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Abstract

In Neonatal Intensive Care Units (NICUs) heart-rate monitoring produces continu-
ous time-series signals that, combined with clinical metadata, are critical for early
warning and decision support. Traditional statistical models cannot not effectively
incorporate textual inputs, leaving clinical information unused in prediction. Recent
advances in multimodal language models (LMs) enable aligning temporal signals
with textual clinical metadata. We propose a two-step framework to test whether
combining numerical time-series and clinical text yields better predictions, by: first,
testing LMs’ recognition and differentiation capabilities of clinical descriptions
tied to temporal and visual properties of NICU heart rate signals; second, evaluat-
ing the transfer of this ability to a downstream clinically significant task of 7-day
mortality prediction . Results show that descriptive performance strongly correlates
to mortality prediction accuracy, with patient metadata and clinical descriptions
boosting outcomes, especially for larger models. Vision-Language Models (VLMs)
perform best overall, while specialized Time Series Language Models (TSLMs)
consistently surpass their base large language models (LLMs). Overall our work
provides (1) a controlled evaluation framework linking time series understanding
to clinically meaningful downstream tasks, (2) quantification of the added value of
metadata and descriptions, and (3) evidence that aligning time series with linguistic
understanding is transferable to high-stakes clinical tasks.

1 Introduction

Continuous physiological monitoring in neonatal intensive care units (NICUs) produces rich streams
of time-series signals that, when combined with patient history, are critical for early warning systems
and clinical decision support [} [2} 3 |4]. Traditionally, most work with NICU data has relied on
numerical features processed through conventional machine learning or statistical models [3 6} [7,
8,19, 110]. These approaches, however, have largely ignored the role of textual inputs because such
methods could not directly incorporate text.

Recent advances in LLMs and, more specifically, TSLMs [[11} 12} [13} [14} [15} [16] now make it
possible to align temporal signals and patient metadata (e.g., demographics, clinical history) with
clinical descriptions (e.g., noting patterns such as “low variability” or “recurrent bradycardia™). This
shift introduces new opportunities for text-conditioned time-series analysis. Despite growing interest
in LLMs, VLMs and TSLMs, we still lack systematic evidence on whether aligning NICU heart
beat time series with interpretable, human-readable clinical descriptions and the addition of patient
metadata improves performance on downstream clinical tasks.

We study this question using a large NICU heart-rate dataset from UVA Hospital comprising 36k+
recordings[17], each a sequence of 300 timesteps at 2-second intervals, with associated patient
metadata (e.g., gestational age, delivery type, etc.) and natural-language clinical descriptions of
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time-series morphology (variability, and clinical events such as bradycardia). The 7-day mortality
label is highly imbalanced (278 deaths vs. 36,401 survivors), representative of a real world clinical
distribution.

Our investigation includes LMs across 3 modalities — LLMs, VLMs and TSLMs and proceeds in two
cascading steps:

1. Experiment 1: Evaluates LMs’ descriptive understanding through two tasks. Task 1: Recognition
asks models to decide whether a given description is valid for a time series, framed as a True/False
classification problem. Task 2: Differentiation requires models to select the correct description
from one true option and three distractors, posed as a multiple-choice problem. This yields a
proxy for “clinical time-series understanding."

2. Experiment 2: Tests whether the understanding of the time series heart rate data transfers to a
clinically meaningful downstream endpoint of 7-day mortality prediction under six input-output
conditions.

This design lets us test two central hypotheses: Ranking Consistency: Model performance on
descriptive tasks (recognition and differentiation) is predictive of performance on downstream
mortality prediction. Contextual Enrichment: Performance improves monotonically as additional
context is provided—moving from time series alone to combinations with patient metadata and
clinical descriptions.

In this work, we make three main contributions. First, we introduce a two-step evaluation: description
recognition and differentiation as a proxy for time-series understanding, and a downstream test on
real NICU mortality prediction. Second, we measure the added value of patient metadata and clinical
descriptions—both separately and together—within a controlled experimental framework. Third,
we show that stronger descriptive understanding in Experiment 1 translates into better mortality
prediction in Experiment 2, providing evidence that the ability to align time series with language is a
transferable capability for high-stakes clinical tasks.

2 Experimental Set-Up

2.1 Experiments
2.1.1 Experiment 1: Descriptive Understanding

In the first step of experiments, we propose two tasks that capable time-series reasoning models
should be able to perform. We evaluate 8 state-of-the-art LMs on their ability to recognize clinical
time-series descriptions of NICU patient heart rates under two input conditions: with and without
patient metadata. These tasks are formulated as Question—Answering tasks, where models are given
time series and asked to recognize or differentiate between correct and incorrect descriptions.

Description Recognition (Task 1) Given a NICU heart rate time series and an accompanying clinical
description, a model must determine whether the description is valid. We format this as a True/False
task and design the prompt p; to encourage f(z;,d;) € {“True”, “False”}. Because our datasets
do not contain “incorrect” (False) time series and description pairs naturally, we obtain them by
negative sampling from within our dataset. We use two methods to ensure the robustness of our
benchmark to the choice of sampling method. One method assesses the similarity of captions, while
the other assesses the similarity of time series. In all cases, we select the most dissimilar option as the
incorrect description while ensuring it is drawn from a time series with the opposite clinical outcome.
Appendix [5.2] provides further details about our method for selecting incorrect options.

Description Differentiation (Task 2) Given a time series x;, the model must select the correct
description d; from a set of four options {d;,d;, dj,d;}. This is posed as a multiple-choice task,
with the prompt p; formatted to present the options and elicit a letter-valued prediction f(x;,p;) €
{A, B, C, D}, in which each letter corresponds to a description option. A prediction is correct if it
corresponds to the index of the true description d;. As in Task 1, incorrect options are generated by
sampling the top three most dissimilar descriptions from the dataset, using both negative sampling
methods. Note, for both Tasks 1 and 2, we also run parallel experiments in which models are provided
with additional patient metadata as context alongside the time series.
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2.1.2 Experiment 2: Mortality Prediction

The second step evaluates whether the descriptive understanding measured in Experiment 2 transfers
to a downstream task of clinically meaningful endpoint: 7-day mortality prediction. We also test the
effect of ground truth clinical descriptions and patient metadata on prediction accuracy. We formulate
this as a binary classification task, where models predict whether an infant dies (1) or survives (0).
Building on the proxy of time-series understanding from recognition and differentiation, we test how
different combinations of input signals (heart rate time series, metadata, and ground truth clinical
descriptions) affect downstream predictive performance.

We design six experimental setups:

1. TS(E2.1): Given NICU heart-rate time series alone — predict 7-day mortality.

2. TS—Desc(E2.2): Given TS, first generate a brief description, then based on the description predict
7-day mortality.

3. TS+Desc(E2.3): Given TS with a brief ground truth clinical description — predict 7-day mortality.

4. TS+Meta(E2.4): Given TS with patient metadata (e.g., gestational age, delivery type) — predict
7-day mortality.

5. TS+Meta—Desc(E2.5): Given TS and metadata, first generate a brief description, then based on
the description predict 7-day mortality.

6. TS+Meta+Desc(E2.6): TS+Meta+Desc. Given TS with metadata and a brief ground truth clinical
description — predict 7-day mortality.

2.2 Models

We evaluate four LLMs, three VLMs, and one time series—language model (TSLM) in both experi-
ments. This includes proprietary models and public models that range from 4.2B to 14B parameters.
LLMs: GPT-40 [18],Phi-3.5-Mini-Instruct [19], Qwen2.5-14B-Instruct-1M [20], and Qwen2.5-
14B-Instruct-1M [20]. We convert time series to strings of comma-separated values, following
prior works [21}22]. VLMs: We evaluate GPT-40-Vision [18], Qwen2.5-VL-7B-Instruct [23]], and
Phi-3.5-Vision-Instruct [19]. Time series are represented as matplotlib-rendered plots. TSLMs:
We evaluate ChatTS-14B [12]], which operates directly on numerical vectors.

2.3 Metrics

In Experiment 1, Recognition and Differentiation are classification tasks with balanced datasets,
so we measure Accuracy. For Experiment 2, since the dataset is highly imbalanced, we measure
Weighted F1-Score.

3 Results

Models Recognition Differentiation OaR
TS TS + Metadata Rank TS TS + Metadata Rank

GPT-40 0.567 0.640 2 0.944 0.971 2 2
GPT-40-V 0.604 0.667 1 0.957 0.983 1 1
Qwen-14B 0.540 0.612 4 0.814 0.852 3.5 3.75
ChatTS-14B  0.545 0.587 3.5 0.821 0.776 3.5 3.5
Qwen-7B 0.530 0.520 6.5 0.782 0.698 6.5 6.5
Qwen-7B-V  0.544 0.553 4.5 0.793 0.721 5 475
Phi-mini 0.506 0.518 8 0.765 0.667 8 8
Phi-mini-V 0.529 0.529 6.5 0.771 0.714 6.5 6.5

Table 1: Recognition & Differentiation Accuracy with DTW-based distractors. OaR = Overall rank

We first compare all models on Recognition and Differentiation tasks. Models that fail to produce
outputs in the required format are counted as errors, which can reduce accuracy. To highlight general
trends, we also report each model’s average rank across both tasks and input settings Table[1} Overall,
VLMs consistently outperform their text-only LLM counterparts, with GPT-40-Vision emerging as
the best-performing model across all settings. This advantage is expected, as clinical descriptions
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depend heavily on visual properties of the time series. Among LLMs, GPT-4o is the strongest,
ranking second overall behind its vision-enabled variant. Scaling laws hold: larger models such
as Qwen-14B outperform Qwen-7B which surpasses Phi-mini. Notably, ChatTS-14B consistently
outperforms its base LLM (Qwen-14B), underscoring the value of architectures tuned specifically to
temporal data.

Adding metadata consistently improves Recognition accuracy. However, for Differentiation tasks,
metadata provides benefits only to the strongest models, while smaller models often perform worse
with additional context. This could be because smaller open source models might not have been
exposed to such clinical and demographic information in its’ training thus fail to exploit it in a
zero-shot setting. Note, all results shown here use distractors selected via DTW distance, which
identifies the distractors by finding the most dissimilar time series. The same performance trends
hold when distractors are instead selected using Sentence-BERT embeddings with cosine similarity,
which identifies the most dissimilar clinical descriptions directly as shown in Table 3]

Models E2 E2 E2 EZJE] E2 E2@ Rank

GPT-40 0.982 0.952 0.939 0.984 0.943 0.944 1.5
GPT-40-V 0.983 0.958 0.938 0.986 0.943 0.941 1.5
Qwen-14B 0.660 0.775 0.765 0.742 0.817 0.793 4.5
ChatTS-14B 0.980 0.950 0.909 0.984 0.928 0914 2.833
Qwen-7B 0.607 0.662 0.648 0.629 0.727 0.743 5.833
Qwen-7B-V 0.432 0.868 0.701 0.733 0.906 0.896 4.667
Phi-mini 0.349 0.464 0.430 0.360 0.480 0.470 8
Phi-mini-V 0.363 0.478 0.431 0.393 0.564 0.619 7

Table 2: Weighted F1 for 7-day mortality prediction across six input settings (E2.1-E2.6)

Experiment 2 evaluates whether descriptive understanding transfers to the clinically meaningful
endpoint of 7-day mortality prediction. Results across the six input—output conditions are shown
in Table[2] We find the relative ranking of models in mortality prediction is highly correlated their
ranking in Experiment 1. Overall, VLMs consistently outperform their LLM counterparts. GPT-
40-Vision remains the top-performing model, followed closely by GPT-40, confirming that strong
descriptive understanding is predictive of downstream clinical performance. Similarly, ChatTS-14B
again outperforms its base LLM (Qwen-14B), reinforcing the benefit of temporal specialization
observed in Experiment 1. Similarly, scaling laws uphold where in smaller open-source LLMs and
VLMs under-perform. This supports our first hypothesis: descriptive tasks serve as a reliable proxy
for downstream clinical utility.

Performance generally improves as additional context is provided. Moving from raw time series alone
to TS+Patient Metadata or TS+Patient Metadata+Clinical Description yields steady gains. Notably,
metadata consistently provides the largest boost to mortality prediction, while descriptions alone
provide smaller but still positive improvements, as, the clinical endpoint encourages models to exploit
demographic and contextual signals effectively. However, smaller models benefit less from context,
consistent with their limited capacity to integrate heterogeneous inputs in a zero-shot setting. Together,
these results demonstrate that descriptive ability the evaluated Experiment 1 transfers directly to
improved clinical prediction in Experiment 2. Models that best aligned time series with clinical
language also achieved the highest accuracy on mortality, and performance improved monotonically
as additional contextual inputs were introduced. This provides strong evidence that the ability to link
heart rate temporal signals with interpretable clinical descriptions is not only measurable but also
clinically useful.

4 Conclusion

This work introduces a controlled two-step framework linking descriptive understanding of NICU
heart-rate time series to clinically meaningful outcomes. Across both experiments, we find that LMs
capable of accurately identifying clinical descriptions also achieve stronger performance on 7-day
mortality prediction, validating descriptive tasks as a reliable proxy for downstream utility. VLMs
consistently lead, while TSLMs outperform their base LLMs, underscoring the value of temporal
alignment. Performance further improves with patient metadata and clinical descriptions, confirming
the additive benefit of contextual signals. Together, these findings provide evidence that aligning
time-series data with language not only advances interpretability but also translates into improved
predictions in high-stakes clinical settings.
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Dataset Details

We use a publicly dataset of daily heart beat time series observations from 2,964 infants admitted to
the University of Virginia NICU between 2012-2016 [24} 25]], consisting of 10-minute HR segments
(Iength 300, sampled every 2s). The processed dataset contains 36,679 series, including 2,147
bradycardia events (prevalence 0.06), defined as HR <100 bpm up to 300s [26]. A valid event
requires a negative drop rate prior to onset and a positive recovery afterward. Each time series is
annotated with one of two event labels — “No events” or “Bradycardia events happened” — and one
of two variability labels — “High variability” or “Low variability.” These labels are provided as input



324
325

326

327

328

329

330

331

332

333

334

335

336

338

339

340
341
342

343

344

346
347

349

350
351
352
353
354
355
356

357

358

359
360

362

363

364

365
366
367

to the GPT-40 API, which generates corresponding clinical, human-readable descriptions of the time
series.

The patient metadata includes the following variables:

* EGA - Estimated gestational age in weeks
* BWT - Birth weight in grams

* Male — Sex

» Apgarl — Apgar 1-minute score

* Apgar5 — Apgar 5-minute score

* Vaginal — Vaginal delivery

* C-section — Cesarean delivery

* Steroids — Antenatal steroids

* InBorn — Born in hospital

* BirthHC - Head circumference at birth
* Multiple — Multiple births

* Black, Hispanic, White — Race

* MaternalAge — Maternal age in years

These metadata fields are preprocessed and then passed through the GPT-40 API to generate concrete
textual representations of patient history and demographics, which we collectively refer to as patient
metadata.

5.2 Selecting Distractors

To support both True/False and Multiple Choice formats in the Recognition and Differentiation tasks,
we construct contrastive examples by selecting negative descriptions using four distinct strategies:

» Caption-based similarity (Sentence-BERT): We compute cosine similarity over Sentence-
BERT embeddings and select descriptions that are semantically dissimilar to the reference.

* Dynamic Time Warping (DTW): We measure alignment costs between time series and
choose those with the highest DTW distance from the input.

The Sentence-BERT strategy operates over natural language annotations; while the DTW distance
directly in time series space. When multiple annotations exist for a given time series, we randomly
sample one for evaluation. Negative samples are selected to be maximally dissimilar, simplifying the
contrastive setup and providing an upper-bound estimate of model performance. This design ensures
that the benchmark evaluates models’ ability to reject clearly incorrect options before advancing to
more fine-grained reasoning. Additional check is implemented that all distractor time series has the
opposite patient outcome.

5.3 Prompt Details
Experiment 1: Task 1: Only TS

"You are given a neonatal heart-rate time series (bpm, 2s sampling) and a candidate natural-language
description. Decide whether the description accurately and adequately reflects salient properties of
the series. Answer with ONLY "YES’ or 'NO’.

Time series: row[ heart rate’]
Clinical Description: row[’desc str’]"
Experiment 1: Task 1: TS+Metadata

"You are given neonatal patient information including demographics, perinatal metadata, and a
heart-rate time series (bpm, 2s sampling). Based on the metadata and the time series, decide whether
the candidate description accurately and adequately reflects salient properties of the series and patient
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context such as overall heart rate level, variability, trends, spikes/dips, and clinically relevant context).
Answer with ONLY "YES’ or 'NO’.

Time series: row[ heart rate’]
Metadata:row[ patient metadata’]
Clinical Description: row[’desc str’]"
Experiment 1: Task 2: Only TS

"You are given neonatal patient information including demographics, perinatal metadata with neonatal
heart-rate time series (bpm, 2s sampling) and four candidate natural-language descriptions. Only
ONE description is correct; the other three are incorrect. Choose the option that best represents the
time series. Answer ONLY with a single letter A, B, C, or D.

Time series: row[ heart rate’]
Options:row[ options’]"
Experiment 1: Task 2: TS+Metadata

"You are given neonatal patient information including demographics, perinatal metadata, with
neonatal heart-rate time series (bpm, 2s sampling) and four candidate natural-language descriptions.
Only ONE description is correct; the other three are incorrect. Based on the metadata and the time
series Choose the option that best represents the time series. Answer ONLY with a single letter A, B,
C, or D.

Time series: row[ heart rate’]
Metadata:row[ patient metadata’]
Options:row[ heart rate’]"
Experiment 2.1

"You are given NICU time-series data. Predict whether the infant will die in 7 days,or whether the
infant will survive. Respond with **only** a single digit: ‘1° if the infant will die in 7 days, or ‘0° if
the infant will survive."

Heart rate data: row[ heart rate’]"
Experiment 2.2

"You are given NICU time-series data. First, generate a brief natural language description of the heart
rate pattern you observe. Then, based on that description, predict whether the infant will die in 7 days
(**1**) or survive (**0**). "Respond with only the description followed by the single digit decision.

Heart rate data: row[ heart rate’]"
Experiment 2.3

"You are given NICU time-series data and a brief clinical description of the time series. Predict
whether the infant will die in 7 days,or whether the infant will survive. Respond with **only** a
single digit: ‘1° if the infant will die in 7 days, or ‘0° if the infant will survive.

Heart rate data: row[ heart rate’]
Clinical description: row[ clinical description’]"
Experiment 2.4

"You are given NICU time-series data and patient metadata. Predict whether the infant will die in 7
days,or whether the infant will survive. Respond with **only** a single digit: ‘1° if the infant will
die in 7 days, or ‘0° if the infant will survive.

Heart rate data: row[ heart rate’]
Patient metadata: row[ patient metadata’]"

Experiment 2.5
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"You are given NICU time-series data and patient metadata. First, generate a brief natural language
description of the heart rate pattern you observe. Then, based on that description, predict whether the
infant will die in 7 days (¥*1**) or survive (¥**0**). "Respond with only the description followed by
the single digit decision.

Heart rate data: row[ heart rate’]
Patient metadata: row[ patient metadata’]"
Experiment 2.6

"You are given NICU time-series data, patient metadata and a brief clinical description of the time
series. Predict whether the infant will die in 7 days,or whether the infant will survive. Respond with
**only** a single digit: ‘1° if the infant will die in 7 days, or ‘0° if the infant will survive.

Heart rate data: row[ heart rate’]
Patient metadata: row[ patient metadata’]

Clinical description: row[’clinical description’]"

5.4 Additional Results

Models Recognition Differentiation OaR
TS TS + Metadata Rank TS TS + Metadata Rank
GPT-40 0.669 0.631 2.5 0.865 0.872 2 2.25
GPT-40-V 0.671 0.639 1 0.887 0.904 1 1
Qwen-14B 0.623 0.619 4.5 0.743 0.788 4.5 4.5
ChatTS-14B  0.638 0.638 3 0.786 0.793 3.5 3.25
Qwen-7B 0.647 0.607 5.5 0.694 0.712 7 6.25
Qwen-7B-V  0.614 0.609 6.5 0.797 0.756 4 5.25
Phi-mini 0.540 0.612 7 0.678 0.708 8 7.5
Phi-mini-V 0.551 0.613 6 0.703 0.714 6 6

Table 3: Recognition & Differentiation Accuracy with with Sentence-BERTw/Cosine Similarity-
based distractors. OaR = Overall rank

These results confirm that performance trends are robust to the choice of negative-sampling strategy.
VLMs again lead across both Recognition and Differentiation, GPT-40-Vision ranking highest overall.
ChatTS-14B continues to outperform its base LLM (Qwen-14B), underscoring the benefit of temporal
specialization, while smaller open models show limited gains from metadata.

5.5 Implementation Details

Experiments are run through the OpenAI GPT-40 API and model inference endpoints for Qwen and
Phi and ChatTS models. Batching is used where possible to minimize API overhead. Inference is
parallelized across NVIDIA A6000 GPUs on UVA’s Rivanna HPC cluster for models requiring local
deployment. Each experiment is repeated with both distractor sampling methods to ensure robustness
of results.
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