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ABSTRACT

Transferring reasoning capabilities from larger language models to smaller ones
through supervised fine-tuning often fails counterintuitively, with performance de-
grading despite access to high-quality teacher demonstrations. We identify that
this failure stems from distributional misalignment: reasoning traces from larger
models contain tokens that are low probability under the student’s distribution, ex-
ceeding the internal representation capacity of smaller architectures and creating
learning barriers rather than helpful guidance. We propose Reverse Speculative
Decoding (RSD), a mechanism for generating student-friendly reasoning traces in
which the teacher model proposes candidate tokens but the student model deter-
mines acceptance based on its own probability distributions, filtering low prob-
ability tokens. When applied to Qwen3-0.6B, direct distillation of s1K-1.1 rea-
soning trace data degrades average performance across major reasoning bench-
marks by 20.5%, while the same model trained on RSD-generated reasoning traces
achieves meaningful improvements of 4.9%. Our analysis reveals that low proba-
bility tokens constitute the critical bottleneck in reasoning ability transfer. How-
ever, cross-model experiments demonstrate that RSD traces are model-specific
rather than universally applicable, indicating that distributional alignment must be
tailored for each student architecture’s unique internal representation. Code and
datasets are available at https://anonymous.4open.science/r/rsd.
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Figure 1: Conceptual overview and empirical validation of Reverse Speculative Decoding
(RSD). Left: Reasoning trace generation process where RSD produces student-friendly reasoning
traces in which the teacher proposes candidate tokens, while the student accepts only those with
high probability under its own distribution. Right: Average accuracy on major reasoning bench-
marks (AIME24, AIME25, GPQA Diamond, and MATH500) for (i) the base student model, (ii) a
student trained on pre-existing high-quality reasoning traces (s1K-1.1), and (iii) a student trained on
the reasoning traces it helped generate through the RSD process shown on the left.

1 INTRODUCTION

Recent advances in reasoning-focused language models have emerged through the strategic combi-
nation of reinforcement learning (RL) and supervised fine-tuning (SFT) (DeepSeek-AI et al., 2025).
These two methods play distinct yet complementary roles in developing sophisticated reasoning.
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While RL excels at eliciting reasoning capacities by encouraging the model to explore and reflect,
SFT is paramount in instilling reasoning abilities through direct exposure to expert demonstrations.

When model capacity is limited, SFT assumes a more prominent role. Although RL can still con-
tribute to reasoning ability, it often requires far more data and compute to reach comparable levels,
with diminishing returns as model size shrinks. In contrast, SFT enables compact architectures to
efficiently inherit problem-solving strategies from more capable teachers. Experimental results on
32B models suggest that small models trained with RL on complex reasoning tasks often lag be-
hind peers distilled from high-performing teachers, even when granted greater training resources
(DeepSeek-AI et al., 2025). Consequently, leveraging intricate reasoning traces from capable, large
models to train smaller models has become a dominant strategy for effective reasoning transfer.

However, empirical evidence reveals significant limitations in this transfer approach when working
with even smaller models with just a few billion parameters. While approaches utilizing small col-
lections of carefully curated reasoning traces, specifically s1K (Muennighoff et al., 2025) and LIMO
(Ye et al., 2025), have demonstrated success with 32B models, these same datasets reveal a starkly
different outcome when applied to substantially smaller 3.8B architectures (Xu et al., 2025a). When
these compact models attempt to learn from high-quality reasoning traces distilled from larger teach-
ers, direct distillation can significantly degrade performance, creating a phenomenon where models
paradoxically deteriorate despite access to superior training data. This counterintuitive regression
suggests that the reasoning behaviors naturally emerging in large models may prove ill-suited for
direct imitation by substantially smaller counterparts, where the elaborate reasoning patterns and
long logical dependencies can overwhelm compact architectures, causing capability regression.

We posit that the fundamental challenge lies in the leap in perceived complexity across consecutive
reasoning steps that student models encounter. In language modeling, this disparity manifests at the
token level. When the teacher’s next token falls in a region of very low probability under the stu-
dent’s distribution, it may signal a reasoning pattern that exceeds what the student’s current internal
representation can process. Effective transfer requires reshaping the stride of reasoning steps so that
the rise in difficulty remains locally smooth—keeping the cognitive load between steps equigranular
from the student’s perspective. Rather than compelling a small model to recite a teacher’s reasoning
verbatim, we advocate for creating traces that preserve correctness while ensuring each reasoning
transition remains tractable within the student’s processing range.

In this work, we propose Reverse Speculative Decoding (RSD), a novel algorithm for generating
such student-friendly traces, and a training recipe to effectively transfer reasoning ability to smaller
student models. As illustrated in Figure 1, in RSD, the teacher proposes a token, but the student
decides whether to accept it based on its own probability distribution; if the token has the probability
below a certain threshold, it is deemed improbable by the student, and the generation falls back to
the student’s own prediction. This inverted teacher–student dynamic ensures that teacher guidance
is injected only where the student is ready to follow, promoting distributional alignment and thus
producing reasoning steps aligned with the student’s representational capacity.

We demonstrate the effectiveness of RSD through comprehensive experiments across major rea-
soning benchmarks. Our findings reveal that while direct SFT on raw teacher traces leads to per-
formance degradation, RSD-generated traces consistently improve reasoning capability. Our ex-
periments show that the optimal configuration uses the probability threshold of pth=1% with a
temperature T=0.7, striking the balance between filtering low probability tokens and preserving
teacher guidance. These findings underscore that such low-probability tokens represent the critical
bottleneck to effective reasoning transfer, validating our threshold-based filtering approach.

2 RELATED WORK

Reasoning Trace Rewrite As supervised fine-tuning on reasoning traces became prevalent, the
quality of training data emerged as a critical factor for performance improvement. This recognition
sparked extensive research into generating superior reasoning traces through various conditioning
and rewriting strategies. Some approaches focused on efficiency, generating shorter yet equally ef-
fective reasoning chains through summarization (Kang et al., 2025) or self-training with best-of-n
selection (Munkhbat et al., 2025). Others pursued targeted improvements, employing difficulty-
aware prompting during trace generation (Wu et al., 2025) or conditioning on behavior handbooks
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or reasoning templates that provide task-specific reasoning guidelines (Didolkar et al., 2025). More
sophisticated approaches adopted MCTS-inspired generation strategies to eliminate redundant rea-
soning steps and explore alternative reasoning paths (Lu et al., 2025).

Despite these advancements, we believe there is a largely underexplored angle in this space: gen-
erating easier reasoning traces where each logical leap is narrower and more accessible to smaller
models. Our approach focuses on ensuring that reasoning demonstrations align with what small
models can readily follow and learn from, in order to transform them into better reasoners.

Teacher-Student Coordination Teacher-student coordination mechanisms have been explored
across both training and inference phases. At test-time, speculative decoding (Leviathan et al., 2023)
accelerates inference by having smaller models propose token candidates for verification by larger
models. Step-level coordination approaches include methods where larger models intervene during
detected reasoning difficulty through structural cues (Yang et al., 2025b), or where smaller models
learn to emit special tokens requesting help from larger models (Akhauri et al., 2025). These ap-
proaches leverage the observation that not all generation steps need equal computational resources.

The principles underlying these test-time coordination strategies have also been adapted for train-
ing data generation. To reduce distributional mismatch between training and inference, Speculative
Knowledge Distillation (SKD) (Xu et al., 2025b) employs student-proposed, teacher-approved sam-
pling. While this creates higher-quality training contexts, the teacher-centric approval can still force
students along unnatural trajectories. Closely related to our goal, Reinforcement-Learned Teachers
(RLT) (Cetin et al., 2025) explicitly align distributions by training the teacher with a KL-divergence
constraint, yet this requires expensive retraining. In contrast, RSD operates purely as a data synthe-
sis mechanism, utilizing the teacher as-is to generate aligned training data without the heavy cost
of modifying teacher weights. Our approach prioritizes distributional alignment through teacher-
proposed, student-approved generation—hence the name, Reverse Speculative Decoding.

3 METHOD

3.1 GENERATING STUDENT-FRIENDLY TRACES WITH RSD

Algorithm 1 Reverse Speculative Decoding

Require: Teacher LLM Mt, Student LLM
Ms, Prompt x, Probability threshold pth,
Decoding length α

1: context← x
2: for i = 1 to α do
3: Pt ←Mt(·|context)
4: Ps ←Ms(·|context)
5: y ∼ Pt

6: if Ps(y) < pth then
7: y ∼ Ps

8: end if
9: context← context + y

10: Break if y = EOS
11: end for
12: return context

The core principle of RSD is that effective reason-
ing ability transfer requires managing the surprisal ex-
perienced by student models during learning. Algo-
rithm 1 operationalizes this principle through a teacher-
proposed, student-approved generation mechanism. At
each decoding step, we obtain probability distributions
from both the teacher model Pt and student model Ps,
then sample a candidate token yi ∼ Pt and evalu-
ate its likelihood under the student model Ps(yi). If
Ps(yi) ≥ pth, we accept the teacher’s proposal; other-
wise, we fall back to sampling directly from the student
distribution yi ∼ Ps.

This selective acceptance mechanism ensures distribu-
tional alignment throughout the generated trace. We
can conceptualize the cognitive load at each step as the
surprisal ℓi = − logPs(yi), with the threshold load be-
ing − log pth. By filtering tokens that exceed this threshold, RSD effectively smooths surprisal spikes
that would otherwise create learning obstacles. Each accepted teacher token represents a reasoning
step within the student’s internal representation, while rejected tokens signal transitions that would
create excessive uncertainty.

To ensure both correctness and student-friendliness in the generated traces, we employ rejection
sampling, generating multiple candidate traces per problem and selecting a correct one for training
(Yuan et al., 2024). This approach produces reasoning demonstrations that are both distributionally
aligned and semantically sound.

3
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Figure 2: Token-level surprisal progression across different trace generation methods. Com-
parison of token surprisal patterns for a student model across traces generated by different methods.
RSD’s effectiveness in eliminating problematic high-surprisal spikes that create learning barriers for
student models is demonstrated.

3.2 QUANTIFYING DISTRIBUTIONAL ALIGNMENT
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Figure 3: Trace-level
perplexity distribu-
tions. RSD-generated
traces cluster at lower
perplexity values with
reduced variance.

To analyze the distributional characteristics of reasoning traces, we em-
ploy several complementary metrics that capture different aspects of the
student model’s uncertainty:

Surprisal and Entropy Following Shannon’s work on information
theory (Shannon, 1948), we compute the surprisal of each token yi
in a trace under the student model as si = − logPs(yi|y<i). The
entropy of the student’s distribution at each step is given by H =
−
∑

Ps(yi|y<i) logPs(yi|y<i). High surprisal indicates tokens that fall
in low-probability regions of the student’s distribution, representing po-
tential learning obstacles. These information-theoretic measures both
capture regions where the student model exhibits substantial uncertainty
about the next step. Figure 2 illustrates how RSD effectively eliminates
problematic high-surprisal spikes compared to other trace generation
methods, demonstrating the mechanism’s ability to smooth token-level
surprisal progression throughout reasoning traces.

Perplexity At the trace level, we compute perplexity as PPL = exp( 1
N

∑N
i=1 si), where N is

the trace length. This provides a measure of how well-aligned an entire reasoning trace is with
the student’s distribution. Lower perplexity indicates traces are more natural from the student’s
perspective. In Figure 3, RSD traces consistently cluster at lower perplexity values with reduced
variance compared to baseline methods, providing an evidence of improved distributional alignment.

Sub-threshold Token Ratio We track the proportion of tokens with probability below 1% under
the student model. Our empirical findings reveal this metric as the strongest predictor of learning
failure, with traces containing many sub-1% tokens consistently degrading student performance.

3.3 MAXIMIZING LEARNING SIGNAL WITH A HYBRID TRAINING APPROACH

RSD approaches reasoning transfer through a trace rewriting process, reconstructing teacher demon-
strations through student distributional constraints. However, this constrains the teacher’s problem-
solving reach—even with 16 rejection samples, RSD cannot solve all problems. This limitation ac-
tually validates our approach—if RSD solved everything under distributional constraints, the prob-
lems would lack sufficient complexity. Rather than discarding unsolved problems, we employ a
dual-component methodology that maximizes the utilization of available training signal:

Primary RSD Training For problems where RSD generates correct solutions, we train on com-
plete traces using standard SFT, ensuring both logical correctness and distributional alignment.

UPFT for Unsolved Problems For problems where RSD fails to generate a correct solution, we
employ a partial trace training strategy to salvage the valuable reasoning patterns present in the
initial steps. Inspired by the Unsupervised Prefix Fine-Tuning (UPFT) methodology (Ji et al., 2025),
we extract the first 128 tokens from these unsuccessful traces. This approach ensures no training
instances are wasted, allowing the student model to learn how to recognize problem patterns and
formulate initial approaches even from examples that don’t reach a correct final answer.

4
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4 EXPERIMENTS

4.1 SETUP

Teacher-Student Model Pair RSD requires tokenizer compatibility between teacher and student
models, as each teacher-proposed token must be evaluated under the student’s probability distri-
bution. For our main experiments, we employ s1.1-7B (Muennighoff et al., 2025), a Qwen2.5-7B
variant fine-tuned on s1K-1.1, as our teacher model and Qwen3-0.6B (Yang et al., 2025a) as our
student model. These models share a tokenizer, enabling the token-level probability evaluations
essential to the RSD mechanism. Details on tokenizer compatibility can be found in Appendix A.

Baselines We select the s1K dataset (Muennighoff et al., 2025) containing 1,000 challenging prob-
lems spanning mathematics, science, and logic that demand sophisticated reasoning rather than
simple pattern recognition. We use s1K-1.1—traces generated by DeepSeek-R1 on the s1K ques-
tions—as our primary baseline, though our method generalizes to any dataset providing meaningful
learning signals. Using s1K’s question-answer pairs, we generate RSD traces through rejection
sampling with temperature T=0.7 and probability thresholds pth ∈ {10%, 3%, 1%, 0.3%}.

To isolate RSD’s impact, we also compare against: (1) teacher-generated traces using our 7B teacher
model to assess whether smaller teacher capacity drives RSD’s effectiveness, (2) student-generated
self-distillation traces to evaluate training on student’s own outputs, and (3) SKD-inspired generation
implementing student-proposed, teacher-approved dynamics with 1% probability threshold—more
restrictive than standard SKD’s top-k sampling. All trace generation uses an 8k token context limit.

Model Training Following the s1 training recipe (Muennighoff et al., 2025), we use batch size 16,
bfloat16 precision, learning rate 1×10−5 with 5% linear warmup followed by cosine decay, AdamW
optimizer (β1=0.9, β2=0.95, weight decay 10−4). We train for 15 epochs.

4.2 DISTRIBUTIONAL ALIGNMENT DRIVES RSD EFFECTIVENESS AND DATA EFFICIENCY

Table 1: Impact of different distillation methods and RSD probability thresholds on the reason-
ing performance of the Qwen3-0.6B model. Direct distillation, where the student is fine-tuned on
unaltered reasoning traces from teacher models (s1K-1.1, Teacher-generated), consistently degrades
performance. In contrast, RSD-generated traces yield improvements, with a probability threshold of
1% achieving the best average performance. Evaluation details are available in Appendix B. Best
results are in bold, second best are underlined.

Models AIME24 AIME25 GPQA
Diamond MATH500 Average

Qwen3-0.6B 2.71 10.94 24.75 65.40 25.95

+ s1K-1.1 1.93 9.53 12.88 58.20 20.64
+ Teacher-generated 1.35 8.91 12.31 58.80 20.34
+ Self-distill 2.66 10.78 21.97 67.80 25.80
+ SKD-inspired 2.40 11.56 4.17 65.40 20.88

+ RSD-generated (pth=10%) 3.33 11.25 24.87 66.20 26.41
+ RSD-generated (pth=3%) 2.97 11.56 24.24 66.80 26.39
+ RSD-generated (pth=1%) 3.28 12.60 26.77 66.20 27.21
+ RSD-generated (pth=0.3%) 1.41 9.53 23.04 63.80 24.45

RSD with 1% probability threshold achieves optimal performance by balancing token filter-
ing with meaningful teacher guidance. As shown in Table 1, the 1% threshold configuration
demonstrates the most significant improvements across all benchmarks for our 0.6B student model,
while higher thresholds of 10% and 3% show less consistent gains, and the restrictive 0.3% thresh-
old causes substantial degradation. This performance pattern directly correlates with the sub-1%
probability token ratios presented in Table 2, where the 0.3% threshold fails to adequately filter
problematic tokens (2.02% sub-1% tokens), while optimal configurations maintain extremely low
ratios (0.04–0.09%). The sub-1% tokens metric represents the proportion of all tokens in each
dataset that have probability below 1% under the student model’s distribution, serving as a strong
predictor of learning failure in compact architectures.

5
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Table 2: Dataset characteristics for different trace generation methods showing problem cov-
erage, fallback rates, and sub-1% probability token proportions. The s1K-1.1 traces contain a
high proportion of sub-1% tokens, which correlates with poor training outcomes, whereas all RSD
variants drastically reduce this proportion.

Datasets Correctly solved Fallback rate (%) Sub-1% tokens (%)
s1K-1.1 1000 Not Applicable 6.70
Teacher-generated 234/1000 Not Applicable 2.98
Self-distill 122/234 Not Applicable 0.00
SKD-inspired 184/234 0.68 0.72

RSD-generated (pth=10%) 161/234 2.71 0.06
RSD-generated (pth=3%) 171/234 1.28 0.04
RSD-generated (pth=1%) 180/234 0.64 0.09
RSD-generated (pth=0.3%) 177/234 0.35 2.02

The number of correctly solved problems during trace generation provides some indication of RSD
effectiveness. Correctly solved metric in Table 2 indicates how many problems each method suc-
cessfully generates correct solutions for during the trace generation process. Since RSD requires
both teacher and student model coordination, we first let the teacher model solve the 1,000 s1K
problems, successfully obtaining solutions for 234 problems, which explains the /234 notation for
methods that depend on teacher-generated solutions. Student-generated self-distill traces operate
independently of teacher performance, but we applied the same constraint based on our assump-
tion that the student model can only reasonably solve problems that the teacher has already solved.
Among these problems, RSD with 1% threshold generated correct solutions for 180 problems—the
highest among all RSD configurations. However, SKD-inspired generation solved 184 problems
while still underperforming RSD during model training, demonstrating that correctness-preserving
generation comes at the cost of higher sub-1% token ratios (0.72%), which creates learning barriers
for compact architectures.

Traces from both large and smaller teacher models create equal distributional misalignment when
training compact students. Both s1K-1.1 traces (generated by 671B DeepSeek-R1) and our teacher-
generated traces (7B model) exhibit similar poor performance when training the 0.6B student. This
similarity suggests that teacher model capacity does not reduce the degree of distributional mis-
alignment—traces from both large and smaller teachers create equal learning barriers for compact
students despite their substantial capacity difference. SKD-inspired generation also demonstrates
low performance, primarily due to extremely poor GPQA Diamond scores where models frequently
failed to produce answers within the token budget. Even excluding these failures, SKD-inspired still
underperforms RSD 1% across all other benchmarks.

Fallback rates demonstrate variation across RSD probability thresholds. Fallback rates—the propor-
tion of tokens where teacher proposals fall below the probability threshold, causing generation to re-
vert to the student model—remain consistently low across all RSD configurations (0.35% to 2.71%).
More restrictive thresholds result in lower fallback rates, with the 0.3% configuration showing the
lowest rate (0.35%) and the 10% configuration showing the highest (2.71%).

The non-zero sub-1% token ratios in RSD traces likely occur when teacher influence introduces
subtle perturbation that nudges generation away from the student’s natural distribution, causing the
student to select low-probability tokens during fallback generation. This contrasts with self-distill’s
near-zero sub-1% ratio, which reflects purely student-native generation without external guidance.

RSD achieves meaningful improvements for small models using remarkably few examples
compared to existing approaches. While methods like Phi-4-Mini-Reasoning (Xu et al., 2025a)
require extensive training from mid-training onwards with massive datasets to develop reasoning
capabilities in compact models, RSD demonstrates that targeted filtering can produce improvements
using only 1,000 carefully curated examples. This efficiency becomes even more striking consider-
ing that among these examples, only 180 are complete reasoning traces, while the remainder consists
of 128 token prefixes. Such efficiency emerges from RSD’s targeted approach: rather than over-
whelming compact models with vast quantities of reasoning data, the method precisely identifies
and removes the specific elements that create learning barriers.

The probability threshold mechanism is instrumental in addressing the fundamental challenge
of reasoning transfer to compact architectures. When a teacher’s token has probability below

6
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Figure 4: Cross-model experiments demonstrate the model-specific nature of RSD-generated
traces. Reasoning traces generated using one student model (Qwen3-0.6B) fail to transfer benefits
when applied to other models, both within the same model family (Left) and across different families
(Center). When the RSD process is tailored to each student model, it produces performance gains
(Right). Average accuracy of major reasoning benchmarks are shown. Detailed evaluation results
are available in Appendix D.

1% under the student distribution, it may represent an abrupt reasoning pivot, a shift in analytical
perspective, or an alternative exploratory direction that exceeds the student’s internal representation
capacity. In our findings, s1K-1.1 traces contain 6.70% sub-1% probability tokens and degrade
student performance by 20.5% (from 25.95% to 20.64% average accuracy), while RSD with 1%
threshold reduces sub-1% tokens to just 0.09% and achieves meaningful improvements of 4.9% (to
27.21% average accuracy). By systematically filtering these high-surprisal tokens while preserving
solution correctness through rejection sampling, RSD creates traces where each reasoning transition
remains within the student’s processing range.

5 ANALYSIS

5.1 CROSS-MODEL TRANSFER OF RSD-GENERATED TRACES

To investigate whether RSD traces represent universally accessible reasoning patterns, we test
whether traces generated using Qwen3-0.6B as the student can benefit other student models dur-
ing training. This evaluation encompasses two dimensions of architectural variation, thus providing
an empirical test of the cognitive load hypothesis and offering insight into whether RSD traces gen-
uinely ease the reasoning burden for compact learners.

Within-Family Transfer We evaluate how RSD traces transfer across different scales within the
Qwen3 family, testing on 1.7B and 4B parameter variants. This tests whether the distributional
alignment achieved for a 0.6B model provides benefits for large models in the same model family.

Inter-Family Transfer We apply RSD traces originally generated with Qwen3-0.6B as the stu-
dent to fundamentally different architectures: Llama-3.2-1B-Instruct (AI at Meta, 2024), Gemma-
3-1B-IT (Team et al., 2025), Phi-4-Mini (Microsoft et al., 2025), and Phi-4-Mini-Reasoning (Xu
et al., 2025a). The first three models are designed for general-purpose tasks and not specifically for
reasoning tasks, while Phi-4-Mini-Reasoning is a specialized reasoning model that natively uses the
thinking delimiters. Through SFT, the non-reasoning models learn to adopt this structured reasoning
approach with the thinking delimiters, effectively transforming them into reasoning-capable models.

Figure 4 delivers a crucial finding: RSD traces are model-specific rather than universally beneficial.
While traces generated using Qwen3-0.6B improve the original student model, they consistently fail
to transfer benefits when applied to other models. The failure extends across both inter-family and
within-family evaluations, revealing that distributional alignment is an inherently model-specific
phenomenon dependent on the characteristics of each model’s learned probability distribution. Ad-
ditionally, we observe that for the Qwen3-4B model, direct distillation yields improvements unlike
the 0.6B model. The 4B model has sufficient internal representation capacity to process the logic
from the s1K-1.1 teacher directly. Consequently, RSD specifically targets students with limited
representational capacity, particularly those with fewer than 4 billion parameters, where direct dis-
tillation fails due to capacity constraints.
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5.2 MODEL-DEPENDENT RSD PERFORMANCE

Given the model-specific nature of RSD traces demonstrated in Figure 4, we investigate whether
the RSD method itself proves effective when applied to different student architectures. Due to the
tokenizer compatibility constraint inherent to the RSD mechanism, the range of different student
models we can experiment with is limited. We choose Llama-3.2-1B-Instruct as our student model
paired with DeepSeek-R1-Distill-Llama-8B as the teacher. This combination of a larger reasoning-
focused teacher model with a compatible student model represents a relatively unique pairing in the
current model landscape. We also experiment with Qwen3-1.7B as our student model with the s1.1-
7B teacher, leveraging the fact that models within the same Qwen3 family naturally share vocabulary
with our primary Qwen3-0.6B student model. As seen from Figure 4, Qwen3-1.7B demonstrates
notable improvement when trained on its own RSD-generated traces, while Llama-3.2-1B-Instruct
exhibits minimal improvements despite identical RSD methodology.

This contrasting behavior reveals that RSD effectiveness depends critically on architectural char-
acteristics. As detailed in Appendix F, Llama-3.2-1B-Instruct exhibits inherently terse reasoning
traces approximately four times shorter than Qwen3 counterparts, reflecting different linguistic pref-
erences that influence the generation of reasoning demonstrations. This concise expression style
reflects the model’s design for general-purpose tasks and training data that predates DeepSeek-R1,
lacking exposure to the extended inner monologue patterns now characteristic of recent reasoning-
focused models. These findings highlight an important design principle of the RSD mechanism: it
operates by working within a student’s existing distributional preferences rather than attempting to
impose fundamentally different linguistic behaviors. The student-centric approach of RSD naturally
preserves each model’s inherent reasoning style, allowing the method to enhance existing patterns
while respecting the architectural boundaries established during pre-training.

5.3 IMPLICATIONS FOR THE UNIVERSAL COGNITIVE LOAD HYPOTHESIS

One hypothesis for reasoning ability transfer posits that cognitive load—the mental effort required
to process conceptual leaps and logical transitions between consecutive reasoning steps—represents
a universal limiting factor that affects all reasoning agents, human learners and language models
alike. Under this framework, methods like RSD can be expected to produce universally beneficial
reasoning demonstrations by reducing cognitive load through more manageable reasoning progres-
sions. However, the cross-model transfer results in Figure 4 challenge this notion. They reveal
that distributional alignment is an inherently model-specific phenomenon where traces tailored for
one model’s internal representation do not transfer to another’s, even within the same model family.
The failure of these traces to transfer indicates that each model develops unique internal representa-
tions during pre-training, where effectiveness depends on the precise characteristics of each model’s
learned probability distribution rather than abstract cognitive demands. What constitutes a natural
reasoning step for one model may represent an inexplicable leap for another, even when both mod-
els operate at similar parameter scales, suggesting that reasoning transfer barriers are fundamentally
architectural rather than universally cognitive.

5.4 MULTI-STEP RSD TRAINING

We explore iterative RSD application through a multi-step training approach, using Qwen3-0.6B
with the optimal 1% probability threshold for three complete cycles, with each cycle consisting of
5 training epochs and the trained model serving as the new student for subsequent RSD trace gen-
eration. Complete results are available in Appendix E. Performance degraded substantially due to
compounding effects that make iterative alignment inherently problematic. Since RSD generates
traces aligned to a student’s current distributional characteristics, repeated application reinforces
increasingly specialized patterns rather than broadening capabilities, leading to progressive over-
fitting. The degradation during iterative training should be viewed in the context of the broader,
unsolved research challenge of Model Collapse (Shumailov et al., 2024). When a model is recur-
sively trained on its own output distribution, even with teacher guidance, the distribution tends to
narrow, reducing diversity and capability. We believe this represents a fundamental limitation of
consecutive alignment strategies rather than the specific RSD mechanism.
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<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are
[...]
 the assignment where a = 1 (all primes assigned to b) and b = 20! (there
's exactly one such case), and a can be 1, then proceed. Wait, 1 is the
 product of assigning no primes to a (all primes to b), so that's included.
\n\nBut if a and b can be written as a = 1 and b = 20!, yes, that's a copr
ime pair, likewise a=2^18 and b= (20!)/2^18 which is still an integer.
 Similarly for all subsets. Wait, but when we write a and b as coprime
 factors, the way I'm thinking is that the assignment is of each prime as a
 binary choice (to a or to b). So 2^8 equals 256 possible assignments,
 and each assignment defines a unique coprime pair (a,b) where a * b=2
0!. Since each assignment is unique, each ordered pair is distinct, even if
 a and b are swapped.\n\nSince such ordered pairs can have a < b or a >
 b, so then to get the (a,b) with a < b, we divide by 2, which gives 128.\n
\nBut wait, can it be? Let me check with a smaller factorial.\n\n
[...]
 denominator in lowest terms is \(20!\) is \(\boxed{128}\).<|im_end|>\n

<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are
[...]
Wait, when we assign each prime to either p or q, since the primes in the
 factorization of 20! include all primes up to 19. Therefore, the number of
 coprime pairs (p, q) with p < q is equal to half the total number of copr
ime pairs, right? Because for each pair (p, q), either p < q or p > q. Since
 we are considering only the ones where p < q, which would be half of
 the total, but we need to check if the pairs are ordered. However, when
 considering ordered pairs, the number of pairs where p < q is equal to
 the number of pairs where p > q, except when p = q. But here, p and q
 are coprime, so p cannot equal q unless p = q =1, but p*q =20! implies
 that p and q are factors of 20!, so the only way p*q =1 would be if p=q=
1, but 1 is not a prime factor of 20!. Therefore, p and q must be distinct.
\n\nTherefore, the number of coprime pairs (p, q) with p < q is equal to
 the total number of coprime pairs divided by 2. However, since when p
[...]
 denominator equals 20! is:\n\n$$ \n\boxed{128}\n$$ <|im_end|>

Figure 5: Comparison of trace excerpts from the same question demonstrates RSD’s distribu-
tional alignment. The s1K-1.1 trace excerpt (left) contains numerous sub-1% probability tokens
(red highlights) while the corresponding RSD trace excerpt (right) exhibits smooth probability tran-
sitions.

5.5 CHARACTERISTICS OF HIGH-SURPRISAL BOTTLENECKS

As seen from Figure 5 and Appendix G, analysis reveals that high-surprisal tokens often correspond
to critical junctures in reasoning such as logical connectors that fork the reasoning path. Recent
works (Wang et al., 2025b;a) have identified similar patterns, showing that tokens with high entropy
frequently mark critical decision points where multiple possible continuations exist. In the context of
reasoning ability transfer, these branching points become particularly problematic, as while a large
model can navigate complex logical forks based on its extensive internal representation, smaller
models lack the capacity to represent all possible branches simultaneously.

5.6 QUALITATIVE ANALYSIS OF RSD TRACES AND LOGICAL TRADE-OFFS

To investigate whether RSD’s filtering impacts the semantic quality of reasoning, we conducted a
pairwise comparison using GPT-5-nano as a judge. We sampled trace pairs (s1K-1.1 versus RSD-
generated (pth=1%)) and asked the evaluator to compare them on logical correctness and tractability.

Table 3: Qualitative evaluation of trace quality via GPT-5-nano judge. RSD traces exhibit a
slight degradation in logical correctness and tractability compared to the original teacher traces.

Metric s1K-1.1 RSD-generated (pth=1%)
Logical correctness 53.89% 46.11%
Logical tractability 51.67% 48.33%

The results in Table 3 show that RSD traces exhibit a slight degradation in both logical correctness
and tractability compared to the original teacher traces. When the student rejects a teacher token
and samples from its own distribution, it risks choosing a logically incorrect path. This is evidenced
by the drop in the number of correctly solved problems during generation, as shown in Table 2.

However, this trade-off is central to the RSD mechanism. Our experiments show that training on
these fewer but aligned traces leads to a better final model. The student learns more effectively from
slightly imperfect but understandable traces than from perfect traces it cannot comprehend.

5.7 GENERALIZATION BEYOND MATHEMATICAL AND SCIENTIFIC REASONING

In order to demonstrate the efficacy of our method beyond mathematical and scientific reasoning,
we conducted additional experiments on MMLU-Pro (Wang et al., 2024), specifically selecting cate-
gories requiring logical deduction: Law, Economics, Health, Psychology, Business, and Philosophy.
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The trend observed in math and science benchmarks holds for general domain reasoning as detailed
in Appendix H. Direct distillation of s1K-1.1 traces degrades performance from the base model
accuracy of 30.93% to 30.54%, whereas training on RSD-generated traces with a 1% probability
threshold improves accuracy to 31.39%. This confirms that the distributional alignment provided by
RSD remains beneficial across diverse reasoning domains.

5.8 ROBUSTNESS ACROSS DATASETS

To validate that RSD’s effectiveness is not an artifact of the s1K dataset, we conducted a new ex-
periment using OpenThoughts3-1.2M. We processed the dataset by selecting only math and science
domains, filtering out truncated traces that exceeded the context limit, and deduplicating to ensure
unique question-answer pairs. From the resulting pool of approximately 35k valid traces, we ran-
domly sampled 1,000 examples to ensure a fair, size-controlled comparison with our s1K baseline.

Table 4: Robustness validation on OpenThoughts3-1.2M (1k subset). Direct distillation of
OpenThoughts3-1.2M traces causes severe degradation due to distributional misalignment. RSD-
generated traces on the question-answer pairs of OpenThoughts3 mitigates this failure and achieves
the highest performance on the most challenging benchmark (AIME24).

Models AIME24 AIME25 GPQA
Diamond MATH500 Average

Qwen3-0.6B 2.71 10.94 24.75 65.40 25.95

+ OpenThoughts3 1.82 6.35 22.41 54.00 21.15
+ RSD-generated (OpenThoughts3, RSD pth=1%) 4.01 9.58 22.92 64.40 25.23

The results in Table 4 reinforce our core hypothesis: Direct distillation causes severe degradation,
even when utilizing OpenThoughts3—a dataset distinct from s1K and released after the Qwen3 fam-
ily. This confirms that distributional misalignment remains a critical barrier independent of dataset
specificities. While RSD on this specific sample did not exceed the base model’s average score,
it successfully mitigated the degradation caused by direct distillation. Notably, on AIME24—the
most challenging benchmark requiring the deepest reasoning—RSD achieved the highest perfor-
mance (4.01), outperforming both the base model (2.71) and direct distillation (1.82). This suggests
that RSD is particularly effective at preserving the complex reasoning required for hard problems.

5.9 ISOLATING DISTRIBUTIONAL ALIGNMENT FROM COMPUTATIONAL INVESTMENT

While computational costs involved in trace generation represent secondary concerns in reasoning
trace research, one might attribute RSD’s effectiveness to increased computational investment rather
than distributional alignment. To test this hypothesis, we provide the evaluation results from student-
generated self-distill rejection sampling with 203 attempts instead of 16 to match RSD’s compu-
tational budget. Despite solving more problems than RSD 1% (189/234 versus 180/234), model
performance remained unchanged and continued to underperform the base model. RSD remains
the only method that consistently improves upon baseline performance under compute-equivalent
conditions. Details of this compute equivalence analysis can be found in Appendix C.

6 CONCLUSION

We introduced Reverse Speculative Decoding (RSD) to address distributional misalignment in rea-
soning ability transfer. By filtering high-surprisal tokens that exceed student models’ internal rep-
resentation capacity, RSD transforms teacher traces into student-friendly demonstrations while pre-
serving logical correctness. Our findings reveal that effective reasoning transfer hinges on managing
token-level surprisal, with sub-1% probability tokens serving as reliable indicators of representa-
tional incompatibility. We also identified the model-specific nature of RSD where these benefits
requires tailored trace generation for each model. We believe our work opens up new avenues for
reasoning ability transfer research, bringing distributional alignment to the forefront as a critical
consideration for effective distillation in compact architectures.
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A TOKENIZER COMPATIBILITY DETAILS

The RSD mechanism requires precise token-level probability evaluation, making tokenizer com-
patibility between teacher and student models essential. Without compatible tokenizers, token-level
comparison becomes infeasible, as vocabulary from one model may not exist in, or is different from,
another. Converting tokens back to text for comparison creates problems because BPE tokenizers
often split rare symbols (especially mathematical ones) across multiple sub-tokens, and this recon-
struction process can fail since sub-tokens represent incomplete character fragments rather than
standalone symbols.

Even though our teacher model s1.1-7B and student model Qwen3-0.6B are from the same model
family, incompatible token IDs exist between them due to different training procedures. We handle
these vocabulary discrepancies through several technical adjustments:

Vocabulary Suppression: We suppress 128 extra entries present only in the teacher model’s vo-
cabulary during generation to ensure all teacher-proposed tokens can be evaluated by the student
model.

Separate Context Management: For tokens unique to the student vocabulary (specifically IDs
151665–151668, which include thinking delimiters like <think> and </think>), we maintain
separate contexts for teacher and student models during generation. This ensures that both models
can process the reasoning traces in their native token formats while enabling probability evaluation.

Token Mapping Example: Token ID 151668 corresponds to </think> in the student model but
maps to the sequence (522, 26865, 29)=(</,think,>) in the teacher’s tokenizer. During RSD
generation, we preserve the native token format in the student’s context while using the mapped
representation in the teacher’s context, ensuring both models can process the same semantic content.

These technical considerations highlight why tokenizer compatibility represents a practical con-
straint for RSD implementation, limiting the range of teacher-student model pairs that can be effec-
tively used with this approach.
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B EVALUATION DETAILS

We assess performance on four challenging benchmarks: AIME24 and AIME25 (competition math-
ematics), GPQA Diamond (Rein et al., 2024) (graduate-level science), and MATH500 (Hendrycks
et al., 2021) (diverse mathematical reasoning). We report avg@64 for AIMEs, avg@8 for GPQA
Diamond, and pass@1 for MATH500. Context limits are 8k tokens for all benchmarks but 16k for
GPQA Diamond to accommodate extended reasoning processes.

For GPQA Diamond, a multiple-choice dataset with deliberately crafted distractors, we implement
a special handling: if models haven’t produced a definitive answer by 15k tokens, we forcibly insert
</think> to terminate the thinking phase and encourage answer generation. This prevents models
from reasoning indefinitely and ensures fair comparison against the 25% random baseline.

C COMPUTE-EQUIVALENT SETTING

To ensure RSD’s effectiveness stems from distributional alignment rather than sheer computational
investment, we conducted a compute-equivalent comparison. Our best-performing RSD configu-
ration (1% threshold), which uses a 7B teacher and a 0.6B student with 16 rejection samples, was
benchmarked against student-only self-distillation. To match the computational budget, we allocated
the self-distillation method an increased number of attempts, calculated as ((7/0.6)+1)×16 ≈ 203
samples. The results in Table 5 show that despite this significantly larger budget and solving more
problems during trace generation (189/234 versus 180/234), the compute-equivalent self-distillation
method failed to improve performance over its baseline and continued to underperform the base
model. This isolates RSD’s benefits to its alignment mechanism, confirming that trace quality is
more critical than trace quantity or the computational cost of generation.

Table 5: Compute-equivalent comparison between RSD and student-generated rejection sam-
pling. Despite the increased budget, self-distillation fails to improve over the base model, demon-
strating that RSD’s effectiveness stems from its alignment mechanism, not merely from increased
computational investment.

Models AIME24 AIME25 GPQA
Diamond MATH500 Average

Qwen3-0.6B 2.71 10.94 24.75 65.40 25.95

+ Self-distill (16 rejection sampling attempts) 2.66 10.78 21.97 67.80 25.80
+ Self-distill (203 rejection sampling attempts) 2.55 11.09 23.30 66.80 25.94
+ RSD-generated (pth=1%) 3.28 12.60 26.77 66.20 27.21

D CROSS MODEL EVALUATION RESULTS

We conducted cross-model evaluations, detailed in Table 6, to test if RSD-generated traces are uni-
versally beneficial. The results show that traces are highly model-specific; those generated for one
student model failed to improve others and often degraded performance. However, tailoring the RSD
process to a new student model yielded significant gains. This demonstrates that effective reasoning
transfer requires distributional alignment to be specifically calibrated for each student architecture.

E MULTI-STEP RSD TRAINING RESULTS

To investigate if RSD’s benefits could be compounded, we tested an iterative multi-step training
approach. The experiment consisted of three complete cycles using the Qwen3-0.6B model, where
the trained model from each cycle served as the new student for the next round of trace generation.
Each cycle was trained for 5 epochs, maintaining the optimal probability threshold of pth = 1%. As
detailed in Table 7, the results show that this iterative process substantially degrades performance,
falling below both the single-step RSD model and the original baseline. This suggests that repeated
re-alignment creates a detrimental feedback loop, leading to issues like compounding distributional
drift and overfitting to narrow reasoning patterns, which prevent progressive improvement.
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Table 6: Comprehensive cross-model evaluation demonstrating the model-specific nature of
RSD. Traces generated for one student (Transferred) fail to benefit other models and often degrade
performance. However, when traces are generated specifically for a new student (Tailored), perfor-
mance improves, confirming that distributional alignment must be unique to each model’s architec-
ture.

Models AIME24 AIME25 GPQA Diamond MATH500 Average
Qwen3-0.6B 2.71 10.94 24.75 65.40 25.95
+ s1K-1.1 1.93 (-0.78) 9.53 (-1.41) 12.88 (-11.87) 58.20 (-7.20) 20.64 (-5.31)
+ RSD-generated (Tailored) 3.28 (+0.57) 12.60 (+1.66) 26.77 (+2.02) 66.20 (+0.80) 27.21 (+1.26)

Llama-3.2-1B-Instruct 0.99 0.05 6.94 26.00 8.50
+ s1K-1.1 0.57 (-0.42) 0.05 (0.00) 9.47 (+2.53) 10.00 (-16.00) 5.02 (-3.48)
+ RSD-generated (Transferred) 0.42 (-0.57) 0.05 (0.00) 9.97 (+3.03) 20.40 (-5.60) 7.71 (-0.79)
+ RSD-generated (Tailored) 1.04 (+0.05) 0.10 (+0.05) 6.82 (-0.12) 26.40 (+0.40) 8.59 (+0.09)

Gemma-3-1B-IT 0.73 0.52 3.60 41.00 11.46
+ s1K-1.1 0.00 (-0.73) 0.00 (-0.52) 2.53 (-1.07) 13.20 (-27.80) 3.93 (-7.53)
+ RSD-generated (Transferred) 0.10 (-0.63) 0.00 (-0.52) 3.72 (+0.12) 17.00 (-24.00) 5.21 (-6.25)

Phi-4-Mini 2.66 1.41 16.79 53.80 18.66
+ s1K-1.1 5.52 (+2.86) 3.80 (+2.39) 16.48 (-0.31) 51.20 (-2.60) 19.25 (+0.59)
+ RSD-generated (Transferred) 5.89 (+3.23) 4.22 (+2.81) 18.62 (+1.83) 57.20 (+3.40) 21.48 (+2.82)

Phi-4-Mini-Reasoning 24.90 21.15 44.13 73.60 40.95
+ s1K-1.1 20.94 (-3.96) 19.84 (-1.31) 28.54 (-15.59) 79.60 (+6.00) 37.23 (-3.72)
+ RSD-generated (Transferred) 15.00 (-9.90) 17.34 (-3.81) 26.20 (-17.93) 75.00 (+1.40) 33.39 (-7.56)

Qwen3-1.7B 14.69 21.35 38.32 82.80 39.29
+ s1K-1.1 11.04 (-3.65) 17.19 (-4.16) 32.26 (-6.06) 78.20 (-4.60) 34.67 (-4.62)
+ RSD-generated (Transferred) 10.62 (-4.07) 16.67 (-4.68) 35.29 (-3.03) 76.80 (-6.00) 34.84 (-4.45)
+ RSD-generated (Tailored) 21.51 (+6.82) 20.78 (-0.57) 41.92 (+3.60) 83.00 (+0.20) 41.80 (+2.51)

Qwen3-4B 20.05 20.52 45.08 86.80 43.11
+ s1K-1.1 22.76 (+2.71) 26.88 (+6.36) 43.56 (-1.52) 86.60 (-0.20) 44.95 (+1.84)
+ RSD-generated (Transferred) 17.60 (-2.45) 22.55 (+2.03) 43.12 (-1.96) 84.80 (-2.00) 42.02 (-1.09)

Table 7: Performance of iterative, multi-step RSD training. Applying RSD in multiple cycles,
where the student model is updated after each cycle, leads to performance degradation compared to
a single training run.

Models AIME24 AIME25 GPQA
Diamond MATH500 Average

Qwen3-0.6B 2.71 10.94 24.75 65.40 25.95

+ RSD-generated (pth=1%, single step, 15 epochs) 3.28 12.60 26.77 66.20 27.21
+ RSD-generated (pth=1%, three steps, 5 epochs each) 1.93 9.06 22.22 61.60 23.70

F RSD TRACE LENGTHS ACROSS ARCHITECTURES

RSD’s effectiveness is influenced by a student model’s inherent linguistic style. Table 8 quantifies
this by comparing the average token counts in traces generated for different student models. A
contrast exists between the traces for Qwen3-0.6B, which average over 4,000 tokens, and those for
Llama-3.2-1B-Instruct, which average only 1,081 tokens. The conciseness of the Llama-3.2-1B-
Instruct traces, a reflection of its native style, provides an insufficient learning signal for complex
reasoning, helping to explain the model’s minimal performance gains when using this method.

Table 8: Average token counts in RSD-generated traces across different student models. Com-
parison shows dramatic differences between Qwen3-0.6B (with s1.1-7B teacher) and Llama-3.2-
1B-Instruct (with DeepSeek-R1-Distill-Llama-8B teacher) across probability thresholds.

Datasets Average token count
RSD-generated (pth=10%, tailored for Qwen3-0.6B) 4156
RSD-generated (pth=3%, tailored for Qwen3-0.6B) 4211
RSD-generated (pth=1%, tailored for Qwen3-0.6B) 4266
RSD-generated (pth=0.3%, tailored for Qwen3-0.6B) 4396
RSD-generated (pth=1%, tailored for Llama-3.2-1B-Instruct) 1081
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Figure 6: Wordcloud of sub-1% probability tokens in s1K dataset traces. Analysis reveals that
problematic tokens frequently include logical connectors and transitional keywords that exceed the
student model’s distributional characteristics, validating RSD’s threshold-based filtering approach.

G CHARACTERISTICS OF LOW PROBABILITY TOKENS

Figure 6 visualizes sub-1% probability tokens encountered in s1K traces under the Qwen3-0.6B
student model. The analysis reveals that problematic tokens frequently include transition keywords
representing reasoning patterns beyond the student model’s current distributional characteristics.

H MMLU-PRO EVALUATION RESULTS

To validate the generalizability of RSD beyond mathematical and scientific reasoning, we evaluated
performance on the MMLU-Pro benchmark. We specifically selected categories that demand logical
deduction and reasoning: Law, Economics, Health, Psychology, Business, and Philosophy, totaling
4,849 question-answer pairs.

Table 9: Performance on general domain reasoning (MMLU-Pro). We report accuracy on se-
lected categories requiring logical deduction (Law, Economics, Health, Psychology, Business, and
Philosophy). Consistent with mathematical benchmarks, direct distillation degrades performance
while RSD yields improvements over the base model.

Models MMLU-Pro (Selected)
Qwen3-0.6B 30.93

+ s1K-1.1 30.54
+ RSD-generated (pth=1%) 31.39

As shown in Table 9, the trend observed in math and science benchmarks holds for general domain
reasoning. Direct distillation of s1K-1.1 traces degrades performance relative to the base model,
while the model trained on RSD-generated traces achieves improved accuracy, confirming that dis-
tributional alignment benefits extends to general reasoning.

I DETAILED S1K-1.1 VS. RSD TRACE COMPARISONS

The following comparisons between original s1K-1.1 traces and their RSD counterparts demon-
strate how RSD systematically filters high-surprisal tokens while preserving the logical structure
and reasoning complexity of the original traces across diverse problem types and reasoning patterns.
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<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are
 a helpful assistant.<|im_end|>\n<|im_start|>user\nGiven a rational
 number, write it as a fraction in lowest terms and calculate the product
 of the resulting numerator and denominator. For how many rational
 numbers between 0 and 1 will $ 20_{}^{}!$  be the resulting product?
<|im_end|>\n<|im_start|>assistant\n<think>\nAlright, so I need to
 figure out how many rational numbers between 0 and 1 have a product
 of the numerator and denominator (when written in lowest terms) equal
 to 20 factorial. Let me start by understanding the problem.\n\nFirst, a
 rational number between 0 and 1 can be written as a fraction \(\frac{a}{b
}\) where \(0 < a < b\) and \(a\) and \(b\) are coprime positive integers.
 The product \(a \times b\) is said to be equal to 20! which is a huge
 number. So I need to find all pairs \((a, b)\) such that \(a \times b = 20!\
), \(0 < a < b\), and \(\gcd(a, b) = 1\). Then count how many such pairs
 exist.\n\nLet me break down the problem.\n\nGiven that \(a \times b = 
20!\) and \(\gcd(a, b) = 1\), it means that \(a\) and \(b\) are coprime
[...]
\). Since \(a\) and \(b\) are coprime, each prime factor in 20! must go
 entirely to \(a\) or entirely to \(b\). Hence, each coprime pair
 corresponds to a subset of the prime factors of 20!, where \(a\) is the
 product of the primes in the subset and \(b\) is the product of the
 remaining primes. However, since 20! is not just the product of primes,
 but the product of primes raised to various powers. Wait, so maybe I
 need to rethink that.\n\nWait, actually 20! has prime factors with ex
ponents. For example, 2^18, 3^8, 5^4, etc., up to the primes less than or
 equal to 20. But if I need two coprime numbers \(a\) and \(b\) such that
 \(a \times b = 20!\), then each of the prime powers in the factorization
 of 20! must go entirely to one of the numbers \(a\) or \(b\). So for each
 prime factor, we assign it to either \(a\) or \(b\), but not both.\n\n
Therefore, the number of such coprime pairs is \(2^k\), where \(k\) is the
[...]
 the assignment where a = 1 (all primes assigned to b) and b = 20! (there
's exactly one such case), and a can be 1, then proceed. Wait, 1 is the
 product of assigning no primes to a (all primes to b), so that's included.
\n\nBut if a and b can be written as a = 1 and b = 20!, yes, that's a copr
ime pair, likewise a=2^18 and b= (20!)/2^18 which is still an integer.
 Similarly for all subsets. Wait, but when we write a and b as coprime
 factors, the way I'm thinking is that the assignment is of each prime as a
 binary choice (to a or to b). So 2^8 equals 256 possible assignments,
 and each assignment defines a unique coprime pair (a,b) where a * b=2
0!. Since each assignment is unique, each ordered pair is distinct, even if
 a and b are swapped.\n\nSince such ordered pairs can have a < b or a >
 b, so then to get the (a,b) with a < b, we divide by 2, which gives 128.\n
\nBut wait, can it be? Let me check with a smaller factorial.\n\n
[...]
0 and 1 such that when written in lowest terms as a/b, the product of
 numerator and denominator is 20!=1×2×3...×20 is given by 2^{number
 of prime factors of 20! -1} =2^{8-1}=128.\n\n**Final Answer**\n\
boxed{128}\n</think>\nAnswer: Given a rational number between 0
 and 1, we need to write it as a fraction in lowest terms \(\frac{a}{b}\) and
 calculate the product of the resulting numerator and denominator. We
 need to determine how many such rational numbers exist where the
 product \(a \times b = 20!\).\n\n1. **Prime Factorization of 20!**:\n   -
 The prime factors of 20! are 2, 3, 5, 7, 11, 13, 17, and 19. These are 8
 distinct primes.\n\n2. **Coprime Pairs**:\n   - For \(a \times b = 20!\)
 and \(\gcd(a, b) = 1\), each prime factor of 20! must be assigned
 entirely to either \(a\) or \(b\). This results in \(2^8 = 256\) coprime pairs
 \((a, b)\).\n\n3. **Counting Pairs \(a < b\)**:\n   - Since \(a\) and \(b\)
 are coprime and \(a \times b = 20!\), each pair \((a, b)\) and \((b, a)\) are
 distinct. To find pairs where \(a < b\), we divide the total number of pairs
 by 2, excluding the case \(a = b\) (which is impossible since 20! is not a
 square).\n\n4. **Result**:\n   - The number of coprime pairs \((a, b)\)
 with \(a < b\) is \(\frac{256}{2} = 128\).\n\nThus, the number of rational
 numbers between 0 and 1 for which the product of the numerator and
 denominator in lowest terms is \(20!\) is \(\boxed{128}\).<|im_end|>\n

<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are
 a helpful assistant.\nYou must respond to every query in the following
 manner:\nFirst, provide a step-by-step logical exploration of the
 problem.\nThen, provide a clear and direct response based on your
 reasoning, with the final answer enclosed in \boxed{}.<|im_end|>\n
<|im_start|>user\nGiven a rational number, write it as a fraction in
 lowest terms and calculate the product of the resulting numerator and
 denominator. For how many rational numbers between 0 and 1 will $ 20
_{}^{}!$  be the resulting product?<|im_end|>\n<|im_start|>assistant\n
<think>\nOkay, let me try to work through this problem step by step. So
 the question is: Given a rational number between 0 and 1, write it as a
 fraction in lowest terms and calculate the product of the numerator and
 denominator. How many such rational numbers will result in the product
 20!?\n\nFirst, I need to understand what a rational number between
[...]
 means their greatest common divisor (gcd) is 1.\n\nThe problem says
 we need to calculate the product of the numerator and denominator (i.e
., p * q) for such fractions, and we need to find how many such fractions
 have p * q equal to 20!.\n\nSo, first, I need to figure out all the fractions
 p/q where 0 < p/q < 1, p and q are coprime, and p * q = 20!.\n\nWait,
 hold on. If p * q = 20! and p and q are coprime, then p and q must be div
isors of 20! and coprime to each other. Since they are coprime, they
 have no common prime factors. But since their product is 20!, that
 means p and q are two coprime integers whose product is 20!. So
 essentially, we need to find all pairs of coprime positive integers (p, q)
 such that p * q = 20! and p/q is between 0 and 1. Therefore, q must be
 greater than p, because p/q < 1.\n\nSo the problem reduces to finding
 all coprime pairs (p, q) with p * q = 20! and q > p.
[...]
Wait, when we assign each prime to either p or q, since the primes in the
 factorization of 20! include all primes up to 19. Therefore, the number of
 coprime pairs (p, q) with p < q is equal to half the total number of copr
ime pairs, right? Because for each pair (p, q), either p < q or p > q. Since
 we are considering only the ones where p < q, which would be half of
 the total, but we need to check if the pairs are ordered. However, when
 considering ordered pairs, the number of pairs where p < q is equal to
 the number of pairs where p > q, except when p = q. But here, p and q
 are coprime, so p cannot equal q unless p = q =1, but p*q =20! implies
 that p and q are factors of 20!, so the only way p*q =1 would be if p=q=
1, but 1 is not a prime factor of 20!. Therefore, p and q must be distinct.
\n\nTherefore, the number of coprime pairs (p, q) with p < q is equal to
 the total number of coprime pairs divided by 2. However, since when p
[...]
 distinct primes, which is 8 for 20!), then the answer is 2^{k}/2=2^{k-1}.
 So 2^{8-1}=128. So, 128 is the answer. Therefore, the answer is \boxed
{128}.\n\n**Final Answer**\n\boxed{128}\n</think>\n\nTo determine
 the number of rational numbers between 0 and 1, written in lowest
 terms as a fraction $  \frac{p}{q} $ , such that the product of the
 numerator and denominator equals 20!, we start by understanding the
 problem constraints:\n\n1. A rational number between 0 and 1 can be
 expressed as a fraction $  \frac{p}{q} $  where $  p $  and $  q $  are
 coprime (i.e., gcd(p, q) = 1) and $  0 < \frac{p}{q} < 1 $ .\n2. For such
 fractions, we need to compute the product $  p \cdot q $  and count
 how many such products equal 20!.\n\n### Key Insight:\n- Since $  p
 $  and $  q $  must be coprime, each prime factor in 20! must be
 assigned to either $  p $  or $  q $.  This leads to $  2^k $  coprime
 pairs (p, q), where $  k $  is the number of distinct prime factors of 20!.
\n\n### Prime Factorization of 20!:\nThe prime factors of 20! are 2, 3, 5
, 7, 11, 13, 17, and 19. Thus, there are 8 distinct prime factors.\n\n###
 Calculation:\n- The number of coprime pairs (p, q) is $  2^8 = 256 $  (
including ordered pairs where p or q could be 1).\n- Since we are
 interested in unordered pairs where $  p < q $ , we divide by 2, resulting
 in $  \frac{256}{2} = 128 $  such pairs.\n\nThus, the number of rational
 numbers between 0 and 1 where the product of the numerator and
 denominator equals 20! is:\n\n$$ \n\boxed{128}\n$$ <|im_end|>

Figure 7: Detailed trace comparison reveals RSD’s distributional alignment. Selectively pre-
sented sections show logically similar points from s1K-1.1 traces (left) with numerous sub-1% prob-
ability tokens (red highlights) and RSD-generated traces (right) with smooth probability transitions.
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