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Abstract

In Neonatal Intensive Care Units (NICUs) heart-rate monitoring produces continu-1

ous time-series signals that, combined with clinical metadata, are critical for early2

warning and decision support. Traditional statistical models cannot not effectively3

incorporate textual inputs, leaving clinical information unused in prediction. Recent4

advances in multimodal language models (LMs) enable aligning temporal signals5

with textual clinical metadata. We propose a two-step framework to test whether6

combining numerical time-series and clinical text yields better predictions, by: first,7

testing LMs’ recognition and differentiation capabilities of clinical descriptions8

tied to temporal and visual properties of NICU heart rate signals; second, evaluat-9

ing the transfer of this ability to a downstream clinically significant task of 7-day10

mortality prediction . Results show that descriptive performance strongly correlates11

to mortality prediction accuracy, with patient metadata and clinical descriptions12

boosting outcomes, especially for larger models. Vision-Language Models (VLMs)13

perform best overall, while specialized Time Series Language Models (TSLMs)14

consistently surpass their base large language models (LLMs). Overall our work15

provides (1) a controlled evaluation framework linking time series understanding16

to clinically meaningful downstream tasks, (2) quantification of the added value of17

metadata and descriptions, and (3) evidence that aligning time series with linguistic18

understanding is transferable to high-stakes clinical tasks.19

1 Introduction20

Continuous physiological monitoring in neonatal intensive care units (NICUs) produces rich streams21

of time-series signals that, when combined with patient history, are critical for early warning systems22

and clinical decision support [1, 2, 3, 4]. Traditionally, most work with NICU data has relied on23

numerical features processed through conventional machine learning or statistical models [5, 6, 7,24

8, 9, 10]. These approaches, however, have largely ignored the role of textual inputs because such25

methods could not directly incorporate text.26

Recent advances in LLMs and, more specifically, TSLMs [11, 12, 13, 14, 15, 16] now make it27

possible to align temporal signals and patient metadata (e.g., demographics, clinical history) with28

clinical descriptions (e.g., noting patterns such as “low variability” or “recurrent bradycardia”). This29

shift introduces new opportunities for text-conditioned time-series analysis. Despite growing interest30

in LLMs, VLMs and TSLMs, we still lack systematic evidence on whether aligning NICU heart31

beat time series with interpretable, human-readable clinical descriptions and the addition of patient32

metadata improves performance on downstream clinical tasks.33

We study this question using a large NICU heart-rate dataset from UVA Hospital comprising 36k+34

recordings[17], each a sequence of 300 timesteps at 2-second intervals, with associated patient35

metadata (e.g., gestational age, delivery type, etc.) and natural-language clinical descriptions of36
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time-series morphology (variability, and clinical events such as bradycardia). The 7-day mortality37

label is highly imbalanced (278 deaths vs. 36,401 survivors), representative of a real world clinical38

distribution.39

Our investigation includes LMs across 3 modalities – LLMs, VLMs and TSLMs and proceeds in two40

cascading steps:41

1. Experiment 1: Evaluates LMs’ descriptive understanding through two tasks. Task 1: Recognition42

asks models to decide whether a given description is valid for a time series, framed as a True/False43

classification problem. Task 2: Differentiation requires models to select the correct description44

from one true option and three distractors, posed as a multiple-choice problem. This yields a45

proxy for “clinical time-series understanding."46

2. Experiment 2: Tests whether the understanding of the time series heart rate data transfers to a47

clinically meaningful downstream endpoint of 7-day mortality prediction under six input-output48

conditions.49

This design lets us test two central hypotheses: Ranking Consistency: Model performance on50

descriptive tasks (recognition and differentiation) is predictive of performance on downstream51

mortality prediction. Contextual Enrichment: Performance improves monotonically as additional52

context is provided—moving from time series alone to combinations with patient metadata and53

clinical descriptions.54

In this work, we make three main contributions. First, we introduce a two-step evaluation: description55

recognition and differentiation as a proxy for time-series understanding, and a downstream test on56

real NICU mortality prediction. Second, we measure the added value of patient metadata and clinical57

descriptions—both separately and together—within a controlled experimental framework. Third,58

we show that stronger descriptive understanding in Experiment 1 translates into better mortality59

prediction in Experiment 2, providing evidence that the ability to align time series with language is a60

transferable capability for high-stakes clinical tasks.61

2 Experimental Set-Up62

2.1 Experiments63

2.1.1 Experiment 1: Descriptive Understanding64

In the first step of experiments, we propose two tasks that capable time-series reasoning models65

should be able to perform. We evaluate 8 state-of-the-art LMs on their ability to recognize clinical66

time-series descriptions of NICU patient heart rates under two input conditions: with and without67

patient metadata. These tasks are formulated as Question–Answering tasks, where models are given68

time series and asked to recognize or differentiate between correct and incorrect descriptions.69

Description Recognition (Task 1) Given a NICU heart rate time series and an accompanying clinical70

description, a model must determine whether the description is valid. We format this as a True/False71

task and design the prompt pi to encourage f(xi, di) ∈ {“True”, “False”}. Because our datasets72

do not contain “incorrect” (False) time series and description pairs naturally, we obtain them by73

negative sampling from within our dataset. We use two methods to ensure the robustness of our74

benchmark to the choice of sampling method. One method assesses the similarity of captions, while75

the other assesses the similarity of time series. In all cases, we select the most dissimilar option as the76

incorrect description while ensuring it is drawn from a time series with the opposite clinical outcome.77

Appendix 5.2 provides further details about our method for selecting incorrect options.78

Description Differentiation (Task 2) Given a time series xi, the model must select the correct79

description di from a set of four options {di, dj , dk, dl}. This is posed as a multiple-choice task,80

with the prompt pi formatted to present the options and elicit a letter-valued prediction f(xi, pi) ∈81

{A,B,C,D}, in which each letter corresponds to a description option. A prediction is correct if it82

corresponds to the index of the true description di. As in Task 1, incorrect options are generated by83

sampling the top three most dissimilar descriptions from the dataset, using both negative sampling84

methods. Note, for both Tasks 1 and 2, we also run parallel experiments in which models are provided85

with additional patient metadata as context alongside the time series.86
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2.1.2 Experiment 2: Mortality Prediction87

The second step evaluates whether the descriptive understanding measured in Experiment 2 transfers88

to a downstream task of clinically meaningful endpoint: 7-day mortality prediction. We also test the89

effect of ground truth clinical descriptions and patient metadata on prediction accuracy. We formulate90

this as a binary classification task, where models predict whether an infant dies (1) or survives (0).91

Building on the proxy of time-series understanding from recognition and differentiation, we test how92

different combinations of input signals (heart rate time series, metadata, and ground truth clinical93

descriptions) affect downstream predictive performance.94

We design six experimental setups:95

1. TS(E2.1): Given NICU heart-rate time series alone → predict 7-day mortality.96

2. TS→Desc(E2.2): Given TS, first generate a brief description, then based on the description predict97

7-day mortality.98

3. TS+Desc(E2.3): Given TS with a brief ground truth clinical description → predict 7-day mortality.99

4. TS+Meta(E2.4): Given TS with patient metadata (e.g., gestational age, delivery type) → predict100

7-day mortality.101

5. TS+Meta→Desc(E2.5): Given TS and metadata, first generate a brief description, then based on102

the description predict 7-day mortality.103

6. TS+Meta+Desc(E2.6): TS+Meta+Desc. Given TS with metadata and a brief ground truth clinical104

description → predict 7-day mortality.105

2.2 Models106

We evaluate four LLMs, three VLMs, and one time series–language model (TSLM) in both experi-107

ments. This includes proprietary models and public models that range from 4.2B to 14B parameters.108

LLMs: GPT-4o [18],Phi-3.5-Mini-Instruct [19], Qwen2.5-14B-Instruct-1M [20], and Qwen2.5-109

14B-Instruct-1M [20]. We convert time series to strings of comma-separated values, following110

prior works [21, 22]. VLMs: We evaluate GPT-4o-Vision [18], Qwen2.5-VL-7B-Instruct [23], and111

Phi-3.5-Vision-Instruct [19]. Time series are represented as matplotlib-rendered plots. TSLMs:112

We evaluate ChatTS-14B [12], which operates directly on numerical vectors.113

2.3 Metrics114

In Experiment 1, Recognition and Differentiation are classification tasks with balanced datasets,115

so we measure Accuracy. For Experiment 2, since the dataset is highly imbalanced, we measure116

Weighted F1-Score.117

3 Results118

Models Recognition Differentiation OaR

TS TS + Metadata Rank TS TS + Metadata Rank

GPT-4o 0.567 0.640 2 0.944 0.971 2 2
GPT-4o-V 0.604 0.667 1 0.957 0.983 1 1
Qwen-14B 0.540 0.612 4 0.814 0.852 3.5 3.75
ChatTS-14B 0.545 0.587 3.5 0.821 0.776 3.5 3.5
Qwen-7B 0.530 0.520 6.5 0.782 0.698 6.5 6.5
Qwen-7B-V 0.544 0.553 4.5 0.793 0.721 5 4.75
Phi-mini 0.506 0.518 8 0.765 0.667 8 8
Phi-mini-V 0.529 0.529 6.5 0.771 0.714 6.5 6.5

Table 1: Recognition & Differentiation Accuracy with DTW-based distractors. OaR = Overall rank

We first compare all models on Recognition and Differentiation tasks. Models that fail to produce119

outputs in the required format are counted as errors, which can reduce accuracy. To highlight general120

trends, we also report each model’s average rank across both tasks and input settings Table 1. Overall,121

VLMs consistently outperform their text-only LLM counterparts, with GPT-4o-Vision emerging as122

the best-performing model across all settings. This advantage is expected, as clinical descriptions123
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depend heavily on visual properties of the time series. Among LLMs, GPT-4o is the strongest,124

ranking second overall behind its vision-enabled variant. Scaling laws hold: larger models such125

as Qwen-14B outperform Qwen-7B which surpasses Phi-mini. Notably, ChatTS-14B consistently126

outperforms its base LLM (Qwen-14B), underscoring the value of architectures tuned specifically to127

temporal data.128

Adding metadata consistently improves Recognition accuracy. However, for Differentiation tasks,129

metadata provides benefits only to the strongest models, while smaller models often perform worse130

with additional context. This could be because smaller open source models might not have been131

exposed to such clinical and demographic information in its’ training thus fail to exploit it in a132

zero-shot setting. Note, all results shown here use distractors selected via DTW distance, which133

identifies the distractors by finding the most dissimilar time series. The same performance trends134

hold when distractors are instead selected using Sentence-BERT embeddings with cosine similarity,135

which identifies the most dissimilar clinical descriptions directly as shown in Table 3.

Models E2.1 E2.2 E2.3 E2.4 E2.5 E2.6 Rank

GPT-4o 0.982 0.952 0.939 0.984 0.943 0.944 1.5
GPT-4o-V 0.983 0.958 0.938 0.986 0.943 0.941 1.5
Qwen-14B 0.660 0.775 0.765 0.742 0.817 0.793 4.5
ChatTS-14B 0.980 0.950 0.909 0.984 0.928 0.914 2.833
Qwen-7B 0.607 0.662 0.648 0.629 0.727 0.743 5.833
Qwen-7B-V 0.432 0.868 0.701 0.733 0.906 0.896 4.667
Phi-mini 0.349 0.464 0.430 0.360 0.480 0.470 8
Phi-mini-V 0.363 0.478 0.431 0.393 0.564 0.619 7

Table 2: Weighted F1 for 7-day mortality prediction across six input settings (E2.1–E2.6)

136
Experiment 2 evaluates whether descriptive understanding transfers to the clinically meaningful137

endpoint of 7-day mortality prediction. Results across the six input–output conditions are shown138

in Table 2. We find the relative ranking of models in mortality prediction is highly correlated their139

ranking in Experiment 1. Overall, VLMs consistently outperform their LLM counterparts. GPT-140

4o-Vision remains the top-performing model, followed closely by GPT-4o, confirming that strong141

descriptive understanding is predictive of downstream clinical performance. Similarly, ChatTS-14B142

again outperforms its base LLM (Qwen-14B), reinforcing the benefit of temporal specialization143

observed in Experiment 1. Similarly, scaling laws uphold where in smaller open-source LLMs and144

VLMs under-perform. This supports our first hypothesis: descriptive tasks serve as a reliable proxy145

for downstream clinical utility.146

Performance generally improves as additional context is provided. Moving from raw time series alone147

to TS+Patient Metadata or TS+Patient Metadata+Clinical Description yields steady gains. Notably,148

metadata consistently provides the largest boost to mortality prediction, while descriptions alone149

provide smaller but still positive improvements, as, the clinical endpoint encourages models to exploit150

demographic and contextual signals effectively. However, smaller models benefit less from context,151

consistent with their limited capacity to integrate heterogeneous inputs in a zero-shot setting. Together,152

these results demonstrate that descriptive ability the evaluated Experiment 1 transfers directly to153

improved clinical prediction in Experiment 2. Models that best aligned time series with clinical154

language also achieved the highest accuracy on mortality, and performance improved monotonically155

as additional contextual inputs were introduced. This provides strong evidence that the ability to link156

heart rate temporal signals with interpretable clinical descriptions is not only measurable but also157

clinically useful.158

4 Conclusion159

This work introduces a controlled two-step framework linking descriptive understanding of NICU160

heart-rate time series to clinically meaningful outcomes. Across both experiments, we find that LMs161

capable of accurately identifying clinical descriptions also achieve stronger performance on 7-day162

mortality prediction, validating descriptive tasks as a reliable proxy for downstream utility. VLMs163

consistently lead, while TSLMs outperform their base LLMs, underscoring the value of temporal164

alignment. Performance further improves with patient metadata and clinical descriptions, confirming165

the additive benefit of contextual signals. Together, these findings provide evidence that aligning166

time-series data with language not only advances interpretability but also translates into improved167

predictions in high-stakes clinical settings.168
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5 Appendix315

5.1 Dataset Details316

We use a publicly dataset of daily heart beat time series observations from 2,964 infants admitted to317

the University of Virginia NICU between 2012–2016 [24, 25], consisting of 10-minute HR segments318

(length 300, sampled every 2s). The processed dataset contains 36,679 series, including 2,147319

bradycardia events (prevalence 0.06), defined as HR <100 bpm up to 300s [26]. A valid event320

requires a negative drop rate prior to onset and a positive recovery afterward. Each time series is321

annotated with one of two event labels — “No events” or “Bradycardia events happened” — and one322

of two variability labels — “High variability” or “Low variability.” These labels are provided as input323
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to the GPT-4o API, which generates corresponding clinical, human-readable descriptions of the time324

series.325

The patient metadata includes the following variables:326

• EGA – Estimated gestational age in weeks327

• BWT – Birth weight in grams328

• Male – Sex329

• Apgar1 – Apgar 1-minute score330

• Apgar5 – Apgar 5-minute score331

• Vaginal – Vaginal delivery332

• C-section – Cesarean delivery333

• Steroids – Antenatal steroids334

• InBorn – Born in hospital335

• BirthHC – Head circumference at birth336

• Multiple – Multiple births337

• Black, Hispanic, White – Race338

• MaternalAge – Maternal age in years339

These metadata fields are preprocessed and then passed through the GPT-4o API to generate concrete340

textual representations of patient history and demographics, which we collectively refer to as patient341

metadata.342

5.2 Selecting Distractors343

To support both True/False and Multiple Choice formats in the Recognition and Differentiation tasks,344

we construct contrastive examples by selecting negative descriptions using four distinct strategies:345

• Caption-based similarity (Sentence-BERT): We compute cosine similarity over Sentence-346

BERT embeddings and select descriptions that are semantically dissimilar to the reference.347

• Dynamic Time Warping (DTW): We measure alignment costs between time series and348

choose those with the highest DTW distance from the input.349

The Sentence-BERT strategy operates over natural language annotations; while the DTW distance350

directly in time series space. When multiple annotations exist for a given time series, we randomly351

sample one for evaluation. Negative samples are selected to be maximally dissimilar, simplifying the352

contrastive setup and providing an upper-bound estimate of model performance. This design ensures353

that the benchmark evaluates models’ ability to reject clearly incorrect options before advancing to354

more fine-grained reasoning. Additional check is implemented that all distractor time series has the355

opposite patient outcome.356

5.3 Prompt Details357

Experiment 1: Task 1: Only TS358

"You are given a neonatal heart-rate time series (bpm, 2s sampling) and a candidate natural-language359

description. Decide whether the description accurately and adequately reflects salient properties of360

the series. Answer with ONLY ’YES’ or ’NO’.361

Time series: row[’heart rate’]362

Clinical Description: row[’desc str’]"363

Experiment 1: Task 1: TS+Metadata364

"You are given neonatal patient information including demographics, perinatal metadata, and a365

heart-rate time series (bpm, 2s sampling). Based on the metadata and the time series, decide whether366

the candidate description accurately and adequately reflects salient properties of the series and patient367
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context such as overall heart rate level, variability, trends, spikes/dips, and clinically relevant context).368

Answer with ONLY ’YES’ or ’NO’.369

Time series: row[’heart rate’]370

Metadata:row[’patient metadata’]371

Clinical Description: row[’desc str’]"372

Experiment 1: Task 2: Only TS373

"You are given neonatal patient information including demographics, perinatal metadata with neonatal374

heart-rate time series (bpm, 2s sampling) and four candidate natural-language descriptions. Only375

ONE description is correct; the other three are incorrect. Choose the option that best represents the376

time series. Answer ONLY with a single letter A, B, C, or D.377

Time series: row[’heart rate’]378

Options:row[’options’]"379

Experiment 1: Task 2: TS+Metadata380

"You are given neonatal patient information including demographics, perinatal metadata, with381

neonatal heart-rate time series (bpm, 2s sampling) and four candidate natural-language descriptions.382

Only ONE description is correct; the other three are incorrect. Based on the metadata and the time383

series Choose the option that best represents the time series. Answer ONLY with a single letter A, B,384

C, or D.385

Time series: row[’heart rate’]386

Metadata:row[’patient metadata’]387

Options:row[’heart rate’]"388

Experiment 2.1389

"You are given NICU time-series data. Predict whether the infant will die in 7 days,or whether the390

infant will survive. Respond with **only** a single digit: ‘1‘ if the infant will die in 7 days, or ‘0‘ if391

the infant will survive."392

Heart rate data: row[’heart rate’]"393

Experiment 2.2394

"You are given NICU time-series data. First, generate a brief natural language description of the heart395

rate pattern you observe. Then, based on that description, predict whether the infant will die in 7 days396

(**1**) or survive (**0**). "Respond with only the description followed by the single digit decision.397

Heart rate data: row[’heart rate’]"398

Experiment 2.3399

"You are given NICU time-series data and a brief clinical description of the time series. Predict400

whether the infant will die in 7 days,or whether the infant will survive. Respond with **only** a401

single digit: ‘1‘ if the infant will die in 7 days, or ‘0‘ if the infant will survive.402

Heart rate data: row[’heart rate’]403

Clinical description: row[’clinical description’]"404

Experiment 2.4405

"You are given NICU time-series data and patient metadata. Predict whether the infant will die in 7406

days,or whether the infant will survive. Respond with **only** a single digit: ‘1‘ if the infant will407

die in 7 days, or ‘0‘ if the infant will survive.408

Heart rate data: row[’heart rate’]409

Patient metadata: row[’patient metadata’]"410

Experiment 2.5411
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"You are given NICU time-series data and patient metadata. First, generate a brief natural language412

description of the heart rate pattern you observe. Then, based on that description, predict whether the413

infant will die in 7 days (**1**) or survive (**0**). "Respond with only the description followed by414

the single digit decision.415

Heart rate data: row[’heart rate’]416

Patient metadata: row[’patient metadata’]"417

Experiment 2.6418

"You are given NICU time-series data, patient metadata and a brief clinical description of the time419

series. Predict whether the infant will die in 7 days,or whether the infant will survive. Respond with420

**only** a single digit: ‘1‘ if the infant will die in 7 days, or ‘0‘ if the infant will survive.421

Heart rate data: row[’heart rate’]422

Patient metadata: row[’patient metadata’]423

Clinical description: row[’clinical description’]"424

5.4 Additional Results425

Models Recognition Differentiation OaR
TS TS + Metadata Rank TS TS + Metadata Rank

GPT-4o 0.669 0.631 2.5 0.865 0.872 2 2.25
GPT-4o-V 0.671 0.639 1 0.887 0.904 1 1
Qwen-14B 0.623 0.619 4.5 0.743 0.788 4.5 4.5
ChatTS-14B 0.638 0.638 3 0.786 0.793 3.5 3.25
Qwen-7B 0.647 0.607 5.5 0.694 0.712 7 6.25
Qwen-7B-V 0.614 0.609 6.5 0.797 0.756 4 5.25
Phi-mini 0.540 0.612 7 0.678 0.708 8 7.5
Phi-mini-V 0.551 0.613 6 0.703 0.714 6 6

Table 3: Recognition & Differentiation Accuracy with with Sentence-BERTw/Cosine Similarity-
based distractors. OaR = Overall rank

These results confirm that performance trends are robust to the choice of negative-sampling strategy.426

VLMs again lead across both Recognition and Differentiation, GPT-4o-Vision ranking highest overall.427

ChatTS-14B continues to outperform its base LLM (Qwen-14B), underscoring the benefit of temporal428

specialization, while smaller open models show limited gains from metadata.429

5.5 Implementation Details430

Experiments are run through the OpenAI GPT-4o API and model inference endpoints for Qwen and431

Phi and ChatTS models. Batching is used where possible to minimize API overhead. Inference is432

parallelized across NVIDIA A6000 GPUs on UVA’s Rivanna HPC cluster for models requiring local433

deployment. Each experiment is repeated with both distractor sampling methods to ensure robustness434

of results.435
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