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ABSTRACT

As foundational models reshape scientific discovery, a bottleneck persists in dy-
namical system reconstruction (DSR): the ability to learn across system hierarchies.
Many meta-learning approaches have been applied successfully to single systems,
but falter when confronted with sparse, loosely related datasets. Mixture of Experts
(MoE) offers a natural paradigm to address these challenges. Despite their potential,
naive MoEs are inadequate for the nuanced demands of hierarchical DSR, largely
due to their gradient descent-based gating update mechanism which leads to slow
updates and conflicted routing during training. To overcome this limitation, we
introduce MixER: Mixture of Expert Reconstructors1, a novel top-1 MoE layer
employing a custom gating update algorithm based on K-means and least squares.
Extensive experiments validate MixER’s capabilities, demonstrating efficient train-
ing and scalability to systems of up to ten parametric ordinary differential equations.
However, further analysis indicates that our layer underperforms state-of-the-art
meta-learners in high-data regimes, particularly when each expert is constrained to
process only a fraction of a dataset composed of highly related data points.

1 INTRODUCTION

The emergence of foundational models in language and vision has catalyzed an accelerated pursuit
of analogous models for scientific discovery (Subramanian et al., 2024; Herde et al., 2024). Unlike
traditional data modalities, scientific data presents unique challenges due to its inherent complexity
and scarcity. This challenge has motivated the development of sophisticated dynamical system
reconstruction (DSR) models capable of robust generalization across varying domains—with each
variation constituting an environment. However, the effectiveness of these systems in low-data
scenarios hinges on substantial relatedness among environments, raising fundamental questions about
learning across families of loosely connected environments (see Fig. 3).

One powerful paradigm for data-driven generalizable DSR is found in multitask learning (Yin et al.,
2021) and extended with meta-learning (Wang et al., 2021; Finn et al., 2017) in which recent
advances have demonstrated remarkable success by explicitly incorporating adaptation capabilities
into the training process. Contextual meta-learning (Nzoyem et al., 2024) achieves this through a
strategic separation of parameters into environment-agnostic components and compact context vectors
amenable to fine-tuning via gradient descent. Current state-of-the-art approaches are categorized in
two primary paradigms: hypernetwork-based methods (Kirchmeyer et al., 2022; Brenner et al., 2024;
Roeder et al., 2019; Koupaı̈ et al., 2024) that condition environment-specific weights on context, and
concatenation-based alternatives (Nzoyem et al., 2025; Zintgraf et al., 2019) that directly feed the
context to the dynamics-generating model. Despite their strong potential, meta-learning approaches
exhibit limitations when confronted with environments that have minimal or no similarities.

Drawing inspiration from recent breakthroughs in large language modeling (Liang et al., 2024; Jiang
et al., 2024; Dai et al., 2024; Abnar et al., 2025), we investigate the potential of augmenting existing
meta-learners with sparse mixture of experts (MoEs) (Jacobs et al., 1991; Shazeer et al., 2017b)
for generalizable DSR. Despite inherent routing challenges that constrain their applications to DSR,

1Code is available at https://github.com/ddrous/MixER.
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MoEs offer a natural framework for learning across families of arbitrarily related environments. We
claim that strategic combination of contextual meta-learners enables simultaneous reconstruction
across all families while preserving rapid adaptation capabilities, obviating the need for manual
dataset partitioning prior to meta-learning on each subset.

After establishing the formal problem structure in Section 2, we present our MixER methodology and
its core optimization components in Section 3. Section 4 demonstrates our main findings in few-shot
learning. We summarize our contributions as follows:

1. We identify a fundamental limitation of gradient-descent when routing contextual informa-
tion to DSR models, which slows down expert specialization when training MoEs.

2. We propose an effective unsupervised routing mechanism for MoEs to collectively learn
dynamical systems with various degrees of relatedness.

3. We provide experimental evidence of the breadth of applicability of our method on two
and ten families of ordinary differential equations, several classical DSR benchmarks, and
synthetic time-series data.

2 PROBLEM DESCRIPTION

The reconstruction of families of dynamical systems requires a novel framework for handling
multi-level temporal data. In our framework, each datum consists of a (multivariate) time series
{xt}t∈[T ] ∈ RT×d of length T > 0 and dimension d ≥ 1, representing either simulated trajectories
or observed process measurements. These data points may present shared knowledge, such as
repeated clinical measurements from a patient (Brenner et al., 2024) or varying parameters of the
same physical system, referred to as “environments”. The complete dataset comprises E ≥ 1

environments {xe,i
t }

e∈[E]
i∈[I] , where I ≥ 1 represents the distinct time series count in environment e.

When environments exhibit higher-order relationships, the dataset extends to F ≥ 1 families, denoted
as {xf,e,i

t }f∈[F ] (see Fig. 3).

Importantly, we make no assumptions about inter-family relationships, which may range from loose
to intricate connections. For this reason, the training data is presented as Dtr ≜ {xe,i

t }e∈[E], with
unsupervised environment clustering into families occurring during learning. In cases without
repeated measurements, each time series i constitutes its own environment. This framework enables
the development of foundational models capable of processing heterogeneous data while generalizing
conventional dynamical system reconstruction approaches.

Learning on such datasets can be viewed in two levels: conventional (or flat), and hierarchical DSR
models.

Flat DSR Models The base level formulates dynamical system reconstruction as a supervised
learning problem (Göring et al., 2024; Kramer et al., 2021; Yin et al., 2021). The primary objective is
learning a flow mapping Gθ that transforms latent representation zt across time steps:

zt = Gθ(zt−1, xt−1), (1)

where xt−1 represents an optional ground truth teacher-forcing signal and θ denotes learnable
parameters. We note, however, that xt−1 is not used during inference as the system is rolled out
auto-regressively. This formulation describes a sequence-to-sequence learning problem (Brenner
et al., 2024; Kidger et al., 2020; Gu & Dao, 2023).

In scenarios without teacher forcing (Yin et al., 2021; Kirchmeyer et al., 2022), the problem transforms
into a state-to-sequence or initial value problem (IVP):

dzt
dt

= Gθ(zt), ∀t ∈ [0, T ] . (2)

This approach underlies Neural ODEs (Chen et al., 2018; Rackauckas et al., 2020; Haber & Ruthotto,
2017; Weinan, 2017), which have become invaluable in generative modeling (Lipman et al., 2022;
Liu et al., 2023) and engineering applications (Kochkov et al., 2024; Shen et al., 2023).
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Figure 1: Illustration of vanilla MoE and our proposed MixER layer. (Left) Vanilla MoE setting
where a single input x is passed through a gating network whose outputs enable the router to assign
computation to a specific expert (Chen et al., 2022). (Right) Alongside the input x, our sparse MixER
layer requires a context vector ξ which is used to compute expert affinities.

Hierarchical DSR Models Environment-aware models introduce a context vector ξ that modulates
model behavior. We consider two conditioning approaches: hypernetwork-based conditioning
(Kirchmeyer et al., 2022; Brenner et al., 2024), where a secondary network Hθ generates environment-
specific weights:

zt = Gθe(zt−1, x
e
t−1), with θe = Hθ(ξ

e), (3)

and concatenation-based conditioning (Nzoyem et al., 2025; Zintgraf et al., 2019), where the context
is directly fed to the flow map:

zt = Gθ(zt−1, x
e
t−1, ξ

e). (4)

For convenience, both approaches can be denoted as

zt = Gθ,ξe(zt−1, x
e
t−1). (5)

Current hierarchical DSR models, such as Eq. (5), struggle with complex data relationships (e.g.
families of unrelated environments), raising the critical question:

What is the optimal way to cluster environments so that existing contextual meta-
learning approaches can utilize them effectively?

3 MIXTURE OF EXPERT RECONSTRUCTORS

Our proposed MixER layer, depicted in Fig. 1, fundamentally differs from vanilla MoE layers in two
aspects. First, MixER incorporates an environment-specific context vector ξ as additional input for
computing gating weights, addressing the limitation that pointwise state input xt alone cannot fully
characterize temporal behavior. Second, MixER employs a top-1 MoE architecture and eliminates
the need for softmax weighting of expert outputs. This design choice enables experts to function
independently outside the layer, a critical feature for our gating network update methodology.

3.1 OPTIMIZATION PROCEDURE

Our training pipeline optimizes both environment-specific parameters Ξ ≜ {ξe}e∈[E] and shared
parameters Θ ≜ {θm}m∈[M ], where M denotes the number of experts. The optimization minimizes
the aggregate MSE loss:

L(Θ,Ξ,Dtr) ≜
1

E × I × T

E∑
e=1

I∑
i=1

T∑
t=1

∥x̂e,i
t − xe,i

t ∥22, (6)

where x̂ represents the reconstructed trajectory. We implement proximal alternating minimization,
chosen for its easily met assumptions for convergence to second-order optimal solutions (Li et al.,
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2019; Nzoyem et al., 2025). Notably, our framework eliminates the need for importance or load-
balancing terms in the loss function (Shazeer et al., 2017b).

To address scale variations across trajectory families, we employ small batches of closely related
environments (determined by L1 norm between context vectors) for stochastic updates of Θ and Ξ.
For validation and model selection in these scenarios, we utilize the relative L2 loss (see Eq. (8)).

The gating network W updates occur independently of Θ, as motivated in Appendix D.1. Our
implementation applies gating updates after each (or several) gradient update of either Θ or Ξ. During
adaptation to novel environments, only context vectors undergo optimization via gradient descent,
while W and Θ remain fixed.

3.2 GATING NETWORK UPDATE

The gating network transforms a context ξe into M logits ge ≜ {gem}m∈[M ], where the maximum
value identifies the optimal expert for environment e. We implement a linear mapping2:

ge = ξeW, ∀ e ∈ {1, . . . , E} (7)

optimized through least squares (see Algorithm 1), with labels Y (proxies for ge) derived from
K-means clustering using Lloyd’s algorithm (Lloyd, 1982) (see Algorithm 2).

The update procedure in Algorithm 1 comprises four key stages: (1) K-means clustering (line 6); (2)
per-expert per-environment loss computation (lines 7 and 8); (3) expert-cluster pairings (lines 9 to
18); and (4) least-squares optimization (lines 19 to 24). These stages are visualized in Fig. 2.
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0 1

0 1

0 1

Least squares solve for gating network

Contexts LabelsLosses per expert per environment

-Means Clusters

Figure 2: Illustration of the main stages of our context-
based gating update algorithm.

Our implementation incorporates two cru-
cial optimizations. First, we mitigate K-
means sensitivity to initial conditions by
reusing centroids from previous gating up-
dates (line 6), achieving convergence typ-
ically within two iterations. Second, we
introduce controlled noise to Ξ before least
squares computation, enhancing robustness
against suboptimal configurations and pre-
venting instability during early training
when context values cluster near their zero
initialization.

4 EXPERIMENTS

We evaluate our approach through comprehensive experiments on loosely related dynamical systems,
in both low-data and high-data regimes. Our analysis encompasses datasets of varying complexity,
baseline comparisons, and detailed performance assessments. Additional experiments on closely
related datasets, synthetic, and real-world datasets are presented in Appendix D.

Meta-learning across families of dynamical systems demonstrates the potential of our approach.
Using the ODEBench dataset (d’Ascoli et al., 2024), we analyze 10 distinct ODE families, each
containing multiple environments generated by parameter variations (Table 1). The experimental
setup consists of 4 meta-training trajectories per environment, with 32 additional trajectories reserved
for evaluation. One-shot adaptation is evaluated by fine-tuning context vectors on a single trajectory,
repeated across 4 adaptation environments per family. Further data generation details are available in
Appendix C.

We consider three leading adaptation rules: NCF (Nzoyem et al., 2025), CoDA (Kirchmeyer et al.,
2022), and GEPS (Koupaı̈ et al., 2024). We wish to know whether our approach boosts the perfor-
mance of these baselines on such loosely connected data. All adaptation rules utilize the same MLP
(Haykin, 1994) as the root (or main) network. Our MixER implementations employ context vectors
of dimension dξ = 40, evenly distributed among expert meta-learners (implementation details in
Appendix E).

2In practice, we note that W contains a bias term omitted here for conciseness.
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Table 1: Number of training families and environments ex-
tracted from the ODEBench dataset (d’Ascoli et al., 2024).

# Families # Env. Per Fam. # Total Envs.

ODEBench-2 2 5 10
ODEBench-10A 10 5 50
ODEBench-10B 10 16 160

Results on ODEBench-10A (Table 2,
top) reveal that MixER enhances per-
formance across all contextual meta-
learning backbones on the training
evaluation sets. However, adapta-
tion performance varies significantly,
with GEPS maintaining consistency
while NCF and CoDA’s performance
degrades. The limited environment

count in ODEBench-10A constrains overall performance, motivating our evaluation on the more
comprehensive ODEBench-10B dataset.

Analysis of ODEBench-10B (Table 2, bottom) shows that MixER-10 underperforms compared to
MixER-10† (naive MoE) and MixER-1 (a single meta-learner). Performance analysis using relative
L2 thresholds (defined in Eq. (9)) globally indicates diminished benefits from using MixER-10.
However, GEPS exhibits remarkable robustness, showing consistent improvement with increased
expert count in both training and adaptation scenarios, even with gradient-based gating updates. As
expected, visualization of gating values (Fig. 8) reveals that enhanced performance correlates with
improved environment-to-expert routing in groupings of 16 across all 160 environments.

5 DISCUSSION

Table 2: Training and adaptation relative MSEs (↓) on the
ODEBench-10A dataset (Top) and ODEBench-10B (Bot-
tom), across 3 runs with different seeds. MixER-M means
M experts are present in the layer. The † indicates the naive
MoE with the gate updated via gradient descent. The best
along the columns is reported in bold.

NCF CODA GEPS

TRAIN ADAPT TRAIN ADAPT TRAIN ADAPT

MIXER-1 2.05±0.12 1.80±0.28 0.98±0.08 6.91±1.25 2.61±0.1 2.20±0.21
MIXER-10† 1.53±0.34 5.28±1.04 0.76±0.07 4.25±0.15 0.58±0.04 1.16±0.09
MIXER-10 1.05±0.09 2.38±0.23 0.47±0.06 15.9±4.2 1.01±0.05 1.29±0.08

NCF CODA GEPS

TRAIN ADAPT TRAIN ADAPT TRAIN ADAPT

MIXER-1 0.12±0.01 3.20±0.28 0.07±0.01 0.34±0.05 0.21±0.1 1.24±0.07
MIXER-10† 0.29±0.02 2.53±0.20 0.15±0.03 0.72±0.08 0.13±0.4 0.49±0.02
MIXER-10 0.22±0.60 1.43±0.23 0.10±0.02 14.8±4.2 0.06±0.01 1.43±0.02
MIXER-20 0.38±0.02 0.54±0.02 0.12±0.04 0.38±0.02 0.17±0.03 0.92±0.10

Limitations Our experiments
demonstrate that our framework
successfully learns families of
environments that share either min-
imal structure. However, several
limitations warrant consideration: (1)
MixER’s interpretability performance
on closely related datasets is inferior
to single meta-learners, particularly
in scenarios with abundant data avail-
ability (see Appendices D.2 and D.3);
(2) the computational demands
typically exceed those of individually
trained meta-learners, as all experts
must remain simultaneously loaded
in memory.

Future Work Our work establishes
foundations for promising research directions beyond the limitations of interpretability and additional
computational demands. The cluster-expert associations which were observed to dynamically shift
during training suggest interesting potential for continual learning. Also, exploring the combination
of meta-learners with different nature or architecture could significantly broaden the usable datasets.

Conclusion We integrated traditional ML techniques within deep learning to address the open
problem of reconstructing families of dynamical systems with arbitrary relatedness. Through our
analysis, we identified the inherent limitations of task-specific meta-learning and proposed as a
solution MixER—a Mixture of Experts approach featuring a specialized routing mechanism. Our
results demonstrated that while MixER excels when processing highly heterogeneous data with
limited amounts of training examples, it conversely underperforms classical meta-learning baselines
on datasets exhibiting high degrees of relatedness, with individual experts being exposed to only a
fraction of the dataset. Nevertheless, by successfully extending meta-learning from multi-environment
DSRs to hierarchies thereof, our findings establish a promising pathway toward domain-agnostic
foundational models for scientific applications.
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IMPACT STATEMENT

This work advances scientific modeling by enabling AI systems to learn from diverse datasets si-
multaneously. The high computational requirements and complexity of the system could exacerbate
research inequity between well-resourced and under-resourced institutions. To address this con-
cern, we open-source our implementation at https://github.com/ddrous/MixER, with
pre-trained weights optimized for resource-constrained environments to follow.
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A ALGORITHMS & DEFINITIONS

A.1 GATING NETWORK UPDATE

Algorithm 1 Gating Network Update

1: Require: Θ := {θm}m∈[M ] mixture of M experts
2: Ξ := {ξe}e∈[E×F ] context vectors
3: Ξ̄ := {ξ̄m}m∈[M ] centroid initialization
4: Dtr ≜ {De

tr}e∈[E] training data
5: σ > 0 noise standard deviation
6: C, Ξ̄←K-Means(Ξ, Ξ̄) ▷ see Algorithm 2

7: ℓm,e = L(θm, ξe,De
tr) ∀m ∈ [M ],∀e ∈ [E]

8: ℓ̄·,c = Median{ℓ·,e : e ∈ Cc} ∀c ∈ [M ]

9: Initialize S ← ∅ ▷ Selected experts
10: for c ∈ [M ] do
11: SortedList← argsort(ℓ̄·,c)
12: m← SortedList1
13: while m ∈ S do
14: SortedList← SortedList2:length(SortedList)
15: m← SortedList1
16: end while
17: S ← S ∪ {m}
18: end for

19: Y ← 0E×M ▷ Least squares proxy labels
20: for c ∈ [M ] do
21: YCc ← OneHotEncode(Sc,M)
22: end for
23: X ← Ξ +N (0, σ) ▷ Add noise to context
24: W ← LeastSquares(X,Y )

25: Return W, Ξ̄

A.2 LLYOD’S K-MEANS

Algorithm 2 Lloyd’s K-Means

1: Require: Ξ := {ξe}e∈[E×F ] context vectors
2: Ξ̄ := {ξ̄m}m∈[M ] centroid initialization
3: if Ξ̄ = Null then
4: Ξ̄← RandomUniformSample(M,dξ)
5: end if
6: repeat
7: Cm ← {ξ ∈ Ξ : m = argmin

j
∥ξ − ξ̄j∥1}, ∀m ∈ [M ]

8: if |Cm| = 0 then
9: Return {Cm}m∈[M ],Null

10: else
11: ξ̄m ←

1

|Cm|
∑

ξ∈Cm

ξ, ∀m ∈ [M ]

12: end if
13: until Ξ̄ converges
14: Return {Cm}m∈[M ], Ξ̄
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A.3 METRIC DEFINITIONS

We define the relative MSE or relative L2 loss used to perform model selection in several experiments.

Rel. MSE ≜
1

E × I × T

E∑
e=1

I∑
i=1

T∑
t=1

∥xe,i
t − x̂e,i

t ∥22
∥xe,i

t ∥22
. (8)

To avoid numerical instability in the metric computation, we only consider states xe,1
t with L2 norm

grater than 10−6. Additionally, we consider the TPRMSE (Thresholded Percentage Relative MSE)
defined as the proportion of environments in which the Rel. MSE is below a specified threshold ε:

TPRMSE ≜
100

E

E∑
e=1

1{RelMSEe<ε}, (9)

where:

• 1{·} is the indicator function,
• E is the total number of environments available,
• RelMSEi is the aggregate relative MSE across trajectories in the e-th environment.

B RELATED WORK

Training Samples Adaptation Sample

Task-Specific
Meta-Learning

Task-Specific 
Meta-Learning

Hierarchical
Meta-Learning

Figure 3: Task-specific and hierarchical meta-learning. Each family comprises a set of environments
defined by the same ordinary differential equation (ODE). Within a family, parameters of the
underlying ODE are varied, producing dynamics that are similar but unique. Task-specific meta-
training focuses on adaptation within a family, while hierarchical meta-learning enables simultaneous
training across families, followed by adaptation to any of them.

We review the emerging field of dynamical system reconstruction (DSR) and its intersection with
meta-learning for multi-environment generalization. We cover learning generalizable DSRs and their
extension to foundational models.

Multi-Environment Learning The challenge of multi-environment learning has received substan-
tial attention in the machine learning community. Contemporary multi-domain training approaches
extend the traditional Empirical Risk Minimization (ERM) framework through Invariant Risk Mini-
mization (IRM) (Arjovsky et al., 2019) and Distributionally Robust Optimization (DRO) (Ben-Tal
et al., 2013; Sagawa et al., 2020; Krueger et al., 2021), which optimize models to minimize worst-case
performance across potential test distributions. For optimal reconstruction of ODEs, PDEs, and
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differential equation-driven time series, several models incorporate physical parameters as model
inputs (Brandstetter et al., 2022; Takamoto et al., 2023). This approach assumes that exposure to
training physical parameters enables models to learn the underlying parameter distribution and its
relationship to system dynamics. However, these physical parameters are often sparse or unobserv-
able, necessitating the learning of data-driven proxies through multitask learning (MTL) (Caruana,
1997) and meta-learning (Hospedales et al., 2021) approaches for DSRs. While MTL methods
typically adapt components of a generalist model across training environments (Yin et al., 2021), they
often lack the rapid adaptation capabilities of their meta-learning counterparts when confronted with
out-of-distribution scenarios.

Generalization to New Environments Meta-learning, embodied by adaptive conditioning (Serrano
et al., 2024) in the DSR community, represents the primary framework for generalization. Rather
than conducting complete model fine-tuning for each new environment (Subramanian et al., 2024;
Herde et al., 2024), this approach implements training with rapid adaptation in mind. Contextual
meta-learning partitions learnable parameters into environment-agnostic and environment-specific
components. These contexts serve diverse purposes: (1) Encoder-based methods (Garnelo et al.,
2018; Wang et al., 2022) employ dedicated networks for context prediction, though they tend to
overfit on training environments (Kirchmeyer et al., 2022). (2) Hypernetwork-based approaches
(Kirchmeyer et al., 2022; Brenner et al., 2024; Blanke & Lelarge, 2024) learn transformations from
context to model parameters. GEPS (Koupaı̈ et al., 2024), through its LoRA-inspired adaptation
rule (Hu et al., 2021), enhances these methods for large-scale applications. (3) Concatenation-based
conditioning strategies (Zintgraf et al., 2019; Nzoyem et al., 2025) incorporate context as direct input
to the model. While these frameworks demonstrate considerable efficacy, none directly addresses
learning across families of arbitrarily related environments.

Learning in Families of Environments Clustering before training, followed by task-specific
meta-learning (Nzoyem et al., 2025; Kirchmeyer et al., 2022; Koupaı̈ et al., 2024; Brenner et al.,
2024) would constrain the adaptability of our models. The challenge of simultaneous learning across
arbitrarily related families remains largely unexplored, particularly in the context of Mixture of
Experts (MoE) (Jacobs et al., 1991). MoE is a powerful paradigm, as Chen et al. (2022) demonstrate
that certain tasks fundamentally require expert mixtures rather than single experts. Most relevant
to our context is the variational inference approach of (Roeder et al., 2019; Davidian & Giltinan,
2003) which infers Neural ODE (Chen et al., 2018) parameters across well-defined hierarchies. The
language modeling community provides compelling demonstrations of MoE efficacy (Shazeer et al.,
2017b). Sparse MoEs enable expert MLPs to encode domain-specific knowledge (Dai et al., 2024;
Jiang et al., 2024; Guo et al., 2025), while some MoE variants address catastrophic forgetting (He,
2024). Drawing inspiration from “switch routing” (Fedus et al., 2022), our work dedicates single
experts to individual families during training.

Foundational Scientific Models Current foundational scientific models remain domain-specific,
as exemplified in climate modeling (Nguyen et al., 2023; Bodnar et al., 2024) where abundant data
sources maintain relative homogeneity. Kochkov et al. (2024) achieves generalization through the
hybridization of principled atmospheric models with neural networks. While PINNs (Cuomo et al.,
2022) underpin numerous powerful systems, they demand substantial data and domain expertise
(Nzoyem et al., 2023). Our approach diverges by discovering physics from data without prior
physical knowledge while maintaining adaptability. Although domain-agnostic models are emerging
(Subramanian et al., 2024; Herde et al., 2024), they typically require resource-intensive pre-training
and fine-tuning. To the best of our knowledge, our work represents the first DSR approach targeting
such broad generalization through rapid adaptation of only a fraction of the training parameters.
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C DATASETS DETAILS

We describe the datasets used in this paper. We begin with the synthetic ODEBench datasets used
both to illustrate the limitations of classical meta-learning and those of our MixER in high-data
regimes. We follow with the classical synthetic DSR datasets, and finish with real-world EEG data.

C.1 ODEBENCH

ODEBench (d’Ascoli et al., 2024) features a selection of ordinary differential equations primarily
from (Strogatz, 2018), to which other iconic systems have been added. In total, it boasts 63 definitions
of ODE families spanning various regimes: chaotic, periodic, etc., and dimensionality: 1D, 2D, 3D,
and 4D. We study 10 of these families, all two-dimensional. First, we describe the data generation
process for generating ODEBench-10A (introduced in Table 1), whose training and adaptation
trajectories is obtained by adapting the default ODEBench initial conditions and parameters as
described below.

The initial conditions for each ODE are generated by interpolating between two reference initial
conditions. For each dimension of the ODE, the initial conditions are sampled uniformly between the
minimum and maximum values of the two reference conditions. This ensures a diverse set of starting
points for the trajectories while maintaining consistency with the ODE’s physical or mathematical
constraints.

The parameters of the ODEs (e.g., c0, c1) are selected based on predefined reference values. For
training and testing, these parameters are varied within a range of 90% to 110% of their reference
values. This variation is achieved by creating a grid of parameter values, ensuring a systematic
exploration of the parameter space. For adaptation tasks, the parameters are scaled linearly between
80% and 120% of their reference values to simulate environments outside the training domain.

The ODEs are solved using the solve ivp function from the scipy.integrate module, which
the Runge-Kutta method of order 4(5) (RK45). This method is a widely used numerical integrator for
solving initial value problems due to its balance between accuracy and computational efficiency. The
evaluation time step for reporting ∆t is determined by dividing the time horizon T by the number of
steps (fixed to 100 across all families), ensuring a consistent resolution across all simulations. We
focus on ODEs that display a periodic behavior, and the time horizon is chosen so as to observe at
least one full oscillation.

The dataset is divided into four distinct splits: train, test, adaptation train, and adaptation test. The
number of environments and initial conditions for each split is summarized in the table below.

Table 3: Data splits and their characteristics for ODEBench-10A. Similar attributes apply to
ODEBench-10B as per Table 1.

Split Environments Initial Conditions Description
Train 5 4 Used for training models.
Test 5 32 Used for evaluating model performance.
Adaptation Train 1 1 Used for fine-tuning context vectors.
Adaptation Test 1 32 Used for evaluating fine-tuned contexts.

Table 4 provides a detailed description of the ODE families used in the dataset. Each ODE is identified
by an ID, and its analytical definition, time horizon, initial conditions, and parameters are listed.

The ODEBench-2 dataset is a subset of the original ODEBench-10 datasets, focusing on two specific
systems: the Harmonic Oscillator with Damping (ID 25) and the Rotational Dynamics of an Object
in a Shear Flow (ID 35) from Table 4. A few changes were made to emphasize the differences in
dynamics behavior between the two families. Those changes are summarized in Table 5.
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Table 6. ODE identifiers and definitions from (d’Ascoli et al., 2024), along with custom parameters,
initial conditions, and time horizon values. The custom values are used to generate ODEBench-10A
and ODEBench-10B.

ID Family Equation Parameters Initial Conds. Time Hor.

24 Harmonic oscillator
without damping

{
ẋ0 = x1

ẋ1 = −c0x0
c0 = 2.1

[0.4,−0.03]
[0.0, 0.2]

10

25 Harmonic oscillator
with damping

{
ẋ0 = x1

ẋ1 = −c0x0 − c1x1

c0 = 4.5
c1 = 0.43

[0.12, 0.043]
[0.0,−0.3]

8

28 Pendulum without friction

{
ẋ0 = x1

ẋ1 = −c0 sin(x0)
c0 = 0.9

[−1.9, 0.0]
[0.3, 0.8]

15

32 Damped double
well oscillator

{
ẋ0 = x1

ẋ1 = −c0x1 − x3
0 + x0

c0 = 0.18
[−1.8,−1.8]
[−2.8, 1.0]

5

34 Frictionless bead
on a rotating hoop

{
ẋ0 = x1

ẋ1 = (−c0 + cos(x0)) sin(x0)
c0 = 0.93

[2.1, 0.0]
[−1.2,−0.2]

20

35 Rotational dynamics of
an object in a shear flow

{
ẋ0 =

cos(x0)

tan(x1)

ẋ1 = sin(x0)(c0 sin2(x1) + cos2(x1))
c0 = 4.2

[1.13,−0.3]
[0.7,−1.7]

5

37 Van der Pol oscillator
(standard form)

{
ẋ0 = x1

ẋ1 = −c0x1(x
2
0 − 1) − x0

c0 = 0.43
[2.2, 0.0]
[0.1, 3.2]

15

38 Van der Pol oscillator
(simplified form)

ẋ0 = c0

(
− x3

0
3 + x0 + x1

)
ẋ1 = − x0

c0

c0 = 3.37
[0.7, 0.0]

[−1.1,−0.7]
15

39 Glycolytic oscillator

{
ẋ0 = c0x1 + x2

0x1 − x0

ẋ1 = −c0x0 + c1 − x2
0x1

c0 = 2.4
c1 = 0.07

[0.4, 0.31]
[0.2,−0.7]

4

40 Duffing equation

{
ẋ0 = x1

ẋ1 = c0x1(1 − x2
0) − x0

c0 = 0.886
[0.63,−0.03]

[0.2, 0.2]
10

Table 5: Parameter, initial condition, and time horizon values for ODEBench-2.

ID Parameters Initial Values Time Horizon

25 c0 = 0.4
[0.1, 0.1]
[0.0,−0.3] 5

35 c0 = 6.0
[1.13,−0.3]
[0.7,−1.7] 5

C.2 LV, GO, AND SM

The Lotka-Volterra (LV), Glycolytic Oscillator (GO), and Sel’kov Model (SM) have been the subject
of extensive studies these past years. A complete description of each dataset along with the generation
processes is provided in (Yin et al., 2021; Kirchmeyer et al., 2022; Nzoyem et al., 2025). For our use
case, we download the data from the Gen-Dynamics repository (Nzoyem et al., 2025).

C.3 SYNTHETIC CONTROL

The Synthetic Control Chart Time Series (SCCTS) dataset is a collection of synthetically generated
control charts, designed for time series clustering and classification tasks. The dataset contains
600 time series instances, each comprising 60 time steps, and is divided into six distinct classes:
Normal, Cyclic, Increasing Trend, Decreasing Trend, Upward Shift, and Downward Shift. The
dataset has been used in prior research to explore time series similarity queries and control chart
pattern recognition. Key references include works by (Alcock, 1999) on feature-based time series
similarity, and (Pham & Chan, 1998) on neural network-based control chart recognition.
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The primary task associated with this dataset is clustering, with a focus on evaluating the perfor-
mance of time series clustering algorithms. The dataset is particularly useful for testing algorithms
that go beyond the Euclidean distance, as certain class pairs are often misclassified using tradi-
tional distance measures. For instance, Derivative Dynamic Time Warping (DDTW) (Keogh &
Pazzani, 2001) has been shown to achieve better clustering results compared to Euclidean distance.
The raw dataset was downloaded from https://www.timeseriesclassification.com/
description.php?Dataset=SyntheticControl.

C.4 EPILEPSY2

The Epilepsy2 dataset comprises single-channel electroencephalogram (EEG) measurements collected
from 500 subjects (Andrzejak et al., 2001; Zhang et al., 2022). For each subject, brain activity is
recorded over a duration of 23.6 seconds, then partitioned and shuffled, resulting in 11,500 examples
(80 for training, and 11,420 for testing), each spanning 1 second and sampled at 178 Hz.

The raw dataset downloaded from https://www.timeseriesclassification.com/
description.php?Dataset=Epilepsy2 includes five classification labels corresponding
to different subject states or measurement locations: eyes open, eyes closed, EEG from a healthy
brain region, EEG from a tumor-affected region, and seizure episodes. For binary classification as
performed in Appendix D.3, the first four classes were merged into a single ”no seizure” class, while
the seizure episodes were retained as the ”seizure” class. The training set is balanced, containing
40 seizure and 40 non-seizure samples, whereas the test set is imbalanced, with 19.79% seizure and
80.21% non-seizure samples.
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D ADDITIONAL RESULTS

D.1 MOTIVATING EXAMPLE

The limitations of task-specific meta-learners and naive MoE become evident in the initial value
problem (IVP) setting of Fig. 3. Our test case involves simultaneous learning of two 2-dimensional
ODEs proposed by d’Ascoli et al. (2024). The dataset comprises two families, with the goal of
reconstructing I = 32 test-time trajectories across E = 10 total environments from both families
(see ODEBench-2 in Table 1). We evaluate three state-of-the-art meta-learners—Neural Context
Flow (NCF) (Nzoyem et al., 2025), CoDA (Kirchmeyer et al., 2022), and GEPS (Koupaı̈ et al.,
2024)—within a top-1 MoE framework.
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Figure 4: Limitation of task-specific meta-learning and vanilla MoE on the two families of ODEs
from Fig. 3. Strategically increasing the capacity of the network with MixER and its special routing
algorithm results in a successful model. (Top) Relative L2 error on test set; (Bottom) Validation MSE
losses during training.

Fig. 4 demonstrates that single task-specific meta-learners cannot capture the inherent data complexity.
Furthermore, a naive MoE implementation with gradient-based gating updates (Shazeer et al., 2017a)
routes all contexts to a single expert (Fig. 7), yielding suboptimal performance. The validation
losses reveal that once suitable gating weights are found and family-expert pairings established, our
proposed solution (in green) dramatically improves performance starting around training step 40 for
CoDA or 150 for NCF.
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Top-1 MoE’s fundamental advantage lies in its reduced active parameter count which saves com-
putation during inference (Jiang et al., 2024; Fedus et al., 2022). The following section details our
improved routing mechanism which leverages this top-1 sparsity structure.

D.2 GENERALIZATION ON CLASSICAL DSR DATASETS

Classical DSR benchmarks reveal the breadth of applicability of our approach. We evaluate three
datasets of closely related environments: (i) Lotka-Volterra (LV), a 2-dimensional ODE modeling
species evolution in closed ecosystems (Yin et al., 2021); (ii) Glycolytic Oscillator (GO), a model
of yeast glycolysis (Kirchmeyer et al., 2022); and (iii) Sel’kov Model (SM), a more complex
2-dimensional ODE for glycolysis that exhibits a Hopf bifurcation (Nzoyem et al., 2025).

We consider the same NCF, CoDA, and GEPS backbones as above. Additionally, we consider CAVIA3

(Zintgraf et al., 2019)4. MixER employs three experts across all experiments, with parameter counts
matched to baselines for fair comparison. Context vector dimensions vary by backbone: NCF uses
dξ = 512, while CoDA and GEPS use dξ = 2, reflecting underlying physical parameter variations.
Additional hyperparameters are documented in Appendix E.

Table 6: In-Domain (InD) and Out-of-Distribution (OoD) test MSEs (↓) for the LV, GO, and SM
problems. The star indicates runs using the reference implementations. Results for CAVIA, CoDA*
and NCF* are reported from (Nzoyem et al., 2025). The best is reported in bold. The best of the
three MixERs is shaded in grey . The #PARAMS columns indicate the active parameter counts.

LV (×10−5) GO (×10−4) SM (×10−3)

#PARAMS IND OOD #PARAMS IND OOD #PARAMS IND OOD

CAVIA 305246 91.0±63.6 120.1±28.3 130711 64.0±14.1 463.4±84.9 50486 979.1±141.2 859.1±70.7
CODA* 305793 1.40±0.13 2.19±0.78 135390 5.06±0.81 4.22±4.21 50547 156.0±40.52 8.28±0.29
NCF* 308240 1.68±0.32 1.99±0.31 131149 3.33±0.14 2.83±0.23 50000 6.42±0.41 2.03±0.12
MIXER-NCF 307245 3.70±0.4 4.45±0.3 130535 73.5±21.1 141.5±82.8 50387 32.3±4.2 64.2±1.5
MIXER-CODA 307995 4.00±0.01 53.5±0.4 132137 42.0±18.9 49.3±25.1 51995 32.8±3.9 317.2±6.0
MIXER-GEPS 305112 14.8±0.7 82.4±0.9 131747 22.3±23.2 259.7±45.0 51312 27.6±5.8 46.3±2.7

Results presented in Table 6 demonstrate that while all methods successfully approximate the IVP
vector fields, MixER underperforms relative to its baseline meta-learners. Clustering and routing
analysis (Fig. 9) shows that MixER logically partitions datasets into three subsets, but this partitioning
limits each expert meta-learner’s exposure to the full dataset, potentially explaining the performance
degradation despite clear cross-environment commonalities.

D.3 FEATURE INTERPRETABILITY AND DOWNSTREAM CLUSTERING

A major benefit of contextual meta-learning is in its by-product context features, which can be used
for downstream tasks. To test the interpretability of these features, we consider two time series
classification datasets. First, the Synthetic Control Chart Time Series (SCCTS) (Alcock, 1999)
is a collection of 600 time series5 across six classes: A. Normal, B. Cyclic, C. Increasing trend,
D. Decreasing trend, E. Upward shift, and F. Downward shift. The traditional K-means typically
struggles to separate these classes due to the similarities among the pairs A/B, C/D, and E/F. We
expect the grouping (600 environments→ 6 classes→ 3 families) to be suitable for hierarchical
models. As such, we train a MixER with 3 expert meta-learners in a completely unsupervised manner.

Second, the Epilepsy2 dataset (Andrzejak et al., 2001) is a large collection of real-world neuroscien-
tific EEG data with noisy labels indicating whether a subject is healthy (0) or experiencing a seizure
(1). The 80 unshuffled training samples are labeled as follows [0-30): 1, [30-60): 0, [60-70): 1, and
[70-80): 0. For this dataset, our families are the two underlying classes. We emphasize that SoTA
methods do not face difficulties classifying this data, whereas naive K-means consistently struggles.

3We did not augment CAVIA within our MixER layer due to its second-order optimization algorithm.
4For integration within the MixER layer, we performed custom reimplementation of the backbones as

explained in Appendix E.2.
5Each time series constitutes its own environment, i.e., I = 1.
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For both SCCTS and Epilepsy2 datasets, the backbone meta-learner we use is the hier-shPLRNN
(Brenner et al., 2024) based on the generalized teacher forcing approach (Hess et al., 2023). We fix
its mixing coefficient α = 0.5, the hidden layer’s width to 16, and we use a linear hypernetwork to
generate weights based on context vectors of size dξ = 10.

Vanilla K-Means MixER - 1Expert MixER - 3 Experts

Figure 5: PCA clusters formed when training a MixER on the SCCTS dataset. (Top) Coloring using
the ground truth labels; (Bottom) Coloring using labels from a K-means algorithm, with its means
initialized at the ground truth means.

SCCTS results (Fig. 5) demonstrate improved class separation with three experts, effectively grouping
similar classes (A/B, C/D, E/F) and routing them to the same expert. This configuration unambigu-
ously outperforms both single-expert and vanilla K-means approaches in qualitative and quantitative
metrics.

Figure 6: PCA clusters on the Epilepsy2 datasets, using the hier-shPLRNN meta-learning backbone.
Accuracy scores are obtained on the testing contexts upon training a logistic regression classifier.

Conversely, Epilepsy2 results (Fig. 6) show degraded performance with MixER. While context
routing roughly aligns with class boundaries, the clusters lack clear separation, with epileptic subjects
split between experts while healthy subjects route exclusively to the second expert. This routing
pattern persists in test data, challenging downstream classification via logistic regression (Cox, 1958).
The classification performance degradation likely stems from the dataset’s inherent noise, as noted by
Brenner et al. (2024). Indeed, such close proximity of time series prevents clean discrimination and
routing during training. These results highlight MixER’s limitations with ambiguous, highly related
environments.
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E IMPLEMENTATION DETAILS

We describe the implementation of our MixER framework through the lens of its routing and its
hyperparameters. We also present the baselines and the changes we made to fit them within our
framework.

E.1 CONTEXT-BASED ROUTING

In our framework, the only way the gating network influences the output is via the logits it produces
for routing (see Fig. 1). We effectively eliminate the final aggregations so that the expert can be used
on its own outside the MoE layer. This has adverse consequences however, in that the gating doesn’t
impact the output enough to receive high gradients. While this is generally solved with our clustering
mechanism, we find that two mechanisms improve the clustering when the relatedness of families is
minimal:

1. Context Splitting. The router splits the contexts ξ into m equal-length pieces {ξm}m∈[M ]

before feeding them to the experts. This means each experts only ever sees a specific portion
of the contexts. We apply this only on the IVPs tested in this paper.

2. Context Shifting. Each expert is augmented with a single floating point offset, by which the
inputted contexts are shifted before usage. Again, with shifts the overall mean of the contexts
received by the experts, further facilitating clustering. We apply this to all experiments
conducted in this paper.

E.2 CORE BASELINE METHODS

With the exception of CAVIA, we perform a custom implementation of several baselines and incorpo-
rate them within our MixER layer.

• CAVIA (Zintgraf et al., 2019) is a concatenation-based meta-learning approach that improves
on the seminal (Finn et al., 2017) by optimizing parameter-specific context vectors in its inner loop.
Within the model Gθ, pre-processing of ξe, zt−1, and xe

t−1 may be performed before concatenation
and processing within a main network.

• Neural Context Flows (Nzoyem et al., 2025) use a first-order optimization procedure coupled
with contextual self-modulation to share information between environments, thus encouraging the
formation of clusters and improving generalization. We use 2nd order Taylor expansion resulting in
NCF-t2. Its model Gθ processes inputs like in CAVIA.

• CoDA (Kirchmeyer et al., 2022) is aimed at initial value problems and leverages a linear
hypernetwork to generate environment-scpefic weights of the root (main) network based on context
vectors.

• GEPS (Koupaı̈ et al., 2024) improves on CoDA’s scalability by performing low-rank adaptation
on MLP and CNN weights, conditioned on context vectors. In our implementation, we use Xavier
initialization (Glorot & Bengio, 2010) for the A and B matrices, and we initialize the contexts at 0.

• hier-shPLRNN (Brenner et al., 2024) is a fast sequence-to-sequence shallow Recurrent Neural
Network meta-learner. Similar to CoDA, subject-specific weights are generated with a linear hyper-
network. We set the width of its single hidden layer to 16. Our setting does not require any encoders
to map x to z, which live in the same space. We set the initial z0 = 0.

E.3 MAIN HYPERPARAMETERS

Training All the experts in the MixER are initialized with the same seed. Across our experiments,
the batch size is the expected number of environments per expert, i.e. E/M . We use the AdaBelief
optimizer (Zhuang et al., 2020) for both contexts and weights. Adaptation to new environments is
performed on a sequential one by one basis, except on the Epilpesy2 dataset which considers batches
of size 571.
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Gating Update In our proximal alternating minimization, we performed up to 500 outer iterations,
and 12 inner iterations of both weights Θ and contexts Ξ, with the gate updated every time either are
updated. We upper bound the number of iterations in K-means to 20 (see Algorithm 2), and we set
the convergence tolerance to 10−3 and the noise standard deviation to 10−4 (see Algorithm 1).

Architectures On problems using ODEBench, we use a 3-layer MLP of width 64 as the main
network. For NCF, we use shallow context and data networks or depth 1, each with outputs of size 32.
We use the Swish activation (Ramachandran et al., 2017) throughout, except with the hier-shPLRNN
where we use ReLU activations. On other IVP problems, we adjust the width of the main layer so
that the active parameter count (equal to the number of parameters in one expert (Jiang et al., 2024))
matches the baselines.

Software We use JAX (Bradbury et al., 2018) and its differentiable programming ecosystem
(Nzoyem et al., 2023). Specifically, we use diffrax and its Tsit5 solver to integrate differential
equations (Kidger, 2022), with all neural networks implemented with Equinox (Kidger & Garcia,
2021).

Hardware Depending on the experiment, our model was trained on a workstation fitted with a
NVIDIA 4080 GPU with 16GB VRAM memory, and a supercomputer containing four NVIDIA
GH200 GPUs with 480GB total memory. We aimed for quick training times, with hier-shPLRNN
being by far the faster to train in less than 5 minutes on both Epilepsy and SCCTS datasets. It took
CoDA around 20 minutes, GEPS 30 minutes, and finally NCF 25 minutes to complete 500 outer steps
on the largest ODEBench-10B dataset.
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F QUALITATIVE RESULTS

Figure 7: Visualisation of the clustering heatmap as the training progresses on ODEBench-2. The
four columns correspond to outer training steps 0, 25, 125, and 250 respectively (from left to right).
(Top) Naive mixture of two GEPS models with gating updates via vanilla gradient descent. (Bottom)
MixER and least-squares-based gating update.

NCF CoDA GEPS

Figure 8: Gating weights on ODEBench-10B, at the end of training with MixER-10. (Top) Gating
heatmap. (Bottom) Histogram across all 160 environments.
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NCF CoDA GEPS

LV

GO

SM

Figure 9: Heatmaps of the gating values of MixER with 3 experts on three classical meta-learning
datasets: LV, GO, and SM.
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Figure 10: Visualization of a single testing trajectory and the phase space within the first 5 families
with 10 expert GEPS meta-learners on the large ODEBench-10B dataset.
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Figure 11: Visualization of a single testing trajectory and the phase space within the last 5 families
with 10 expert GEPS meta-learners on the large ODEBench-10B dataset.
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