Under review as submission to TMLR

Neural Circuit Diagrams: Robust Diagrams for the Com-
munication, Implementation, and Analysis of Deep Learning
Architectures

Anonymous authors
Paper under double-blind review

Abstract

Diagrams matter. Unfortunately, the deep learning community has no standard method
for diagramming architectures. The current combination of linear algebra notation and ad-
hoc diagrams fails to offer the necessary precision to understand architectures in all their
detail. However, this detail is critical for faithful implementation, mathematical analysis,
further innovation, and ethical assurances. We present neural circuit diagrams, a graphical
language based on category theory tailored to the needs of communicating deep learning
architectures. Neural circuit diagrams naturally keep track of the changing arrangement of
data, precisely show how operations are broadcast over axes, and display the critical parallel
behavior of linear operations.

In this paper, we introduce neural circuit diagrams for an audience of machine learning
researchers. Our introduction discusses the necessity of improved communication of archi-
tectures. Looking at related works, we establish why diagrams based on category theory
offer the most promising approach. We then cover the mathematical foundations of neu-
ral circuit diagrams by introducing the category of shaped data. This section is accessible,
given familiarity with sets and linear algebra, and contributes new perspectives on broad-
casting, linear operations, and multilinearity. Finally, our results section justifies the utility
of neural diagrams by explaining in quick succession a host of deep-learning architectures
and features that are otherwise difficult to communicate. This includes convolution and its
extensions with stride, dilation, and transposing; the transformer model; the U-Net; resid-
ual networks; and the vision transformer. We briefly discuss differentiation and graphically
derive the memory cost of backpropagation, showing the potential of neural circuit diagrams
to provide mathematical insight.

1 Introduction

Target audience. Neural circuit diagrams aim to appeal to a wide range of users. From software devel-
opers who just need reliable diagrams to design and implement architectures, to foundational mathematical
researchers who require formal, systematic, descriptions of architectures. This paper targets machine learn-
ing researchers, who are between these extremes. We hope that this paper sets the foundation for future
work disseminating neural circuit diagrams to a broader audience, as well as inspiring further mathematical
analysis of deep learning architectures. Basic category theory will be used. In this work, categories can be
thought of as a collection of sets (objects) with functions (morphisms) between them. Category theory is
used as it shows the mathematical robustness of neural circuit diagrams and relates their development to
the broader literature. We focus on deep learning architectures, rather than machine learning architectures
generally, as it lets us assume that data is numeric and goes through a consistent procedure.

Under review as submission to TMLR

1.1 Necessity of Improved Communication in Deep Learning

Deep learning models are immense statistical engines. They rely on components connected in intricate ways
to slowly nudge input data toward some target. Deep learning models convert big data into usable predictions,
forming the core of many AI systems. The design of a model - its architecture - can significantly impact

performance (,), ease of training (, ; ,), generalization
(, ; ,), and ability to efficiently tackle certain classes of data (,

; ,). Architectures can have subtle impacts, such as different image models recognizing
patterns at various scales (, ; ,). Many significant innovations in deep

learning have resulted from architecture design, often from frighteningly simple modifications (,

). Furthermore, architecture design is in constant flux. New developments constantly improve on state-
of-the-art methods (, ; ,), often showing that the most common designs are just one of
many approaches worth investigating (, ; ,).

However, these critical innovations are presented using ad-hoc diagrams and linear algebra notation (

, ; ,). These methods are ill-equipped for the non-linear operations and
actions on multi-axis tensors that constitute deep learning models (, ;

These tools are insufficient for papers to present their models in full detail. Subtle details such as the order
of normalization or activation components can be missing, despite their impact on performance (

). Works with immense theoretical contributions can fail to communicate equally insightful archltectural
developments (, ; ,). Many papers cannot be reproduced without
reference to accompanying code. This was quantified by (,), where only 63.5% of 255 machine
learning papers from 1984 to 2017 could be independently reproduced without reference to the author’s
code. Interestingly, the number of equations present was negatively correlated with reproduction, further
highlighting the deficits of how models are currently communicated. The year that papers were published
had no correlation to reproducibility, indicating that this problem is not resolving on its own.

Relying on code raises many issues. The reader must understand a specific programming framework, and
there is a burden to dissect and reimplement the code if frameworks mismatch. Without reference to a
blueprint, mistakes in code cannot be cross-checked. The overall structure of algorithms is obfuscated,
raising ethical risks about how data is managed (,). Furthermore, papers that
clearly explain their models without resorting to code provide stronger scientific insight. As argued by

(), replicating the code associated with experiments leads to weaker scientific results than
reproducing a procedure. After all, replicating an experiment perfectly controls all variables, including
irrelevant ones, making it difficult to link any independent variable to the observed outcome. However, in
machine learning, papers often cannot be independently reproduced without referencing their accompanying
code. As a result, the machine learning community misses out on experiments that provide general insight
independent of specific implementations. Improved communication of architectures, therefore, will offer clear
scientific value.

1.2 Case Study: Shortfalls of Attention is All You Need

To highlight the problem of insufficient communication of architectures, we present a case study of Attention

is All You Need, the paper that introduced transformer models (,). Since being introduced
in 2017, transformer models have revolutionized machine learning, finding apphcatlons in natural language
processing, image processing, and generative tasks (,). Transformers’

effectiveness stems partly from their ability to inject external data of arbltrary width into base data. We
refer to axes representing the number of items in data as a width, and axes indicating information per item
as a depth.

An attention head gives a weighted sum of the injected data’s value vectors, V. The weights depend on
the attention score the base data’s query vectors, @, assign to each key vector, K, of the injected data. Fully
connected layers, consisting of learned matrix multiplication, generate @@, K, and V vectors from the original
base and injected data. Multi-head attention uses multiple attention heads in parallel, enabling efficient
parallel operations and the simultaneous learning of distinct attributes.

Under review as submission to TMLR

Attention is All You Need, which we refer to as the original transformer paper, explains these algorithms
using diagrams (see Figure 1) and equations (see Equation 1,2,3) that hinder understandability (Chiang
et al., 2023; Phuong & Hutter, 2022).

Output
Probabilities

Add & Norm

ﬁ sitio & A Positional
Scaled Dot-Product I / Encoding

Attention 2 Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

/

These V, K, and Q values are copies in situation (A);

while Q is seperate in situation (B)

Figure 1: The diagrams from the original transformer model with our annotations. Critical information is
missing regarding the origin of @, K, and V values (red and blue) along with the axes over which operations
act (green).

KT
Attention(Q, K, V') = SoftMax (@)V (dy, is the key depth) (1)
Vi
MultiHead(Q, K, V') = Concat(head;, ...,head;,)W° (2)
where head; = Attention (QWZQ, KW, VWiV) (3)

The original transformer paper obscures dimension sizes and their interactions. The dimensions over which
SoftMax' and matrix multiplication operates is ambiguous (Figure 1.1, green; Equation 1, 2, 3). Deter-
mining the initial and final matrix dimensions is left to the reader. This obscures key facts required to
understand transformers. For instance, K and V can have a different width to @, allowing them to inject
external information of arbitrary width. This fact is not made clear in the original diagrams or equations.
Yet, it is necessary to understand why transformers are so effective at tasks with variable input widths, such
as language processing.

The original transformer paper also has uncertainty regarding @, K, and V. In Figure 1.1 and Equation 1,
they represent separate values fed to each attention head. In Figure 1.2 and Equation 2 and 3, they are all
copies of each other at location (A) of the overall model in Figure 1.3, while @) is separate in situation (B).

Annotating makeshift diagrams does not resolve the issue of low interpretability. As they are constructed
for a specific purpose by their author, they carry the author’s curse of knowledge (Pinker, 2014; Hayes &

!Using i and k to index over data, we have SoftMax(v)[i] = exp(v[i])/Sk exp(v[k]).

Under review as submission to TMLR

; ,). In Figure 1, low interpretability arises from missing critical information,
not, from insufficiently annotating the 1nformat10n present. The information about which axes are matrix
multiplied or are operated on with the SoftMax is not present. We, therefore, need to develop a framework
for diagramming architectures that ensures key information, such as the axes over which operations occur, is
automatically shown. Taking full advantage of annotating the critical information already present in neural
circuit diagrams, we present alternative diagrams in Figures 10, 11, and 19.

1.3 Current Approaches and Related Works

These issues with the current ad-hoc approaches to communicating architectures have been identified in
prior works, which have proposed their own solutions (; ;

; ,). This shows that this is a known issue of mterest to the deep learnmg
commumty Non-graphical approaches focus on enumerating all the variables and operations explicitly,
whether by extending linear algebra notation (,) or explicitly describing every step with
pseudocode (,). Visualization, however, is essential to human comprehension (,

,). Standard non-graphical methods are essential to pursue, and the
commumty will beneﬁt s1gn1ﬁcantly from their adoption; however, a standardized graphical language is still
needed.

Deep neural networks are typically composed of layers of abstraction. Individual commands assemble into
components arranged into blocks and composed into architectures. Communicating architectures need to
operate at these different scales. Expressing the details of implementing components common to most
packages is redundant. Non-graphical methods have difficulty scaling up as the relationship between symbols
becomes ever harder to parse. Either symbols are proliferated, or information is easily lost. This is observed
in Equations 1, 2, 3 from Attention is All You Need, where a failure to scale leads to ill-formed expressions.
Furthermore, the audience’s experience level changes the appropriate level of abstraction. Specialized texts
may want to communicate entire self-attention blocks with a single symbol or pictogram. A non-graphical
approach may want to show them concisely; however, symbols will nonetheless proliferate if they have many
inputs and outputs.

Graphical methods overcome this issue of abstraction. Architectures often scale by repeating some pattern,
which can be delightfully expressed with graphical methods. Standard components can be shown with
pictograms, abstracting away their precise details just as one would during implementation. This allows
the focus to be placed on the study of architecture design. Repeated patterns can be “fenced oft”, clearly
indicating them to the audience. They can be referenced and used without reiterating the precise detail,
even across papers. Their proliferation is less painful if inputs and outputs are lines instead of symbols.
Both how and why components are connected to the rest of the architecture become clear when the entire
architecture can be observed at a glance.

The inclination towards visualizing complex systems has led to many tools being developed for industrial
applications. Labview, MATLAB’s Simulink, and Modelica are used in academia and industry to model
various systems. For deep learning, TensorBoard and Torchview have become convenient ways to graph
architectures. These tools, however, do not offer sufficient detail to implement architectures. They are often
dedicated to one programming language or framework, meaning they cannot serve as a general means of
communicating new developments. Developing a framework-independent graphical language for deep learn-
ing architectures would aid in improving these tools. This requires diagrams equipped with a mathematical
framework that captures the changing structure of data, along with key operations such as broadcasting and
linear transformations.

Many mathematically rigorous graphical methods exist for a variety of fields. This includes Petri nets, which
have been used to model several processes (,). Tensor networks were developed for quantum
physics and have been successfully extended to deep learning (; ,).

() showed that re-implementing models after making them graphlcally explicit can improve
performance by letting parallelized tensor algorithms be employed. Formal graphical methods have also
been developed in physics, logic, and topology. All these graphical methods have been found to represent
an underlying category, a mathematical space with well-defined composition rules (,

https://www.ni.com/en-au/shop/labview.html
https://au.mathworks.com/products/simulink.html
https://modelica.org/
https://www.tensorflow.org/tensorboard
https://torchview.dev/docs/

Under review as submission to TMLR

,). A category theory approach allows a common structure, monoidal products, to
deﬁne an intuitive graphical language (, ; ,). Category theory, therefore,
provides a robust framework to understand and develop new graphical methods.

However, a noted issue (,) of previous graphical approaches is they have difficulty expressing
non-linear operations. This arises from a tensor approach to monoidal products. Data brought together
cannot necessarily be copied or deleted. This represents, for instance, axes brought together to form a
matrix, and makes linear operations elegantly manageable. It, however, makes expressing copying and
deletion impossible. The alternative Cartesian approach allows copying and deletion, reflecting the mechanics
of classical computing. The Cartesian approach has been used to develop a mathematical understanding of
deep learning (, ; , ,). However, Cartesian monoidal
products do not automatically keep track of dlmensmnahty and cannot easily represent broadcasting or
linear operations. Therefore, the graphical language generated by a pure Cartesian approach fails to show
the details of architectures, limiting its utility outside of pure analysis.

The literature reveals a combination of problems that need to be solved. Deep learning suffers from poor
communication and needs a graphical language to understand and analyze architectures. Category theory
can provide a rigorous graphical language but forces a choice between tensor or Cartesian approaches. The
elegance of tensor products and the flexibility of Cartesian products must both be available to properly
represent architectures. A category arises when a system has sufficient compositional structure, meaning a
non-category theory approach to diagramming architectures will likely yield a category. The challenge of
reconciling Cartesian and tensor approaches, therefore, remains.

Our contributions. To address the need for more robust communication of deep learning architectures,
we develop the category of shaped data that combines Cartesian and tensor approaches. We do this by
having a global Cartesian product called tupling that represents independent data and operations, separated
by dashed lines. Within tuple segments, axes are represented by solid lines, tensored together. In this way,
we can easily show broadcasted operations, and we contribute a general definition of broadcasting.

We then restrict ourselves to the linear subcategory and find that broadcasting becomes the tensor product.
Furthermore, by noting the difference between the linear and multilinear forms of operations, we create an
especially powerful linear subcategory that includes many operations typically reserved for the Cartesian
approach. This mathematical foundation makes a standardized graphical approach possible and invites
further mathematical analysis of architectures.

We then diagram several components and architectures to motivate the adoption of neural circuit diagrams
and to prove their utility. This includes a basic multi-layer perceptron with accompanying code; the trans-
former architecture; convolution (and its difficult-to-explain permutations); the identity ResNet; the U-Net;
and the vision transformer. We also provide a Jupyter notebook that implements diagrams in PyTorch,
showing how diagrams are related to implementation. Lastly, we show differentiation using neural circuit
diagrams, relating our work to existing research at the intersection of category theory and deep learning,
and putting our technical contributions on par with similar work (,

2 The Category of Shaped Data

2.1 Building Blocks: Categories and Products

Definition 2.1 (Categories, objects and morphisms). A category C consists of a collection of symbols called
objects, and for every ordered pair of objects a, b, a collection C(a,b) of morphisms from a to b, such that
for any pair of morphisms f € C(a,b) and g € C(b,c), a composite f;g € C(a,c) exists. Furthermore, each
object has an identity morphism Id; € C(a,a), and composition is associative.

We will be working in close analogy to the category of sets and functions between them, Set, meaning objects
can be considered as sets and morphisms as functions between them. Often, we will talk about subcategories
that exclude many morphisms so that further assumptions about structure can be made. Subcategories are
categories, so they must be closed under composition. Furthermore, we will be using staircase notation.
Morphisms f € C(a,b) or f : a — b may be written f; , which conveniently keeps track of objects and lets

Under review as submission to TMLR

us distinguish between morphisms similarly defined for many objects. For example, identities are written as
Id;,. Finally, we will use forward composition with “;” instead of backward composition with “o” so that the
direction of symbolic expressions aligns with the directlon of diagrams.

Definition 2.2 (Cartesian projections). For an object b, an |I|-sized family of projections from b to a
family of objects (Bi);es is a family of morphisms (w%i) ier € Proj(a) (we typically work with n-sized sets
of projections);

« Which gives a complete description, for any object a and two morphisms f, and gy, if for all
. a b a b a a
i € I, we have f,;mp; = gy; g, then fi, = g,

o Which accepts free construction (the Cartesian property), for any family of morphisms (f;;) iels

there exists a morphism f, = HZEIfBi such that for all i € I, we have f;; 77%1- = fp;.

Definition 2.3 (Monoidal products). A Category C with a monoidal product * equipped with a unit
object I has a means of combining objects, * : Ob(C) x Ob(C) — Ob(C), and combining morphisms,
% g5=(f * ¢)i« 3. Itis then equipped with isomorphisms - associators and unitors - along with the

pentagon and triangle axioms, ensuring regularity (5 , p-9). Monoidal products are bifunctors

meaning that combined morphisms exhibit (f;; K o) * (9a; hf) = (f*9)is; (k*h)i:f} and Id§ * Idb =1d2 Z

We desire specific forms of isomorphisms, which we will introduce along with tupling, the primary product
of our novel category. The benefit of monoidal products is they naturally lead to a graphical language (
, ; ,) and allow us to easily access further category theory-based analysis (

,). Graphically, we show objects as stacked lines and

morphisms w1th their domaln to the left and codomain to the right. For example, we can show the bifunctor

property as Figure 2.
f,.k e a f b _J_e

* *

bg;hf bgdhf

Figure 2: The bifunctor property for some generic monoidal product *, shown with monoidal string diagrams.

2.2 Tuples: Shaped Data as a Standard Cartesian Category

Definition 2.4 (Shapes and indexes). The category of shaped data over a field V' (a set with addition and
multiplication), ShD(V'), has as its objects shapes, Sh. Every shape has a standard set of projections, called
indezes, to object 1, which corresponds to the field, V'. For a shape a, we write its indexes as |i,)}, with
i, enumerating over the indexes of a. The indexes form a set of projections, meaning shapes correspond
to some V". Morphisms are functions between these sets. In addition to the field object 1, we have the
terminal object 0 which corresponds to the singleton. Elements of shaped data of some shape a correspond
to the morphisms 0 — a. The field V, for example, corresponds to the morphisms 0 — 1.

We start populating the shapes from the lone azes of natural number length, given by Axis : {0} UN — Sh.
We write Axis(n) as n, and it is the lone axis with n indexes to 1.

Definition 2.5 (Tupling). Shaped data over a field V has a left-additive symmetric Cartesian monoidal
product called tupling denoted by “+” with unit object 0. We generate new shapes and morphisms by
+ : ShD(V) x ShD(V) — ShD(V).

Definition 2.6 (Tupled shapes). As + is a Cartesian monoidal product, all shapes constructed by a + b,

tupled shapes, has a set of projections {775+ , a+b} We define their set of mdexes ligss) | ab , which forms a
set of projections all to 1, as the union of the set ot |za) 1 and the set 7y ; |zb) 1- Additionally, a Cartesian
product implies the existence of a copy map for each object, 4., and an erase map, o (, , P
42).

As tupling is a monoidal product, it is a bifunctor with a series of monoidal isomorphisms. We define these
isomorphisms in a standard manner with respect to the indexes.

Under review as submission to TMLR

Definition 2.7 (Associator). This operation ensures that the order in which axes are tupled does not affect

how they are treated. As a result, we will ignore the distinction between (a + b) + cand a + (b + ¢). (i
represents an isomorphism.)

Associator Associator
(Implicit) (Implicit)
a . 1 a . 1
______ IE’_--. ___lllﬂ___.___. (a+b)+c | =
b |' 1 b 1 i (hre) - (a+b)+c—>a+(b+c)
______ B 1) s 1 Y e —
c |kc 1 c Ikc 1

Definition 2.8 (Left and right unitors). These isomorphic operations allow the unit objects to be freely
introduced and removed.

Left Unitor Left Unitor
o [(deletion) 0 (deletion) Left unitor; Right unitor;
—e -

”4“0_1 “_|ia>—1 /\gngiaia pZJrO:aiQia
Definition 2.9 (Symmetric braiding). As our monoidal product is symmetric, we additionally have sym-
metric braiding. This enforces symmetry and allows axes to cross in diagrams.

Braiding

Definition 2.10 (Left-additive). This means that there is a “commutative monoid” such that for every
object a, there is a morphism +g+“ ta+ a— a, and a zero map 0, : 0 = a. Respectively, these are
considered index-wise additions between the tuple segments and a shape filled with zeroes. We only have to
define the operation on singular values, given by + : 1 + 1 — 1 over the field, which is then extended to
other objects by broadcasting, which will be defined soon. We note the left-additive property as it integrates
our work into other works on analyzing deep-learning models with category theory (, ;

))

2.3 Tensored Shapes: Higher-Order Shapes

: Sh X Sh — Sh that generates
tensored shapes. A tensored shape a X b has an index |iq, jp) ?Xb = (Jia) X |5s)) § ® for each pair of indexes

Definition 2.11 (Tensored shapes). We have an injective function X
lig) 1 and |j,) l{ of its constituent shapes. Furthermore, we have two valid sets of Cartesian projections using
the constituent shapes. We have a set of projections to b given by |i,) " X Ill;, and a set of projections to a
given by I, |zb) . We have not defined “X” between arbitrary morphisms, and the diagram below only

defines |za) X Ib and I X |ip) ® With no dashed line separation indicating tensoring shapes or morphisms,
the indexes graphically satisfy the following condition; (See cell 2 of the Jupyter notebook.)

Projection to 1 Projection to b Projection to a
(Indezes)

a_ . a_,. a a,.
L) 2 — 1) e
b . b b,. b .
iny Joy Jv)
Furthermore, tensored shapes have the symmetric monoidal isomorphisms meaning they are associative,
commutative, and have a unit object, which is 1. This means tensoring with 1 can be freely introduced

and removed. We define index isomorphisms similar to tupling (Definitions 2.7-2.9). By drawing tensored
shapes without dashed lines separating them, we conform to typical graphical notation (,

Under review as submission to TMLR

; ,). However, tensoring is not a universal bifunctor. We have not defined how
arbitrary morphisms can be tensored.

We also define a distributor. The rules for generating objects allow for the construction of higher-order shapes
such as a X (b + ¢), which we want to manage easily. We use a wavey line to graphically represent a priority

“X” operation as in that expression. We have a distributor as an isomorphism a X (b + ¢) Saxb+ax c,
which we define for projections as follows (note that terminating a tuple with e erases it);

Distributor
ax(b+c)—axb+axc

a a
— b b
o
a a

b
C C

2.4 Broadcasting

Definition 2.12 (Broadcasting). Given an object a, a set of n morphisms from a to b, m(i), for i €
{0...n —1}, a morphism ff, and an n-sized set of projections for d to ¢ given by 71'(2')? fori € {0...n—1},
the broadcasted morphism f;a is such that, for all ¢ € {0...n — 1}, the following diagram commutes (ie.
a ~d na b

f'b;ﬂ(@)c =m(i)y; fe);

a_f d

m() | |0
b f ¢

Lemma. The broadcasted morphism f;;a exists and is unique.

The broadcasted morphism, f('ia, is defined for a set of projections on d. Therefore, by the completeness of a
set of projections, it is unique. As a set of projections accepts free construction, the broadcasted morphism
fo as defined above, constructed from the morphisms m(i)j; ff , exists. We call the set of morphisms m(i);
the pre-morphisms and the set of projections which follow, F(i)?, the post-projections.

Note how in our definition of broadcasting, the broadcasting depends on the choice of morphisms to b and
the projections on d. Different sets of pre-morphisms or post-projections may yield different broadcasted
morphisms. Furthermore, not using projections at the end may result in a f’ which is not unique. This
definition of broadcasting is why we emphasize a standard choice of index morphisms. It is more general than
other approaches (,) and can help answer how to extend broadcasting to new circumstances

(, 2022).

Definition 2.13 (Broadcasting with indexes). For a tensor a X ¢, we have pre-morphisms to a according to
the indexes of ¢, I, X |j.)“. For the tensor b X ¢ we have post-projections to b according to the indexes of ¢,

Ill: X |j.) ©. Therefore, we can broadcast a morphism F : a — b into a morphism a X ¢ — b X ¢ according to;
(See cell 3 of the Jupyter notebook.)

Note how the ability to broadcast follows from tensors having projections into their subshapes. It is an
application of our lemma, rather than a completely novel construct. We can vertically reflect the diagram
with symmetric braiding to get broadcasting above a morphism.

Under review as submission to TMLR

Definition 2.14 (Inner broadcasting). Inner broadcasting takes the same idea of delaying the application
of an index to act within tuple segments. We have pre-morphisms from a + (b X d) to a + b given by

I + (I;,) X |kq) d), iterating over the indexes of d. We have post-projections from ¢ X d to ¢ given by

IS X |kq) “_ This choice lets us lift an operation G : a + b — c into a morphism a + (b X d) » ¢ X d.
This is shown in Figure 3. (See also cell 4 of the Jupyter notebook.)

‘Inner

“Broadcasted

Figure 3: Inner broadcasting. We assert the below expression for all indexes of d. The left-hand side is fully
defined, and we use it to infer the indexes of the inner broadcast on the right-hand side. This leaves us with
a morphism defined for all its indexes and hence is uniquely defined.

2.5 Elementwise Operations

Functions on the field V' (see Figure 4), in our framework, correspond to morphisms f : 1 — 1. When
broadcast over shapes of any size, we get elementwise operations. The broadcasted operations have the form
1Xa — 1Xa, which we reduce to a — a by the unitors for tensoring managing the unit object 1. We
represent the unitor introduction or removal of 1 with arrows, representing them appearing or disappearing
as needed. Note how broadcasting rules require that broadcasted forms of f : 1 — 1 always have matching
input and output shapes. (See cell 5, Jupyter notebook.)

Broadcasted 1 f !

1—f—1|9 a

Figure 4: Broadcasting a f : 1 — 1 morphism over some shape gives an elementwise operation.

2.6 Addition and Copying

Addition is, fundamentally, an operation between two numbers producing another number, + :1 + 1 — 1.
This is the only form of addition that needs to be defined - it can then be broadcast and rearranged into
many higher-order forms. The different forms of addition naturally follow from the rules of neural circuit
diagrams (see Figure 5), including broadcasting, inner broadcasting, and the application of unitors. Copying
is an operation A}H that acts like the natural counterpart to addition. It can be broadcast to Ay, , for any
shape. However, inner broadcasting is asymmetric, so copying does not have the same flexibility as addition.
(See cell 6, 7, Jupyter notebook.)

2.7 Uniting Cartesian and Tensor Perspectives: The Linear Subcategory

Currently, our category contains all functions between shapes, restricted only by the requirement compo-
sition with the indexes uniquely define morphisms to a shape. We now consider the subcategory of linear
morphisms, LinShD(V). In this subcategory, broadcasting becomes a universal tensor product, allowing
complex linear interactions to be expressed. All operations in the subcategory are inherited by our main
category through the inclusion functor, ¢ : LinShD(V') < ShD(V'), meaning diagrams inherit the various
means of manipulating linear morphisms. We will first cover a brief review of linear maps.

Definition 2.15 (Linear map). A map between vector spaces over a field V, L : A — B, is a linear map
if it obeys additivity, L(a) + L(a') = L(a + d') for a,a’ € A, and homogeneity, L(v-a) = v- L(a) for v € V

(:

Under review as submission to TMLR

Figure 5: Different forms of addition are generated from broadcasting addition over the field to other shapes.
Copying can be broadcast to any shape. However, inner broadcasting is asymmetric, so copying does not
have the same flexibility as addition.

Lemma. If A, a vector space over a field V, has basis vectors {a;}, then all linear maps L : A —» B to some
other vector space are uniquely identified by the values L(a;).

When we have L act on some w = S;a,0', by linearity we get L(w) = ZiwiL(ai). Therefore, if we have
L(a;) = M(a;) for all {a;}, then L(w) = M(w) for all w € A. Therefore, L = M (, ,
Proposition 11.).

Definition 2.16 (The linear subcategory). The subcategory of linear morphisms, LinShD(V'), only includes

morphisms between shapes that obey additivity and homogeneity. Using neural circuit diagrams, we show
these properties with Figure 6.

“Elementwise © “Blementwise *

Addition : L Addition N
: : a f : : : :
: : : : a : :

Figure 6: Additivity and homogeneity shown using neural circuit diagrams.

Definition 2.17 (Coindexes and direct sums). This restriction enforces regularity in our linear subcat-
egory. By the properties of linear maps, these morphisms are uniquely identified by their action on the
basis elements. For every object a, we construct a basis of coindexes (i,| ! such that (iq] L |jo) 1 is scalar
multiplication (V1 - Vl) of times 1, the identity on 1, when i, = j,, and of times 0 otherwise. Shapes,
therefore, are coproducts in addition to being products. Following from linearity, full addition +Z+a acts as
cocopying, acting in an equal but opposite manner. Note that raw data morphisms A : 0 — a are not linear
as they disobey additivity and homogeneity. The only linear raw data morphisms from A : 0 — a are those
that return zeros. In our linear subcategory, 0 is the zero object. To introduce or remove data, operations of
the form B : 1 — b must be used.

10

Under review as submission to TMLR

2.8 Cobroadcasting and the Tensor Product

Furthermore, coindexes allow for cobroadcasting. Similarly to Definition 2.13, we can uniquely define a
cobroadcasted operation by having the following hold for the j. enumerated morphisms of b — b X ¢ and
coprojections a — a X c;

“Cobroadcasted =

{Coprojections

a§ §b; ‘b

We can analyze whether this is equal to regular broadcasting by considering all coindexes and indexes of the
c axis. This covers all the necessary cases needed to identify whether the broadcasted and cobroadcasted
morphisms are the same.

............ :Broadcasted trcecnnaaane
- Coprojections : : tProjections
: : : : : : - Coprojections :Projections

La b : : - a: : b a b et .
: ———F—— = _ - = —F _ | —F Jifi, = j,
NN icf|~>i TOIEETRY
: <ZC| e : le P Je : a *O—b,olsc
............ Cobroadcasted :
:Coprojections . : (Projections 1 ..
: : : : {CGoprojections 7, “Projections

a : a : ‘b : a b e H

: : : F . : — _ F : s — —_— F yif i, = J.
S e iy : Y S BN N TN
(1 | - - - - > : : <Z |——-—| > : a b
:<c : T : : |]C : : ¢ Do]C : *0—,6156

Therefore, in the linear subcategory, we are justified in considering broadcasting and cobroadcasting to
be the same operation, which we take to be F,' X I;. Observe how this gives a tensor product between
the linear map F and the identity on c¢. The tensor product is a bifunctor on linear maps, meaning that
(Fy ®I.); (Ié) ® GY) = Fy ® Gy. In the linear subcategory, we take tensoring “X” to be the tensor product,
letting us define simultaneous broadcasting of linear operations by Fj X Gy = (F} X I.); (Ill,7 X Gy). In the
linear subcategory, X is a full symmetric monoidal product, inheriting all the associated graphical regularity

() ’ ’)

Our main category contains the linear subcategory, and thus valid tensored linear morphisms also exist in
our main category. The useful properties and means of manipulating linear operations are maintained. Our
approach shows that broadcasting and tensor products are closely related, justifying our system similarly
representing them. Furthermore, our framework for linear operations can consider operations involving
tuples, such as copying, deletion, and addition, as long as they obey additivity and homogeneity. This makes
our framework more flexible than previous approaches and allows us to capture the operations which occur
in practice.

2.9 A Common Roadblock: A Note on Multilinearity

The expressiveness of our linear subcategory hinges on associativity and homogeneity being closed under
composition. This loose definition of linearity allows for copying, tuple addition, and other operations to
be included, atypical of many tensor-based approaches. However, this comes at the cost of abandoning
multilinearity. These operations have a tuple input and are linear with respect to each individually. An
example is the dot product. Scaling both inputs by the same scalar results in multiplying the output by the
scalar square. Therefore, the dot product from a tuple to a singular value cannot be contained in our linear
subcategory.

Every tuple-multilinear operation has an associated tensor-linear form. We include the tensor-linear form in
our linear subcategory and let the outer product map from tuples to tensors in our main category. The outer
product is the ur-multilinear operation that takes a tuple input and generates a tensor output, with the
tensor indexes selecting an element from each tuple segment to be multiplied together. Applying the outer

11

Under review as submission to TMLR

product, however, requires us to leave and reenter our linear subcategory. The outer product is implied
by having a dashed tuple separation end, naturally implying a tuple becoming a tensor. Distinguishing
between an operation’s tuple-multilinear and tensor-linear forms allows the latter to be present in our linear
subcategory.

2.10 Summing Over and Rearranging Data

Sums over axes and data rearrangement are essential operations that must be carefully expressed. Functions
such as einsum and packages such as einops naturally express these operations by symbolically matching the
input to desired output shapes (,). We similarly express these operations by drawing lines
between input and output dimensions, as shown in Figure 7. Note we first take an implicit outer product
so that these operations are all considered tensor-linear and can be simultaneously broadcast. Summing
over two dimensions of similar length, dot products, are shown with a cup. Views rearrange their input
tensors into the shape of their output and are shown with a horizontal black bar which consumes the input
dimensions and produces the output shape. Transposing rearranges the order of axes and is inherited from
symmetric braiding. Diagonalization takes two tensored axes of the same length and makes them take the
same index by joining them, which has the same effect as element-wise multiplication. (See cell 8, 9, Jupyter
notebook:.)

Scaled Dot-Product
Attention

Implementation using einsum

einops.einsum(Q, K, 'y k h, x k h -> y x h")
torch.nn.Softmax(-2)(x / math.sqrt(klength))
einops.einsum(x, V, 'y x h, x k h ->y k h")

Diagonalize

Figure 7: A section of scaled dot-product attention displays an implied outer product, dot products, di-
agonalization, and the natural relationship between neural circuit diagrams and implementation using the
convenient einsum function or the einops package (,).

2.11 Associated Tensors and Linear Algebra

Linear operations F, . have an associated a X (b X ¢) shaped tensor. We can therefore construct another
linear operation F. xb by viewing the tensor as (aXb)Xc. This transposes the operation, offering flexibility in
exchanging input and output shapes. These transposes are themselves linear operations aX(bXc) — (aXb)Xc.
They can be represented by applying dot products, 7y x “ or the Kronecker delta, 6(1 « a, together with XTI
as seen in Figure 8. Horizontally composed linear operations sum over the axes which join them, so we can
think of the dot product as having a tensor that returns 1 when the coindexes match and zero otherwise, over
which we sum. The Kronecker delta tensor behaves similarly for indexes. (See cell 10, Jupyter notebook.)

3 Results: Key Applied Cases

3.1 Basic Multi-Layer Perceptron

Diagramming a basic multi-layer perceptron will help consolidate knowledge of neural circuit diagrams
and show their value as a teaching and implementation tool. We use pictograms to represent components
analogous to traditional circuit diagrams and to create more memorable diagrams (,).

Fully connected layers are shown as boldface L, with boldface indicating a component with internal learned
weights. Their input and output sizes are inferred from the diagrams. If a fully connected layer is biased,

12

https://pytorch.org/docs/stable/generated/torch.einsum.html
https://pytorch.org/tutorials/beginner/basics/buildmodel_tutorial.html

Under review as submission to TMLR

I
a b Transposing ——b> : b T
F = ——= E . = F' ¢

:Identity

The Kronecker delta and dot product
arranged in this manner give the identity.

aGbHC:aGéb

The bifunctor property allows the
identity to be moved forward.

= _4a G Z =

Figure 8: Linear operations have a flexible algebra. Simultaneous operations may increase efficiency (
,). As the height of diagrams is related to the amount of data stored in independent segments, it
gives a rough idea of memory usage.

we add a “4+” in the bottom right. Traditional presentations easily miss this detail. For example, many
implementations of the transformer, including those from PyTorch and Harvard NLP, have a bias in the
query, key, and value fully-connected layers despite Attention is All You Need (,) not
indicating the presence of bias.

Activation functions are just element-wise operations. Though traditionally ReLU (,),
other choices may yield superior performance (Lee,). With neural circuit diagrams, the activation
function employed can be checked at a glance. SoftMax is a common operation that converts scores into
probabilities, and we represent it with a left-facing triangle (<1), indicating values being “spread” to sum to 1.
As mentioned in Section 1.2, how operations such as SoftMax are broadcast can be ambiguous in traditional
presentations. This is especially worrisome as SoftMax can be applied to shapes of arbitrary size. On the
other hand, our method of displaying broadcasting makes it clear how SoftMax is applied.

class NeuralNetwork(nn.Module):
def __init_ (self):

super().__init_ ()
self.flatten = nn.Flatten()) Basic Image Recogniser for Digits
self.linear_relu_stack = nn.Sequential(
nn.Linear(28*28, 512),
. B, X=28 o e >511{2) >511{2) k =10 Soﬂfax 10
nn.Linear(512, 512), - _ -
nn. REH(), Xu=2 | Li—L; Ls N
) nn.Linear(512, 10), Linear _ ? 10
def forward(self, X):

X = self.flatten(X)

X = self.linear_relu_stack(X)
y_pred = nn.Softmax(X)

return y_pred

Figure 9: PyTorch code and a neural circuit diagram for a basic MNIST (digit recognition) neural network
taken from an introductory PyTorch tutorial. Note the close correspondence between neural circuit diagrams
and PyTorch code. (See cell 11, Jupyter notebook.)

3.2 Neural Circuit Diagrams for the Transformer Architecture

In Section. 1.2, we identified the shortfalls in Attention is All You Need. We now have the tools to address
these shortcomings using neural circuit diagrams. Figure. 10 shows scaled-dot product attention. Unlike the
approach from Attention is All You Need, the size of variables and the axes over which matrix multiplication
and broadcasting occur is clearly shown. Figure. 11 shows multi-head attention. The origin of queries, keys,
and values are clear, and concatenating the separate attention heads using einsum naturally follows. Finally,

13

https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html
http://nlp.seas.harvard.edu/annotated-transformer/
https://pytorch.org/tutorials/beginner/basics/buildmodel_tutorial.html

Under review as submission to TMLR

we show the full transformer model in Figure. 19 using neural circuit diagrams. Introducing such a large
architecture requires an unavoidable level of description, and we take some artistic license and notate all the
additional details.

Scaled Dot-Product Attention

Equation from the
original paper.
T
Attention(Q, K, V) = SoftMax

Figure 10: The original equation for attention against our diagram. The descriptions are unnecessary but
clarify what is happening. Corresponds to Equation 1 and Figure 1.1. (See cell 12, Jupyter notebook.)

Multi-Head Attention

Scaled Dot-Product
Attention

Diagonalize

Figure 11: Neural circuit diagram for multi-head attention. In PyTorch, the implementation of matrix
multiplication and dot products are clear with the torch.einsum function. Corresponds to Equation 2 and 3
and Figure 1.2. (See cell 12, Jupyter notebook.)

3.3 Convolution

Convolutions are critical to understanding computer vision architectures. Different architectures extend
and use convolution in a variety of ways, so implementing and understanding these architectures requires
convolution and its variations to be accurately expressed. However, these extensions are often hard to
explain. For example, PyTorch concedes that dilation is “harder to describe”. Transposed convolution is
similarly challenging to communicate (,). A standardized means of notating convolution and
its variations would aid in communicating the ideas already developed by the machine learning community
and encourage more innovation of sophisticated architectures such as vision transformers (,

; ;)-
In deep learning, convolutions alter a tensor by taking weighted sums over nearby values. With standard

bracket notation to access values, a convolution over vector v of length = by a kernel w of length k is given
by, (Note: we subscript indexes by the axis over which they act.)

Conv(v, w)[iz] = Z vlig + il wliz]

We start indexing from 0, meaning the maximum iy value is given by i, + k—1 =7 — 1, and the length of the
output is therefore y = * — k + 1. Note how convolution is a multilinear operation; it is linear with respect

14

https://pytorch.org/docs/stable/generated/torch.einsum.html
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html

Under review as submission to TMLR

to each vector input v and w. Therefore, it has a tensor-linear has an associated tensor, the convolution
tensor, that uniquely identifies it.

Conv(vw)lig] = ¥ ¥ (0)ig. . b1 olf5) wli]
Je £

x

if (- = iz + jj.
(it =)

, else.

We diagram convolution with the below diagram, Figure 12. We then transpose the linear operation into a
more standard form, letting the input be to the left, and the kernel be to the right.

We contract over the convolution — —
o — X | X-k+1y;
tensor. Here, the + is a linear - 0 X T ly
operation that returns 1 if the sum —w

of the indexes equals the coindex,

. We transpose the operations
and zero otherwise.

to arrive at the standard form.

Figure 12: Convolution is a multilinear operation, with an associated tensor. This tensor is transposed into
a standard form.

We typically work with higher dimensional convolutions, in which case the indexes act like tuples of indexes.
We diagram axes that act in this tandem manner by placing them especially close to each other and labeling
their length by one bolded symbol akin to a vector. In 2D the convolution tensor becomes;

L if (U35, 421) = (350, 751) + (Jros Jr1)-

(x 2D)[iy, ty1: Jros k1, bzo, bat] = {0 , else.

Figure 13 shows what convolution does. It takes an input, uses a linear operation to separate it into
overlapping blocks, and then broadcasts an operation over each block. Using neural circuit diagrams, we
now easily show the extensions of convolution. A standard convolution operation tensors the input with a
channel depth axis, and feeds each block and the channel axis through a learned linear map. Additionally,
we can take an average, maximum, or some other operation rather than a linear map on each block. This lets
us naturally display average or max pooling, among other operations. Displaying convolutions like this has
further benefits for understanding. For example, 1 X 1 convolution tensors give a linear operation X — X X 1,
which we recognize to be the identity. Therefore, 1 X 1 kernels are the same as broadcasting over the input.

Standard Convolution Average Pool Max Pool
X | % x-k+1 X | % x-k+1 X | % x-k+1
C k:L @ C £ IE C £ Max
0o + il 0 0
Shorthand
X x-k+1
o [* ke,

Figure 13: Convolution and related operations, clearly shown using neural circuit diagrams.

15

Under review as submission to TMLR

Stride and dilation scale the contribution of ¢, or jj in the convolution tensor, increasing the speed at which
the convolution scans over its inputs. This changes the convolution tensor into the form of Equation 4. We
diagram these changes by adding the s or d multiplier where the axis meets the tensor as in Figure 14. These
multipliers also change the size of the output, allowing for downscaling operations.

o 1 ,iflz=s5 % iz+d * j.
(x s,d)[ig, jr, bx] = v g (4)
0 , else.

gz{f—d*(k—n—1+lJ)

S

We often want to make slight adjustments to the output size. This is done by padding the input with zeros
around its borders. We can explicitly show the padding operation, but we make it implicit when the output
dimension does not match the expectation given the input dimension, kernel dimension, stride, and dilation
used.

Stride can make the output axis have a far lower dimension than the input axis. This is perfect for downscal-
ing. However, it does not allow for upscaling. We implement upscaling by transposing strided convolution,
resulting in an operation with many more output blocks than actual inputs. We broadcast over these blocks
to get our high-dimensional output. Transposed convolution is challenging to intuit in the typical approach
to convolutions, which focuses on visualizing the scanning action rather than the decomposition of an image’s
data structure into overlapping blocks. The blocks generated by transposed convolution can be broadcast
with linear maps, maximum, average, or other operations, all easily shown using neural circuit diagrams.

Stride and Dilation Padding ~ As the labelled output
—_ — _ _ differs from the expected
X L) A X * L2g output, we infer the input
Lk =k is padded.
The indexes from the two — —
X x+k-1 X

axes are multiplied by the =
associated amount, letting +k-1) ' k

us sum over all instances

where 3 =5 * iy +d i Transposed Convolution Transposed convoluti.on
accesses the convolution

_ _ tensor in a different manner,
IE 2 meaning the output size

Lk s larger than the input. This

can be combined with stride
and implicit padding to upscale

Y

inputs.

Figure 14: Stride, dilation, padding, and transposed convolution shown with neural circuit diagrams.
3.4 Computer Vision

In computer vision, the design of deep learning architectures is critical. Computer vision tasks often have
enormous inputs that are only tractable with a high degree of parallelization (, .
Additionally, different architectures can relate information at different scales (,). Sophisticated
architectures such as vision transformers combine the complexity of convolution and transformer architectures
(, ; ,). Neural circuit diagrams, therefore, are in a unique position to
accelerate computer vision research, motivating parallelization, task-appropriate architecture design, and
further innovation of sophisticated architectures. Architectures often comprise sub-components, which we
show as blocks that accept configurations. This is analogous to classes or functions that may appear in
code. As examples of neural circuit diagrams applied to computer vision architectures, we have diagrammed
the identity residual network architecture (,) in Figure 15, which shows many innovations of
ResNets not included in common implementations, as well as the UNet architecture (

) in Figure 16, which lets us show how saving and loading variables may be displayed.

)

16

https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
https://pytorch.org/vision/main/models/resnet.html

Under review as submission to TMLR

X
Z Identity ResNet 10
b |(N=3,n, = [16,64,128,256])

Ml
|

AvgPool
2 .
%/4 >R>» %) Linear SoftMax
4 ny = >

% %
3 | x3|m1 |Block |[n, [Block ||[n3 [Block

| n; | 10 10
{0) | e L. -

X1
N

|

<

X /5 Legend
ny,=mn/4

Residual Component

X >R> |x |X/s »R> X/s >R» X/s + X/s
n, |* 1|m n »
A
b o b
___________________________ / A
Parantheses are fed back to
themselves, ranging A from ni
its minimum to maximum F
value. N-1
Residual Component N-1
%/s __>R» x/s »R> x/s »R>» x/s F \|x/s

Figure 15: Residual networks with identity mappings and full pre-activation (IdResNet) (He et al., 2016)
offered improvements over the original ResNet architecture. These improvements, however, are often missing
from implementations. By making the design of the improved model clear, neural circuit diagrams can
motivate common packages to be updated. (See cell 13, 14, 15, Jupyter notebook.)

Legend
53 = ERo

X x

ESH T X) o

¢o_| (with padding) [|ly = ¢ = {64 of ’ 1_
* , else.

1=4 The C, values are y = 2

Double Convolution saved to memory...
X[Xa X, X,
0 CA—1|*3I cA |~k3| cA

>R> >R>»_

o

Down Scale Block

A=1
X X X X
T
o Ca |k3[cs |3 ¢s ZLC4
A=3 >R> >R> + ‘

Up Scale Block

X5-A X541 X512 | % T X1 X
C5-1 /o 2cs-A| % 3 csa[x 3] csa 2 L Ca- E:
““““ Iy & >R> >R> +
Xs_
C N == Concatenation is a view over a tuple. It is linear,
5-A C5-A

so can be simultaneously broadcast with other
...the C values are linear operations. In this case, diagonalization

loaded from memory. ~over the X axes.

Figure 16: The UNet architecture (Ronneberger et al., 2015) forms the basis of probabilistic diffusion models,
state-of-the-art image generation tools (Rombach et al.; 2022). UNets rearrange data in intricate ways, which
we can show with neural circuit diagrams. Note that in this diagram we have modified the UNet architecture
to pad the input of convolution layers. To get the original UNet architecture, the X, values can be further
distinguished as X} ;, the sizes of which can be added to the legend. (See cell 16, Jupyter notebook.)

17

https://pytorch.org/vision/main/models/resnet.html

Under review as submission to TMLR

3.5 Vision Transformer

Neural circuit diagrams reveal the degrees of freedom of architectures, motivating experimentation and
innovation. A case study that reveals this is the vision transformer, which brings together many of the
cases we have already covered. Its explanations (, , See Figure 2) suffer from the same
issues as explanations of the original transformer (See Section 1.2), made worse by even more axes being
present. With neural circuit diagrams, visual attention mechanisms are as simple as replacing the y and =
axes in Figure 11 with tandem y and X axes and setting h = 1. As 1 X 1 convolutions are simply the identity,
broadcasting a linear map over all of y pixels is a 1 X 1-convolution. This leaves us with Figure 17 for a visual
attention mechanism. It is highly suggestive, calling us to experiment with the convolutions’ stride, dilation,
and kernel sizes, potentially streamlining models. The diagram clarifies how to implement multi-head visual
attention with h # 1, especially using einsum similarly to Figure 7. Additionally, ¥ does not need to match
X. We could have ¥ be image data, and = be textual data without convolutions. This case study shows how
neural circuit diagrams reveal the degrees of freedom of architectures, and therefore motivate innovation, all
while being precise in how algorithms should be implemented.

Visual Attention
1% 1 convolution tensors are the

identity, so can be freely added. Scaled Dot-Product
v : Attention

Figure 17: Using neural circuit diagrams, visual attention (,) is shown to be a simple
modification of multi-head attention (See Figure 11, Figure 7, Cell 17, Jupyter notebook.)

3.6 Differentiation: A Clear Improvement over Prior Methods

In addition to more clearly communicating architectures, neural circuit diagrams can be used for robust
mathematical analysis. An example of such a use is for differentiation, where the combination of tensor
and Cartesian products makes for a particularly pleasant presentation of the chain rule. This is important
to deep learning, where differentiation is critical to understanding information flows through architectures

(,). Our graphical diagrams of differentiation are more clear and compact than prior methods

, ; ,) and does not require the introduction of concepts unfamiliar to
the reader (,). Previous graphical approaches, furthermore, have been unable to represent
differentiation (,). The chain rule is particularly interesting to us, given its close tie to

backpropagation. Using neural circuit diagrams, we can derive the linear memory cost of backpropagation,
a simple result that hints at the utility of neural circuit diagrams as an analytical tool over other methods
of blueprinting architectures.

We consider shaped data over a ﬁeld that accepts differentiation, such as R. We consider the subcategory of
once-differentiable functions, C ShD(). As they are once-differentiable, the Jacobian of each morphism,

of the form JF : a — b X a, exists in ShD(R). Composing F; with Gg, we could draw the chain rule for
J[F; G] as follows;

“_F ol G—%
iGF) —iG .in a . c _ _______],— —jé___ c
8xn(ol o O —HIEG] a b---==-)

18

Under review as submission to TMLR

This is clearly unacceptable. Instead, we transpose JF' : @ — b X a to get the (forward) derivative OF :
a + a—b. We then get an elegant form of the chain rule that efficiently scales with more operations. This
form of the derivative aligns with ()’s definition 4.

b
""" oF » = JF a

This naturally scales with depth. Over the subcategory of once differentiable morphisms, CIShD(]R), we
define the derivation functor (_,0_) : ClshD(R) — ShD(R) such that (_,d) maps shapes a = a + a
and once-differentiable morphisms Fy — (F,dF)y such that;

a b
a F b : (_Ia_)> _A_O\E_F_____

Functors must respect composition, which is ensured by the chain rule. In machine learning, we are often
interested in backpropagation, which employs the reverse derivative (, ; ,

), another transpose of the Jacobian. As the Jacobian, reverse derivative, and forward derivatives differ
by transposes, neural circuit diagrams are in a unique position to represent the relationship between them.
Using the rules of linear algebra we have developed, the reverse derivative can be defined as;

Backpropagation is of particular interest to us. Backpropagation uses the reverse derivative, so we need to
rearrange chained forward derivatives into their reverse form. This can be achieved using the rules of linear
algebra we have developed, including the bifunctor property of tensor products and the Kronecker delta-dot
product identity. This is done in Figure 18, where we see that the reverse derivative rearrangement of a
derivative chain requires a number of tuple segments linear to the number of layers. This derives the memory
cost of backpropagation as linear to the number of layers.

We see that neural circuit diagrams reflect both underlying mathematical equivalences as well as algorithmic
properties, distinguishing between algorithms that yield the same results with different complexity. This is a

distinct advantage over symbolic methods (,) or code (,) where
these properties require separate derivation. Additionally, reformulations may improve the performance of
algorithms (,), further motivating the use of neural circuit diagrams during the design and

analysis process.

4 Conclusion

In this paper, we advocated for using neural circuit diagrams to communicate deep learning research. We
discussed the need for improved communication, why category theory is the most promising approach to
defining a graphical language, and the issues that had to be resolved. Then, we constructed a category that
synthesized Cartesian and tensor approaches. This category combines the flexibility of Cartesian products
with the tools of linear tensor products. We then diagrammed several architectures in quick succession,
showing the utility of neural circuit diagrams for efficiently and precisely communicating models. In the
case of vision transformers, we showed how neural circuit diagrams invite further innovation, a distinct

19

Under review as submission to TMLR

Backpropagation; d

Figure 18: The derivative of a chain of functions summed over some change gives backpropagation. After
rearranging the expression, every layer in the chain requires its own tuple. The number of simultaneous
tuple segments, and hence memory consumption, increases linearly with the number of layers. Hence,
backpropagation has memory consumption linear to the number of layers.

advantage over ad-hoc approaches that obfuscate the connection between architectures. In addition to
communicating architectures, we showed how neural circuit diagrams can be used to analyze processes’
mathematical foundations and derive algorithms’ properties.

This paper naturally invites further work. Neural circuit diagrams can be further standardized and applied
to new situations. Neural circuit diagrams are based on category theory, meaning each diagram is a robust
mathematical expression. This bridges practical models with their mathematical foundations, motivating
these to be further explored. A particularly promising avenue is combining deep learning with probabilistic
models using Markov categories (, ; ,), or generalizing broadcasting further. This
paper targets machine learning researchers, and we feel it is in the sweet spot between a purely practical
guide and a treatise on mathematical foundations. We hope neural circuit diagrams can motivate work on
both of these fronts and become a valuable tool for the deep learning community.

4.0.1 Acknowledgements

Mathcha was used to write equations and draw diagrams. The Harvard NLP annotated transformer was
invaluable for drawing Figure 19.

References

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization, July 2016. URL http:
//arxiv.org/abs/1607.06450. arXiv:1607.06450 [cs, stat].

John C. Baez and Mike Stay. Physics, Topology, Logic and Computation: A Rosetta Stone. volume 813, pp.
95-172. 2010. doi: 10.1007/978-3-642-12821-9 2. URL http://arxiv.org/abs/0903.0340. arXiv:0903.0340
[quant-ph].

Jacob Biamonte and Ville Bergholm. Tensor Networks in a Nutshell, July 2017. URL http://arxiv.org/abs/
1708.00006. arXiv:1708.00006 [cond-mat, physics:gr-qc, physics:hep-th, physics:math-ph, physics:quant-

ph].

20

http://www.mathcha.io
http://nlp.seas.harvard.edu/annotated-transformer/
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/0903.0340
http://arxiv.org/abs/1708.00006
http://arxiv.org/abs/1708.00006

Under review as submission to TMLR

Neural Circuit Diagram of Transformers
In Neural Circuit Diagrams, we introduced a visual and explicit framework for representing deep learning models. Transformer architectures
have changed the world, and we provide a novel and comprehensive diagram for the architecture from Attention is All You Need. We describe

all necessary components, enabling technically proficient novices who have read our paper to understand the transformer architecture.

is an English sentence, X is the sentence length, and 771 the number
of English words. Each word has a learned m-deep embedding, the

We have 6 sequential encoder

stacks. Each learns its own

weights. In deep learning, we almost always use residual networks.
Instead of using attention mechanisms to completely change
our input, we learn to add a small change.
- Ye—— A=1 =
Output]
—!! The target ¥ seeds the generator by either giving a sentence to

Y

3|

Dropouts 4 are element-wise functions that have a chance of
simply returning their input like an identity function, but other
times return 0, deleting information. They reduce overreliance on

any one neuron, stabilising the model. N

|

Encoder Stack
he encoder processes the input with attention heads to extract

necessary information for the decoder, which will use it to

generate an output. | The feed forward layer applies two fully

connected layers to malleably adjust data.
Feed Forward Add & Norm
x > >

Add & Norm
>

model depth. Multi-Head Self-Attention
Embedding _
N(=6) Copy| | Linear Scaled Dot-Product
x Attention
=====—=1X m]_
O’
m
Positional Encoding >k >
A positional encoding
identifies the location - —
of inputs by adding a k
sinosoidal pattern. LO

=1

x

An element-wise activation function causes
a non-linear response, allowing many more

mimic or our best estimate so far. 771 is the number of words

|

During training, the decoder's output attempts to

—

in the target language.|
-

patterns to be discovered. Typically RELU.
d 1 is the feed forward inner dimension size.

For each of X words, the LayerNorm adds and scales the m-axis so that it
has a mean of 0 and a standard deviation of 1. Each of the 71 indexes has a

/ st ot /A FeT e e 6) e learned gain, which the values are scaled by. Finally, a learned bias for
4 Target words only have e each Mm-index is added. This greatly stabilizes the network during training.
Embedding Lt OLCS QI Vel AV BCCEES VO DICYIOUS FOrCS,
, N(=6 Masked Multi-Head Self-Attention Decoder Stack
E e R Copy vy The decoder uses the encoded input and a target to generate
====———— + :\ « k12 Mask an output. The encoded input provides external information, for
Yy -—4{L (Opt.) example, an English sentence. The target provides the true
o\
m___4 L/ >l > translation to mimic or the best estimate we have generated
Positional Encoding K so far.
B \™ ~ |
A_I:__ R —— _ Add & Norm
Y >'¢) Feed Forward Add & Norm
I° \ LY I (¢} 7y R >R—y > >L>
N =+ d —
____________ ,+

Multi-Head Cross Attention

Add & Norm

P—

The generated m-deep
vectors are mapped to
’-vectors containing the
probability of each word

Feed Forward Add & Norm in the target language.
>R—y> | 5>
d ‘ | Linear | |SoftMax|| _
7 y
_________ i]L—l m| A lm
a0 TN

Figure 19: The fully diagrammed architecture from Attention is All You Need (Vaswani et al., 2017).

21

Under review as submission to TMLR

Michelle A. Borkin, Zoya Bylinskii, Nam Wook Kim, Constance May Bainbridge, Chelsea S. Yeh, Daniel
Borkin, Hanspeter Pfister, and Aude Oliva. Beyond Memorability: Visualization Recognition and Recall.
IEEE Transactions on Visualization and Computer Graphics, 22(1):519-528, January 2016. ISSN 1941-
0506. doi: 10.1109/TVCG.2015.2467732. Conference Name: IEEE Transactions on Visualization and
Computer Graphics.

David Chiang, Alexander M. Rush, and Boaz Barak. Named Tensor Notation, January 2023. URL http:
//arxiv.org/abs/2102.13196. arXiv:2102.13196 [cs].

Robin Cockett, Geoffrey Cruttwell, Jonathan Gallagher, Jean-Simon Pacaud Lemay, Benjamin MacAdam,
Gordon Plotkin, and Dorette Pronk. Reverse derivative categories, October 2019. URL http://arxiv.org/
abs/1910.07065. arXiv:1910.07065 [cs, math].

Mostafa Dehghani, Basil Mustafa, Josip Djolonga, Jonathan Heek, Matthias Minderer, Mathilde Caron,
Andreas Steiner, Joan Puigcerver, Robert Geirhos, Ibrahim Alabdulmohsin, Avital Oliver, Piotr Padlewski,
Alexey Gritsenko, Mario Lué¢i¢, and Neil Houlsby. Patch n’ Pack: NaViT, a Vision Transformer for any
Aspect Ratio and Resolution, July 2023. URL http://arxiv.org/abs/2307.06304. arXiv:2307.06304 [cs].

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil
Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, June 2021. URL
http://arxiv.org/abs/2010.11929. arXiv:2010.11929 [cs].

Chris Drummond. Replicability is not reproducibility: Nor is it good science. Proceedings of the FEvaluation
Methods for Machine Learning Workshop at the 26th ICML, January 2009.

Brendan Fong and David I. Spivak. An Invitation to Applied Category Theory: Seven Sketches in Com-
positionality. Cambridge University Press, 1 edition, July 2019. ISBN 978-1-108-66880-4 978-1-108-
48229-5 978-1-108-71182-1. doi: 10.1017/9781108668804. URL https://www.cambridge.org/core/product/
identifier/9781108668804/type,/book.

Brendan Fong, David 1. Spivak, and Rémy Tuyéras. Backprop as Functor: A compositional perspective on
supervised learning, May 2019. URL http://arxiv.org/abs/1711.10455. arXiv:1711.10455 [cs, math].

Tobias Fritz, Tomas Gonda, Paolo Perrone, and Eigil Fjeldgren Rischel. Representable Markov Categories
and Comparison of Statistical Experiments in Categorical Probability. Theoretical Computer Science, 961:
113896, June 2023. ISSN 03043975. doi: 10.1016/j.tcs.2023.113896. URL http://arxiv.org/abs/2010.07416.
arXiv:2010.07416 [cs, math, stat].

Tan Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1. MIT Press,
2016.

John Hayes and Diana Bajzek. Understanding and Reducing the Knowledge Effect: Implications for Writers.
Written Communication, 25:104-118, January 2008.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image Recognition,
December 2015. URL http://arxiv.org/abs/1512.03385. arXiv:1512.03385 [cs].

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity Mappings in Deep Residual Networks,
July 2016. URL http://arxiv.org/abs/1603.05027. arXiv:1603.05027 [cs].

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models, December 2020. URL
http://arxiv.org/abs/2006.11239. arXiv:2006.11239 [cs, stat].

Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift, March 2015. URL http://arxiv.org/abs/1502.03167. arXiv:1502.03167 [cs].

Sayash Kapoor and Arvind Narayanan. Leakage and the Reproducibility Crisis in ML-based Science, July
2022. URL http://arxiv.org/abs/2207.07048. arXiv:2207.07048 [cs, stat].

22

http://arxiv.org/abs/2102.13196
http://arxiv.org/abs/2102.13196
http://arxiv.org/abs/1910.07065
http://arxiv.org/abs/1910.07065
http://arxiv.org/abs/2307.06304
http://arxiv.org/abs/2010.11929
https://www.cambridge.org/core/product/identifier/9781108668804/type/book
https://www.cambridge.org/core/product/identifier/9781108668804/type/book
http://arxiv.org/abs/1711.10455
http://arxiv.org/abs/2010.07416
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1603.05027
http://arxiv.org/abs/2006.11239
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/2207.07048

Under review as submission to TMLR

Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz Khan, and Mubarak
Shah. Transformers in Vision: A Survey. ACM Computing Surveys, 54(10s):1-41, January 2022. ISSN
0360-0300, 1557-7341. doi: 10.1145/3505244. URL https://dl.acm.org/doi/10.1145/3505244.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification with deep convolutional
neural networks. Communications of the ACM, 60(6):84-90, May 2017. ISSN 0001-0782, 1557-7317. doi:
10.1145/3065386. URL https://dl.acm.org/doi/10.1145/3065386.

Minhyeok Lee. GELU Activation Function in Deep Learning: A Comprehensive Mathematical Analysis and
Performance, May 2023. URL http://arxiv.org/abs/2305.12073. arXiv:2305.12073 [cs].

Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. A Survey of Transformers, June 2021. URL
http://arxiv.org/abs/2106.04554. arXiv:2106.04554 [cs].

Hanxiao Liu, Zihang Dai, David R. So, and Quoc V. Le. Pay Attention to MLPs, June 2021. URL
http://arxiv.org/abs/2105.08050. arXiv:2105.08050 [cs].

Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard Zemel. Understanding the Effective Receptive Field in
Deep Convolutional Neural Networks, January 2017. URL https://arxiv.org/abs/1701.04128v2.

José Meseguer and Ugo Montanari. Petri nets are monoids. Information and Computation, 88(2):105-155,
October 1990. ISSN 0890-5401. doi: 10.1016/0890-5401(90)90013-8. URL https://www.sciencedirect.
com/science/article/pii/0890540190900138.

T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4):541-580, April
1989. ISSN 1558-2256. doi: 10.1109/5.24143. Conference Name: Proceedings of the IEEE.

Alex Nichol and Prafulla Dhariwal. Improved Denoising Diffusion Probabilistic Models, February 2021. URL
http://arxiv.org/abs/2102.09672. arXiv:2102.09672 [cs, stat].

Paolo Perrone. Markov Categories and Entropy, December 2022. URL http://arxiv.org/abs/2212.11719.
arXiv:2212.11719 [cs, math, stat].

Mary Phuong and Marcus Hutter. Formal Algorithms for Transformers, July 2022. URL http://arxiv.org/
abs/2207.09238. arXiv:2207.09238 [cs].

S. Pinker. The sense of style: The thinking person’s guide to writing in the 21st century. Penguin Publishing
Group, 2014. ISBN 978-0-698-17030-8. URL https://books.google.com.au/books?id=FzZRBAwAAQBAJ.

Edward Raff. A Step Toward Quantifying Independently Reproducible Machine Learning Research. In Ad-
vances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https://
proceedings.neurips.cc/paper__files/paper/2019 /hash/c429429bf1{2af051£2021dc92a8ebea- Abstract.html.

Alex Rogozhnikov. Einops: Clear and Reliable Tensor Manipulations with Einstein-like Notation. October
2021. URL https://openreview.net /forum?id=oapKSVM2bcj.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-Resolution
Image Synthesis with Latent Diffusion Models, April 2022. URL http://arxiv.org/abs/2112.10752.
arXiv:2112.10752 [cs].

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image
Segmentation, May 2015. URL http://arxiv.org/abs/1505.04597. arXiv:1505.04597 [cs].

Lee Ross, David Greene, and Pamela House. The “false consensus effect”: An egocentric bias in social
perception and attribution processes. Journal of Experimental Social Psychology, 13(3):279-301, 1977.

Sadoski. Impact of concreteness on comprehensibility, interest. Journal of Educational Psychology, 85(2):
291-304, 1993.

Peter Selinger. A survey of graphical languages for monoidal categories, August 2009. URL https://arxiv.
org/abs/0908.3347v1.

23

https://dl.acm.org/doi/10.1145/3505244
https://dl.acm.org/doi/10.1145/3065386
http://arxiv.org/abs/2305.12073
http://arxiv.org/abs/2106.04554
http://arxiv.org/abs/2105.08050
https://arxiv.org/abs/1701.04128v2
https://www.sciencedirect.com/science/article/pii/0890540190900138
https://www.sciencedirect.com/science/article/pii/0890540190900138
http://arxiv.org/abs/2102.09672
http://arxiv.org/abs/2212.11719
http://arxiv.org/abs/2207.09238
http://arxiv.org/abs/2207.09238
https://books.google.com.au/books?id=FzRBAwAAQBAJ
https://proceedings.neurips.cc/paper_files/paper/2019/hash/c429429bf1f2af051f2021dc92a8ebea-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/c429429bf1f2af051f2021dc92a8ebea-Abstract.html
https://openreview.net/forum?id=oapKSVM2bcj
http://arxiv.org/abs/2112.10752
http://arxiv.org/abs/1505.04597
https://arxiv.org/abs/0908.3347v1
https://arxiv.org/abs/0908.3347v1

Under review as submission to TMLR

Dan Shiebler, Bruno Gavranovié, and Paul Wilson. Category Theory in Machine Learning, June 2021. URL
http://arxiv.org/abs/2106.07032. arXiv:2106.07032 [cs].

Rupesh Kumar Srivastava, Klaus Greff, and Jirgen Schmidhuber. Highway Networks, November 2015. URL
http://arxiv.org/abs/1505.00387. arXiv:1505.00387 [cs].

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and Furu
Wei. Retentive Network: A Successor to Transformer for Large Language Models, August 2023. URL
http://arxiv.org/abs/2307.08621. arXiv:2307.08621 [cs].

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention Is All You Need, December 2017. URL http://arxiv.org/abs/1706.03762.
arXiv:1706.03762 [cs].

Paul Wilson and Fabio Zanasi. Categories of Differentiable Polynomial Circuits for Machine Learning, May
2022. URL http://arxiv.org/abs/2203.06430. arXiv:2203.06430 [cs, math].

Tom Xu and Yoshihiro Maruyama. Neural String Diagrams: A Universal Modelling Language for Categorical
Deep Learning. In Ben Goertzel, Matthew Iklé, and Alexey Potapov (eds.), Artificial General Intelligence,
Lecture Notes in Computer Science, pp. 306-315, Cham, 2022. Springer International Publishing. ISBN
978-3-030-93758-4. doi: 10.1007/978-3-030-93758-4_ 32.

Yao Lei Xu, Kriton Konstantinidis, and Danilo P. Mandic. Graph Tensor Networks: An Intuitive Framework
for Designing Large-Scale Neural Learning Systems on Multiple Domains, March 2023. URL http://arxiv.
org/abs/2303.13565. arXiv:2303.13565 [cs].

Matthew D. Zeiler, Dilip Krishnan, Graham W. Taylor, and Rob Fergus. Deconvolutional networks. In 2010
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2528-2535, San
Francisco, CA, USA, June 2010. IEEE. ISBN 978-1-4244-6984-0. doi: 10.1109/CVPR.2010.5539957. URL
http://ieeexplore.ieee.org/document /5539957 /.

24

http://arxiv.org/abs/2106.07032
http://arxiv.org/abs/1505.00387
http://arxiv.org/abs/2307.08621
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/2203.06430
http://arxiv.org/abs/2303.13565
http://arxiv.org/abs/2303.13565
http://ieeexplore.ieee.org/document/5539957/

	Introduction
	Necessity of Improved Communication in Deep Learning
	Case Study: Shortfalls of Attention is All You Need
	Current Approaches and Related Works

	The Category of Shaped Data
	Building Blocks: Categories and Products
	Tuples: Shaped Data as a Standard Cartesian Category
	Tensored Shapes: Higher-Order Shapes
	Broadcasting
	Elementwise Operations
	Addition and Copying
	Uniting Cartesian and Tensor Perspectives: The Linear Subcategory
	Cobroadcasting and the Tensor Product
	A Common Roadblock: A Note on Multilinearity
	Summing Over and Rearranging Data
	Associated Tensors and Linear Algebra

	Results: Key Applied Cases
	Basic Multi-Layer Perceptron
	Neural Circuit Diagrams for the Transformer Architecture
	Convolution
	Computer Vision
	Vision Transformer
	Differentiation: A Clear Improvement over Prior Methods

	Conclusion
	Acknowledgements

