
Door(s): Junction State Estimation for Efficient
Exploration in Reinforcement Learning

Benjamin Fele, Jan Babič
Jožef Stefan Institute

Jamova cesta 39, 1000 Ljubljana, Slovenia
{benjamin.fele, jan.babic}@ijs.si

Abstract: Exploration is one of the important bottlenecks for efficient learning in
reinforcement learning, especially in the presence of sparse rewards. One way to
traverse the environment faster is by passing through junctions, or metaphorical
doors, in the state space. We propose a novel heuristic, Door(s), focused on
such narrow passages that serve as pathways to a large number of other states.
Our approach works by estimating the state occupancy distribution and allows
computation of its entropy, which forms the basis for our measure. Its computation
is more sample-efficient compared to other similar methods and robustly works
over longer horizons. Our results highlight the detection of dead-end states, show
increased exploration efficiency, and demonstrate that Door(s) encodes specific
behaviors useful for downstream learning of various robotic manipulation tasks.
The code is available at https://www.github.com/benquick123/doors.

Keywords: Reinforcement learning, Intrinsic motivation, Junction States, Infor-
mation theory, Curriculum learning, Exploration

1 Introduction

One of the key research problems in reinforcement learning (RL), particularly in scenarios with
sparse rewards, is efficient exploration [1] and subsequent learning [2]. The core issue lies in the
scarcity of feedback signals, which makes it challenging for agents to discover rewarding trajectories
and learn effective policies. To address this bottleneck, various strategies have been developed to
encourage exploration and accelerate learning in such environments [3].

Among existing solutions, intrinsic motivation (IM) has emerged as a prominent paradigm, provid-
ing internal reward signals to guide exploration [1, 4]. It includes novelty-based methods, which
incentivize visiting less-explored states [5, 6, 7, 8], and information-theoretic approaches, which
often maximize mutual information between states and actions, or states and skills [9, 10, 11, 12].
These techniques have solved hard-exploration problems in video games [7, 13, 14] and robotic con-
trol [10, 12, 15]. However, they also show drawbacks. For instance, count-based methods [5, 6, 7, 8]
neglect the environment’s structure, and can be inefficient compared to the utilization of additional
information. Empowerment [9, 10, 16], a measure of an agent’s control over the environment is theo-
retically capable of handling long horizons, but requires accurate modeling of long action sequences
and their consequences in the environment, which remains an open problem.

To overcome these limitations, we propose a novel heuristic called Door(s). Our approach identifies
junction states – metaphorical doors or narrow passages in the state space – granting access to many
other states. The concept of a “door” thus relates to a junction state acting as a gateway or key
transition point within the state space. Example heatmaps produced by our heuristic can be seen
in Figure 1a. By prioritizing traversal through these junction states, our method facilitates faster
exploration of the environment, especially compared to focusing on all parts of the environment

9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.

https://www.github.com/benquick123/doors

a)

2.5

0.0

2.5

 (r
ad

)

b) Emp. (H=8, T=10k)

1.2

1.4

c) Emp. (H=200, T=10k)

2

3

0 20000 40000
steps

5

10

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n f)

No reward
Empowerment (H=8)
Door(s) (H=200)

0.0 0.5 1.0
5 0 5

 (rad/s)

2.5

0.0

2.5

 (r
ad

)

d) Emp. (H=200, T=1M)

1.125

1.150

1.175

5 0 5

 (rad/s)

e) Door(s) (H=200, T=10k)

1.5

2.0

2.5

Figure 1: (a) Heatmaps showing the values of Door(s) in various grid-world environments. Gray
color represents walls through which traversal is not possible. Our junction state heuristic focuses
on narrow passages between parts of the state space and prioritizes centrality when multiple are
available. The plots are normalized for ease of presentation. (b–e) Empowerment heatmaps for the
Pendulum-v1 environment, and the result of our method. Variable H denotes horizon length, and
T denotes the number of time-steps available for model training. Plots show angular velocity and
angle of the pendulum on the X- and Y-axis, respectively. Our approach (e) achieves comparable
results to (d) using significantly less data. (f) Ratio between standard deviation and mean of state
visitation counts (i.e. Coefficient of Variation) with respect to the number of time-steps taken in the
environment when training without, or only with heuristic rewards in the Pendulum-v1 environment.
Lower is better. Maximizing Door(s) leads to greater uniformity of visited states.

without prior bias. Designed to capture the degree to which a state acts as a junction, it relates to
one of the characteristics of empowerment at long horizons [17].

Unlike empowerment, which relies on potentially challenging long-horizon environment model pre-
dictions, our method simplifies the estimation process by approximating the likelihood of reaching
future states without taking into account the actions taken in the process. In addition to providing
a theoretical framework, we also provide implementation details enabling our approach to scale to
continuous and high-dimensional state spaces. We demonstrate i) the characteristics of our junction
state measure in inverse pendulum, maze, and robotic manipulation experiments; ii) showcase the
role of long-horizons in junction state estimation; iii) present findings about exploration efficiency;
and iv) showcase the usefulness of Door(s) for mastering downstream robotic manipulation tasks.

2 Motivation

The present paper is largely motivated by practical drawbacks of empowerment [9]. As stated by
Jung et al. [17], empowerment can model gateway states given a sufficiently long horizon, in addition
to providing an evaluation of an agent’s control from these states. However, accurately modeling
states st+H resulting from the environment model m(st, at, . . . , at+H), on which empowerment
depends, remains an open problem. We demonstrate this in the Pendulum-v1 environment [18] in
Figure 1b–e, where it can be seen that longer horizons require a larger number of environment
transitions with the state-of-the-art empowerment approximation approach [10]. We attribute the
advantage of Door(s) to the fact that our method works without requiring knowledge of the se-
quences of actions that lead to particular states. Figure 1d–e also highlights the similarity between
long-horizon empowerment and Door(s), although note the smaller range of the former.

Furthermore, the reasoning behind modeling junction states lies in the insight that, when used as
starting points for exploration, they may lead to a larger number of diverse states in the future. This
is exemplified in Figure 1f, where optimizing only over Door(s) leads to greater uniformity of
state visitation counts compared to empowerment or maximum entropy learning conducted with the
Truncated Quantile Critics RL algorithm [19].

Even though Door(s) and empowerment show some empirical similarities, our approach is tailored
specifically for junction state estimation. Its results therefore differ from empowerment at small

2

horizons, and the lack of action dependence limits its ability to model how much control the agent
has over future states. Since the heuristic is entropy-based, it is also best suited for environments
with limited stochasticity.

3 Related Work

Intrinsic motivation (IM). Intrinsic motivation (IM) aims to address the limitations of purely
extrinsic reward-driven RL, particularly in sparse reward environments, by providing internal re-
ward signals that encourage exploration and skill acquisition [4]. A number of both predictive and
information-theoretic approaches have been proposed in the past, where notions of learning progress,
novelty, competence, and familiarity have been formalized in various ways [4].

Count-based methods aim to search the state space as uniformly as possible, rewarding unexplored
areas in the process. Bellemare et al. [5] formalized this framework as part of IM, and other ap-
proaches extended the idea to novelty computation via changes in state embeddings [6, 7], or to
continuous state spaces via elliptic bonuses [8]. Instead of seeking to explore the environment with-
out bias towards specific parts of the state space, our approach prioritizes exploration that potentially
leads to many other states by leveraging the knowledge about the environment structure.

Information-Theoretic IM. Information theory offers a powerful framework for formalizing IM,
revisiting concepts such as surprise, novelty, and skill learning [1]. This overview focuses on vari-
ational approaches, which approximate mutual information between states and actions via lower
bounds and provide a measure of agent control over environment [16, 20, 21]. Mutual information
has also been optimized for skill discovery and transfer learning in [11, 12, 22, 23]. Approaches
outside of this scope use an upper bound on information gain to estimate transition novelty with-
out targeting specific regions of the state space [24], or optimize global rather than state-specific
visitation entropy [25]. Unlike these methods, Door(s) does not estimate mutual information; it
provides a direct, policy-agnostic heuristic computing the entropy of states reachable across mul-
tiple horizons, yielding a localized signal for junction state detection. Hazan et al. [26] provide
theoretical guarantees for uniform exploration but their implementation is limited to discrete states.
Controllability-Aware Unsupervised Skill Discovery [27] highlights states similar to our approach
in object manipulation tasks, but contrary to our work focuses on controllability of the environment.

Empowerment, an important concept related to our work, provides a principled framework for the
estimation of agent’s control over the environment [9]. While our approach does not exploit vari-
ational bounds, many approaches for the estimation of empowerment do [16, 20, 28]. The current
state-of-the-art method for its approximation by Zhao et al. [10] estimates the capacity of the Gaus-
sian channel and enables learning of various tasks involving stabilization, even from image data.
The junction state measure we present focuses on a potentially informative signal, also captured by
empowerment, which has been difficult to compute over long horizons until now.

Curriculum Learning (CL). Closely related to IM are approaches from CL that focus on accelerat-
ing training by decomposing a main task into a sequence of subtasks of increasing difficulty [2, 29].
A key aspect of CL is the design of the curriculum, which involves deciding which tasks to present
to the agent and in what order [29]. Multiple ways to facilitate curricula exist, for example by pro-
gressively changing the initial or goal states, environment characteristics (e.g., object colors, number
of obstacles), or reward functions [2]. Whereas many of the aforementioned works from IM pro-
vide ways of determining subtasks in the environment [9, 11, 12], other approaches from CL focus
on their ordering [30, 31, 32, 33, 34]. Our approach falls into the former group, where Door(s)
provides a natural way of determining potentially useful behaviors, the knowledge of which can be
transferred to solve another task.

4 Proposed Approach

In this section, we outline both the theoretical formulation of Door(s) and an implementation that
makes our approach computationally feasible.

3

4.1 Problem Formulation

In a Markov Decision Process MDP = (S,A, r, p, γ), where S and A are state and action spaces,
r(s, a) is a reward function, p(s′ | s, a) characterizes state transition probabilities, and γ ∈ [0, 1) is a
discount factor prioritizing future rewards [35], r(s, a) can be formulated to promote the visitation of
states that lead to the highest number of other states in a specified time-horizon H . In this paper, we
introduce a heuristic reward function, Door(s), that serves this purpose. The reward function is used
to find a policy π(s, a) that maximizes the cumulative return R(s) =

∑T
t=0[γ

tr(st, at) | s0 = s].
This policy can be used as a guide policy πg in a downstream learning setting to accelerate new skill
acquisition, similarly to the setup in [36].

4.2 Door(s) Formalization

We are interested in quantifying the dispersity of visited states s′ over a time-horizon H , given the
starting state s. First, we define an environment model ρ determining the t-step transition probability
from state s to s′:

ρ(s
t−→ s′) =

∑
x∈S

[
ρ(s

t−1−−→ x)ρ(x
1−→ s′)

]
. (1)

This is a recursive definition, where for t = 1, ρ(s 1−→ s′) = p(s′ | s). The latter can be derived from
state transition probabilities p(s′ | s, a) by marginalizing over all actions.

Next, we define a state occupancy distribution Ψ(h)(s −→ s′) determining the fraction of time h
spent in state s′ whenever the trajectory starts from s:

Ψ(h)(s −→ s′) =
1

h

h∑
t=1

[
ρ(s

t−→ s′)
]
. (2)

Notice that the above distribution tends to the stationary distribution as h −→ ∞ for MDPs where
such a limiting distribution exists [37]. This means that Ψ(h)(s −→ ·) will yield similar distributions
for many or all (in the case the stationary distribution exists) starting states s when computed for
large enough h. This is an undesirable characteristic, since we want to enable our junction state
measure to effectively discriminate between states. We take this into account in the definition of
Door(s) below.

With all necessary components introduced, we now define our junction state measure. We compute
the value of state s as the average entropy of Ψ over multiple horizons h:

Door(s) =
1

H

H∑
h=1

H(h)(S | s) = 1

H

H∑
h=1

[
−

∑
s′∈S

Ψ(h)(s −→ s′) logΨ(h)(s −→ s′)

]
, (3)

where H(h) represents the entropy of Ψ(h) for a fixed starting state s. Variable H is a hyperparame-
ter and denotes the maximum horizon of our measure. Intuitively, the Equation 3 yields high values
for states that on average have high occupancy distribution entropies; this corresponds to visiting
many states. Averaging over multiple horizons h is intended to ease the aforementioned issue of
Ψ(h) converging to similar distributions under large h, while also capturing the changing underly-
ing dynamics at smaller h. We further justify this in the Appendix A. The above equations work
with probability distributions over discrete variables, but in the following, we propose a practical
implementation working in continuous state spaces.

4.3 Implementation

The above formulation bears multiple issues that make the computation of Door(s) intractable
for large or continuous state spaces S and long horizons H . Namely, the distributions ρ(s

t−→ s′)
and Ψ(h)(s −→ s′) are generally unknown and have to be estimated from data, and it is not feasi-
ble to compute the entropy exactly for an arbitrary continuous probability distribution. These two
points are addressed below, while some additional computational optimizations are provided in Ap-
pendix B. Appendix C highlights the quality of results from our approximation method.

4

4.3.1 Approximating Ψ(h)

Instead of working with both the ρ(s
t−→ s′) and Ψ(h)(s −→ s′), we simplify our approach and only

approximate the latter. We do so by using a Mixture Density Network (MDN) [38], which allows us
to obtain parameters of one or more multivariate Gaussian distributions approximating the data. We
use three fully connected neural networks to obtain the distribution weighting parameters α ∈ Rk

>0

such that
∑

i αi = 1, distribution means µ ∈ Rk×d, and a covariance matrix Σ ∈ Rk×d×d
>0 . Variable

k denotes the number of components, and d denotes the dimensionality of the state space. Neural
networks approximating these parameters depend both on the states s and horizon h. We indicate
this dependency by writing s and h as inputs of a function, i.e., α(s, h), µ(s, h), and Σ(s, h).

In line with the original MDN publication [38], we define the likelihood of being in the state s′

within the horizon h when starting from the state s as:

Ψ̂(h)(s −→ s′) =

k∑
i=1

[αi(s, h) · ϕ(s′, µi(s, h),Σi(s, h))] , (4)

where ϕ denotes a shorthand notation for the computation of the Gaussian distribution likelihood
given a sample state s′ together with distribution parameters µi and Σi, and is computed in closed
form [38]. The loss we minimize for fitting the neural networks approximating the MDN parameters
is then:

L = −E(s,h,s′)∼D

[
log Ψ̂(h)(s −→ s′)

]
, (5)

where D is the dataset of collected trajectories. It is important to note how exactly s, h and s′

are sampled to ensure the MDN represents the state occupancy distribution Ψ as defined above.
First, a trajectory of length TE consisting of visited states is selected from the dataset. Index i
of the state s is obtained by sampling i ∼ U(0, TE − 1), followed by obtaining the horizon h ∼
U(1,min(H,TE − i)), where U(·, ·) represents uniform sampling from a specified interval. Finally,
state s′ is obtained by sampling its index uniformly from the interval [i + 1, i + h]. Acquiring s, h
and s′ this way increases sample efficiency by allowing us to reuse every trajectory multiple times
and lessens the dependence on the trajectory length TE relative to the horizon H . MDN training
data is obtained through unsupervised data collection with a random exploration policy.

4.3.2 Entropy Computation

Whenever the approximated distribution is Gaussian, it allows for easy computation of its en-
tropy [39]. However, when a mixture is involved, the entropy has to be approximated. There are
various ways of estimating the entropy of a Gaussian mixture, and we find that a simple weighted
average of the component entropies is sufficient for our purpose [39]:

Ĥ(h)(S | s) =
k∑

i=1

[αi(s, h) · Hi] . (6)

Above, Hi =
1
2 (log |Σi(s, h)|+ d · log 2πe), i.e. a closed-form expression for the entropy of the

i-th component of the mixture, where | · | denotes the matrix determinant.

5 Experiments

In this section, we present the experiments and results showcasing the characteristics of Door(s) in
comparison to other baselines. We set out to answer: Which states does Door(s) assign high values
to?, What are the benefits of long horizons in junction state estimation?, Does optimizing Door(s)
lead to increased exploration?, and Can a prior bias towards junction states accelerate learning of a
downstream task? We conduct our experiments using multiple environments and tasks, and compare
our work to various baselines described below. More implementation details and hyperparameters
are available in Appendix D.

5

5 0 5
x position

2.5

0.0

2.5

y
po

si
tio

n

a) Door(s)

5 0 5
x position

b) Empowerment

5 0 5
x velocity

4

2

0

2

4

y
ve

lo
ci

ty

5 0 5
x velocity

1.6

1.8

2.0

2.2

1.25

1.30

1.35

Figure 2: Comparison between Door(s) and empowerment
for horizon H = 500 in terms of position (top) and velocity
(bottom). Our approach prioritizes movement over standing
still and assigns low values to dead-ends in the maze. Em-
powerment, on the other hand, also recognizes dead-ends
but inconsistently assigns high values to some corner states.

0.0 0.2 0.4 0.6 0.8 1.0
Distance to object (m)

0.1

0.2

0.3

1

2

3

Door(s) (H=32)
Empowerment (H=32)
Empowerment (H=8)

Figure 3: Relationship between dis-
tance to the object and heuristic val-
ues in the FetchPickAndPlace-v4 en-
vironment. Plotted are medians, with
shaded areas showing the 25-th and
75-th percentiles. Higher Door(s)
values at larger distances correspond
to throwing the object. Our junc-
tion state measure captures this, while
empowerment remains low. Short-
horizon empowerment has the weak-
est relation between its value and the
distance to the object.

5.1 Comparison of the Reward Landscapes

Experimental setup. We evaluate Door(s) state valuation in two environments and compare it to
empowerment. PointMaze Large-v3 is an environment consisting of a maze, where the goal is to
move a point mass to various positions [40]. The agent can, given the information about the position
and velocity of the point mass, exert a force on it to perform a movement. We compare the reward
heatmaps using horizon H = 500 in PointMaze Large-v3, where the total episode length is 800
time-steps. Fetch environments, on the other hand, entail robotic manipulation tasks involving a
robotic arm and an object [40]. The agent controls the position and openness of the end-effector,
and receives robotic arm and object positions and velocities, in addition to the desired position of the
object. These environments feature higher, in total 30-dimensional, state spaces. In this section, we
only report results for FetchPickAndPlace-v4, but the findings are also representative of FetchPush-
v4 and FetchSlide-v4. Episode length in this environment is 50 time-steps. We use the environment
with shorter episodes and horizon lengths to showcase the benefit of measuring junction states and
ensuring that the empowerment can reliably converge.

We use the empowerment implementation from Zhao et al. [10] and, as suggested in the original
publication, use an action encoder to ease training over long horizons. In FetchPickAndPlace-v4,
we train empowerment over an 8-step horizon, in addition to providing comparisons for H = 32.
We train the heuristic models in both environments with experience collected over 1M time-steps.

Results. Qualitative results of the heuristics for the PointMaze Large-v3 in Figure 2 show conver-
gence to a reward landscape that rewards high velocities and central positions near maze intersec-
tions. This is in contrast with empowerment, which shows inconsistent results. It does not prioritize
any specific speed of movement, and while it assigns low values to dead-ends, it also unevenly re-
wards some maze corners, while not others. We attribute these findings to the problems associated
with long-horizon training, whereas our method scales successfully.

We use Figure 3 to demonstrate the importance of horizon length for junction state estimation. In this
scenario, we plot the relation between the value of the heuristic and the distance between the end-
effector position. This is the only manipulable part of the environment, so the state values change
more in the object proximity as expected. Figure 3 presents two important experimental results.
First, short horizons are less suitable for capturing junction states due to the values only changing
in direct proximity to the object in addition to exhibiting a smaller range. Second, computing the
degree to which a state is a gateway at H = 32 results in focusing on interaction of the arm with
the object for both Door(s) and empowerment, while only Door(s) captures the potential interest-

6

0.0 0.5 1.0
steps 1e6

100

200

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n

a)

0 2 4
steps 1e5

0

20

40

(S
pa

rs
e)

 R
ew

ar
d

b) Pick and Place

0 2 4
steps 1e5

0

20

40

c) Push

0.00 0.25 0.50 0.75 1.00
steps 1e6

0

10

20

30

d) Slide
No reward/
Vanilla TQC
Count-based
DIAYN
Emp. (H=500/
H=32)
Emp. (H=8)
Door(s)

Figure 4: (a) Comparisons between Door(s) and multiple baselines in terms of mean coefficient
of variation (solid lines) with standard deviations (shaded areas) in the PointMazeLarge-v3 envi-
ronment. For smaller number of time-steps, optimizing Door(s) leads to larger diversity of visited
states, but count-based exploration catches up towards the end of training due to a dynamic reward.
(b-d) Initializing the policy with the agent pretrained to maximize the value of Door(s) significantly
reduces the mean number of steps to convergence in multiple tasks. Empowerment is similar, while
other methods are notably worse.

ingness of states at longer distances. These entail throwing or dropping an object – something that
empowerment, which prioritizes control, does not capture.

5.1.1 State Visitation Distribution

Experimental setup. These experiments are conducted only in the PointMaze Large-v3 environ-
ment due to its low state-space dimensionality, which enables computation of the diversity of visited
states. We use heuristics learned in the previous section with horizon H = 500 and train an agent to
maximize them using the Truncated Quantile Critics (TQC) algorithm [19] over 1M steps. TQC is a
maximum entropy method with a built-in action entropy term that encourages exploration. Along-
side Door(s) and empowerment, we include a count-based baseline [5] encouraging non-biased
environment exploration. Results are averaged over 5 random seeds.

Results. The results from the Figure 1f in the Pendulum-v1 environment are validated in Figure 4a:
with Door(s), the agent starts by exploring the most states as indicated by the coefficient of variation
of state counts [41]. In this environment, optimizing empowerment provides a similar incentive
for exploration to maximum entropy learning with no additional reward. Count-based exploration
continues to increase the diversity of visited states due to its propensity for uniform exploration
towards the end of training, but our method shows a clear advantage at the beginning.

5.1.2 Using Door(s) for pretraining

Experimental setup. These experiments are conducted in the Fetch environments [40], where the
goal is to pick and place, push, or slide an object to a target position. The difference between pushing
and sliding is that the latter requires moving a puck beyond the arm’s reach, while picking and
placing requires grasping. These environments naturally involve gateway states at points of object
interaction. In a similar setup to the previous section, we first train the agent to maximize only the
heuristic reward, and then use transfer learning to a downstream task. Transfer learning is done by
warm-starting the downstream policy with a pretrained one and immediately collecting trajectories
under that policy. Agents are trained for 500k (PickAndPlace-v4, Push-v4) or 1M (Slide-v4) steps.
We compare our method against a sparse-reward baseline without pretraining, and agents pretrained
on short- (H = 8) and long-horizon (H = 32) empowerment [10], a count-based approach [5], and
DIAYN [11]. In the latter, the pretrained discriminator evaluates behavior discriminability in a given
state, providing a potentially informative reward.

Additionally, we also quantitatively evaluate convergence. We log the number of environment steps
required to reach 95% of the maximum or minimum of the monitored performance metrics. Dur-
ing heuristic model learning, we monitor the test set losses, while in pretraining and downstream
learning we monitor the heuristic and main episodic rewards, respectively. We smooth the values
using the exponential moving average. We use 5 random seeds in both stages of pretraining and 10
random seeds in downstream learning.

7

Table 1: Sample efficiency in terms of the number of steps to convergence of various methods.
Both stages of pretraining are conducted on the FetchPickAndPlace-v4 task. We report the mean
number of steps with standard deviations (×105). The values in parentheses indicate the number
of successful runs. DIAYN converges very quickly during pretraining, followed by Door(s). The
latter also provides consistent results in downstream learning, whereas DIAYN does not.

Method Heuristic
learning

Pretraining
w/ heuristic

Downstream learning
Pick-and-place Push Slide

Vanilla TQC / /
2.52± 0.62

(9/10)
2.35± 1.14

(6/10)
3.91± 1.79

(7/10)

Count-based / 1.56± 2.03
1.97± 0.54

(9/10)
3.12± 1.03

(5/10)
4.06± 1.29

(9/10)

DIAYN 0.86± 0.12 0.11± 0.03
n/a± n/a

(0/10)
n/a± n/a

(0/10)
n/a± n/a

(0/10)

Emp. (H = 32) 9.23± 0.16 1.42± 0.22
2.73± 0.95

(6/10)
1.64± 0.48

(9/10)
3.65± 1.05

(10/10)

Emp. (H = 8) 2.39± 0.22 2.36± 1.35
1.45± 0.31

(10/10)
1.80± 0.30

(10/10)
3.24± 0.91

(10/10)

Door(s) (H = 32) 1.19± 0.24 1.26± 0.51
1.35± 0.27

(10/10)
1.74± 0.36

(10/10)
3.38± 1.09

(10/10)

Results. In general, the results from Figure 4b–d can be split into two groups: Door(s) and em-
powerment help with downstream learning due to a useful pretrained policy, while count-based and
DIAYN-based pretraining lead to the same or worse results as with random initialization (Vanilla
TQC). Short- and long-horizon empowerment fare similarly, since the main difference between them
is in the pretraining phases. Notice the consistency of results for our method, whereas using Vanilla
TQC and long-horizon empowerment exhibits relatively larger variances. DIAYN fails to converge
in all experimental runs due to its heuristic reward promoting states away from the object.

Among all baseline methods, Table 1 shows that DIAYN converges fastest in heuristic learning
and pretraining but collapses to trivial behavior. Door(s) is the only method needing little data in
both pretraining stages while staying consistent in downstream learning. Empowerment requires
much more data during heuristic model training, and the main difference between short- and long-
horizons in the second stage of pretraining is that the former takes more steps to converge – likely
due to weaker reward signals around junction states. This highlights the importance of long horizons
in junction state optimization. Door(s) is the most consistent in downstream learning, succeeding
in all experimental runs with the fewest or second-fewest steps to converge. For fair comparison, we
report means and standard deviations of steps to convergence for successful runs only.

Even though training from scratch is faster than transfer learning with both pretraining stages, our
method and some other baselines enable reusable task-agnostic heuristic rewards and pretrained
policies, as long as the environment dynamics stay the same. Following [11] we thus treat the
pretraining steps as “free”. The three training stages could, however, be merged into a single run for
better sample efficiency, which we leave for future work.

6 Conclusion

This paper introduces Door(s), a heuristic for identifying junction states leading to diverse future
outcomes without relying on action-conditioned models. The method is efficient to compute, works
well with long horizons, and scales to continuous state spaces thanks to the Mixture Density Net-
works enabling robust training and fast entropy estimation. Empirical results show that Door(s)
improves exploration, helps avoid dead-ends, and speeds up learning of downstream tasks. These
findings suggest Door(s) as a practical tool for structure-aware environment exploration in RL, with
potential to extend beyond purely robotic applications.

8

7 Limitations

Even though the presented approach offers many advantages and introduces a useful heuristic for
reinforcement learning, it is not without shortcomings. Conceptually, Door(s) is designed in a way
that does not allow reliable estimation of junction states in stochastic environments, especially when
the stochasticity is not uniform across the state space. Since our approach attributes high values to
high-entropy states, it is prone to the “noisy-TV problem” [1]. A potential solution would be the
explicit detection of such regions and their incorporation into the heuristic measure.

The second set of limitations stems from the method used for estimating Door(s). For instance,
when behaviors in the state space exhibit discontinuities (e.g., teleporting the agent), such diversity is
not accurately captured. While increasing the number of Gaussian components can help fit the data,
a more general solution would be preferred. However, entropy estimation poses a computational
bottleneck that makes this effort challenging. Encoding states into latent representations might help
address this issue. Additionally, our framework currently permits only offline estimation of Door(s)
and assumes a uniform action distribution, requiring further interaction with the environment. In the
future, a scheme similar to [10] could be used to improve efficiency, which could be even further
extended by training a state transition model to reduce the number of simulated steps.

This paper is only limited to a small number of robotic tasks, and not all reinforcement learning prob-
lems will necessarily benefit from exploiting junction states. We have tested up to 30-dimensional
state spaces, but the present results are unclear about what the upper state-dimensionality limit is.
However, once the number of dimensions grows too high, a potential workaround could involve
learning a latent representation, and feed the latent vectors to the MDN as opposed to the raw state
values. While applying Door(s) learned in the simulation to a real-world setup should be relatively
straight-forward given the environment dynamics remain similar, training the heuristic in the real-
world from scratch would have to take into consideration the drawbacks described in previous two
paragraphs.

Acknowledgments

This work was supported by the Slovenian Research Agency (research core funding) under Grant
P2-0076. We also thank the reviewers for their constructive feedback.

References

[1] A. Aubret, L. Matignon, and S. Hassas. An Information-Theoretic Perspective on Intrinsic
Motivation in Reinforcement Learning: A Survey. Entropy, 25(2):327, Feb. 2023. ISSN 1099-
4300. doi:10.3390/e25020327.

[2] R. Portelas, C. Colas, L. Weng, K. Hofmann, and P.-Y. Oudeyer. Automatic curriculum learn-
ing for deep RL: A short survey. In Proceedings of the Twenty-Ninth International Joint Con-
ference on Artificial Intelligence, IJCAI’20, pages 4819–4825, Yokohama, Yokohama, Japan,
Jan. 2021. ISBN 978-0-9992411-6-5.

[3] T. Yang, H. Tang, C. Bai, J. Liu, J. Hao, Z. Meng, P. Liu, and Z. Wang. Exploration in Deep
Reinforcement Learning: A Comprehensive Survey, July 2022.

[4] P.-Y. Oudeyer and F. Kaplan. What is intrinsic motivation? A typology of computational
approaches. Frontiers in Neurorobotics, 1, Nov. 2007. ISSN 1662-5218. doi:10.3389/neuro.
12.006.2007.

[5] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos. Unifying
Count-Based Exploration and Intrinsic Motivation. In Advances in Neural Information Pro-
cessing Systems, volume 29. Curran Associates, Inc., 2016.

9

http://dx.doi.org/10.3390/e25020327
http://dx.doi.org/10.3389/neuro.12.006.2007
http://dx.doi.org/10.3389/neuro.12.006.2007

[6] R. Raileanu and T. Rocktäschel. RIDE: Rewarding Impact-Driven Exploration for
Procedurally-Generated Environments. In International Conference on Learning Represen-
tations, Sept. 2019.

[7] T. Zhang, H. Xu, X. Wang, Y. Wu, K. Keutzer, J. E. Gonzalez, and Y. Tian. NovelD: A Simple
yet Effective Exploration Criterion. In Advances in Neural Information Processing Systems,
volume 34, pages 25217–25230. Curran Associates, Inc., 2021.

[8] M. Henaff, R. Raileanu, M. Jiang, and T. Rocktäschel. Exploration via Elliptical Episodic
Bonuses. Advances in Neural Information Processing Systems, 35:37631–37646, Dec. 2022.

[9] A. Klyubin, D. Polani, and C. Nehaniv. Empowerment: A universal agent-centric measure
of control. In 2005 IEEE Congress on Evolutionary Computation, volume 1, pages 128–135
Vol.1, Sept. 2005. doi:10.1109/CEC.2005.1554676.

[10] R. Zhao, K. Lu, P. Abbeel, and S. Tiomkin. Efficient Empowerment Estimation for Unsuper-
vised Stabilization. In International Conference on Learning Representations, Oct. 2020.

[11] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is All You Need: Learning Skills
without a Reward Function. In International Conference on Learning Representations, 2019.

[12] A. Sharma, S. Gu, S. Levine, V. Kumar, and K. Hausman. Dynamics-Aware Unsupervised
Discovery of Skills. In International Conference on Learning Representations, Sept. 2019.

[13] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven Exploration by Self-
supervised Prediction. In Proceedings of the 34th International Conference on Machine Learn-
ing, pages 2778–2787. PMLR, July 2017.

[14] Y. Burda, H. Edwards, A. Storkey, and O. Klimov. Exploration by random network distillation.
In 7th International Conference on Learning Representations (ICLR 2019), pages 1–17, May
2019.

[15] S. Blaes, M. Vlastelica Pogančić, J. Zhu, and G. Martius. Control What You Can: Intrinsi-
cally Motivated Task-Planning Agent. In Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

[16] M. Karl, P. Becker-Ehmck, M. Soelch, D. Benbouzid, P. van der Smagt, and J. Bayer. Unsu-
pervised Real-Time Control Through Variational Empowerment. In T. Asfour, E. Yoshida,
J. Park, H. Christensen, and O. Khatib, editors, Robotics Research, pages 158–173,
Cham, 2022. Springer International Publishing. ISBN 978-3-030-95459-8. doi:10.1007/
978-3-030-95459-8 10.

[17] T. Jung, D. Polani, and P. Stone. Empowerment for continuous agent—environment sys-
tems. Adaptive Behavior, 19(1):16–39, Feb. 2011. ISSN 1059-7123. doi:10.1177/
1059712310392389.

[18] F. Foundation. Gymnasium. https://github.com/Farama-Foundation/Gymnasium, Feb. 2023.

[19] A. Kuznetsov, P. Shvechikov, A. Grishin, and D. Vetrov. Controlling Overestimation Bias with
Truncated Mixture of Continuous Distributional Quantile Critics. In Proceedings of the 37th
International Conference on Machine Learning, pages 5556–5566. PMLR, Nov. 2020.

[20] S. Mohamed and D. Jimenez Rezende. Variational Information Maximisation for Intrinsically
Motivated Reinforcement Learning. In Advances in Neural Information Processing Systems,
volume 28. Curran Associates, Inc., 2015.

[21] R. Houthooft, X. Chen, X. Chen, Y. Duan, J. Schulman, F. De Turck, and P. Abbeel. VIME:
Variational Information Maximizing Exploration. In Advances in Neural Information Process-
ing Systems, volume 29. Curran Associates, Inc., 2016.

10

http://dx.doi.org/10.1109/CEC.2005.1554676
http://dx.doi.org/10.1007/978-3-030-95459-8_10
http://dx.doi.org/10.1007/978-3-030-95459-8_10
http://dx.doi.org/10.1177/1059712310392389
http://dx.doi.org/10.1177/1059712310392389

[22] V. Campos, A. Trott, C. Xiong, R. Socher, X. Giro-I-Nieto, and J. Torres. Explore, Discover
and Learn: Unsupervised Discovery of State-Covering Skills. In Proceedings of the 37th
International Conference on Machine Learning, pages 1317–1327. PMLR, Nov. 2020.

[23] D. Warde-Farley, T. V. de Wiele, T. Kulkarni, C. Ionescu, S. Hansen, and V. Mnih. Unsuper-
vised Control Through Non-Parametric Discriminative Rewards. In International Conference
on Learning Representations, Sept. 2018.

[24] B. Sukhija, S. Coros, A. Krause, P. Abbeel, and C. Sferrazza. MaxInfoRL: Boosting explo-
ration in reinforcement learning through information gain maximization. In The Thirteenth
International Conference on Learning Representations, Oct. 2024.

[25] M. Mutti, L. Pratissoli, and M. Restelli. Task-Agnostic Exploration via Policy Gradient of
a Non-Parametric State Entropy Estimate. Proceedings of the AAAI Conference on Artificial
Intelligence, 35(10):9028–9036, May 2021. ISSN 2374-3468. doi:10.1609/aaai.v35i10.17091.

[26] E. Hazan, S. Kakade, K. Singh, and A. V. Soest. Provably Efficient Maximum Entropy Ex-
ploration. In Proceedings of the 36th International Conference on Machine Learning, pages
2681–2691. PMLR, May 2019.

[27] S. Park, K. Lee, Y. Lee, and P. Abbeel. Controllability-Aware Unsupervised Skill Discovery. In
Proceedings of the 40th International Conference on Machine Learning, pages 27225–27245.
PMLR, July 2023.

[28] J. Choi, A. Sharma, H. Lee, S. Levine, and S. S. Gu. Variational Empowerment as Repre-
sentation Learning for Goal-Conditioned Reinforcement Learning. In Proceedings of the 38th
International Conference on Machine Learning, pages 1953–1963. PMLR, July 2021.

[29] S. Narvekar, B. Peng, M. Leonetti, J. Sinapov, M. E. Taylor, and P. Stone. Curriculum Learn-
ing for Reinforcement Learning Domains: A Framework and Survey. Journal of Machine
Learning Research, 21(181):1–50, 2020. ISSN 1533-7928.

[30] C. Colas, P. Fournier, M. Chetouani, O. Sigaud, and P.-Y. Oudeyer. CURIOUS: Intrinsically
Motivated Modular Multi-Goal Reinforcement Learning. In Proceedings of the 36th Interna-
tional Conference on Machine Learning, pages 1331–1340. PMLR, May 2019.

[31] M. Riedmiller, R. Hafner, T. Lampe, M. Neunert, J. Degrave, T. Wiele, V. Mnih, N. Heess,
and J. T. Springenberg. Learning by Playing Solving Sparse Reward Tasks from Scratch. In
Proceedings of the 35th International Conference on Machine Learning, pages 4344–4353.
PMLR, July 2018.

[32] R. Portelas, C. Colas, K. Hofmann, and P.-Y. Oudeyer. Teacher algorithms for curriculum
learning of Deep RL in continuously parameterized environments. In Proceedings of the Con-
ference on Robot Learning, pages 835–853. PMLR, May 2020.

[33] S. Racanière, A. K. Lampinen, A. Santoro, D. P. Reichert, V. Firoiu, and T. P. Lillicrap. Auto-
mated curricula through setter-solver interactions. CoRR, abs/1909.12892, 2019.

[34] P. Klink, H. Yang, C. D’Eramo, J. Peters, and J. Pajarinen. Curriculum Reinforcement Learning
via Constrained Optimal Transport. In Proceedings of the 39th International Conference on
Machine Learning, pages 11341–11358. PMLR, June 2022.

[35] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT press, 2018.

[36] I. Uchendu, T. Xiao, Y. Lu, B. Zhu, M. Yan, J. Simon, M. Bennice, C. Fu, C. Ma, J. Jiao,
S. Levine, and K. Hausman. Jump-Start Reinforcement Learning. In Proceedings of the 40th
International Conference on Machine Learning, pages 34556–34583. PMLR, July 2023.

[37] E. Neamat. Stationary Distribution of Markov Chain. 2023.

11

http://dx.doi.org/10.1609/aaai.v35i10.17091

[38] C. M. Bishop. Mixture density networks. Mixture density networks, 1994. ISSN
NCRG/94/004.

[39] A. Kolchinsky and B. D. Tracey. Estimating Mixture Entropy with Pairwise Distances. En-
tropy, 19(7):361, July 2017. ISSN 1099-4300. doi:10.3390/e19070361.

[40] R. de Lazcano, K. Andreas, J. J. Tai, S. R. Lee, and J. Terry. Gymnasium robotics, 2024.

[41] H. Abdi. Coefficient of variation. Encyclopedia of research design, 1(5):169–171, 2010.

[42] D. Gilboa, A. Pakman, and T. Vatter. Marginalizable Density Models, June 2021.

[43] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,
O. Pieter Abbeel, and W. Zaremba. Hindsight Experience Replay. In Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Appendix

A Study on querying one vs. multiple h

a) b) c)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: Differences in produced heatmaps in various grid-world environments. Upper row shows
results with querying multiple horizons, while the bottom row shows querying only h = H . Multiple
queries lead to accurate maximum state values at junctions (a), detect dead-ends (b), provide denser
reward gradients (a-b), and prioritize centrality (c).

One of the design decisions in our methodology is the computation of entropy over multiple hori-
zons h ∈ [1, H], instead of querying state entropy only at h = H . We justify this choice by noting
that multiple horizons help capture changing dynamics across different time-scales. An ablation
study in the grid-world environment (Figure 5) illustrates this effect. Only multiple queries success-
fully identify junctions in the environment while also providing a denser heuristic value distribution
(Figure 5a). Querying multiple horizons also captures dead-ends (Figure 5b) and focuses on central
states (Figure 5c). These results suggest that using not just a single (long) horizon, but the full range,
is key to identifying gateway states in the environment.

B Additional Door(s) optimizations

In addition to the computational optimizations presented in Subsection 4.3, we also implement sev-
eral other minor improvements. First, we do not use average entropy values directly as initially

12

http://dx.doi.org/10.3390/e19070361

0 50 100 150 200 250 300 350 400
h

0

1

2

3

4

St
at

e
vi

si
ta

tio
n

en
tro

py
state (0, 0)
state (0, 8)
state (0, 9)
state (1, 2)

Figure 6: Example of entropies with respect to the horizons h for four states in a toy grid-world
environment. Colored lines denote different squares on the grid. The values change more at the
beginning, but converge to similar values. Instead of querying the model for every horizon length h,
we instead conduct queries at ḣ as denoted by gray vertical lines.

described, but instead shift and scale them to obtain comparable values across state spaces of differ-
ent dimensionalities, and second, computing entropy for all h ∈ [1, H] can become a computational
bottleneck, which we also mitigate.

B.1 Ensuring Similar Scaling and Positive Values

The entropy of the Gaussian distribution depends on the dimensionality d of the state space, so we
first scale the result from Equation 6 by computing Ĥ(h)(S | s)/d to obtain entropy per dimension.
This operation is intended to reduce the variation in reward range across different environments and
improve hyperparameter robustness. Following this, since differential entropy can be negative, we
ensure Ĥ(h)(S | s) > 0 by:

Ĥ(h)
>0 (S | s) =

{
eĤ

(h)(S|s), if Ĥ(h)(S | s) < 0

Ĥ(h)(S | s) + 1, otherwise
. (7)

The last step is not strictly necessary but can be useful – for example, when additional dynamic
weighting is applied to the value of Door(s).

B.2 Reducing the Number of Entropy Computations

During our preliminary experiments, we observed that entropy changes logarithmically with respect
to the horizon length h. This is shown in Figure 6; the entropy for the states presented in the graph
changes rapidly at short horizons but approaches similar values logarithmically at longer horizons.

Since querying the MDN for every horizon h ∈ [1, 2, ...,H] leads to redundant computations –
assuming that entropies at longer horizons are less informative – we instead space the queries expo-
nentially. Suppose we want to query the i-th horizon, where i ∈ [1, Ḣ]. We compute its value as
ḣi =

Ḣ
√
Hi−1, where Ḣ is the total number of queries we perform. The result of this operation is

shown as vertical lines in Figure 6. Additionally, we scale all horizons h and ḣ to the interval [1H , 1]
to simplify prediction with neural networks during both training and inference.

In order to obtain an accurate approximation of Door(s) from Equation 3, each resulting entropy
Ĥ(ḣi) must be appropriately weighted based on the gap between two consecutive horizons ḣi and
ḣi−1:

ˆDoor(s) =
1

2H

Ḣ∑
i=1

[
(ḣi − ḣi−1) · Ĥ(ḣi)(S | s)

]
, (8)

where ḣ0 = 0.

13

5 0 5

 (rad/s)

3

2

1

0

1

2

3

 (r
ad

)

a)

5 0 5

 (rad/s)

b)

5 0 5

 (rad/s)

c)

4.0

4.5

5.0

5.5

6.0

6.5

1.4

1.6

1.8

2.0

2.2

2.4

2.6

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Figure 7: Differences in Door(s) estimation with discretization of the state space (a), querying all
horizons (b), and logarithmically spaced horizons (c) for the continuous case approximated using a
MDN. Approximating with a MDN loses some detail in states with high angular velocity compared
to the discrete case, but captures the drop in values at the downright and upright positions. Querying
the MDN with logarithmically spaced horizons (c) shows no intelligible difference compared to (b).

C Door(s) approximation study

Unless the environment state transition model is known, Door(s) must be approximated. In this
section, we compare approximating Door(s) by discretizing the state space to obtaining the state
occupancy distribution Ψ(h), versus approximating Ψ(h) using a Mixture Density Network (MDN).
Figure 7a–b shows the similarities and differences between the two approaches, presented with
heatmaps from the Pendulum-v1 environment. The main qualitative difference appears in the low-
value boundary captured by the discrete approximation when the pendulum has a large angular
velocity. Note that the discrete approximation is implemented using a tabular representation, which
requires substantially more data to produce reliable visualizations and offers lower query resolution
compared to the continuous case.

The computational optimization presented in Appendix B.2, exemplified by the heatmaps in Fig-
ure 7b–c, shows no intelligible difference in heuristic values despite a 10-fold decrease in reward
model queries between the non-optimized (b) and optimized case (c).

D Training Details and Experiment Hyperparameters

We split this section into the environment, heuristic and RL training details.

D.1 Environments and tasks

The renders of the environments used in our experiments can be seen in Figure 8. Note, that the
only difference between FetchPickAndPlace-v4 and FetchPush-v4 is in disabling the end-effector
gripper with the latter. This corresponds to the object goal positions being directly on top of the
table, whereas with FetchPickAndPlace-v4, the goal positions can be up to 45 centimeters high. In
all Fetch task variants the object can be moved off the table potentially leading to its free-fall. This
is the reason for elevated Door(s) values in Figure 3 at larger distances.

D.2 Heuristic learning

Obtaining all heuristics in our experiments is conducted by using a random policy for a predefined
number of episodes. In addition, we also allow initialization of the environment to any joint (Pendu-
lum and Fetch environments) or Cartesian position PointMaze and velocity. We choose this episode
initialization scheme to allow real-world Pendulum and Fetch applicability, while maintaining rela-
tively low number of samples needed for convergence of heuristics. Once the heuristics converge,
however, their values are the same regardless of the choice of the initial state distribution. We list
the hyperparameter values in Table 2. Note the robustness of the hyperparameters across tasks and
methods. The details specific to individual heuristics are below.

14

Figure 8: Renders of the environments used in our experiments. a) Pendulum-v1, b) Point-
Maze Large-v3, c) FetchPickAndPlace-v4, d) FetchPush-v4, and e) FetchSlide-v4.

Table 2: Heuristic reward model hyperparameters grouped by method.
Hyperparameter Pendulum PointMaze Fetch
Door(s)

horizon H 200 500 32
batch size 1024 1024 1024
learning rate 10−3 10−3 10−3

number of Gaussian components 3 3 3
hidden layer dim. 512 512 512
µ and Σ estimator hidden layers 3 3 3
α estimator hidden layers 3 3 3

Empowerment
horizon H 200 500 32 / 8
learning rate 10−3 10−3 10−3

batch size 1024 1024 1024
water filling power 1.0 1.0 1.0
water filling iterations 50 50 50
water filling tolerance 10−4 10−4 10−4

A matrix estimator hidden dim. 512 512 512
A matrix estimator hidden layers 3 3 3
bias hidden layer dim. 256 256 256
bias estimator hidden layers 3 3 3

Count-Based
learning rate - 10−3 10−3

batch size - 1024 1024
MDMA layer depth - 3 3
MDMA layer width - 3 3
MDMA model width - 1000 1000

DIAYN
learning rate - - 10−3

batch size - - 1024
discriminator hidden dim. - - 512
discriminator hidden layers - - 3

15

Table 3: TQC RL algorithm hyperparameters for Pendulum, PointMaze, and Fetch environments.
Hyperparameter Pendulum PointMaze Fetch
learning rate 10−3 10−3 10−3

buffer size 50k 1M 1M
batch size 256 1024 1024
target critic soft update τ 0.005 0.005 0.05
discount factor γ (pretraining) 0.99 0.99 0.9
discount factor γ (downstream learning) 0.99 0.99 0.95
gradient steps (per env. step) 1 1 1
entropy coef. auto auto auto
drop top k quantiles k = 2 k = 2 k = 2

Door(s). We select the number of Gaussian components to strike a balance between the model
expressivity and dimensionality of the outputs of the µ, Σ and α estimators. We find, however, that
even using only a single Gaussian produces meaningful results.

Empowerment. The approach for computation of the empowerment presented by [10] obtains its
values through Gaussian channel capacity. We follow their implementation for approximation of the
Gaussian channel:

Y = AX + b (9)

Above is the general equation, but in the empowerment case Y = st+H and X = at...t+H , i.e.
Y is the observed state after H time-steps, and X is the sequence of actions, respectively. The
capacity of the Gaussian channel can then be computed using singular value decomposition of the
matrix A. Matrix A and vector b are approximated with fully connected neural networks receiving
current observation st. We use an action encoder for horizons H ∈ {32, 200, 500} with three
512-dimensional fully connected hidden layers. Original paper approximates empowerment online
by collecting states and simultaneously unrolling H steps in a cloned separate environment with a
random policy. The reliance on the random policy represents a similar constraint as the one imposed
by the heuristic pretraining procedure employed in this paper.

Count-based. We implement the count-based approach following the theory from [5], but to extend
it to continuous state spaces, we use a probability density estimator. We tested several methods,
including normalizing flow models, and selected the Marginalizable Density Model Approximator
(MDMA) [42] for its superior robustness across diverse testing environments.

DIAYN. To use the entropy-maximization objective, we pretrain the discriminator D(z | s). The
entropy of the skill likelihoods z given the state s is then used as a reward for the RL agent. In
the original paper, the discriminator is trained simultaneously with the policy, but in this work we
employ the same training scheme as with other heuristics. Pretraining under random behavior policy
gives us similar results to [10], where this approach is used as one of the baselines.

D.3 Reinforcement learning

Reinforcement learning algorithm hyperparameters are listed in Table 3. The policy π and critics
Z are approximated with fully connected neural networks. We also use Hindsight Experience Re-
play (HER) [43] with Fetch tasks to accelerate generalization to arbitrary object initial and target
positions. We use a 1:4 ratio between real and virtual samples.

16

	Introduction
	Motivation
	Related Work
	Proposed Approach
	Problem Formulation
	Door(s) Formalization
	Implementation
	Approximating (h)
	Entropy Computation

	Experiments
	Comparison of the Reward Landscapes
	State Visitation Distribution
	Using Door(s) for pretraining

	Conclusion
	Limitations
	Study on querying one vs. multiple h
	Additional Door(s) optimizations
	Ensuring Similar Scaling and Positive Values
	Reducing the Number of Entropy Computations

	Door(s) approximation study
	Training Details and Experiment Hyperparameters
	Environments and tasks
	Heuristic learning
	Reinforcement learning

