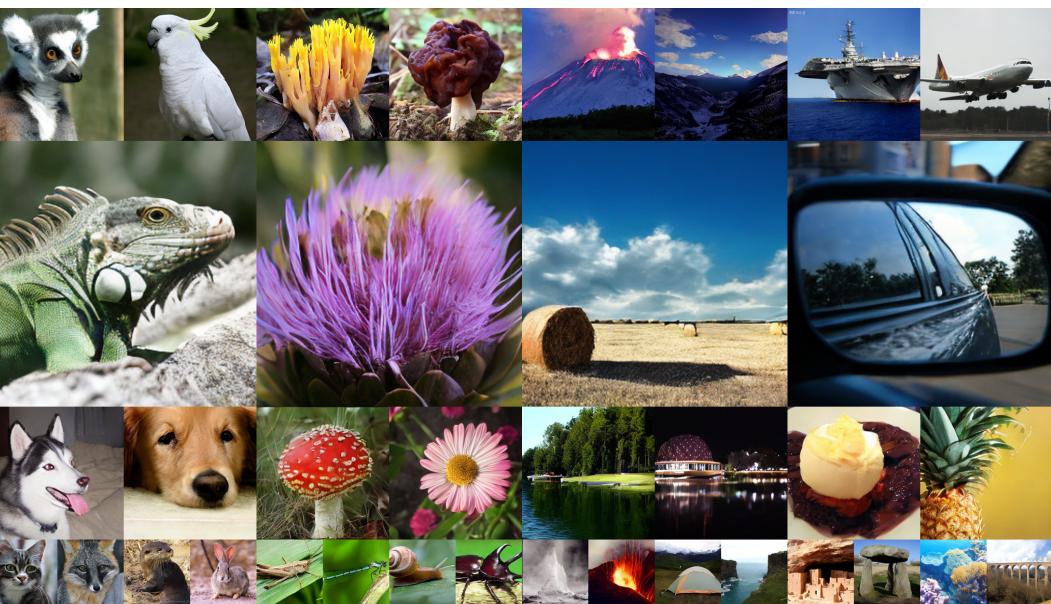


000 001 002 003 004 005 ROBUQ: PUSHING DiTs TO W1.58A2 VIA ROBUST 006 ACTIVATION QUANTIZATION 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028



029 **Figure 1: RobuQ enables DiTs to generate competitive results at ultra-low bit setting.** We select
030 256×256 images from W1.58A3 quantized DiT-XL/2 trained on ImageNet-1K.
031
032
033
034

ABSTRACT

035 Diffusion Transformers (DiTs) have recently emerged as a powerful backbone
036 for image generation, demonstrating superior scalability and performance over U-
037 Net architectures. However, their practical deployment is hindered by substantial
038 computational and memory costs. While Quantization-Aware Training (QAT) has
039 shown promise for U-Nets, its application to DiTs faces unique challenges, pri-
040 marily due to the sensitivity and distributional complexity of activations. In this
041 work, we identify activation quantization as the primary bottleneck for pushing
042 DiTs to extremely low-bit settings. To address this, we propose a systematic QAT
043 framework for DiTs, named **RobuQ**. We start by establishing a strong ternary
044 weight (W1.58A4) DiT baseline. Building upon this, we propose **RobustQuan-**
045 **tizer** to achieve robust activation quantization. Our theoretical analyses show that
046 the Hadamard transform can convert unknown per-token distributions into per-
047 token normal distributions, providing a strong foundation for this method. Fur-
048 thermore, we propose **AMPN**, the first Activation-only Mixed-Precision Network
049 pipeline for DiTs. This method applies ternary weights across the entire network
050 while allocating different activation precisions to each layer to eliminate informa-
051 tion bottlenecks. Through extensive experiments on unconditional and conditional
052 image generation, our RobuQ framework achieves state-of-the-art performance
053 for DiT quantization in sub-4-bit quantization configuration. To the best of our
knowledge, RobuQ is the first achieving stable and competitive image generation
on large datasets like **ImageNet-1K** with activations quantized to average 2 bits.

054

1 INTRODUCTION

055
 056 Recent advances in quantization-aware training (QAT) have revealed a fundamental asymmetry be-
 057 tween weight and activation quantization in deep neural networks (Zheng et al., 2025; Feng et al.,
 058 2025a; Wang et al., 2025a; He et al., 2024b). In particular, diffusion transformer (DiT) models (Pee-
 059 bles & Xie, 2023), which have demonstrated strong performance in generative tasks, present unique
 060 challenges for efficient quantization due to their deep architectures and the complex distribution of
 061 activation values. While prior studies have shown that ternary quantization of weights can achieve
 062 nearly lossless accuracy (Ma et al., 2024), activation quantization remains substantially more dif-
 063 ficult—especially for large-scale datasets like ImageNet-1K (Russakovsky et al., 2015), where the
 064 lowest reported activation bit-width is still 4 bits (Feng et al., 2025b). This highlights an opportunity
 065 to further reduce activation precision in DiT models without sacrificing generative quality greatly.
 066

067 In this work, we focus on the quantization of DiT models and conduct a systematic analysis to
 068 identify activation quantization as the principal challenge in ultra-low bit settings. Building on
 069 this observation, we first establish a strong W1.58A4 DiT quantization baseline. We then theoreti-
 070 cally demonstrate that, under our modeling assumptions, the Hadamard transform can consistently
 071 project diverse and irregular activation distributions in DiT into a standard normal form. Exploiting
 072 this property, we propose the RobustQuantizer including the construction of an advanced W1.58A4
 073 baseline, the Hadamard transform and the robust per-token Gauss quantizer, thereby enabling highly
 074 efficient and distribution-agnostic quantization in both uniform and non-uniform quantization.
 075

076 Mixed-precision quantization has recently emerged as a promising strategy to overcome the limita-
 077 tions of uniform ultra-low-bit quantization (Feng et al., 2025a; Zhao et al., 2024a; Kim et al., 2025;
 078 Feng et al., 2025b). We introduce the first activation-only mixed-precision quantization network
 079 (AMPN) for DiT, and explore activation bit-width allocation strategies within this framework at
 080 ultra-low bit setting. Using AMPN, we achieve SOTA image generation on ImageNet at an ultra-low
 081 precision of W1.58A3 (as seen in Fig. 1), while maintaining stable performance without collapse at
 082 the even lower bit-width of W1.58A2. Extensive experiments on both unconditional and conditional
 083 generation tasks demonstrate our method’s superior performance over SOTA techniques.
 084 Our main contributions are summarized as follows:

- 085 • Through comprehensive study, we identify activation quantization as the central bottleneck
 086 for DiTs to achieve ultra-low bit quantization. Building upon recent work, we establish
 087 a strong **baseline** for ternary weight quantization with a W1.58A4 DiT model, achieved
 088 through the integration of an SVD-initialized low-rank branch and Hadamard transform.
- 089 • We first **theoretically** demonstrate that the widely used Hadamard transform, under our
 090 modeling assumptions, can convert arbitrary activation distributions in DiT models to a
 091 per-token normal distribution. Leveraging this property, our **RobustQuantizer** supports
 092 both uniform and non-uniform quantization, achieving SOTA performance on W1.58A4.
- 093 • We introduce **AMPN**, the first DiT quantization scheme to focus exclusively on activation-
 094 only mixed-precision, and conduct a thorough exploration of activation bit-width alloca-
 095 tion. Our method achieves SOTA performance at W1.58A3 and, furthermore, maintains
 096 stable training without collapse at an ultra-low bit setting of W1.58A2.
- 097 • Extensive evaluations across unconditional generation and conditional generation with
 098 DiT demonstrate that our quantization framework **RobuQ**, including RobustQuantizer and
 099 AMPN, consistently surpasses previous SOTA methods in both efficiency and performance,
 100 significantly advancing the feasibility of DiTs under resource constraints.

101

2 RELATED WORKS

102

2.1 DIFFUSION TRANSFORMERS

103 Diffusion Models (DMs) have demonstrated impressive generative capabilities across a wide range
 104 of tasks (Chen et al., 2020; Hu et al., 2022; Rombach et al., 2022; Chen et al., 2023; He et al.,
 105 2023; Li et al., 2023b;a; Liu et al., 2024; Li et al., 2024; He et al., 2024a; Ho et al., 2020; Zhao
 106 et al., 2024b; Peebles & Xie, 2023). Recent research has focused on replacing the conventional
 107 U-Net (Ronneberger et al., 2015) backbone with Transformer-based (Vaswani et al., 2017) architec-
 108 tures to build more powerful generative models (Croitoru et al., 2023; Rombach et al., 2022; Yang
 109 et al., 2023). Among these, Diffusion Transformers (DiTs) (Peebles & Xie, 2023) has achieved

108 remarkable performance in image generation, exhibiting strong scalability and significant potential
 109 for broader applications. Despite its exceptional performance, DiT still demands substantial
 110 computational resources, including high memory usage and processing power, to generate high-quality
 111 images, which significantly hinders its applicability in resource-constrained scenarios.

112 2.2 QUANTIZATION

113 Quantization techniques (K Esser et al., 2019; Lv et al., 2024; Zhang et al., 2024; Zhou et al.,
 114 2016) compress and accelerate neural networks by reducing the numerical precision of weights and
 115 activations (e.g., from 32-bit floating-point to 1–8-bit integers). However, applying quantization
 116 to generative tasks presents unique challenges due to the dynamic temporal nature of the diffusion
 117 process and the complex spatial structures involved (Chen et al., 2024; He et al., 2024b).

118 To further improve the efficiency of neural network quantization, recent research has explored even
 119 lower bit-width regimes, such as ternarization (three-value quantization) (Lu et al., 2024; Ma et al.,
 120 2024; Wang et al., 2025b) and extreme low-bit quantization (e.g., 1-bit, 2-bit) (Zheng et al., 2024;
 121 2025). These approaches significantly reduce both memory footprint and computational complexity,
 122 but they typically struggle to maintain sufficient model expressiveness and high generation quality,
 123 especially in the context of large generative models that require intricate representations.

124 To address information loss caused by aggressive quantization, orthogonal transformations have
 125 been introduced into quantization pipelines (Hu et al., 2025; Lin et al., 2025; Ashkboos et al.,
 126 2024; Liu et al., 2025b). By decorrelating weights or activations before quantization (e.g., via SVD,
 127 Hadamard, or other orthogonal transforms), these methods redistribute quantization errors and better
 128 preserve information, enabling more accurate low-bit quantization for generative models.

129 Moreover, mixed-precision quantization has emerged as an effective strategy to balance efficiency
 130 and performance (Feng et al., 2025a; Zhao et al., 2024a; Kim et al., 2025; Feng et al., 2025b). Instead
 131 of assigning a uniform bit-width to all layers or modules, mixed-precision methods allocate higher
 132 precision to sensitive components and lower precision elsewhere, either through heuristic rules or
 133 data-driven optimization. This technique enhances quantization robustness and overall performance.

134 3 METHOD

135 3.1 ANALYSIS

136 Empirical evidence indicates that DiT models (Peebles & Xie, 2023) exhibit inferior performance in
 137 the low bit-width regime compared to U-Net-based (Ronneberger et al., 2015) LDM models (Rom-
 138 bach et al., 2022). Currently, DiT quantization is often limited to a W4A4 configuration (Liu &
 139 Zhang, 2024; Wu et al., 2024; Hwang et al., 2025; Chen et al., 2025), whereas LDM-class models
 140 have advanced to W1A4 and even W1A1 precedents (Zheng et al., 2024; 2025). This significant
 141 gap motivates a thorough investigation into activation quantization for DiTs. We identify three key
 142 challenges that hinder effective low-bit-width activation quantization in DiT models:

- 143 • **Issue 1: Lack of QAT Exploration for Ultra-low-bit Configurations.** Existing methods
 144 have primarily focused on Post-Training Quantization (PTQ) (He et al., 2024b; Wang et al.,
 145 2025a), without a thorough investigation into the boundaries of activation bit-width under
 146 the Quantization-Aware Training (QAT) framework. Compared with PTQ, QAT can ex-
 147 plicitly optimize model parameters during training to compensate for quantization errors,
 148 thereby offering a more promising and effective route to stable ultra-low-bit deployment.
- 149 • **Issue 2: Diverse and Complex Activation Distributions.** Unlike other architectures,
 150 DiTs exhibit highly varied activation distributions across different layers and tokens (Zhao
 151 et al., 2025), posing a significant challenge due to the lack of a unified quantizer.
- 152 • **Issue 3: Potential Activation Bit-width Bottlenecks.** We find the existence of specific
 153 layers within DiT models that are particularly sensitive to activation bit-width compression,
 154 which fundamentally prevents further quantization to lower activation bit-widths.

155 Based on the above issues, it becomes necessary to conduct a dedicated study on ultra-low-bit acti-
 156 vation quantization for DiT models. Our goal is to address the unique distributional and architectural
 157 challenges of DiT, and to develop strategies that maximize compression while preserving generative
 158 fidelity. Such targeted investigation is essential not only for reducing deployment costs but also for
 159 pushing the practical boundaries of DiT quantization into regimes previously thought unattainable.

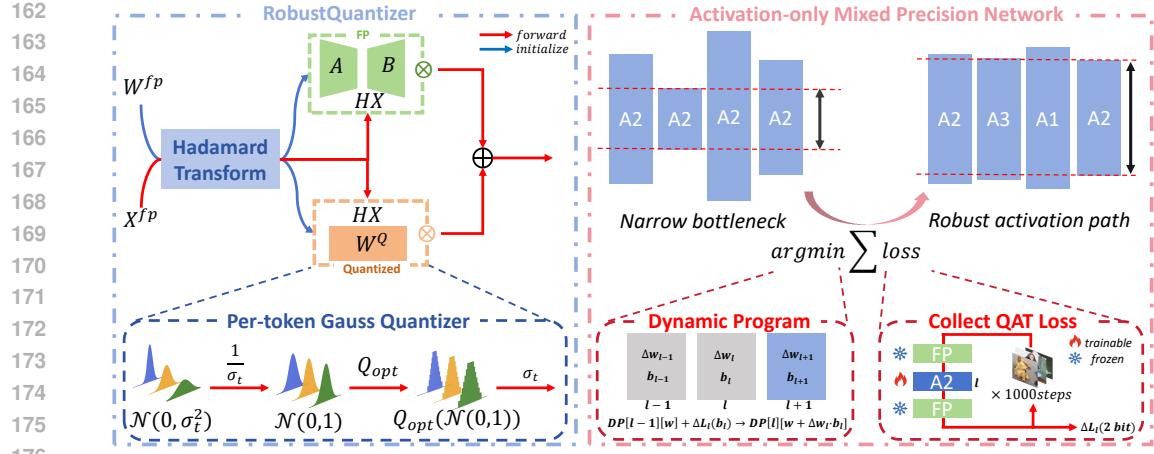


Figure 2: Overall Framework of Our Quantization Pipeline.

3.2 ROBUSTQUANTIZER: LEVERAGING HADAMARD TRANSFORMATION EFFECTIVELY

3.2.1 INITIAL BASELINE AND QUANTIZATION STRATEGY

Building upon the successful W1.58A4 configuration of BitNetV2 (Wang et al., 2025b), we establish it as our initial baseline. Specifically, we apply a Hadamard transformation (Yarlagadda & Hershey, 1993), a type of orthogonal transformation to the *proj* and *fc2* layers within the DiT modules. The Hadamard transformation is applied to both the weights and activations, where $W \leftarrow HW$ and $X \leftarrow HX$. Here, the Hadamard matrix of order n is defined recursively:

$$H_1 = (1), \quad H_{2^n} = \frac{1}{\sqrt{2}} \begin{pmatrix} H_n & H_n \\ H_n & -H_n \end{pmatrix} \quad (n \geq 1). \quad (1)$$

We adopt two distinct strategies for weight and activation quantization. For weight quantization $Q_w(\cdot)$, we use a channel-wise ternarization quantizer based on the principles of BitNetV2. This maps the FP weights W to discrete values per channel, as shown in the following equation:

$$Q_w(W) = \alpha \cdot \text{RoundClip}\left(\frac{W}{\gamma + \epsilon}, -1, 1\right), \quad (2)$$

where $\alpha = \text{mean}(|W|)$, $\gamma = \frac{1}{mn} \sum_{i,j} |W_{ij}|$, and ϵ is a small constant to avoid division by zero. The RoundClip function is defined as $\text{RoundClip}(x, a, b) = \min(\max(\text{round}(x), a), b)$. For activation quantization, we employ a straightforward per-token min–max quantization strategy to determine the scaling range. The quantized value $Q_x(\mathbf{x})$ for an activation tensor \mathbf{x} is computed as:

$$Q_x(\mathbf{x}) = \text{clamp}\left(\left\lfloor \frac{\mathbf{x}}{\delta} \right\rfloor + \lambda, 0, 2^b - 1\right), \quad (3)$$

where $\delta = \frac{\max(\mathbf{x}) - \min(\mathbf{x})}{2^b - 1}$ is the scaling factor, b is the bit-width, $\lfloor \cdot \rfloor$ denotes the floor operation, and $\lambda = -\left\lfloor \frac{\min(\mathbf{x})}{\delta} \right\rfloor$ is the zero-point that enables asymmetric quantization.

3.2.2 ENHANCED BASELINE WITH INTEGRATED TECHNIQUES

Next, we turn our attention to other state-of-the-art methods. By drawing on techniques from SVD-Quant (Li et al., 2025) and BiMaCoSR (Liu et al., 2025a), we introduce a SVD-initialized low-rank matrix branch for compensation, which operates in FP. As illustrated in Fig. 2 (left), the initialization process begins with the FP weights W . First, a Hadamard transform is applied to W . Then, a truncated SVD is performed on the transformed matrix to construct the low-rank approximation, which is subsequently factorized into A and B . The decomposition is as follows:

$$WH \approx AB = U_r \Sigma_r V_r^T. \quad (4)$$

Here, H denotes the Hadamard matrix. The matrices U_r , Σ_r , and V_r are obtained by retaining the top $r = 16$ dominant singular values and their corresponding singular vectors. The main quantized weight matrix W^Q in the lower branch is also derived from the transformed weights WH :

$$W^Q = Q_w(WH - AB) = Q_w(W_{res}). \quad (5)$$

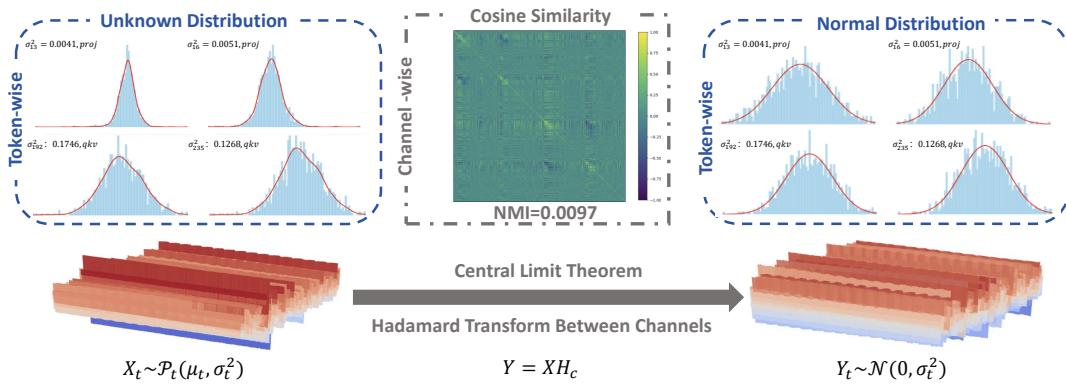


Figure 3: Illustration of how the Hadamard transforms per-token unknown distributions (left) into a known per-token normal distribution (right). Average NMI is computed across different channels.

The original weight W is then approximated as follows:

$$W = W H H^\top = (AB + W_{\text{res}}) H^\top \approx AB H^\top + Q_w(W_{\text{res}}) H^\top. \quad (6)$$

During the forward pass, the input X is passed through a Hadamard transform and then into the Q_G , as shown in Eq. 8. Here Q_G refers to the Per-token Gauss Quantizer introduced in Section 3.2.4. The final output is the sum of the outputs from the FP low-rank branch and the main quantized branch. Although BitNetv2 restricted the Hadamard transform to *proj* and *fc2* layers, extending it to all layers, as we do here, stabilizes activation distributions and mitigates residual imbalances.

3.2.3 HADAMARD TRANSFORM CREATES A PER-TOKEN NORMAL DISTRIBUTION

We argue that the Hadamard transform provides more than simple activation smoothing (Kolb et al., 2023): it converts per-token activations from arbitrary distributions into predictable, approximately normal ones. This property, visualized in Fig. 3, motivates our **RobustQuantizer**.

Formally, consider the input $X \in \mathbb{R}^{T \times C}$. We have observed the following three properties:

(i) Token-wise: Activations across tokens within a layer share a distribution shape but differ in mean and variance, and these distributions vary significantly across layers, leading to quantization errors.

(ii) Channel-wise: Channels are nearly independent, with low normalized mutual information (NMI), which is a key property to satisfy the CLT assumptions (Gnedenko & Kolmogorov, 1954).

(iii) Hadamard Matrix Property: The normalized Hadamard matrix H_C has entries of $\pm 1/\sqrt{C}$, which ensures an equal variance across the resulting transformed channels in one token.

Thus, per-token activations $X_t = (X_{t,1}, \dots, X_{t,C})$, with $X_{t,c} \sim \mathcal{P}_{t,c}(\mu_{t,c}, \sigma_{t,c}^2)$, become

$$Y_{t,c} = \sum_{j=1}^C (H_C)_{j,c} X_{t,j}, \quad \text{Var}(Y_{t,c}) = \frac{1}{C} \sum_{j=1}^C \sigma_{t,j}^2 \triangleq \sigma_t^2. \quad (7)$$

By the Generalized CLT, Y_t converges to $\mathcal{N}(0, \sigma_t^2)$, i.e., an identically distributed Gaussian for each token. This insight provides a principled theoretical foundation for achieving robust and effective per-token quantization. Further information and a formal derivation can be found in Appendix A.

3.2.4 FROM HADAMARD NORMALIZATION TO PER-TOKEN GAUSS QUANTIZATION

Building upon our prior analysis of how the Hadamard transform produces a per-token normal distribution, we now design the **Per-token Gauss Quantizer** $Q_G(\cdot)$ to maximally leverage this property. We present two versions of our quantizer, a **uniform** and a **non-uniform** variant. The complete process involves per token normalization using dynamically computed mean and variance and quantization with a precomputed optimal quantizer as shown in Fig. 2 (left lower). We obtain this optimal quantizer, denoted as Q_{opt} , by using the Lloyd-Max algorithm (Lloyd & Laboratories, 1982). The complete quantization and dequantization process for an activation vector x can be expressed as:

$$x \approx Q_G(x) = \sigma_t \cdot H^T \cdot Q_{\text{opt}}\left(\frac{Hx}{\sigma_t}\right). \quad (8)$$

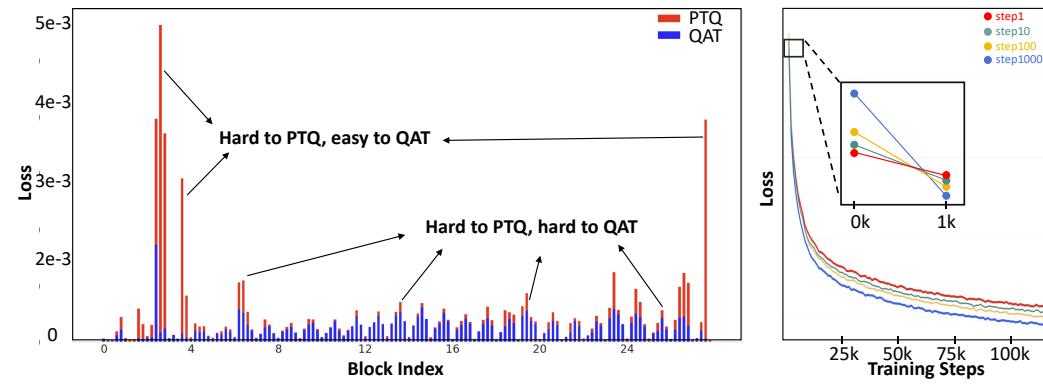


Figure 4: An illustration of why PTQ sensitivity metrics fail for ultra-low-bit QAT mixed-precision. **Left:** Visualization of accuracy loss for different linear layers with W1.58A2 quantization under PTQ and QAT (1,000 training steps). **Right:** Mixed-precision configurations derived from more QAT steps achieve a worse initial loss but a better final convergence loss.

Therefore, the forward of the quantized and low-rank FP branches can be expressed as:

$$Wx \approx \underbrace{ABHx}_{\text{FP}} + \underbrace{Q_w(W_{\text{res}}) \cdot Q_{\text{opt}}\left(\frac{Hx}{\sigma_t}\right) \cdot \sigma_t}_{\text{quantized}}. \quad (9)$$

3.3 ACTIVATION-ONLY MIXED-PRECISION NETWORK

3.3.1 NAIVE PIPELINE DESIGN

We design a simple activation-only mixed-precision network (AMPN) pipeline to alleviate bottlenecks caused by uniform bit-width quantization, as shown in Fig. 2 (right). All weights are fixed to ternary (W1.58), while each activation layer $\ell \in \{1, \dots, L\}$ selects a bit-width $b_\ell \in \mathcal{B} = \{1, 2, 3, 4\}$. The goal is to minimize accuracy loss under a target average activation bit-width \bar{B}_{tgt} .

To build a layer-wise sensitivity profile, we randomly sample 1,000 validation examples across timesteps and compute the mean loss gap $\Delta L_\ell(b_\ell)$ between the quantized and full-precision models at bit-width b . This metric enables a fast estimation of per-layer degradation. We then formulate bit allocation as a Dynamic Programming (DP) problem, where the objective is to minimize total loss under a resource budget. Here, w_ℓ is the layer-wise weight that adjusts the bitwidth contribution of each layer according to its FLOPs proportion in DiT-Block (e.g., the w_ℓ of mlp.fc1 is 1.334).

Among these layers, certain components are fixed for stability: the attention scores are quantized to 8 bits, and the adaLN layer to 4 bits, due to their high sensitivity yet negligible FLOPs cost (together accounting for about 2–3% of the total block computation). The optimization can be written as

$$\min_{\{b_\ell \in \mathcal{B}\}} \sum_{\ell=1}^L \Delta L_\ell(b_\ell) \quad \text{s.t.} \quad \frac{1}{W_{\text{tot}}} \sum_{\ell=1}^L w_\ell b_\ell \leq \bar{B}_{\text{tgt}}, \quad (10)$$

where $W_{\text{tot}} = \sum_{\ell=1}^L w_\ell$ is the total FLOPs. We solve this with DP. Let $\text{DP}[\ell][w]$ be the minimal cumulative loss after assigning bits to the first ℓ layers with accumulated weighted cost w . For the purpose of discretization, each individual layer's FLOPs and the target budget can be written as

$$\Delta w_\ell = \left\lfloor \beta \frac{w_\ell}{W_{\text{tot}}^{\text{dp}}} \right\rfloor, \quad B = \left\lfloor \beta \bar{B}_{\text{tgt}} \right\rfloor, \quad (11)$$

where β is a resolution factor controlling granularity (e.g. $\beta = 1,000$) and $W_{\text{tot}}^{\text{dp}} = \sum_{\ell \in \mathcal{L}_{\text{dp}}} w_\ell$ is the FLOPs of layers optimized by DP. The recurrence relation is formally defined as follows,

$$\text{DP}[\ell][w + \Delta w_\ell \cdot b_\ell] = \min \left\{ \text{DP}[\ell][w + \Delta w_\ell \cdot b_\ell], \text{DP}[\ell-1][w] + \Delta L_\ell(b_\ell) \right\}, \quad b_\ell \in \mathcal{B}. \quad (12)$$

We initialize $\text{DP}[0][0] = 0$ and $\text{DP}[0][w > 0] = +\infty$. The optimal cost can be formulated as

$$w^* = \arg \min_{0 \leq w \leq B} \text{DP}[L][w], \quad (13)$$

from which the optimal allocation $\{b_\ell^*\}$ is recovered by backtracking through the solution space.

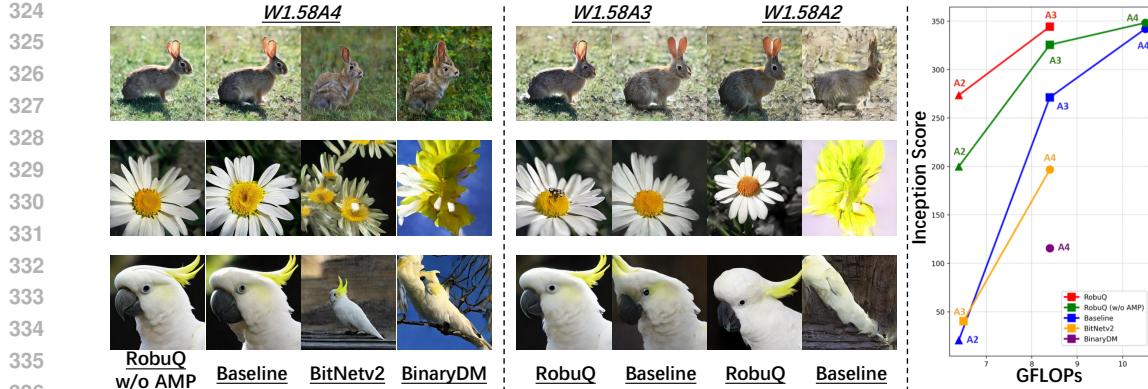


Figure 5: Visualization of the performance and efficiency of RobuQ and comparative approaches. **Left:** Our proposed RobuQ and baseline significantly outperform previous methods on W1.58A4. **Middle:** RobuQ maintains stable generation under A3 and A2 compared to collapsed baseline. **Right:** The RobuQ series achieve higher Inception Scores under the same FLOPs.

3.3.2 ULTRA-LOW-BIT QAT

Mixed-precision methods (Feng et al., 2025a; Zhao et al., 2024a; Kim et al., 2025; Feng et al., 2025b) have traditionally employed PTQ to collect parameters, as they are often applied in mid-bit configurations. However, our work targets ultra-low-bit quantization under the QAT framework. In this setting, even if a layer exhibits large quantization errors during PTQ, the model can still compensate for these errors during training, making QAT more adaptable, as shown in Fig. 4 (left). On the other hand, a low quantization error observed in PTQ does not necessarily ensure a consistent or further reduction in quantization errors during the subsequent QAT process.

To investigate this, we explored training the quantized layers for different numbers of steps while collecting quantization errors. Specifically, we trained for 1, 10, 100, and 1,000 steps, using the same learning rate as standard training. Our findings revealed that while schemes with fewer training steps (such as 1 and 10 steps) initially exhibited lower quantization errors, those trained with more steps (such as 1,000 steps) achieved a significantly lower final convergence loss, as shown in Fig. 4 (right). This aligns with our hypothesis that additional QAT steps allow the model to better adjust to the quantization process, gradually improving its performance and robustness over time.

4 EXPERIMENTS

4.1 SETUP

Datasets and Evaluation Metrics. We evaluate pre-trained class-conditional DiT-XL/2 models at 256×256 resolution on ImageNet-1K (Russakovsky et al., 2015) and FFHQ (Karras et al., 2019). The DDPM solver (Ho et al., 2020) with 250 sampling steps is employed for the generation process. For all methods under evaluation, we uniformly sample a total of 10,000 generated images for both the ImageNet-1K 256×256 and FFHQ 256×256 benchmarks. We use four metrics to assess generated image quality: Fréchet Inception Distance (FID) (Heusel et al., 2017), spatial FID (sFID) (Salimans et al., 2016; Nash et al., 2021), Inception Score (IS) (Salimans et al., 2016; Barratt & Sharma, 2018), and Precision, all computed using the ADM toolkit (Dhariwal & Nichol, 2021).

Compared Methods. We compare our RobuQ series (where RobuQ (w/o AMP) denotes using only the RobustQuantizer) with SOTA quantization approaches, covering both PTQ and QAT paradigms. These include BitNetv2 (Wang et al., 2025b) and QueST (Wang et al., 2025a) for ultra-low-bit QAT, PTQ4DiT (Wu et al., 2024) and Q-DiT (Chen et al., 2025) as DiT-specific PTQ methods, and BinaryDM (Zheng et al., 2025) for QAT binarized diffusion models. We also incorporate Quarot (Ashkboos et al., 2024) and SVD-Quant (Li et al., 2025) as components of our strong baseline.

Training and Quantization Details. All experiments are conducted with PyTorch (Paszke et al., 2019) on a single NVIDIA RTX A6000-48GB GPU. For all QAT methods, we use the AdamW optimizer (Loshchilov & Hutter, 2019) (learning rate= 10^{-5} , weight decay=0) with a batch size of 8 and train for 350k iterations. We keep the embedding and final layer in full precision across all methods, and maintain 8-bit precision for activation-activation matrix multiplication operations, as they constitute a small fraction of the computation and exhibit high sensitivity to quantization.

378 Table 1: Performance on ImageNet-1K 256×256 and FFHQ 256×256 under different settings.
379

Setting	Method	Bit-width (W/A)	IS↑	FID↓	sFID↓	Precision↑	
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421	380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421	FP	32/32	239.50	6.62	21.10	0.7849
	QueST	4/4	4.87	215.06	72.15	0.0529	
	PTQ4DiT	4/4	3.05	231.80	106.42	0.1003	
	Q-DiT	4/4	2.01	248.11	404.44	0.0138	
	BinaryDM [†]	1.58/4	25.63	62.91	38.28	0.3765	
	Bitnetv2	1.58/4	44.32	41.59	34.09	0.5002	
	Baseline	1.58/4	95.07	20.82	27.53	0.6152	
	RobuQ (w/o AMP)	1.58/4	103.24	17.97	26.95	0.6577	
	Baseline	1.58/3	51.31	40.23	35.64	0.4946	
	RobuQ (w/o AMP)	1.58/3	83.84	24.44	29.18	0.6001	
	RobuQ	1.58/3	93.75	21.40	26.99	0.6190	
	Baseline	1.58/2	10.63	120.49	62.29	0.2091	
	RobuQ (w/o AMP)	1.58/2	45.65	43.31	38.89	0.4917	
	RobuQ	1.58/2	66.74	30.30	30.66	0.5680	
	FP	32/32	478.35	19.11	21.61	0.9298	
	QueST	4/4	42.07	84.20	45.67	0.2651	
	PTQ4DiT	4/4	5.64	144.07	85.83	0.1078	
	Q-DiT	4/4	8.23	141.13	279.26	0.1272	
	BinaryDM [†]	1.58/4	115.52	17.08	23.15	0.7230	
	Bitnetv2	1.58/4	196.78	11.69	21.44	0.8370	
	Baseline	1.58/4	342.07	12.82	20.05	0.9092	
	RobuQ (w/o AMP)	1.58/4	349.22	12.64	19.69	0.9186	
	Baseline	1.58/3	254.92	10.83	21.68	0.8585	
	RobuQ (w/o AMP)	1.58/3	325.56	12.31	19.94	0.9053	
	RobuQ	1.58/3	342.94	12.71	19.87	0.9129	
	Baseline	1.58/2	20.65	75.02	35.81	0.2812	
	RobuQ (w/o AMP)	1.58/2	200.00	11.97	21.73	0.8188	
	RobuQ	1.58/2	273.58	11.06	21.57	0.8751	
	FP	32/32	479.72	19.67	22.94	0.9301	
	QueST	4/4	49.55	76.55	43.26	0.2876	
	PTQ4DiT	4/4	5.07	148.17	95.02	0.0982	
	Q-DiT	4/4	10.74	124.48	286.99	0.1598	
	BinaryDM [†]	1.58/4	124.78	15.50	21.66	0.7575	
	Bitnetv2	1.58/4	206.28	11.72	20.62	0.8591	
	Baseline	1.58/4	344.43	13.92	20.75	0.9167	
	RobuQ (w/o AMP)	1.58/4	348.40	13.82	20.32	0.9225	
	Baseline	1.58/3	271.27	11.55	20.76	0.8876	
	RobuQ (w/o AMP)	1.58/3	333.62	13.65	20.75	0.9180	
	RobuQ	1.58/3	342.73	14.27	20.63	0.9247	
	Baseline	1.58/2	23.22	68.04	30.84	0.2999	
	RobuQ (w/o AMP)	1.58/2	220.47	11.17	20.10	0.8573	
	RobuQ	1.58/2	281.73	11.86	21.94	0.8922	
	FP	32/32	N/A	11.71	28.88	0.7526	
	QueST	4/4	N/A	72.88	85.56	0.1897	
	Bitnetv2	1.58/4	N/A	66.55	64.49	0.3499	
	Baseline	1.58/4	N/A	34.32	44.37	0.5771	
	RobuQ (w/o AMP)	1.58/4	N/A	25.62	37.15	0.6228	
	Baseline	1.58/3	N/A	35.11	43.07	0.5988	
	RobuQ	1.58/3	N/A	28.11	38.43	0.6128	
	Baseline	1.58/2	N/A	59.50	62.58	0.4159	
	RobuQ	1.58/2	N/A	38.13	42.29	0.5568	

[†] For fairness, we swapped BinaryDM’s binarization for ternarization.

4.2 MAIN RESULT

As shown in Table 1, on both ImageNet-1K 256 × 256 with low classifier-free guidance (Ho & Salimans, 2022) (cfg=1.5, 50 steps) and FFHQ 256×256 under unconditional generation (50 steps), our quantized models demonstrate comprehensive superiority across all bit-widths, which solidly validates the effectiveness of our approach. However, when employing a higher guidance scale (cfg=4.0), although our method achieves better metrics, FID exhibits anomalous behavior: all quantized methods surprisingly outperform the FP model, showing an inverse relationship with other metrics. This phenomenon suggests the need for more precise evaluation metrics in low-bit setting. Increasing sampling steps from 50 to 150 maintains consistent trends. Fig. 5 (left and middle) provides visually comparative results across diverse methods and different bit-widths.

432 Table 2: Ablation studies on ImageNet-1K 256×256. Timesteps are 50 and cfg is 1.5.
433

Method	IS↑	FID↓	sFID↓	Precision↑	Method	IS↑	FID↓	sFID↓	Precision↑
BitNetv2	44.32	41.59	34.09	0.5002	Baseline	95.07	20.82	27.53	0.6152
+ LRB	68.82	29.59	31.35	0.5807	+Non-uniform Quantizer	96.19	20.33	27.52	0.6262
+ LRB + All Hadamard	95.07	20.82	27.53	0.6152	+Uniform Quantizer	103.24	17.97	26.95	0.6577
(a) Baseline construction at W1.58A4.									
(b) Per-token Gauss Quantizer at W1.58A4.									
QAT-step	Method	IS↑	FID↓	sFID↓	Precision↑	Training-time↓			
N/A	RobustQuantizer	45.65	43.31	38.89	0.4917	126.0h			
1		50.67	41.06	34.58	0.5028	3.1h+126.0h			
10		52.12	39.01	32.50	0.5092	3.7h+126.0h			
100	+AMP	56.31	37.45	32.61	0.5097	9.5h+126.0h			
500		57.93	36.57	33.46	0.5213	36.0h+126.0h			
1,000		66.74	30.30	30.66	0.5680	78.5h+126.0h			
1,500		66.23	30.56	30.23	0.5701	121.0h+126.0h			
(c) AMPN at W1.58A2. Training-time comprises metric collection and actual training.									

445 Table 3: Inference efficiency of our proposed RobuQ of DiT-XL/2 on ImageNet-1K 256×256.
446

cfg=4.0 step=50	FP	QueST	BinaryDM	Bitnetv2	Baseline	RobuQ	RobuQ	RobuQ
W/A	32/32	4/4	1.58/4	1.58/4	1.58/4	1.58/4	1.58/3	1.58/2
Size (MB) ↓	2,575.4	341.22	148.13	148.13	194.75	194.75	194.75	194.75
FLOPs (G) ↓	114.52	14.94	8.04	8.04	10.07	10.07	8.34	6.61
IS↑ / Precision ↑	478.35/0.9298	42.07/0.2651	115.52/0.7230	196.78/0.8370	342.07/0.9092	349.22/0.9186	344.29/0.9083	273.58/0.8751

451 4.3 ABLATION STUDY

452 **Baseline Construction.** We first conducted ablation studies on our baseline components, as shown
453 in Table 2a. Starting with BitNetv2, adding a low-rank matrix branch (LRB) significantly improves
454 performance and accelerates convergence, with the FID dropping from 41.59 to 29.59. Applying a
455 full Hadamard transformation to all linear layers in DiT pushes the FID even lower to 20.82, demon-
456 strating the crucial role of both components in establishing a robust foundation for our method.

457 **Per-token Gauss Quantizer.** As shown in Table 2b, while the theoretically optimal non-uniform
458 quantizer only provides a slight performance gain with its FID dropping from 20.82 to 20.33, uni-
459 form quantizer achieves a much lower FID of 17.97 and a higher IS of 103.24. This is because the
460 uniform quantizer is more robust to the small approximation errors inherent in real-world activations,
461 proving to be more effective and stable in practice. Therefore, considering both the performance and
462 the ease of deployment, we have adopted the uniform quantizer as final choice.

463 **QAT Steps in AMP.** As shown in Table 2c, we determined the optimal number of QAT steps to
464 collect metrics in our AMP method. Performance consistently improved with an increasing number
465 of QAT steps. For example, the FID dropped from 41.06 at one step to 39.01 at 10 steps, and then
466 further to 30.30 at 1,000 steps. The optimal balance between quality and cost was found at 1,000
467 steps, which yielded the best FID of 30.30. Increasing the steps to 1,500 offered only negligible gains
468 at a significant additional cost. Therefore, we adopted the 1,000-step approach for all evaluations.

470 4.4 EFFICIENCY ANALYSIS

471 Table 3 demonstrates that the RobuQ series achieves the best efficiency-accuracy trade-off. Notably,
472 our RobuQ at W1.58A2 even surpasses BinaryDM and Bitnetv2 at W1.58A4, while providing a
473 17.3× theoretical speedup ratio and a 13.2× model compression ratio compared to the FP model.
474 The visual comparisons in Fig. 5 (right) further corroborate these results. More details including the
475 model FLOPs breakdown and computation are provided in Appendix C.

476 5 CONCLUSION

477 We revisit quantization for Diffusion Transformers and identify the activation pathway as the pri-
478 mary bottleneck for ultra-low-bit deployment. Building on a strong W1.58A4 baseline featur-
479 ing an SVD-initialized low-rank branch and all-layer Hadamard mixing, we demonstrate that the
480 Hadamard transform effectively Gaussianizes per-token activations. This enables the development
481 of a distribution-agnostic RobustQuantizer. Its hardware-friendly uniform implementation, when
482 integrated with an activation-only mixed-precision network (AMPN), achieves stable training and
483 delivers significant quality improvements. Together, these advancements establish new state-of-the-
484 art results for quantized DiTs, ultimately pushing their capabilities to the W1.58A2 configuration.

486 ETHICS STATEMENT
487488 This work focuses on developing quantization-aware training techniques for Diffusion Transformers
489 to improve efficiency and scalability. The research does not involve human or animal subjects,
490 personal or sensitive data, or any proprietary datasets. All datasets used in the experiments, including
491 ImageNet-1K and FFHQ, are publicly available and widely used within the research community.
492 Our contributions are strictly methodological and intended to advance efficient and responsible AI
493 research by reducing the computational and memory requirements of large generative models. We
494 confirm that this study complies fully with the ICLR Code of Ethics.
495496 REPRODUCIBILITY STATEMENT
497498 We have made extensive efforts to ensure the reproducibility of our work. All code implementations
499 used in this paper will be released publicly to facilitate independent verification and further research.
500 Complete theoretical derivations are provided in Appendix A, where we present formal proofs of
501 the Hadamard transform producing approximately normal per-token coordinates. The detailed al-
502 gorithmic pipeline of our Activation Mixed-Precision Network (AMPN) is included in Appendix B,
503 offering a comprehensive description of the quantization and training procedures. Experimental
504 configurations, including datasets, training schedules, and evaluation protocols, are reported in Sec-
505 tion 4.1. Together, these resources ensure that our results can be faithfully reproduced.
506507 REFERENCES
508509 Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L. Croci, Bo Li, Pashmina Cameron, Martin
510 Jaggi, Dan Alistarh, Torsten Hoefer, and James Hensman. Quarot: Outlier-free 4-bit inference in
511 rotated llms. In *NeurIPS*, 2024. 3, 7, 20
512 Shane Barratt and Rishi Rharma. A note on the inception score. In *ICML Workshop*, 2018. 7
513 Vidmantas Bentkus. A lyapunov type bound in \mathbb{R}^d . *Theory of Probability & Its Applications*, 1997.
514 15
515 Patrick Billingsley. *Probability and Measure*. 1995. 15
516 Sergey G. Bobkov. Refinements of berry–esseen inequalities in terms of lyapunov coefficients.
517 *Journal of Fourier Analysis and Applications*, 2023. 15
518 Clément L. Canonne. A short note on an inequality between kl and tv. arXiv:2202.07198, 2022. 16
519 Lei Chen, Yuan Meng, Chen Tang, Xinzhu Ma, Jinyan Jiang, Xin Wang, Zhi Wang, and Wenwu
520 Zhu. Q-dit: Accurate post-training quantization for diffusion transformers. In *CVPR*, 2025. 3, 7
521 Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mohammad Norouzi, and William Chan. Wave-
522 grad: Estimating gradients for waveform generation. In *ICLR*, 2020. 2
523 Zheng Chen, Yulun Zhang, Ding Liu, Bin Xia, Jinjin Gu, Linghe Kong, and Xin Yuan. Hierarchical
524 integration diffusion model for realistic image deblurring. In *NeurIPS*, 2023. 2
525 Zheng Chen, Haotong Qin, Yong Guo, Xiongfei Su, Xin Yuan, Linghe Kong, and Yulun Zhang.
526 Binarized diffusion model for image super-resolution. In *NeurIPS*, 2024. 3
527 Thomas M. Cover and Joy A. Thomas. *Elements of Information Theory*. 2006. 16
528 Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah. Diffusion models in
529 vision: A survey. *TPAMI*, 2023. 2
530 Imre Csiszár and János Körner. *Information Theory: Coding Theorems for Discrete Memoryless
531 Systems*. 2011. 16
532 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. In
533 *NeurIPS*, 2021. 7

540 Weilun Feng, Haotong Qin, Chuanguang Yang, Zhulin An, Libo Huang, Boyu Diao, Fei Wang,
 541 Renshuai Tao, Yongjun Xu, and Michele Magno. Mpq-dm: Mixed precision quantization for
 542 extremely low bit diffusion models. In *AAAI*, 2025a. 2, 3, 7

543

544 Weilun Feng, Chuanguang Yang, Haotong Qin, Yuqi Li, Xiangqi Li, Zhulin An, Libo Huang, Boyu
 545 Diao, Fuzhen Zhuang, Michele Magno, Yongjun Xu, Yingli Tian, and Tingwen Huang. Mpq-
 546 dmv2: Flexible residual mixed precision quantization for low-bit diffusion models with temporal
 547 distillation. In *arXiv preprint arXiv:2507.04290*, 2025b. 2, 3, 7

548 Bernard Fino and Vadim Algazi. Unified matrix treatment of the fast walsh–hadamard transform.
 549 *IEEE Transactions on Computers*, 1976. 18

550 Boris Vladimirovich Gnedenko and Andrey Nikolaevich Kolmogorov. *Limit Distributions for Sums*
 551 *of Independent Random Variables*. 1954. 5, 14

552

553 Chunming He, Chengyu Fang, Yulun Zhang, Kai Li, Longxiang Tang, Chenyu You, Fengyang Xiao,
 554 Zhenhua Guo, and Xiu Li. Reti-diff: Illumination degradation image restoration with retinex-
 555 based latent diffusion model. *arXiv preprint arXiv:2311.11638*, 2023. 2

556 Chunming He, Yuqi Shen, Chengyu Fang, Fengyang Xiao, Longxiang Tang, Yulun Zhang, Wang-
 557 meng Zuo, Zhenhua Guo, and Xiu Li. Diffusion models in low-level vision: A survey. *arXiv*
 558 *preprint arXiv:2406.11138*, 2024a. 2

559

560 YeFei He, Jing Liu, Weijia Wu, Hong Zhou, and Bohan Zhuang. Efficientdm: Efficient quantization-
 561 aware fine-tuning of low-bit diffusion models. In *ICLR*, 2024b. 2, 3

562 Martin Heusel, Hubert Ransauer, Thomas Unterhiner, Bernhard Nessler, and Sepp Hochreiter. Gans
 563 trained by a two time-scale update rule converge to a local nash equilibrium. In *NeurIPS*, 2017. 7

564

565 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv:2207.12598*, 2022. 8, 22

566

567 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *NeurIPS*,
 2020. 2, 7, 22

568

569 Shengchao Hu, Li Chen, Penghao Wu, Hongyang Li, Junchi Yan, and Dacheng Tao. St-p3: End-
 570 to-end vision-based autonomous driving via spatial-temporal feature learning. In *ECCV*, 2022.
 571 2

572

573 Xing Hu, Yuan Cheng, Dawei Yang, Zukang Xu, Zhihang Yuan, Jiangyong Yu, Chen Xu, Zhe
 574 Jiang, and Sifan Zhou. Ostquant: Refining large language model quantization with orthogonal
 575 and scaling transformations for better distribution fitting. In *ICLR*, 2025. 3

576

577 Zeyu Huang, Ming Li, Yuxin Zhang, and Rui Chen. Mjhq: High-quality images collected from
 578 midjourney, 2024. URL <https://huggingface.co/datasets/mjhq/MJHQ>. 21

579

580 Younghye Hwang, Hyojin Lee, and Joonhyuk Kang. Tq-dit: Efficient time-aware quantization for
 581 diffusion transformers. In *arXiv preprint arXiv:2502.04056*, 2025. 3

582

583 Edwin T. Jaynes. Information theory and statistical mechanics. 1957. 16

584

585 Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dharmen-
 586 dra S Modha. Learned step size quantization. In *ICLR*, 2019. 3

587

588 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
 589 adversarial networks. In *CVPR*, 2019. 7

590

591 Daeun Kim, Jinwoo Hwang, Changhun Oh, and Jongse Park. Mixdit: Accelerating image diffusion
 592 transformer inference with mixed-precision mx quantization. In *arXiv preprint arXiv:2504.08398*,
 593 2025. 2, 3, 7

594

595 Chris Kolb, Christian L. Müller, Bernd Bisch, and David Rügamer. Smoothing the edges: Smooth
 596 optimization for sparse regularization using hadamard overparametrization. In *arXiv preprint*
 597 *arXiv:2307.03571*, 2023. 5

598

599 Black Forest Labs. Flux.1. 2024. URL <https://blackforestlabs.ai>. 21

594 Muyang Li, Yujun Lin, Zhekai Zhang, Tianle Cai, Xiuyu Li, Junxian Guo, Enze Xie, Chenlin Meng,
 595 Jun-Yan Zhu, and Song Han. Svdquant: Absorbing outliers by low-rank components for 4-bit
 596 diffusion models. In *ICLR*, 2025. 4, 7, 19, 20

597

598 Xiuyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen Dong, Daniel Kang, Shanghang Zhang, and
 599 Kurt Keutzer. Q-diffusion: Quantizing diffusion models. In *ICCV*. 20

600 Yanyu Li, Huan Wang, Qing Jin, Ju Hu, Pavlo Chemerys, Yun Fu, Yanzhi Wang, Sergey Tulyakov,
 601 and Jian Ren. Snapfusion: Text-to-image diffusion model on mobile devices within two seconds.
 602 In *NeurIPS*, 2024. 2

603

604 Yuchen Li, Haoyi Xiong, Linghe Kong, Zeyi Sun, Hongyang Chen, Shuaiqiang Wang, and Dawei
 605 Yin. Mpgraf: a modular and pre-trained graphformer for learning to rank at web-scale. In *ICDM*,
 606 2023a. 2

607 Yuchen Li, Haoyi Xiong, Linghe Kong, Rui Zhang, Fanqin Xu, Guihai Chen, and Minglu Li. Mhrr:
 608 Moocs recommender service with meta hierarchical reinforced ranking. *TSC*, 2023b. 2

609 Haokun Lin, Haobo Xu, Yichen Wu, Jingzhi Cui, Yingtao Zhang, Linzhan Mou, Linqi Song, Zhenan
 610 Sun, and Ying Wei. Duquant: Distributing outliers via dual transformation makes stronger quan-
 611 tized llms. In *NeurIPS*, 2025. 3

612

613 Chang Liu, Haoning Wu, Yujie Zhong, Xiaoyun Zhang, Yanfeng Wang, and Weidi Xie. Intelligent
 614 grimm-open-ended visual storytelling via latent diffusion models. In *CVPR*, 2024. 2

615 Kai Liu, Kaicheng Yang, Zheng Chen, Zhiteng Li, Yong Guo, Wenbo Li, Linghe Kong, and Yulun
 616 Zhang. Bimacosr: Binary one-step diffusion model leveraging flexible matrix compression for
 617 real super-resolution. In *ICML*, 2025a. 4

618

619 Wenxuan Liu and Sai Qian Zhang. Hq-dit: Efficient diffusion transformer with fp4 hybrid quanti-
 620 zation. In *arXiv preprint arXiv:2405.19751*, 2024. 3

621 Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
 622 namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: Llm quantiza-
 623 tion with learned rotations. In *ICLR*, 2025b. 3

624

625 S. Lloyd and Bell Laboratories. Least squares quantization in pcm. In *IEEEExplore*, 1982. 5

626 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *ICLR*, 2019. 7

627

628 Xudong Lu, Aojun Zhou, Ziyi Lin, Yuhui Liu, Qi adn Xu, Renrui Zhang, Xue Yang, Junchi Yan,
 629 Peng Gao, and Hongsheng Li. Terdit: Ternary diffusion models with transformers. In *arXiv
 630 preprint arXiv:2405.14854*, 2024. 3

631

632 Chengtao Lv, Hong Chen, Jingyang Guo, Yifu Ding, and Xianglong Liu. Ptq4sam: Post-training
 633 quantization for segment anything. In *CVPR*, 2024. 3

634

635 Russell Lyons and Kevin Zumbrun. A calculus proof of the cramér–wold theorem. *Proceedings of
 636 the American Mathematical Society*, 2017. arXiv:1607.03206. 15

637

638 Shunming Ma, Hongyu Wang, Lingxiao Ma, Wenhui Wang, Lei adn Wang, Shaohan Huang,
 639 Li Dong, Ruiping Wang, Jilong Xue, and Furu Wei. The era of 1-bit llms: All large language
 640 models are in 1.58 bits. In *arXiv preprint arXiv:2402.17764*, 2024. 2, 3

641

642 Charlie Nash, Jacob Menick, Sander Dieleman, and Peter W Battaglia. Generating images with
 643 sparse representations. In *arXiv preprint arXiv:2103.03841*, 2021. 7

644

645 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 646 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
 647 performance deep learning library. In *NeurIPS*, 2019. 7

648

649 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *ICCV*, 2023. 2,
 650 3, 17

651

652 Kaare Brandt Petersen and Michael Syskind Pedersen. The matrix cookbook, 2012. 15

648 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 649 resolution image synthesis with latent diffusion models. In *CVPR*, 2022. 2, 3
 650

651 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
 652 ical image segmentation. In *MICCAI*, 2015. 2, 3

653 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
 654 Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
 655 recognition challenge. *IJCV*, 2015. 2, 7, 22
 656

657 Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
 658 Improved techniques for training gans. In *NeurIPS*, 2016. 7
 659

660 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 661 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *NeurIPS*, 2017. 2
 662

663 Haoxuan Wang, Yuzhang Shang, Zhihang Yuan, Junchi Wu, and Yan Yan. Quest: Low-bit diffusion
 664 model quantization via efficient selective finetuning. In *ICCV*, 2025a. 2, 3, 7, 20
 665

666 Hongyu Wang, Shuming Ma, and Furu Wei. Bitnet v2: Native 4-bit activations with hadamard
 667 transformation for 1-bit llms. In *arXiv preprint arXiv:2504.18415*, 2025b. 3, 4, 7
 668

669 Junyi Wu, Haoxuan Wang, Yuzhang Shang, Mubarak Shah, and Yan Yan. Ptq4dit: Post-training
 670 quantization for diffusion transformers. In *NeurIPS*, 2024. 3, 7
 671

672 Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
 673 Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
 674 applications. In *ACM Computing Surveys*, 2023. 2
 675

676 Rao Yarlagadda and John Hershey. *Hadamard Matrix Analysis and Synthesis: With Applications to
 677 Communications and Signal/Image Processing*. 1993. 4, 14
 678

679 F. Yates. A fast algorithm for hadamard transform. *Mathematical Proceedings of the Cambridge
 Philosophical Society*, 1968. 18

700 Yulun Zhang, Haotong Qin, Zixiang Zhao, Xianglong Liu, Martin Danelljan, and Fisher Yu. Flexible
 701 residual binarization for image super-resolution. In *ICML*, 2024. 3
 702

703 Tianchen Zhao, Xuefei Ning, Tongcheng Fang, Enshu Liu, Guyue Huang, Zinan Lin, Yan. Shengen,
 704 Guohao Dai, and Yu Wang. Mixdq: Memory-efficient few-step text-to-image diffusion models
 705 with metric-decoupled mixed precision quantization. In *ECCV*, 2024a. 2, 3, 7
 706

707 Tianchen Zhao, Tongcheng Fang, Haofeng Huang, Enshu Liu, Rui Wan, Widjadewi Soedarmadji,
 708 Shiyao Li, Zinan Lin, Guohao Dai, Shengen Yan, Xuefei Yang, Huazhong Nong, and
 709 Yu Wang. Vudit-q: Efficient and accurate quantization of diffusion transformers for image and
 710 video generation. In *ICLR*, 2025. 3
 711

712 Wenliang Zhao, Haolin Wang, Jie Zhou, and Jiwen Lu. Dc-solver: Improving predictor-corrector
 713 diffusion sampler via dynamic compensation. In *arXiv preprint arXiv:2409.03755*, 2024, 2024b.
 714 2
 715

716 Xinyu Zheng, Xianglong Liu, Yichen Bian, Xudong Ma, Yulun Zhang, Jiakai Wang, Jingyang Guo,
 717 and Haotong Qin. Bidm: Pushing the limit of quantization for diffusion models. In *NeurIPS*,
 718 2024. 3
 719

720 Xinyu Zheng, Xianglong Liu, Haotong Qin, Xudong Ma, Mingyuan Zhang, Haojie Hao, Jiakai
 721 Wang, Zixiang Zhao, Jingyang Guo, and Michele Magno. Binarydm: Accurate weight binariza-
 722 tion for efficient diffusion models. In *ICLR*, 2025. 2, 3, 7
 723

724 Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Training
 725 low bitwidth convolutional neural networks with low bitwidth gradients. *ICLR*, 2016. 3
 726

727

702 **A FORMAL PROOF: HADAMARD TRANSFORM PRODUCES APPROXIMATELY
703 NORMAL PER-TOKEN COORDINATES
704**

705 **Notation aligned with the main text.** Let a single token’s activation vector be denoted by $\mathbf{x} \in \mathbb{R}^C$
706 (token index t suppressed for clarity). We use the normalized Hadamard transform (Yarlagadda &
707 Hershey, 1993)

$$708 \quad H \in \left\{ \pm \frac{1}{\sqrt{C}} \right\}^{C \times C}, \quad H^\top H = HH^\top = I_C, \quad (14)$$

710 and define the transformed coordinates $\mathbf{y} = H\mathbf{x}$. For channel j , set

$$712 \quad \mu_j = \mathbb{E}[x_j], \quad \tilde{x}_j := x_j - \mu_j, \quad \sigma_j^2 = \text{Var}(x_j), \quad (15)$$

713 and define the per-token average variance

$$715 \quad \sigma_t^2 := \frac{1}{C} \sum_{j=1}^C \sigma_j^2. \quad (16)$$

718 We also write the Hadamard coefficients as $a_j^{(c)} := H_{cj} = \pm \frac{1}{\sqrt{C}}$, so that

$$721 \quad y_c = \sum_{j=1}^C a_j^{(c)} x_j, \quad c = 1, \dots, C. \quad (17)$$

724 **A.1 EXACT SECOND-MOMENT IDENTITIES**

726 By linearity and orthogonality (distribution-free), for each coordinate c ,

$$728 \quad \mathbb{E}[y_c] = \sum_{j=1}^C a_j^{(c)} \mu_j, \quad (18)$$

$$731 \quad \text{Var}(y_c) = \sum_{j=1}^C (a_j^{(c)})^2 \sigma_j^2 = \frac{1}{C} \sum_{j=1}^C \sigma_j^2 = \sigma_t^2, \quad (19)$$

$$734 \quad \text{Cov}(y_c, y_{c'}) = \sum_{j=1}^C a_j^{(c)} a_j^{(c')} \sigma_j^2 = \frac{1}{C} \sum_{j=1}^C s_j^{(c,c')} \sigma_j^2, \quad s_j^{(c,c')} := \text{sign}(H_{cj} H_{c'j}) \in \{\pm 1\}. \quad (20)$$

737 Equation 19 shows exact variance equalization across transformed channels; equation 20 expresses
738 off-diagonals as signed averages of per-channel variances.

740 **A.2 CENTRAL LIMIT THEOREM AND ASYMPTOTIC INDEPENDENCE**

742 **Assumptions (A1–A3).**

- 744 • (A1) The centered variables \tilde{x}_j are independent (or weakly dependent in a manner admitting
745 triangular-array CLTs (Gnedenko & Kolmogorov, 1954)).
- 746 • (A2) There exists $\kappa > 0$ with $\sup_j \mathbb{E}[|\tilde{x}_j|^{2+\kappa}] < \infty$; in particular $\sup_j \mathbb{E}[|\tilde{x}_j|^3] \leq M_3 <$
747 ∞ .
- 748 • (A3) No adversarial alignment of $\{\mu_j\}, \{\sigma_j^2\}$ with Hadamard sign patterns (practically,
749 variance deviations are not aligned with a single Hadamard row/column).

751 **Univariate CLT (Berry–Esseen).** Fix c and consider the triangular-array terms $\xi_j^{(C)} := a_j^{(c)} \tilde{x}_j$.
752 Their variance sum is

$$754 \quad s_C^2 = \sum_{j=1}^C \text{Var}(\xi_j^{(C)}) = \sum_{j=1}^C (a_j^{(c)})^2 \sigma_j^2 = \sigma_t^2. \quad (21)$$

756 Because $|a_j^{(c)}| = 1/\sqrt{C}$,

$$758 \sum_{j=1}^C \mathbb{E}[|\xi_j^{(C)}|^3] = \frac{1}{C^{3/2}} \sum_{j=1}^C \mathbb{E}[|\tilde{x}_j|^3] \leq \frac{M_3}{\sqrt{C}}. \quad (22)$$

761 Berry–Esseen for non-identical summands yields an absolute constant K_{BE} such that

$$763 \sup_{x \in \mathbb{R}} \left| \Pr\left(\frac{\sum_{j=1}^C \xi_j^{(C)}}{\sigma_t} \leq x\right) - \Phi(x) \right| \leq \frac{K_{\text{BE}} M_3}{\sigma_t^3 \sqrt{C}}. \quad (23)$$

765 Thus each scalar coordinate (after centering and normalization) converges to $\mathcal{N}(0, 1)$ with Kol-
766 mogorov error $O(C^{-1/2})$ (Bobkov, 2023; Bentkus, 1997).

768 **Finite-Dimensional Gaussian Convergence.** For fixed indices c_1, \dots, c_m (with m independent
769 of C) and any $\lambda \in \mathbb{R}^m$,

$$771 L_C(\lambda) := \sum_{r=1}^m \lambda_r \frac{\sum_{j=1}^C a_j^{(c_r)} \tilde{x}_j}{\sigma_t} = \frac{1}{\sigma_t} \sum_{j=1}^C \left(\sum_{r=1}^m \lambda_r a_j^{(c_r)} \right) \tilde{x}_j, \quad (24)$$

774 where the inner coefficients are $O(C^{-1/2})$ uniformly in j . Standard Lyapunov/Lindeberg conditions
775 hold, implying

$$776 L_C(\lambda) \xrightarrow{d} \mathcal{N}(0, \lambda^\top \Lambda \lambda), \quad (25)$$

778 with limit covariance Λ determined by equation 20. By Cramér–Wold, $(y_{c_1}, \dots, y_{c_m})$ converges
779 to a multivariate Gaussian whose diagonal entries equal σ_t^2 (Billingsley, 1995; Lyons & Zumbrun,
780 2017).

781 A.3 OFF-DIAGONAL COVARIANCE DECAY AND ASYMPTOTIC INDEPENDENCE

783 Write variance deviations $\delta_j := \sigma_j^2 - \sigma_t^2$. From equation 20,

$$785 \text{Cov}(y_c, y_{c'}) = \frac{1}{C} \sum_{j=1}^C s_j^{(c, c')} \delta_j. \quad (26)$$

788 Orthogonality of Hadamard rows implies near-cancellation of the ± 1 signs in the average; two
789 practical sufficient conditions ensuring $\text{Cov}(y_c, y_{c'}) \rightarrow 0$ as $C \rightarrow \infty$ are:

- 791 • *Uniform small deviations:* $\max_j |\delta_j| \rightarrow 0 \Rightarrow |\text{Cov}(y_c, y_{c'})| \leq \max_j |\delta_j| \rightarrow 0$.
- 792 • ℓ_2 -small deviations: letting $\mathbf{w}^{(c, c')} = (s_1^{(c, c')}, \dots, s_C^{(c, c')})$,

$$794 |\text{Cov}(y_c, y_{c'})| = \frac{1}{C} |\langle \boldsymbol{\delta}, \mathbf{w}^{(c, c')} \rangle| \leq \frac{\|\boldsymbol{\delta}\|_2}{\sqrt{C}}, \quad \Rightarrow \|\boldsymbol{\delta}\|_2 = o(\sqrt{C}) \implies \text{Cov}(y_c, y_{c'}) \rightarrow 0. \quad (27)$$

797 Combined with the finite-dimensional CLT, this yields asymptotic joint Gaussianity with diagonal
798 covariance $\sigma_t^2 I_m$; hence the transformed coordinates become asymptotically independent Gaussians.

800 A.4 QUANTITATIVE CLOSENESS TO A PRODUCT GAUSSIAN: KL AND TV BOUNDS

802 Let Σ_m be the covariance of $(y_{c_1}, \dots, y_{c_m})$ and decompose

$$803 \Sigma_m = \sigma_t^2 I_m + E_m, \quad (28)$$

805 where E_m has zeros on the diagonal and off-diagonals $e_{ij} = \text{Cov}(y_{c_i}, y_{c_j})$. Then

$$806 \text{KL}(\mathcal{N}(\mu_m, \Sigma_m) \parallel \mathcal{N}(\mu_m, \sigma_t^2 I_m)) = -\frac{1}{2} \ln \det(I_m + \sigma_t^{-2} E_m). \quad (29)$$

808 If $\|\sigma_t^{-2} E_m\|_{\text{op}} < \frac{1}{2}$ (Petersen & Pedersen, 2012), expand $\ln \det(I + A)$ to obtain

$$809 \text{KL} = \frac{1}{4} \sigma_t^{-4} \|E_m\|_F^2 + O(\|E_m\|_F^3 / \sigma_t^6). \quad (30)$$

810 Using $\|E_m\|_F^2 \leq m(m-1) \max_{i \neq j} e_{ij}^2$ and $|e_{ij}| \leq \|\delta\|_2/\sqrt{C}$ from Section A.3,

$$812 \quad 813 \quad \text{KL} = O\left(\frac{m^2 \|\delta\|_2^2}{C \sigma_t^4}\right). \quad 814 \quad (31)$$

815 By Pinsker (Csiszár & Körner, 2011; Canonne, 2022), $\text{TV} \leq \sqrt{\frac{1}{2} \text{KL}}$, hence

$$816 \quad 817 \quad \text{TV}(\mathcal{N}(\mu_m, \Sigma_m), \mathcal{N}(\mu_m, \sigma_t^2 I_m)) = O\left(\frac{m \|\delta\|_2}{\sqrt{C} \sigma_t^2}\right). \quad 818 \quad (32)$$

822 The total deviation of the true law of $(y_{c_1}, \dots, y_{c_m})$ from a product Gaussian equals the multivariate
823 non-Gaussianity error (Berry–Esseen/Bentkus type, $O(C^{-1/2})$) plus equation 32. Thus, for fixed
824 m ,

$$826 \quad 827 \quad \text{TV}_{\text{total}} = O(C^{-1/2}) + O\left(\frac{m \|\delta\|_2}{\sqrt{C} \sigma_t^2}\right), \quad 828 \quad (33)$$

829 which vanishes at rate $O(C^{-1/2})$ when $\|\delta\|_2 = o(\sqrt{C})$.

832 A.5 QUANTIZATION AND MEAN-SQUARED ERROR

834 Under the mean-squared error (MSE) metric, applying the Hadamard transform for quantization
835 does not change the final quantization error. This conclusion follows from the orthogonality of the
836 Hadamard matrix (after normalization).

837 Let the activation vector be X , and the transformed vector be $Y = HX$. If we quantize Y to
838 get $Q(Y)$ and then recover the vector via the inverse transform, the resulting vector is $X_{\text{rec}} =$
839 $H^\top Q(Y) = H^\top Q(HX)$.

840 The MSE of the quantization error is:

$$842 \quad 843 \quad \text{MSE} = \mathbb{E}[\|X - X_{\text{rec}}\|_2^2] = \mathbb{E}[\|X - H^\top Q(HX)\|_2^2] \quad 844 \quad (34)$$

845 Since an orthogonal transform preserves the Euclidean norm (length) of a vector, we have:

$$847 \quad 848 \quad \text{MSE} = \mathbb{E}[\|H(X - H^\top Q(HX))\|_2^2] = \mathbb{E}[\|HX - HH^\top Q(HX)\|_2^2] = \mathbb{E}[\|HX - Q(HX)\|_2^2] \quad 849 \quad (35)$$

850 This shows that $\text{MSE} = \mathbb{E}[\|Y - Q(Y)\|_2^2]$. This identity demonstrates that the mean-squared error of
851 quantizing the original vector X is identical to the mean-squared error of quantizing the transformed
852 vector Y . This means our objective can shift from “how to quantize X ” to “how to quantize Y .”

853 As proven in this document, the coordinates of Y are approximately Gaussian and nearly indepen-
854 dent. This provides a great convenience for designing a quantizer. We can now transform a complex
855 multivariate quantization problem into quantizing a series of approximately independent Gaussian
856 variables.

858 The Gaussian distribution has the highest entropy among all continuous distributions with a given
859 variance (Cover & Thomas, 2006; Jaynes, 1957). From an information-theoretic perspective, this
860 means it contains the maximum randomness or “uncertainty.” Therefore, for a given number of
861 quantization bits, quantizing a Gaussian distribution is the “most difficult” task and typically results
862 in the largest quantization error. Our method effectively prepares for this “worst-case” scenario.

863 By designing a quantizer optimized for the Gaussian distribution, we ensure that the quantization
864 scheme is robust and effective for the Hadamard-transformed activations under the MSE metric.

	Embedding	DiT Blocks				Final Layer
$x^{4 \times 32 \times 32}$	<i>X embedding</i>					
t	<i>Label embedding</i>					
y	<i>Timestep embedding</i>					
	<i>Position embedding</i>					
GFLOPs	0.0016	36.71	4.053	36.71	36.71	0.2026
MB	11.79	567.4	0	567.4	567.4	851.1
						0.1268
						10.27

Figure 6: FLOPs and Memory Breakdown in DiT-XL/2 Model.

Fundamental Insight: Distribution-Agnostic Quantization via Whitening

Core Idea: We note that a lot existing quantization works focus on observing data distributions to extract prior knowledge and design corresponding quantizers, but what if we *erase* prior knowledge instead?

The RobustQuantizer Paradigm:

- No Prior Assumptions: Instead of modeling input statistics, we use random orthogonal projections to *actively transform* inputs into the worst-case distribution – Gaussian noise
- Embracing the Hardest Case: While $\mathcal{N}(0, 1)$ has minimal information (maximum entropy), its perfect knownness allows pre-computing optimal quantization parameters
- Theoretical Guarantee: This establishes a rigorous *lower-bound* for quantization performance *without requiring any prior knowledge* about input distributions

Future Work:

Exploring alternative transformation methods to *other known distributions* and investigating their trade-offs between information preservation and quantization efficiency will be our key focus for future work.

B ACTIVATION MIXED PRECISION NETWORK PIPELINE

We summarize the AMPN pipeline succinctly and provide compact pseudocode for the major algorithmic components. Here, L is the number of activation layers, $b_\ell \in \mathcal{B} = \{1, 2, 3, 4\}$ is the chosen activation bit-width for layer ℓ , weights are frozen to ternary (W1.58), and w_ℓ denotes the FLOPs-based cost weight for layer ℓ with $W_{\text{tot}} = \sum_\ell w_\ell$. For a single-layer QAT run let $\Delta L_\ell(b_\ell) = L_{\ell, b_\ell} - L_{\text{FP}}$ be the validation loss gap after short training; the constrained objective is

$$\min_{\{b_\ell\}} \sum_{\ell=1}^L \Delta L_\ell(b_\ell) \quad \text{s.t.} \quad \frac{1}{W_{\text{tot}}} \sum_{\ell=1}^L w_\ell b_\ell \leq \bar{B}_{\text{tgt}}. \quad (36)$$

The pipeline is as follows:

1. Run Algorithm 1 to obtain the QAT-based sensitivity table $\Delta L_\ell(b_\ell)$. This involves briefly training each layer individually at a given bit-width while all other layers are frozen in FP.
2. Generate the optimal bit-width allocation C_{dp} by running Algorithm 2 with the sensitivity table from the previous step.
3. Train the selected allocation C_{dp} end-to-end with a full QAT schedule.

C EFFICIENCY ANALYSIS AND DEPLOYMENT

C.1 FLOPs AND MEMORY BREAKDOWN IN DiT-XL/2 MODEL

Here we provide an analysis of the FLOPs and memory usage for the DiT-XL/2 model (Peebles & Xie, 2023), as shown in Figure 6. As illustrated, the DiT block accounts for the vast majority of

918 Algorithm 1 QAT-based Sensitivity Profiling

919 Require: FP model \mathcal{M} , validation pool $\mathcal{V}_{\text{pool}}$, training data $\mathcal{D}_{\text{train}}$, bit set \mathcal{B} , short QAT steps T_{short}
920 Ensure: sensitivity table $\Delta L_\ell(b_l)$ for all ℓ, b_l
 1: $L_{\text{FP}} \leftarrow \text{Eval}(\mathcal{M}, \mathcal{V}_{\text{pool}})$
 2: **for** each layer $\ell = 1, \dots, L$ **do**
 3: **for** each $b_l \in \mathcal{B}$ **do**
 4: $\mathcal{M}_q \leftarrow \text{Copy}(\mathcal{M})$
 5: Quantize layer ℓ of \mathcal{M}_q to b_l bits.
 6: Freeze parameters of all layers $\ell' \neq \ell$ in \mathcal{M}_q .
 7: Train \mathcal{M}_q for T_{short} steps on $\mathcal{D}_{\text{train}}$.
 8: $L_{\ell, b_l} \leftarrow \text{Eval}(\mathcal{M}_q, \mathcal{V}_{\text{pool}})$.
 9: $\Delta L_\ell(b_l) \leftarrow L_{\ell, b_l} - L_{\text{FP}}$.
 10: **end for**
 11: **end for**
 12: **return** $\Delta L_\ell(b_l)$

933 Algorithm 2 Discretized DP for Bit-Width Allocation

934 Require: sensitivity table $\Delta L_\ell(b_l)$ for $\ell \in \mathcal{L}_{\text{dp}}$, layer costs w_ℓ , resolution β , target \bar{B}_{tgt}
935 Ensure: DP-optimal allocation C_{dp} on \mathcal{L}_{dp}
 1: Compute total DP cost $W_{\text{tot}}^{\text{dp}} \leftarrow \sum_{\ell \in \mathcal{L}_{\text{dp}}} w_\ell$
 2: **for** each $\ell \in \mathcal{L}_{\text{dp}}$ **do**
 3: Discretize layer cost: $\Delta w_\ell \leftarrow \left\lfloor \beta \frac{w_\ell}{W_{\text{tot}}^{\text{dp}}} \right\rfloor$
 4: **end for**
 5: Discretize target budget: $B \leftarrow \lfloor \beta \bar{B}_{\text{tgt}} \rfloor$
 6: Initialize DP $[0 \dots |\mathcal{L}_{\text{dp}}|][0 \dots B] \leftarrow +\infty$; DP $[0][0] \leftarrow 0$
 7: **for** $i = 1$ **to** $|\mathcal{L}_{\text{dp}}|$ **do**
 8: Let ℓ be the i -th layer in \mathcal{L}_{dp}
 9: **for** $w = 0$ **to** B **do**
 10: **for** each $b_l \in \mathcal{B}$ **do**
 11: $w' \leftarrow w + \Delta w_\ell \cdot b_l$
 12: **if** $w' \leq B$ **then**
 13: $\text{DP}[i][w'] \leftarrow \min(\text{DP}[i][w'], \text{DP}[i-1][w] + \Delta L_\ell(b_l))$
 14: **end if**
 15: **end for**
 16: **end for**
 17: **end for**
 18: Backtrack from $\arg \min_{w \leq B} \text{DP}[|\mathcal{L}_{\text{dp}}|][w]$ to recover allocation C_{dp} .
 19: **return** C_{dp}

956
 957 FLOPs and memory consumption ($\geq 99\%$). Therefore, we keep the embedding section and the final
 958 layer at FP without quantization. Within the DiT block, the MLP and adaLN-zero modules occupy
 959 most of the memory ($\geq 77\%$), while the MLP and attention components dominate the FLOPs (\geq
 960 99%). When categorized by computation type, the primary computations occur between weights
 961 and activations ($\geq 96\%$). In contrast, operations between activations and activations constitute a
 962 small proportion but have a significant impact, so we maintain these operations at **8-bit** precision.
 963

C.2 CALCULATE FLOPs OF ROBUQ W1.58A4 MODEL

964 We employ FLOPs as metrics for evaluating theoretical inference efficiency. For quantization operations, we define the weighted FLOPs as follows:

$$965 \text{FLOPs}(W = 1.58, A = N) = \frac{1}{2} \cdot \text{FLOPs}(W = N, A = N) = \frac{N}{32} \cdot \text{FLOPs} \quad (37)$$

966 For the Hadamard transform, since it possesses a fast algorithm with $\mathcal{O}(n^2 \log n)$ complexity (Yates,
 967 1968; Fino & Algazi, 1976) and can be absorbed into the weight matrix within a DiT block—
 968 ultimately requiring only four online Hadamard transforms—its theoretical computational cost is

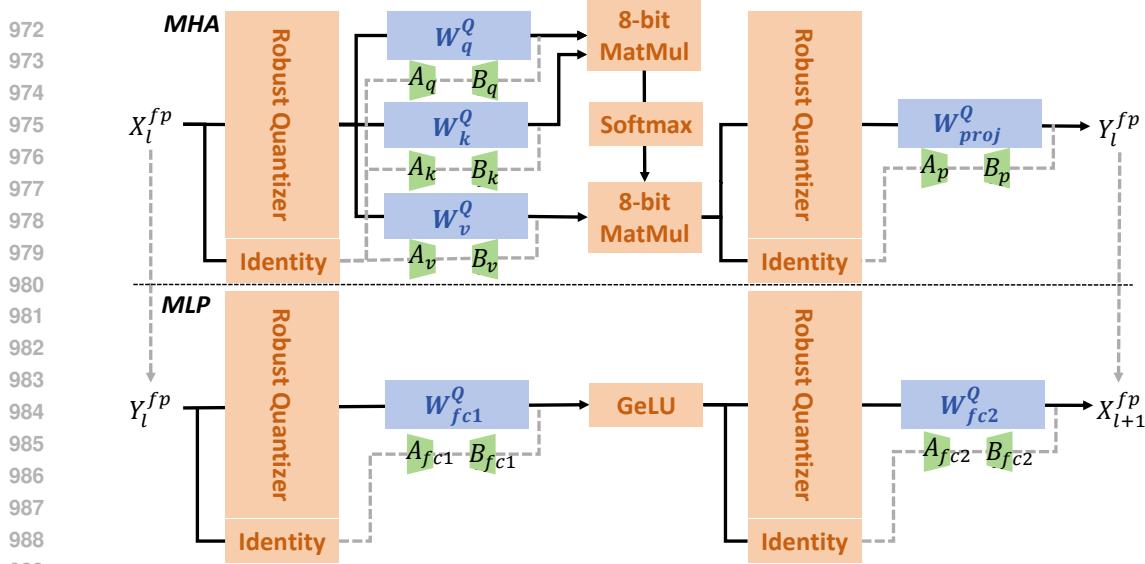


Figure 7: Schematic diagram of actual deployment. For simplicity, we have omitted the AdaLN-zero components to highlight the sections accounting for the majority of FLOPs.

negligible. We provide FLOPs breakdown in RobuQ (w/o AMP) W1.58A4 model as Table 4 shown.

Table 4: Flops breakdown in RobuQ (w/o AMP) W1.58A4 DiT-XL/2 model.

	Embedding	Low rank branch	A-A Matrix Multiplication	W-A Matrix Multiplication	Final Layer	Total
bits/bits	32/32	32/32	8/8	1.58/4	32/32	N/A
GFLOPs (G)	0.0016	2.0312	1.0133	6.9213	0.1268	10.07

Table 5: Deployment on NVIDIA RTX 4090. Iteration Speed is calculated with batchsize=1.

Method	W/A	FLOPs	Checkpoint Size	Max Memory Allocated	Iteration Speed
FP	32/32	114.52	2.58GB	3,914MB	44.09 iter/s
RobuQ	1.58/4	10.07	0.17GB	554MB	155.37 iter/s
RobuQ (w/o Hadamard)	1.58/4	10.07	0.17GB	551MB	168.42 iter/s

C.3 INTEGRATION OF THE HADAMARD TRANSFORM DURING INFERENCE

For completeness, we describe how the Hadamard transform is incorporated into the inference pipeline. In our implementation, the transform is applied online only to the activations of $mlp.fc2$ and $attn.proj$, while all other occurrences can be absorbed into the weights of preceding layers, ensuring no additional runtime overhead elsewhere. We implement the operation using the **fast-hadamard-transformer** library, where the Hadamard computation is largely memory-bound and typically accounts for only 5%–10% of the total time of the associated matrix operations.

Although additional speedups are achievable—for example, by leveraging the butterfly structure of the Hadamard transform to fuse it with subsequent low-bit operators—such improvements require specialized kernel engineering and are left for future optimization. Given the strong dependency of end-to-end latency on these implementation details and on specific hardware backends, we instead provide a high-level description of the integration strategy without reporting a concrete latency measurement.

C.4 DEPLOYMENT

Our proposed RobuQ scheme is primarily motivated by the pursuit of enhanced deployment efficiency. To validate its effectiveness, we conducted comparative experiments on DiT-XL/2 under two precision settings: full-precision and a quantized configuration with W1.58A4. In the quantized implementation, we employ a weight-packing strategy that compacts five ternary weights into a Int8, with real-time unpacking to 4-bit weights during inference using SVDQuant’s (Li et al., 2025) Nunchaku framework, while additionally introducing an online Hadamard transform following the

approach illustrated in Fig 7. As shown in Table 5, our method achieves a model compression ratio of $15.2\times$, reduces peak GPU memory usage by $7.1\times$, and accelerates inference by $3.5\times$ compared to the FP baseline. However, due to hardware limitations and the lack of specialized optimization in current quantization libraries, the acceleration potential has not been fully realized. **To further isolate the influence of the Hadamard transform on end-to-end inference latency, we additionally report the empirical results of a variant that removes the Hadamard operation.** We believe that as the community continues to refine and develop dedicated low-bit computing frameworks, our approach will demonstrate even greater advantages.

D ADDITIONAL ANALYSIS

D.1 EXPERIMENTS WITH EQUAL BIT-WIDTH (W=A)

We further evaluate our method in an equal bit-width setting, where both weights and activations are quantized to the same precision. For these experiments, we adopted the same configuration as our main experiments, but trained for a shorter duration of 25k steps. As shown in Table 6, our approach consistently surpasses existing baselines across different configurations. In the W4A4 regime, our method significantly improves generative quality over strong competitors such as QueST (Wang et al., 2025a), demonstrating that our quantizer provides tangible benefits even in relatively high-bit settings. More importantly, in the more challenging W3A3 case, our method achieves the best results across all evaluation metrics, confirming its robustness in ultra-low-bit regimes. These results highlight our framework’s versatility and SOTA performance under diverse quantization constraints.

Table 6: Performance comparison on ImageNet 256×256. Timesteps are 50 and cfg is 1.5.

Method	W/A	IS↑	FID↓	sFID↓	Precision↑
FP	32/32	239.50	6.62	21.10	0.7849
QueST		4.87	215.06	72.15	0.0529
Baseline	4/4	162.27	12.47	25.16	0.6825
RobuQ (w/o AMP)		184.51	9.91	22.96	0.7183
Baseline		78.78	30.33	34.24	0.5604
RobuQ (w/o AMP)	3/3	143.82	14.67	26.8	0.6844

D.2 PTQ RESULTS

For completeness, we report additional PTQ results under the W4A4 configuration, as shown in Table 7, comparing our method against several representative PTQ baselines, including Q-Diffusion (Li et al.), Quarot (Ashkboos et al., 2024), and SVD-Quant (Li et al., 2025). All models are evaluated using $\text{cfg} = 1.5$, 50 sampling steps, and 10k evaluation images. These methods exhibit diverse behaviors across different evaluation metrics. Q-Diffusion suffers from significant performance degradation in both fidelity and perceptual quality metrics, while Quarot and SVD-Quant achieve reasonably stronger results but still fall short of our method. In contrast, our approach maintains competitive perceptual quality while substantially outperforming all baselines across IS, FID, and sFID, demonstrating the robustness of our activation quantization strategy even under equal bit-width constraints. For SVDQuant, since it is a per-group scheme, we implemented its per-channel version for fair comparison.

Table 7: Comparison of PTQ baselines under the W4A4 setting.

Method	W/A	IS ↑	FID ↓	sFID ↓	Precision ↑
FP	32/32	239.50	6.62	21.10	0.7849
Q-Diffusion		1.37	304.12	175.88	0.0048
Quarot	4/4	53.12	53.31	56.74	0.4134
SVD-Quant		55.23	50.47	44.26	0.4313
Ours		155.96	14.12	26.32	0.6779

D.3 ABLATION STUDY ON SVD RANK

To further understand the impact of the low-rank decomposition used in our weight processing pipeline, we conduct an ablation study by varying the SVD rank under the W1.58A4 configuration. All models are trained for 200k steps using 10k samples ($\text{cfg} = 1.5$, step size = 50), and evaluated under the same protocol as our main experiments. The results are reported in Table 8.

We observe that increasing the rank consistently improves generative quality, especially in IS and FID. However, the marginal gain becomes smaller when moving from rank 16 to rank 32, while

1080

1081
Table 8: Ablation study on different SVD ranks for W1.58A4 quantization.

Rank	IS \uparrow	FID \downarrow	sFID \downarrow	Precision \uparrow
8	87.43	23.21	29.96	0.6327
16	91.28	22.25	29.24	0.6328
32	92.11	21.71	28.89	0.6324

1086

1087 the computational overhead continues to increase. Based on this trade-off between accuracy and
1088 efficiency, we adopt rank = 16 in all main experiments.

1089

D.4 COMPARISON OF UNIFORM AND NON-UNIFORM QUANTIZERS ON T2I MODELS

1090

1091 To further examine whether the advantages of our Gaussian-optimized non-uniform quantizer persist
1092 when applied to larger and more advanced text-to-image (T2I) models, we conduct an additional ex-
1093 periment on a recent state-of-the-art open-source model, FLUX (Labs, 2024). Specifically, we eval-
1094 uate the Flux-Schnell variant using 4 sampling steps on 5k images from the MJHQ dataset (Huang
1095 et al., 2024). All settings remain consistent across quantizers to ensure a fair comparison. The
1096 quantitative results are reported in Table 9.

1097

Table 9: Comparison between uniform and non-uniform quantizers on FLUX-Schnell.

1098

Quantizer	FID \downarrow	Image Reward \uparrow	CLIPQA \uparrow	CLIPScore \uparrow	PSNR \uparrow
FP	18.40	0.9323	0.9399	26.54	N/A
Uniform	18.57	0.8617	0.9266	26.34	17.21
Non-Uniform	18.49	0.8698	0.9296	26.41	17.34

1099

1100 Across all metrics, the non-uniform quantizer demonstrates a mild but consistent improvement
1101 over the uniform quantizer, aligning with our theoretical motivation based on Gaussianity after the
1102 Hadamard transform. These gains, however, remain relatively modest in magnitude.

1103

1104 In practice, the choice of quantizer must also consider factors beyond accuracy alone. Compared
1105 to its non-uniform counterpart, the uniform quantizer exhibits stronger robustness across heteroge-
1106 neous hardware backends, simpler implementation, and lower computational overhead—particularly
1107 for high-throughput inference workloads. Taking these engineering considerations into account, we
1108 ultimately select the **Uniform Quantizer** as the preferred option for real-world deployment, despite
1109 the slight empirical advantage of non-uniform quantization on larger models such as FLUX.

1110

D.5 MIXED-PRECISION ANALYSIS

1111

1112 **Setup.** With *adaLN* fixed to 4-bit, we examine activation bit allocation only on learnable layers.
1113 Fig. 8 (left) shows per-block heatmaps for the four ops (*attn.qkv*, *attn.proj*, *mlp.fc1*, *mlp.fc2*) under
1114 two activation budgets, W1.58A2 and W1.58A3. Fig. 8 (right) summarizes the mean per-op alloca-
1115 tion via pie charts, while Fig. 9 (top) and Fig. 9 (bottom) plot, respectively, the per-block average
1116 activation bits and the normalized per-block activation share.

1117

Findings.

1118

- **Attention consumes the budget first.** From the heatmaps (Fig. 8 (left)), attention paths (*attn.qkv*, *attn.proj*) retain higher bitwidths in mid and late blocks under W1.58A2. When moving from A2 to A3, the bit-width allocation becomes more balanced across all ops, with extra capacity used to maintain higher precision, although attention still dominates.
- ***attn.proj* is the largest sink under tight budgets.** The pies in Fig. 8 (right) show that at A2, *attn.proj* receives the largest share (32.0%), with *attn.qkv* and *mlp.fc1* close behind. At A3, the distribution becomes more even, but attention still takes the largest share.
- **Depth matters: later blocks require more bits.** The per-block curves (Fig. 9 (top)) increase with depth for both budgets, and the share curves (Fig. 9 (bottom)) peak in the middle-to-late stages, indicating that deeper layers need more precision for stability.
- **A3 mainly lifts the floor.** Upgrading from A2 to A3 shifts the entire per-block curve upward (Fig. 9 (top)), reducing the number of low-precision stretches in both attention and MLP. This suggests a robustness effect: more bits can smooth the activation statistics.

1119

1120 **Practical rules-of-thumb.** These observations can guide activation mixed precision policies.

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

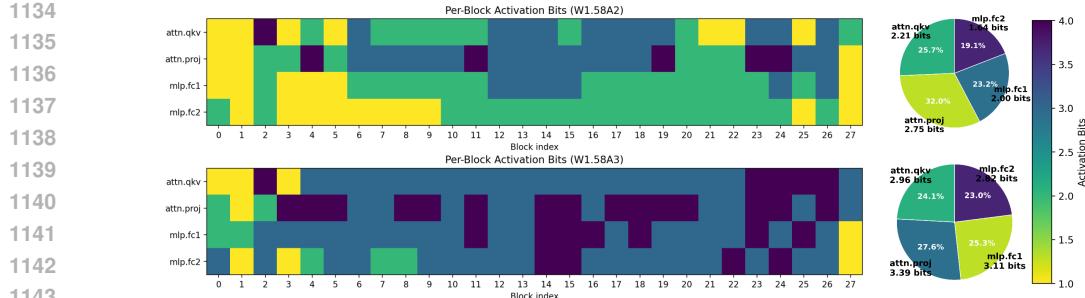


Figure 8: Visualization of Activation Bit-Width Distribution

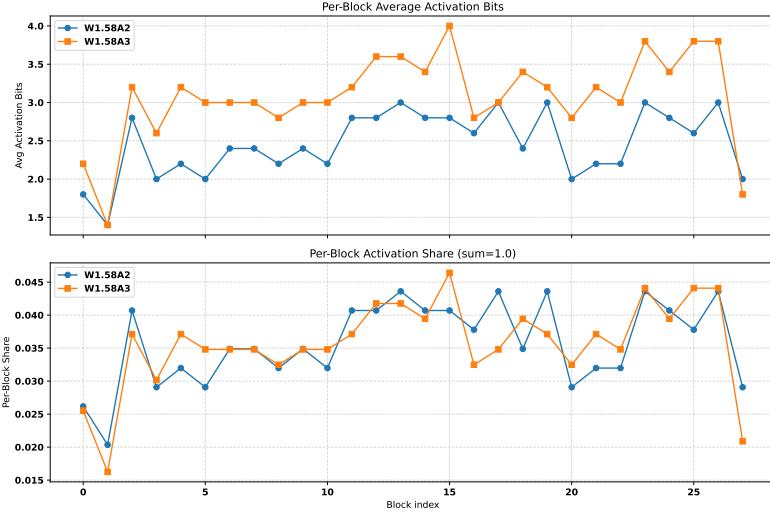


Figure 9: Per-Block Activation Statistics. Top: average activation bits per block; Bottom: normalized per-block share (sums to 1).

- **Prioritize attention first, projection before QKV under tight budgets.** If only a small headroom is available, raise *attn.proj* and then *attn.qkv*.
- **Bias budget to mid/late blocks.** Allocate extra bits to the second half of the network, where attention–attention interactions accumulate and feature distributions widen.

D.6 VISUALIZATION RESULTS COMPARISONS

We present additional visualization results from our DiT-XL/2 model at a 256×256 resolution, using 250 sampling steps (Ho et al., 2020) and a cfg of $= 4.0$ (Ho & Salimans, 2022). Figure 10 compares three activation precision configurations (A4, A3, and A2) across different quantization methods, displaying W1.58 DiT-XL/2 samples for ImageNet (Russakovsky et al., 2015). **More visualizations can be found in the supplementary materials.**

E STATEMENT ON LARGE LANGUAGE MODEL USAGE

In preparing this manuscript, the authors used GPT-5 solely for language editing to improve readability and clarity. Typical interactions included suggestions on grammar, syntax, style, and concision; harmonization of terminology and notation across sections; and minor rephrasings to enhance narrative flow. All suggested edits were reviewed by the authors line by line, and acceptance required human verification for factual accuracy and technical fidelity.

The model was not used for research ideation, experiment design, data processing or analysis, figure or table generation, or drawing scientific conclusions. No code was authored, debugged, or executed by the model, and no images were created or altered using generative tools. All methods and results reported here were developed, implemented, and validated independently by the authors.

Throughout the writing process, the authors maintained control over scientific content and ensured that any language edits did not alter the technical meaning. No confidential or proprietary information beyond the manuscript text itself was provided to the model. The authors remain fully responsible for the integrity and correctness of the paper and for any errors or omissions therein.

Figure 10: W1.58 DiT-XL/2 samples at 256×256 . Labels = [360, 985, 309, 207, 387, 279, 417, 973]. Cfg = 4.0, sampling steps = 250.