event 466

chains from multiple perspectives. Motivated by 467

Lin (2004), we propose three kinds of event-based 468

ROUGE F1 scores, including ERouge-1, ERouge- 469

2, and ERouge-3. Specifically, similar to ROUGE, 470

we evaluate how much percentage of events, event 471

pairs, and the longest common event subsequence 472

in the induced chains is covered by the human- 473

provided references. Since each event contains 474

multiple mentions, we measure the overlap of all 475

the mention pairs in two mentions, and then take 476

the average as the similarity of two event. 477

Following Zhang et al. (2020a), we provide two 478

overlap standards of two event mentions to bet- 479

ter understand the mining quality, "String Match" 480

and "Hypernym Allowed". The first standard re- 481

quires all words in the produced mention to be the 482

same as the referent mention. This setting is rather 483

strict. The second standard allows the hypernyms 484

of words in mentions to relax the restrictions on 485

comparison. For example, two event mentions, 486

damage houses and damage buildings, are count as 487

a match. This setting help check if our framework 488

select relevant events. 489

4.4 Automatic Evaluation 490

Following Glavaš et al. (2014) and Zhang et al. 491

(2020a), we provide two settings to make the eval- 492

uation comprehensive: (1) Basic: evaluate events 493

based on only verbs; (2) Advanced: evaluate events 494

based on all words. From Table 1, in these two 495

settings, we can see the improvement of ERouge 496

scores when adopting our proposed framework to 497

mine event chains compared with RANDOM and 498

LEAD. In addition, we replace the four compo- 499

nents in our framework with similar methods. Com- 500

pared with ASER, our extractor is better at process- 501

ing long sentences. Based on this, EMINER show a 502

clear advantage in the subsequent steps. In addition, 503

although the two comparative clustering methods 504

also work, our method is superior in all three ER- 505

ouge scores. Moreover, filtering events instead of 506
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Basic Setting

Models
String Match Hypernym Allowed

ERouge-1 ERouge-2 ERouge-L ERouge-1 ERouge-2 ERouge-L

RANDOM 4.2500 0.0759 2.7500 12.1428 3.5298 7.9702
LEAD 10.8095 1.9076 9.4345 16.3273 4.3404 15.3630

Extraction → ASER 11.6959 2.1267 10.3818 15.8928 4.6829 14.3520
Merging → HDBSCAN 17.6547 4.2562 13.3154 22.1130 7.4998 15.1488
Merging → OSDM 14.3928 2.9125 13.7678 21.5297 5.5713 18.4761
Selection → ETDISC 15.0357 3.0548 12.9880 22.8928 7.4044 16.2440
Ordering → SYMTIME 17.4047 4.5829 13.7797 23.9166 7.6342 16.5773

EMINER 18.3690 5.1104 14.1904 24.7916 8.5698 16.9880

Advanced Setting

Models
String Match Hypernym Allowed

ERouge-1 ERouge-2 ERouge-L ERouge-1 ERouge-2 ERouge-L

RANDOM 1.6250 0.3489 1.1250 4.5833 1.2721 3.5833
LEAD 9.6369 1.6723 8.8869 13.5654 2.9875 11.8154

Extraction → ASER 9.0315 0.9354 8.8290 13.4234 2.5079 10.3810
Merging → HDBSCAN 13.1607 3.1103 10.3214 15.4940 3.7529 13.5714
Merging → OSDM 11.7678 1.8730 11.1428 15.5654 3.0450 14.2261
Selection → ETDISC 10.2380 1.5888 9.0238 15.2083 2.7651 12.5654
Ordering → SYMTIME 13.5714 2.7329 10.9464 14.7440 3.9113 14.1190

EMINER 14.2440 3.1839 12.1904 16.7916 4.2603 15.7380

Table 1: Experimental results. Basic Setting refers to only evaluating the verb for each event while Advanced Setting
refers to evaluating all the words. String Match and Hypernym Allowed are two overlap standards of two event
mentions. The first requires all words to be the same and the second allows the hypernyms to relax the restrictions.

mentions can introduce more semantic information,507

which plays an important role in selecting salient508

events. Finally, although SYMTIME is a powerful509

pretrained temporal model, it fails to utilize rich510

relation information between multiple mentions.511

Thus, EMINER can achieve better results.512

4.5 Ablation Study513

We remove each component from our full frame-514

work to verify its importance for the event chain515

mining task. Without event mention merging, we516

regard each mention as an event, and then perform517

event selection and ordering. If event selection is518

detached, the merged events are ordered according519

to their occurrences. After removing event order-520

ing, we directly compare the selected salient events521

with human references.522

The experiment results are showed in Table 2.523

Our framework can already obtain a relatively high524

performance compared to the variant without merg-525

ing. It reveals the significance of identifying similar526

event mentions, which can reduce information re-527

dundancy. Besides, removing the selection compo-528

nent affects the results sightly. It is supposed that,529

due to the lead bias problem, most salient events530

are arranged at the front of the chain after order-531

ing. In addition, the obvious drop of the ERouge-L532

score in the fourth row reflects the important role533

Model ERouge-1 ERouge-2 ERouge-L

EMINER 16.7916 4.2603 15.7380
- Merging 7.6785 0.8554 7.4743
- Selection 12.1011 2.5872 10.7619
- Ordering 15.5654 3.0450 14.2261

Table 2: Ablation Study (Hypernym Allowed in Ad-
vanced Setting). ‘-’ means removing the component
from the full framework.

that event ordering plays in this task. 534

4.6 Case Study 535

Table 3 shows two interesting examples with su- 536

per events, event chains produced by our method 537

and the corresponding groundtruth. Notably, for 538

the convenience of presentation, here we show a 539

representative event mention rather than all men- 540

tions for each event. By case study, we want to 541

verify the effectiveness and analyze the limitations 542

of our framework. We can see that our method 543

can successfully discover most of salient events for 544

a super event. For example, in the first case, the 545

occurrence and consequences of this earthquake 546

have been saved in the event chain. However, in 547

the second case, it fails to determine the correct 548

order between events. The effect, fireman were 549

arrested, is arranged before the causes, start fire 550

and kill people. Because our method orders events 551

based on the description in the original text. When 552

flashbacks are frequently used, it may not be able 553
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Mexico Earthquake in 2017
Produced Events Groundtruth

earthquake happened earthquake rocked mexico
left person dead damaged houses
triggered landslide kill people
destroyed houses trigger landslides
blocked roads blocked roads

Former Firefighter Arrested for Starting Fires
Produced Events Groundtruth

fireman were arrested fireman started fires
fire destroyed homes fire destroyed homes
killed people left people dead
turned into fire arrested man on suspicion
body found inside home fire burned miles over week

Table 3: Case study. There are two cases including the
super events (in bold), the outputs of EMINER, and the
human-annotated groundtruth.

to arrange events according to their occurrences.554

In this case, more external knowledge is needed to555

assist event ordering. We leave it as future work.556

4.7 Human Evaluation557

To better understand the model performance, we558

also conduct human evaluation. Specifically, we559

ask 10 graduate students to rank six different event560

chains (produced by our framework, its variants,561

and groundtruth) according to three metrics: rele-562

vance, informativeness, and coherence to the texts.563

Ranking first means the best performance on this564

metric. We randomly select 20 samples from our565

dataset for evaluation. The results are provided566

in Table 4. From the perspective of relevance, our567

framework can output more relevant event chains to568

the super events. Compared with Selection → ET-569

DISC, other methods can mine more relevant and570

salient events thanks to event-based selection intro-571

ducing more semantic information. In terms of the572

informativeness metrics, our framework substan-573

tially extract distinct events and reduce information574

redundancy when comparing to other baselines.575

The capacity of grasp different events in similar576

meanings is largely responsible for this improve-577

ment. However, Merging → HDBSCAN performs578

poorly on the informativeness because it lacks se-579

mantic knowledge to identify synonyms in the men-580

tions. Coherence depends on whether event chains581

can reflect the plot of texts smoothly. Benefit from582

rich event relationships, event-based ordering can583

obtains high scores. However, the performance of584

all automatic models is still far from the human-585

annotated answers.586

Model Relev. Infor. Cohen.

Merging → HDBSCAN 4.14 4.54 3.21
Selection → ETDISC 4.66 3.28 3.52

Ordering → SYMTIME 2.84 3.53 4.37
EMINER 2.13 2.56 2.85
Reference 1.23 1.09 1.05

Table 4: Results of human evaluation by ranking. Relev.,
Infor., and Cohen. represent relevance, informativeness
and coherence to original texts, respectively. Reference
refers to the human-annotated event chains.

5 Related Work 587

Considering the importance of events in under- 588

standing unstructured texts, many efforts have been 589

devoted to represent and understand events. Han 590

et al. (2019); Wang et al. (2020); Ahmad et al. 591

(2021) pay attention on event relation extraction 592

and predicting. Salient event identification is also 593

a popular research topic. (Liu et al., 2018; Jin- 594

dal et al., 2020; Wilmot and Keller, 2021). Apart 595

from these, there have been recent interests in event 596

process understanding (Zhang et al., 2020a; Chen 597

et al., 2020). However, most of these studies highly 598

rely on expensive expert annotations. 599

Some studies (Weber et al., 2018; Li et al., 2020) 600

alleviate this problem under an unsupervised set- 601

ting. The pioneer work (Chambers and Jurafsky, 602

2008) induces event chains as a new representa- 603

tion of structured knowledge. Chambers and Ju- 604

rafsky (2008) and Radinsky and Horvitz (2013) 605

extended such event chain modeling for news pre- 606

diction and timeline construction. Berant et al. 607

(2014) extracted events and their relationships in 608

biological processes for biological reading com- 609

prehension. More recently, Zhang et al. (2021a) 610

models salience-aware event chains for narrative 611

understanding. These studies extract event schemas 612

from a large amount of texts as prior knowledge to 613

assist downstream tasks (Yao et al., 2019; Reddy 614

et al., 2019). However, there still lacks relevant 615

research on automatic mining of event chains. 616

6 Conclusion 617

In this paper, we propose a new task, Event Chain 618

Mining, to summarize the skeleton of texts by ex- 619

tracting event chains. To address it automatically, 620

a novel unsupervised framework EMINER is sug- 621

gested. Besides, we develop a benchmark dataset 622

and a comprehensive evaluation system for this 623

task. Extensive experiments verify the effective- 624

ness of the proposed framework and the quality of 625

the produced event chains. 626
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A Appendix 834

A.1 Example of Event Mention Patterns 835

To better understand our event extraction approach, 836

we list some specific patterns and examples in Ta- 837

ble 5. 838

A.2 Implementation details 839

We implement EMINER using PyTorch (Ketkar, 840

2017). The experiments are conducted on 8 841

NVIDIA TITAN Xp GPUs. For event mention 842

extraction, we give priority to matching the respon- 843

sible patterns to extract as many details as possi- 844

ble. The extracted events will not overlap. For 845
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Pattern Example
n1-nsubj-v1 people die
n1-nsubj-v1-dobj-n2 earthquake hit Mexico
n1-nsubj-v1-xcomp-a residents felt scared
n1-nsubj-v1-xcomp-v2-dobj-n2 he wants to drink water
n1-nsubjpass-v1 people was injured

Table 5: Several event mention patterns and the corre-
sponding examples. (‘v’ stands for verbs, ‘n’ stands
for nouns, and ‘a’ stands for adjectives. ‘nsubj’, ‘dobj’,
‘xcomp’, and ‘nsubjpass’ are syntactic relations)

event mention merging, we set α = 0.3, β = 0.03,846

and the number of iterations to 10. All the ex-847

tracted events are grouped. We do not manually848

de-duplicate events. For salient event selection, we849

select those events with salience scores ranked in850

the top 20, which can cover the main content of the851

texts. For salient event ordering, we score and rank852

each salient event. The number of events finally853

output is the same as the groundtruth.854
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