

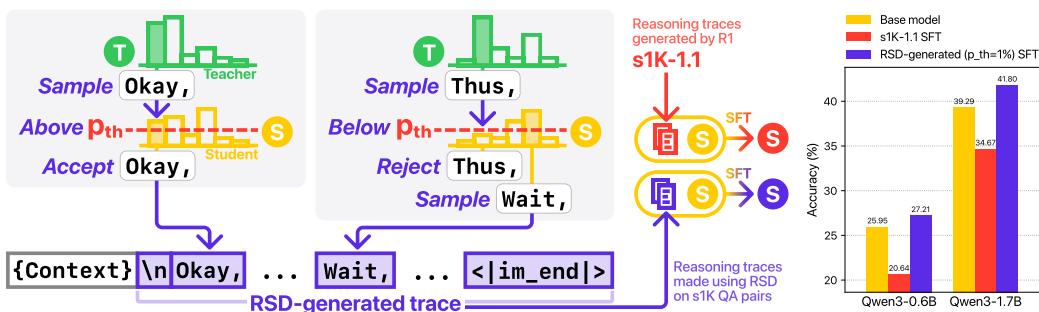
IN THEIR OWN WORDS: REASONING TRACES TAILED FOR SMALL MODELS MAKE THEM BETTER REASONERS

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Transferring reasoning capabilities from larger language models to smaller ones
 014 through supervised fine-tuning often fails counterintuitively, with performance de-
 015 grading despite access to high-quality teacher demonstrations. We identify that
 016 this failure stems from distributional misalignment: reasoning traces from larger
 017 models contain tokens that are low probability under the student’s distribution, ex-
 018 ceeding the internal representation capacity of smaller architectures and creating
 019 learning barriers rather than helpful guidance. We propose Reverse Speculative
 020 Decoding (RSD), a mechanism for generating student-friendly reasoning traces in
 021 which the teacher model proposes candidate tokens but the student model deter-
 022 mines acceptance based on its own probability distributions, filtering low proba-
 023 bility tokens. When applied to Qwen3-0.6B, direct distillation of s1K-1.1 rea-
 024 soning trace data degrades average performance across major reasoning bench-
 025 marks by 20.5%, while the same model trained on RSD-generated reasoning traces
 026 achieves meaningful improvements of 4.9%. Our analysis reveals that low proba-
 027 bility tokens constitute the critical bottleneck in reasoning ability transfer. How-
 028 ever, cross-model experiments demonstrate that RSD traces are model-specific
 029 rather than universally applicable, indicating that distributional alignment must be
 030 tailored for each student architecture’s unique internal representation. Code and
 031 datasets are available at <https://anonymous.4open.science/r/rsd>.



042 **Figure 1: Conceptual overview and empirical validation of Reverse Speculative Decoding**
 043 **(RSD).** Left: Reasoning trace generation process where RSD produces student-friendly reasoning
 044 traces in which the teacher proposes candidate tokens, while the student accepts only those with
 045 high probability under its own distribution. Right: Average accuracy on major reasoning bench-
 046 marks (AIME24, AIME25, GPQA Diamond, and MATH500) for (i) the base student model, (ii) a
 047 student trained on pre-existing high-quality reasoning traces (s1K-1.1), and (iii) a student trained on
 048 the reasoning traces it helped generate through the RSD process shown on the left.

1 INTRODUCTION

052 Recent advances in reasoning-focused language models have emerged through the strategic combi-
 053 nation of reinforcement learning (RL) and supervised fine-tuning (SFT) (DeepSeek-AI et al., 2025).
 These two methods play distinct yet complementary roles in developing sophisticated reasoning.

054 While RL excels at eliciting reasoning capacities by encouraging the model to explore and reflect,
 055 SFT is paramount in instilling reasoning abilities through direct exposure to expert demonstrations.
 056

057 When model capacity is limited, SFT assumes a more prominent role. Although RL can still con-
 058 tribute to reasoning ability, it often requires far more data and compute to reach comparable levels,
 059 with diminishing returns as model size shrinks. In contrast, SFT enables compact architectures to
 060 efficiently inherit problem-solving strategies from more capable teachers. Experimental results on
 061 32B models suggest that small models trained with RL on complex reasoning tasks often lag be-
 062 hind peers distilled from high-performing teachers, even when granted greater training resources
 063 (DeepSeek-AI et al., 2025). Consequently, leveraging intricate reasoning traces from capable, large
 064 models to train smaller models has become a dominant strategy for effective reasoning transfer.

065 However, empirical evidence reveals significant limitations in this transfer approach when working
 066 with even smaller models with just a few billion parameters. While approaches utilizing small col-
 067 lections of carefully curated reasoning traces, specifically s1K (Muennighoff et al., 2025) and LIMO
 068 (Ye et al., 2025), have demonstrated success with 32B models, these same datasets reveal a starkly
 069 different outcome when applied to substantially smaller 3.8B architectures (Xu et al., 2025a). When
 070 these compact models attempt to learn from high-quality reasoning traces distilled from larger teach-
 071 ers, direct distillation can significantly degrade performance, creating a phenomenon where models
 072 paradoxically deteriorate despite access to superior training data. This counterintuitive regression
 073 suggests that the reasoning behaviors naturally emerging in large models may prove ill-suited for
 074 direct imitation by substantially smaller counterparts, where the elaborate reasoning patterns and
 long logical dependencies can overwhelm compact architectures, causing capability regression.

075 We posit that the fundamental challenge lies in the leap in perceived complexity across consecutive
 076 reasoning steps that student models encounter. In language modeling, this disparity manifests at the
 077 token level. When the teacher’s next token falls in a region of very low probability under the stu-
 078 dent’s distribution, it may signal a reasoning pattern that exceeds what the student’s current internal
 079 representation can process. Effective transfer requires reshaping the stride of reasoning steps so that
 080 the rise in difficulty remains locally smooth—keeping the cognitive load between steps equigranular
 081 from the student’s perspective. Rather than compelling a small model to recite a teacher’s reasoning
 082 verbatim, we advocate for creating traces that preserve correctness while ensuring each reasoning
 083 transition remains tractable within the student’s processing range.

084 In this work, we propose Reverse Speculative Decoding (RSD), a novel algorithm for generating
 085 such student-friendly traces, and a training recipe to effectively transfer reasoning ability to smaller
 086 student models. As illustrated in Figure 1, in RSD, the teacher proposes a token, but the student
 087 decides whether to accept it based on its own probability distribution; if the token has the probability
 088 below a certain threshold, it is deemed improbable by the student, and the generation falls back to
 089 the student’s own prediction. This inverted teacher–student dynamic ensures that teacher guidance
 090 is injected only where the student is ready to follow, promoting distributional alignment and thus
 091 producing reasoning steps aligned with the student’s representational capacity.

092 We demonstrate the effectiveness of RSD through comprehensive experiments across major rea-
 093 soning benchmarks. Our findings reveal that while direct SFT on raw teacher traces leads to per-
 094 formance degradation, RSD-generated traces consistently improve reasoning capability. Our ex-
 095 periments show that the optimal configuration uses the probability threshold of $p_{th}=1\%$ with a
 096 temperature $T=0.7$, striking the balance between filtering low probability tokens and preserving
 097 teacher guidance. These findings underscore that such low-probability tokens represent the critical
 098 bottleneck to effective reasoning transfer, validating our threshold-based filtering approach.

100 2 RELATED WORK

101 **Reasoning Trace Rewrite** As supervised fine-tuning on reasoning traces became prevalent, the
 102 quality of training data emerged as a critical factor for performance improvement. This recognition
 103 sparked extensive research into generating superior reasoning traces through various conditioning
 104 and rewriting strategies. Some approaches focused on efficiency, generating shorter yet equally ef-
 105 fective reasoning chains through summarization (Kang et al., 2025) or self-training with best-of-
 106 n selection (Munkhbat et al., 2025). Others pursued targeted improvements, employing difficulty-
 107 aware prompting during trace generation (Wu et al., 2025) or conditioning on behavior handbooks

108 or reasoning templates that provide task-specific reasoning guidelines (Didolkar et al., 2025). More
 109 sophisticated approaches adopted MCTS-inspired generation strategies to eliminate redundant reasoning
 110 steps and explore alternative reasoning paths (Lu et al., 2025).

111 Despite these advancements, we believe there is a largely underexplored angle in this space: generating
 112 easier reasoning traces where each logical leap is narrower and more accessible to smaller
 113 models. Our approach focuses on ensuring that reasoning demonstrations align with what small
 114 models can readily follow and learn from, in order to transform them into better reasoners.

115
 116
 117 **Teacher-Student Coordination** Teacher-student coordination mechanisms have been explored
 118 across both training and inference phases. At test-time, speculative decoding (Leviathan et al., 2023)
 119 accelerates inference by having smaller models propose token candidates for verification by larger
 120 models. Step-level coordination approaches include methods where larger models intervene during
 121 detected reasoning difficulty through structural cues (Yang et al., 2025b), or where smaller models
 122 learn to emit special tokens requesting help from larger models (Akhauri et al., 2025). These ap-
 123 proaches leverage the observation that not all generation steps need equal computational resources.

124 The principles underlying these test-time coordination strategies have also been adapted for train-
 125 ing data generation. To reduce distributional mismatch between training and inference, Speculative
 126 Knowledge Distillation (SKD) (Xu et al., 2025b) employs student-proposed, teacher-approved sam-
 127 pling. While this creates higher-quality training contexts, the teacher-centric approval can still force
 128 students along unnatural trajectories. [Closely related to our goal, Reinforcement-Learned Teachers](#)
 129 [\(RLT\) \(Cetin et al., 2025\) explicitly align distributions by training the teacher with a KL-divergence](#)
 130 [constraint, yet this requires expensive retraining. In contrast, RSD operates purely as a data syn-](#)
 131 [thesis mechanism, utilizing the teacher as-is to generate aligned training data without the heavy cost](#)
 132 [of modifying teacher weights.](#) Our approach prioritizes distributional alignment through teacher-
 133 proposed, student-approved generation—hence the name, Reverse Speculative Decoding.

135 3 METHOD

137 3.1 GENERATING STUDENT-FRIENDLY TRACES WITH RSD

138
 139 The core principle of RSD is that effective reason-
 140 ing ability transfer requires managing the surprisal ex-
 141 perienced by student models during learning. Algo-
 142 rithm 1 operationalizes this principle through a teacher-
 143 proposed, student-approved generation mechanism. At
 144 each decoding step, we obtain probability distributions
 145 from both the teacher model P_t and student model P_s ,
 146 then sample a candidate token $y_i \sim P_t$ and eval-
 147 uate its likelihood under the student model $P_s(y_i)$. If
 148 $P_s(y_i) \geq p_{th}$, we accept the teacher’s proposal; other-
 149 wise, we fall back to sampling directly from the student
 150 distribution $y_i \sim P_s$.

151 This selective acceptance mechanism ensures distribu-
 152 tional alignment throughout the generated trace. We
 153 can conceptualize the cognitive load at each step as the
 154 surprisal $\ell_i = -\log P_s(y_i)$, with the threshold load be-
 155 ing $-\log p_{th}$. By filtering tokens that exceed this threshold, RSD effectively smooths surprisal spikes
 156 that would otherwise create learning obstacles. Each accepted teacher token represents a reasoning
 157 step within the student’s internal representation, while rejected tokens signal transitions that would
 158 create excessive uncertainty.

159 To ensure both correctness and student-friendliness in the generated traces, we employ rejection
 160 sampling, generating multiple candidate traces per problem and selecting a correct one for training
 161 (Yuan et al., 2024). This approach produces reasoning demonstrations that are both distributionally
 aligned and semantically sound.

Algorithm 1 Reverse Speculative Decoding

Require: Teacher LLM M_t , Student LLM M_s , Prompt x , Probability threshold p_{th} ,
 Decoding length α

- 1: context $\leftarrow x$
- 2: **for** $i = 1$ to α **do**
- 3: $P_t \leftarrow M_t(\cdot | \text{context})$
- 4: $P_s \leftarrow M_s(\cdot | \text{context})$
- 5: $y \sim P_t$
- 6: **if** $P_s(y) < p_{th}$ **then**
- 7: $y \sim P_s$
- 8: **end if**
- 9: context $\leftarrow \text{context} + y$
- 10: Break if $y = \text{EOS}$
- 11: **end for**
- 12: **return** context

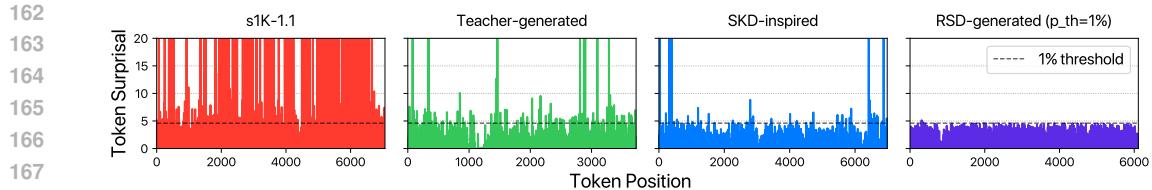


Figure 2: **Token-level surprisal progression across different trace generation methods.** Comparison of token surprisal patterns for a student model across traces generated by different methods. RSD’s effectiveness in eliminating problematic high-surprisal spikes that create learning barriers for student models is demonstrated.

3.2 QUANTIFYING DISTRIBUTIONAL ALIGNMENT

To analyze the distributional characteristics of reasoning traces, we employ several complementary metrics that capture different aspects of the student model’s uncertainty:

Surprisal and Entropy Following Shannon’s work on information theory (Shannon, 1948), we compute the surprisal of each token y_i in a trace under the student model as $s_i = -\log P_s(y_i|y_{<i})$. The entropy of the student’s distribution at each step is given by $H = -\sum P_s(y_i|y_{<i}) \log P_s(y_i|y_{<i})$. High surprisal indicates tokens that fall in low-probability regions of the student’s distribution, representing potential learning obstacles. These information-theoretic measures both capture regions where the student model exhibits substantial uncertainty about the next step. Figure 2 illustrates how RSD effectively eliminates problematic high-surprisal spikes compared to other trace generation methods, demonstrating the mechanism’s ability to smooth token-level surprisal progression throughout reasoning traces.

Perplexity At the trace level, we compute perplexity as $\text{PPL} = \exp(\frac{1}{N} \sum_{i=1}^N s_i)$, where N is the trace length. This provides a measure of how well-aligned an entire reasoning trace is with the student’s distribution. Lower perplexity indicates traces are more natural from the student’s perspective. In Figure 3, RSD traces consistently cluster at lower perplexity values with reduced variance compared to baseline methods, providing an evidence of improved distributional alignment.

Sub-threshold Token Ratio We track the proportion of tokens with probability below 1% under the student model. Our empirical findings reveal this metric as the strongest predictor of learning failure, with traces containing many sub-1% tokens consistently degrading student performance.

3.3 MAXIMIZING LEARNING SIGNAL WITH A HYBRID TRAINING APPROACH

RSD approaches reasoning transfer through a trace rewriting process, reconstructing teacher demonstrations through student distributional constraints. However, this constrains the teacher’s problem-solving reach—even with 16 rejection samples, RSD cannot solve all problems. This limitation actually validates our approach—if RSD solved everything under distributional constraints, the problems would lack sufficient complexity. Rather than discarding unsolved problems, we employ a dual-component methodology that maximizes the utilization of available training signal:

Primary RSD Training For problems where RSD generates correct solutions, we train on complete traces using standard SFT, ensuring both logical correctness and distributional alignment.

UPFT for Unsolved Problems For problems where RSD fails to generate a correct solution, we employ a partial trace training strategy to salvage the valuable reasoning patterns present in the initial steps. Inspired by the Unsupervised Prefix Fine-Tuning (UPFT) methodology (Ji et al., 2025), we extract the first 128 tokens from these unsuccessful traces. This approach ensures no training instances are wasted, allowing the student model to learn how to recognize problem patterns and formulate initial approaches even from examples that don’t reach a correct final answer.

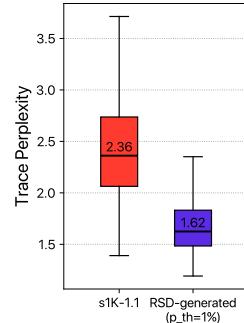


Figure 3: **Trace-level perplexity distributions.** RSD-generated traces cluster at lower perplexity values with reduced variance.

216

4 EXPERIMENTS

217

4.1 SETUP

218 **Teacher-Student Model Pair** RSD requires tokenizer compatibility between teacher and student
 219 models, as each teacher-proposed token must be evaluated under the student’s probability distribution.
 220 For our main experiments, we employ s1.1-7B (Muennighoff et al., 2025), a Qwen2.5-7B
 221 variant fine-tuned on s1K-1.1, as our teacher model and Qwen3-0.6B (Yang et al., 2025a) as our
 222 student model. These models share a tokenizer, enabling the token-level probability evaluations
 223 essential to the RSD mechanism. Details on tokenizer compatibility can be found in Appendix A.
 224

225 **Baselines** We select the s1K dataset (Muennighoff et al., 2025) containing 1,000 challenging prob-
 226 lems spanning mathematics, science, and logic that demand sophisticated reasoning rather than
 227 simple pattern recognition. We use s1K-1.1—traces generated by DeepSeek-R1 on the s1K ques-
 228 tions—as our primary baseline, though our method generalizes to any dataset providing meaningful
 229 learning signals. Using s1K’s question-answer pairs, we generate RSD traces through rejection
 230 sampling with temperature $T=0.7$ and probability thresholds $p_{th} \in \{10\%, 3\%, 1\%, 0.3\%\}$.
 231

232 To isolate RSD’s impact, we also compare against: (1) teacher-generated traces using our 7B teacher
 233 model to assess whether smaller teacher capacity drives RSD’s effectiveness, (2) student-generated
 234 self-distillation traces to evaluate training on student’s own outputs, and (3) SKD-inspired generation
 235 implementing student-proposed, teacher-approved dynamics with 1% probability threshold—more
 236 restrictive than standard SKD’s top- k sampling. All trace generation uses an 8k token context limit.
 237

238 **Model Training** Following the s1 training recipe (Muennighoff et al., 2025), we use batch size 16,
 239 bfloat16 precision, learning rate 1×10^{-5} with 5% linear warmup followed by cosine decay, AdamW
 240 optimizer ($\beta_1=0.9$, $\beta_2=0.95$, weight decay 10^{-4}). We train for 15 epochs.
 241

242

4.2 DISTRIBUTIONAL ALIGNMENT DRIVES RSD EFFECTIVENESS AND DATA EFFICIENCY

243 **Table 1: Impact of different distillation methods and RSD probability thresholds on the reason-
 244 ing performance of the Qwen3-0.6B model.** Direct distillation, where the student is fine-tuned on
 245 unaltered reasoning traces from teacher models (s1K-1.1, Teacher-generated), consistently degrades
 246 performance. In contrast, RSD-generated traces yield improvements, with a probability threshold of
 247 1% achieving the best average performance. Evaluation details are available in Appendix B. Best
 248 results are in **bold**, second best are underlined.
 249

250 Models	AIME24	AIME25	GPQA Diamond	MATH500	Average
251 Qwen3-0.6B	2.71	10.94	24.75	65.40	25.95
252 + s1K-1.1	1.93	<u>9.53</u>	12.88	58.20	20.64
253 + Teacher-generated	1.35	8.91	12.31	58.80	20.34
254 + Self-distill	2.66	10.78	21.97	67.80	25.80
255 + SKD-inspired	2.40	<u>11.56</u>	4.17	65.40	20.88
256 + RSD-generated ($p_{th}=10\%$)	3.33	11.25	<u>24.87</u>	66.20	<u>26.41</u>
257 + RSD-generated ($p_{th}=3\%$)	2.97	<u>11.56</u>	24.24	<u>66.80</u>	26.39
258 + RSD-generated ($p_{th}=1\%$)	3.28	12.60	26.77	66.20	27.21
259 + RSD-generated ($p_{th}=0.3\%$)	1.41	9.53	23.04	63.80	24.45

260 **RSD with 1% probability threshold achieves optimal performance by balancing token filter-
 261 ing with meaningful teacher guidance.** As shown in Table 1, the 1% threshold configuration
 262 demonstrates the most significant improvements across all benchmarks for our 0.6B student model,
 263 while higher thresholds of 10% and 3% show less consistent gains, and the restrictive 0.3% thresh-
 264 old causes substantial degradation. This performance pattern directly correlates with the sub-1%
 265 probability token ratios presented in Table 2, where the 0.3% threshold fails to adequately filter
 266 problematic tokens (2.02% sub-1% tokens), while optimal configurations maintain extremely low
 267 ratios (0.04–0.09%). The sub-1% tokens metric represents the proportion of all tokens in each
 268 dataset that have probability below 1% under the student model’s distribution, serving as a strong
 269 predictor of learning failure in compact architectures.

270 **Table 2: Dataset characteristics for different trace generation methods showing problem cov-
 271 erage, fallback rates, and sub-1% probability token proportions.** The s1K-1.1 traces contain a
 272 high proportion of sub-1% tokens, which correlates with poor training outcomes, whereas all RSD
 273 variants drastically reduce this proportion.

Datasets	Correctly solved	Fallback rate (%)	Sub-1% tokens (%)
s1K-1.1	1000	Not Applicable	6.70
Teacher-generated	234/1000	Not Applicable	2.98
Self-distill	122/234	Not Applicable	0.00
SKD-inspired	184/234	0.68	0.72
RSD-generated ($p_{th}=10\%$)	161/234	2.71	0.06
RSD-generated ($p_{th}=3\%$)	171/234	1.28	0.04
RSD-generated ($p_{th}=1\%$)	180/234	0.64	0.09
RSD-generated ($p_{th}=0.3\%$)	177/234	0.35	2.02

282 The number of correctly solved problems during trace generation provides some indication of RSD
 283 effectiveness. Correctly solved metric in Table 2 indicates how many problems each method suc-
 284 cessfully generates correct solutions for during the trace generation process. Since RSD requires
 285 both teacher and student model coordination, we first let the teacher model solve the 1,000 s1K
 286 problems, successfully obtaining solutions for 234 problems, which explains the /234 notation for
 287 methods that depend on teacher-generated solutions. Student-generated self-distill traces operate
 288 independently of teacher performance, but we applied the same constraint based on our assump-
 289 tion that the student model can only reasonably solve problems that the teacher has already solved.
 290 Among these problems, RSD with 1% threshold generated correct solutions for 180 problems—the
 291 highest among all RSD configurations. However, SKD-inspired generation solved 184 problems
 292 while still underperforming RSD during model training, demonstrating that correctness-preserving
 293 generation comes at the cost of higher sub-1% token ratios (0.72%), which creates learning barriers
 294 for compact architectures.

295 Traces from both large and smaller teacher models create equal distributional misalignment when
 296 training compact students. Both s1K-1.1 traces (generated by 671B DeepSeek-R1) and our teacher-
 297 generated traces (7B model) exhibit similar poor performance when training the 0.6B student. This
 298 similarity suggests that teacher model capacity does not reduce the degree of distributional mis-
 299 alignment—traces from both large and smaller teachers create equal learning barriers for compact
 300 students despite their substantial capacity difference. SKD-inspired generation also demonstrates
 301 low performance, primarily due to extremely poor GPQA Diamond scores where models frequently
 302 failed to produce answers within the token budget. Even excluding these failures, SKD-inspired still
 303 underperforms RSD 1% across all other benchmarks.

304 Fallback rates demonstrate variation across RSD probability thresholds. Fallback rates—the propor-
 305 tion of tokens where teacher proposals fall below the probability threshold, causing generation to re-
 306 vert to the student model—remain consistently low across all RSD configurations (0.35% to 2.71%).
 307 More restrictive thresholds result in lower fallback rates, with the 0.3% configuration showing the
 308 lowest rate (0.35%) and the 10% configuration showing the highest (2.71%).

309 The non-zero sub-1% token ratios in RSD traces likely occur when teacher influence introduces
 310 subtle perturbation that nudges generation away from the student’s natural distribution, causing the
 311 student to select low-probability tokens during fallback generation. This contrasts with self-distill’s
 312 near-zero sub-1% ratio, which reflects purely student-native generation without external guidance.

313 **RSD achieves meaningful improvements for small models using remarkably few examples
 314 compared to existing approaches.** While methods like Phi-4-Mini-Reasoning (Xu et al., 2025a)
 315 require extensive training from mid-training onwards with massive datasets to develop reasoning
 316 capabilities in compact models, RSD demonstrates that targeted filtering can produce improvements
 317 using only 1,000 carefully curated examples. This efficiency becomes even more striking consider-
 318 ing that among these examples, only 180 are complete reasoning traces, while the remainder consists
 319 of 128 token prefixes. Such efficiency emerges from RSD’s targeted approach: rather than over-
 320 whelming compact models with vast quantities of reasoning data, the method precisely identifies
 321 and removes the specific elements that create learning barriers.

322 **The probability threshold mechanism is instrumental in addressing the fundamental challenge
 323 of reasoning transfer to compact architectures.** When a teacher’s token has probability below

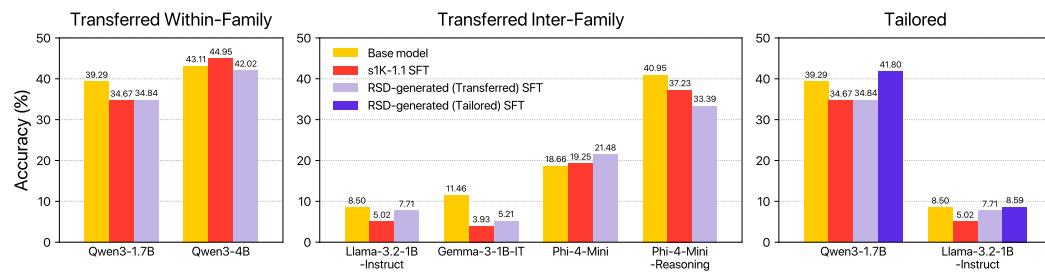


Figure 4: **Cross-model experiments demonstrate the model-specific nature of RSD-generated traces.** Reasoning traces generated using one student model (Qwen3-0.6B) fail to transfer benefits when applied to other models, both within the same model family (Left) and across different families (Center). When the RSD process is tailored to each student model, it produces performance gains (Right). Average accuracy of major reasoning benchmarks are shown. Detailed evaluation results are available in Appendix D.

1% under the student distribution, it may represent an abrupt reasoning pivot, a shift in analytical perspective, or an alternative exploratory direction that exceeds the student’s internal representation capacity. In our findings, s1K-1.1 traces contain 6.70% sub-1% probability tokens and degrade student performance by 20.5% (from 25.95% to 20.64% average accuracy), while RSD with 1% threshold reduces sub-1% tokens to just 0.09% and achieves meaningful improvements of 4.9% (to 27.21% average accuracy). By systematically filtering these high-surprisal tokens while preserving solution correctness through rejection sampling, RSD creates traces where each reasoning transition remains within the student’s processing range.

5 ANALYSIS

5.1 CROSS-MODEL TRANSFER OF RSD-GENERATED TRACES

To investigate whether RSD traces represent universally accessible reasoning patterns, we test whether traces generated using Qwen3-0.6B as the student can benefit other student models during training. This evaluation encompasses two dimensions of architectural variation, thus providing an empirical test of the cognitive load hypothesis and offering insight into whether RSD traces genuinely ease the reasoning burden for compact learners.

Within-Family Transfer We evaluate how RSD traces transfer across different scales within the Qwen3 family, testing on 1.7B and 4B parameter variants. This tests whether the distributional alignment achieved for a 0.6B model provides benefits for large models in the same model family.

Inter-Family Transfer We apply RSD traces originally generated with Qwen3-0.6B as the student to fundamentally different architectures: Llama-3.2-1B-Instruct (AI at Meta, 2024), Gemma-3-1B-IT (Team et al., 2025), Phi-4-Mini (Microsoft et al., 2025), and Phi-4-Mini-Reasoning (Xu et al., 2025a). The first three models are designed for general-purpose tasks and not specifically for reasoning tasks, while Phi-4-Mini-Reasoning is a specialized reasoning model that natively uses the thinking delimiters. Through SFT, the non-reasoning models learn to adopt this structured reasoning approach with the thinking delimiters, effectively transforming them into reasoning-capable models.

Figure 4 delivers a crucial finding: RSD traces are model-specific rather than universally beneficial. While traces generated using Qwen3-0.6B improve the original student model, they consistently fail to transfer benefits when applied to other models. The failure extends across both inter-family and within-family evaluations, revealing that distributional alignment is an inherently model-specific phenomenon dependent on the characteristics of each model’s learned probability distribution. Additionally, we observe that for the Qwen3-4B model, direct distillation yields improvements unlike the 0.6B model. The 4B model has sufficient internal representation capacity to process the logic from the s1K-1.1 teacher directly. Consequently, RSD specifically targets students with limited representational capacity, particularly those with fewer than 4 billion parameters, where direct distillation fails due to capacity constraints.

378 5.2 MODEL-DEPENDENT RSD PERFORMANCE
379

380 Given the model-specific nature of RSD traces demonstrated in Figure 4, we investigate whether
381 the RSD method itself proves effective when applied to different student architectures. Due to the
382 tokenizer compatibility constraint inherent to the RSD mechanism, the range of different student
383 models we can experiment with is limited. We choose Llama-3.2-1B-Instruct as our student model
384 paired with DeepSeek-R1-Distill-Llama-8B as the teacher. This combination of a larger reasoning-
385 focused teacher model with a compatible student model represents a relatively unique pairing in the
386 current model landscape. We also experiment with Qwen3-1.7B as our student model with the s1.1-
387 7B teacher, leveraging the fact that models within the same Qwen3 family naturally share vocabulary
388 with our primary Qwen3-0.6B student model. As seen from Figure 4, Qwen3-1.7B demonstrates
389 notable improvement when trained on its own RSD-generated traces, while Llama-3.2-1B-Instruct
390 exhibits minimal improvements despite identical RSD methodology.

391 This contrasting behavior reveals that RSD effectiveness depends critically on architectural char-
392 acteristics. As detailed in Appendix F, Llama-3.2-1B-Instruct exhibits inherently terse reasoning
393 traces approximately four times shorter than Qwen3 counterparts, reflecting different linguistic pref-
394 erences that influence the generation of reasoning demonstrations. This concise expression style
395 reflects the model’s design for general-purpose tasks and training data that predates DeepSeek-R1,
396 lacking exposure to the extended inner monologue patterns now characteristic of recent reasoning-
397 focused models. These findings highlight an important design principle of the RSD mechanism: it
398 operates by working within a student’s existing distributional preferences rather than attempting to
399 impose fundamentally different linguistic behaviors. The student-centric approach of RSD naturally
400 preserves each model’s inherent reasoning style, allowing the method to enhance existing patterns
401 while respecting the architectural boundaries established during pre-training.

402 403 5.3 IMPLICATIONS FOR THE UNIVERSAL COGNITIVE LOAD HYPOTHESIS
404

405 One hypothesis for reasoning ability transfer posits that cognitive load—the mental effort required
406 to process conceptual leaps and logical transitions between consecutive reasoning steps—represents
407 a universal limiting factor that affects all reasoning agents, human learners and language models
408 alike. Under this framework, methods like RSD can be expected to produce universally beneficial
409 reasoning demonstrations by reducing cognitive load through more manageable reasoning pro-
410 gressions. However, the cross-model transfer results in Figure 4 challenge this notion. They reveal
411 that distributional alignment is an inherently model-specific phenomenon where traces tailored for
412 one model’s internal representation do not transfer to another’s, even within the same model family.
413 The failure of these traces to transfer indicates that each model develops unique internal represen-
414 tations during pre-training, where effectiveness depends on the precise characteristics of each model’s
415 learned probability distribution rather than abstract cognitive demands. What constitutes a natural
416 reasoning step for one model may represent an inexplicable leap for another, even when both mod-
417 els operate at similar parameter scales, suggesting that reasoning transfer barriers are fundamentally
418 architectural rather than universally cognitive.

419 420 5.4 MULTI-STEP RSD TRAINING
421

422 We explore iterative RSD application through a multi-step training approach, using Qwen3-0.6B
423 with the optimal 1% probability threshold for three complete cycles, with each cycle consisting of
424 5 training epochs and the trained model serving as the new student for subsequent RSD trace gen-
425 eration. Complete results are available in Appendix E. Performance degraded substantially due to
426 compounding effects that make iterative alignment inherently problematic. Since RSD generates
427 traces aligned to a student’s current distributional characteristics, repeated application reinforces
428 increasingly specialized patterns rather than broadening capabilities, leading to progressive over-
429 fitting. The degradation during iterative training should be viewed in the context of the broader,
430 unsolved research challenge of Model Collapse (Shumailov et al., 2024). When a model is recur-
431 sively trained on its own output distribution, even with teacher guidance, the distribution tends to
432 narrow, reducing diversity and capability. We believe this represents a fundamental limitation of
433 consecutive alignment strategies rather than the specific RSD mechanism.

```

432 <|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are
433 [...]
434 the assignment where  $a = 1$  (all primes assigned to  $b$ ) and  $b = 20!$  (there
435 's exactly one such case), and a can be 1, then proceed. Wait, 1 is the
436 product of assigning no primes to a (all primes to b), so that's included.
437 \n\nBut if a and b can be written as  $a = 1$  and  $b = 20!$ , yes, that's a coprime
438 pair, likewise  $a = 2^18$  and  $b = (20!)^{2^18}$  which is still an integer.
439 Similarly for all subsets, Wait, but when we wrote a and b as coprime
440 factors, the way I'm thinking is that the assignment is of each prime as a
441 binary choice (to a or to b). So  $2^8$  equals 256 possible assignments,
442 and each assignment defines a unique coprime pair  $(a, b)$  where  $a * b = 20!$ .
443 Since each assignment is unique, each ordered pair is distinct, even if
444 a and b are swapped.\n\nSince such ordered pairs can have a  $a < b$  or  $a >$ 
445 b, so then to get the  $(a, b)$  with a  $a < b$ , we divide by 2, which gives 128.\n\n
446 \nBut wait, can it be? Let me check with a smaller factorial.\n\n
447 [...]
448 denominator in lowest terms is (20!) is  $\boxed{128}$ .<|im_end|>\n
449
450 denominator in lowest terms is (20!) is  $\boxed{128}$ .<|im_end|>\n
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

```

Figure 5: **Comparison of trace excerpts from the same question demonstrates RSD’s distributional alignment.** The s1K-1.1 trace excerpt (left) contains numerous sub-1% probability tokens (red highlights) while the corresponding RSD trace excerpt (right) exhibits smooth probability transitions.

5.5 CHARACTERISTICS OF HIGH-SURPRISAL BOTTLENECKS

As seen from Figure 5 and Appendix G, analysis reveals that high-surprisal tokens often correspond to critical junctures in reasoning such as logical connectors that fork the reasoning path. Recent works (Wang et al., 2025b;a) have identified similar patterns, showing that tokens with high entropy frequently mark critical decision points where multiple possible continuations exist. In the context of reasoning ability transfer, these branching points become particularly problematic, as while a large model can navigate complex logical forks based on its extensive internal representation, smaller models lack the capacity to represent all possible branches simultaneously.

5.6 QUALITATIVE ANALYSIS OF RSD TRACES AND LOGICAL TRADE-OFFS

To investigate whether RSD’s filtering impacts the semantic quality of reasoning, we conducted a pairwise comparison using GPT-5-nano as a judge. We sampled trace pairs (s1K-1.1 versus RSD-generated ($p_{th}=1\%$)) and asked the evaluator to compare them on logical correctness and tractability.

Table 3: **Qualitative evaluation of trace quality via GPT-5-nano judge.** RSD traces exhibit a slight degradation in logical correctness and tractability compared to the original teacher traces.

Metric	s1K-1.1	RSD-generated ($p_{th}=1\%$)
Logical correctness	53.89%	46.11%
Logical tractability	51.67%	48.33%

The results in Table 3 show that RSD traces exhibit a slight degradation in both logical correctness and tractability compared to the original teacher traces. When the student rejects a teacher token and samples from its own distribution, it risks choosing a logically incorrect path. This is evidenced by the drop in the number of correctly solved problems during generation, as shown in Table 2.

However, this trade-off is central to the RSD mechanism. Our experiments show that training on these fewer but aligned traces leads to a better final model. The student learns more effectively from slightly imperfect but understandable traces than from perfect traces it cannot comprehend.

5.7 GENERALIZATION BEYOND MATHEMATICAL AND SCIENTIFIC REASONING

In order to demonstrate the efficacy of our method beyond mathematical and scientific reasoning, we conducted additional experiments on MMLU-Pro (Wang et al., 2024), specifically selecting categories requiring logical deduction: Law, Economics, Health, Psychology, Business, and Philosophy.

486 The trend observed in math and science benchmarks holds for general domain reasoning as detailed
 487 in Appendix H. Direct distillation of s1K-1.1 traces degrades performance from the base model
 488 accuracy of 30.93% to 30.54%, whereas training on RSD-generated traces with a 1% probability
 489 threshold improves accuracy to 31.39%. This confirms that the distributional alignment provided by
 490 RSD remains beneficial across diverse reasoning domains.

492 5.8 ROBUSTNESS ACROSS DATASETS

494 To validate that RSD’s effectiveness is not an artifact of the s1K dataset, we conducted a new ex-
 495 periment using OpenThoughts3-1.2M. We processed the dataset by selecting only math and science
 496 domains, filtering out truncated traces that exceeded the context limit, and deduplicating to ensure
 497 unique question-answer pairs. From the resulting pool of approximately 35k valid traces, we ran-
 498 domly sampled 1,000 examples to ensure a fair, size-controlled comparison with our s1K baseline.

500
 501 **Table 4: Robustness validation on OpenThoughts3-1.2M (1k subset).** Direct distillation of
 502 OpenThoughts3-1.2M traces causes severe degradation due to distributional misalignment. RSD-
 503 generated traces on the question-answer pairs of OpenThoughts3 mitigates this failure and achieves
 504 the highest performance on the most challenging benchmark (AIME24).

505 Models	506 AIME24	507 AIME25	508 GPQA Diamond	509 MATH500	510 Average
511 Qwen3-0.6B	512 2.71	513 10.94	514 24.75	515 65.40	516 25.95
517 + OpenThoughts3	518 1.82	519 6.35	520 22.41	521 54.00	522 21.15
523 + RSD-generated (OpenThoughts3, RSD $p_{th}=1\%$)	524 4.01	525 9.58	526 22.92	527 64.40	528 25.23

511 The results in Table 4 reinforce our core hypothesis: Direct distillation causes severe degradation,
 512 even when utilizing OpenThoughts3—a dataset distinct from s1K and released after the Qwen3 fam-
 513 ily. This confirms that distributional misalignment remains a critical barrier independent of dataset
 514 specificities. While RSD on this specific sample did not exceed the base model’s average score,
 515 it successfully mitigated the degradation caused by direct distillation. Notably, on AIME24—the
 516 most challenging benchmark requiring the deepest reasoning—RSD achieved the highest perfor-
 517 mance (4.01), outperforming both the base model (2.71) and direct distillation (1.82). This suggests
 518 that RSD is particularly effective at preserving the complex reasoning required for hard problems.

519 5.9 ISOLATING DISTRIBUTIONAL ALIGNMENT FROM COMPUTATIONAL INVESTMENT

521 While computational costs involved in trace generation represent secondary concerns in reasoning
 522 trace research, one might attribute RSD’s effectiveness to increased computational investment rather
 523 than distributional alignment. To test this hypothesis, we provide the evaluation results from student-
 524 generated self-distill rejection sampling with 203 attempts instead of 16 to match RSD’s compu-
 525 tational budget. Despite solving more problems than RSD 1% (189/234 versus 180/234), model
 526 performance remained unchanged and continued to underperform the base model. RSD remains
 527 the only method that consistently improves upon baseline performance under compute-equivalent
 528 conditions. Details of this compute equivalence analysis can be found in Appendix C.

530 6 CONCLUSION

532 We introduced Reverse Speculative Decoding (RSD) to address distributional misalignment in rea-
 533 soning ability transfer. By filtering high-surprisal tokens that exceed student models’ internal rep-
 534 resentation capacity, RSD transforms teacher traces into student-friendly demonstrations while pre-
 535 serving logical correctness. Our findings reveal that effective reasoning transfer hinges on managing
 536 token-level surprisal, with sub-1% probability tokens serving as reliable indicators of representa-
 537 tional incompatibility. We also identified the model-specific nature of RSD where these benefits
 538 requires tailored trace generation for each model. We believe our work opens up new avenues for
 539 reasoning ability transfer research, bringing distributional alignment to the forefront as a critical
 540 consideration for effective distillation in compact architectures.

540 REFERENCES
541

542 AI at Meta. Llama 3.2 model card, 2024. URL https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/MODEL_CARD.md.

543

544 Yash Akhauri, Anthony Fei, Chi-Chih Chang, Ahmed F. AbouElhamayed, Yueying Li, and Mo-
545 hamed S. Abdelfattah. Splitreason: Learning to offload reasoning, 2025. URL <https://arxiv.org/abs/2504.16379>.

546

547 Edoardo Cetin, Tianyu Zhao, and Yujin Tang. Reinforcement learning teachers of test time scaling.
548 In *The Thirty-ninth Annual Conference on Neural Information Processing Systems*, 2025. URL
549 <https://openreview.net/forum?id=tebG8q5EeK>.

550

551 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
552 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
553 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
554 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
555 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
556 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
557 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
558 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
559 Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
560 Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
561 Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
562 Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
563 R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shengfeng
564 Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
565 Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
566 Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
567 Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
568 Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
569 aosh Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
570 Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
571 Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
572 Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
573 Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
574 Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
575 Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
576 Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
577 Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
578 Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
579 ment learning, 2025. URL <https://arxiv.org/abs/2501.12948>.

580

581 Aniket Didolkar, Nicolas Ballas, Sanjeev Arora, and Anirudh Goyal. Metacognitive reuse: Turn-
582 ing recurring llm reasoning into concise behaviors, 2025. URL <https://arxiv.org/abs/2509.13237>.

583

584 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
585 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *NeurIPS*,
2021.

586

587 Ke Ji, Jiahao Xu, Tian Liang, Qiuwei He, Xiaoyuan Liu, Xingyu Chen, Junying Chen,
588 Benyou Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. The first few tokens are all you need:
589 An efficient and effective unsupervised prefix fine-tuning method for reasoning models. In *The
590 Thirty-ninth Annual Conference on Neural Information Processing Systems*, 2025. URL <https://openreview.net/forum?id=1SCMFCG1iM>.

591

592 Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou. C3ot: generating shorter chain-of-
593 thought without compromising effectiveness. In *Proceedings of the Thirty-Ninth AAAI Con-
ference on Artificial Intelligence and Thirty-Seventh Conference on Innovative Applications*

594 *of Artificial Intelligence and Fifteenth Symposium on Educational Advances in Artificial In-*
 595 *telligence*, AAAI'25/IAAI'25/EAAI'25. AAAI Press, 2025. ISBN 978-1-57735-897-8. doi:
 596 10.1609/aaai.v39i23.34608. URL <https://doi.org/10.1609/aaai.v39i23.34608>.

597 Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
 598 decoding. In *Proceedings of the 40th International Conference on Machine Learning*, ICML'23.
 599 JMLR.org, 2023.

600 Ximing Lu, Seungju Han, David Acuna, Hyunwoo Kim, Jaehun Jung, Shrimai Prabhumoye, Niklas
 601 Muennighoff, Mostafa Patwary, Mohammad Shoeybi, Bryan Catanzaro, and Yejin Choi. Retro-
 602 search: Exploring untaken paths for deeper and efficient reasoning. *CoRR*, abs/2504.04383, April
 603 2025. URL <https://doi.org/10.48550/arXiv.2504.04383>.

604 Microsoft, :, Abdelrahman Abouelenin, Atabak Ashfaq, Adam Atkinson, Hany Awadalla, Nguyen
 605 Bach, Jianmin Bao, Alon Benhaim, Martin Cai, Vishrav Chaudhary, Congcong Chen, Dong Chen,
 606 Dongdong Chen, Junkun Chen, Weizhu Chen, Yen-Chun Chen, Yi ling Chen, Qi Dai, Xiyang Dai,
 607 Ruchao Fan, Mei Gao, Min Gao, Amit Garg, Abhishek Goswami, Junheng Hao, Amr Hendy,
 608 Yuxuan Hu, Xin Jin, Mahmoud Khademi, Dongwoo Kim, Young Jin Kim, Gina Lee, Jinyu Li,
 609 Yunsheng Li, Chen Liang, Xihui Lin, Zeqi Lin, Mengchen Liu, Yang Liu, Gilsinbia Lopez, Chong
 610 Luo, Piyush Madan, Vadim Mazalov, Arindam Mitra, Ali Mousavi, Anh Nguyen, Jing Pan, Daniel
 611 Perez-Becker, Jacob Platin, Thomas Portet, Kai Qiu, Bo Ren, Liliang Ren, Sambuddha Roy,
 612 Ning Shang, Yelong Shen, Saksham Singhal, Subhojit Som, Xia Song, Tetyana Sych, Praneetha
 613 Vaddamanu, Shuohang Wang, Yiming Wang, Zhenghao Wang, Haibin Wu, Haoran Xu, Weijian
 614 Xu, Yifan Yang, Ziyi Yang, Donghan Yu, Ishmam Zabir, Jianwen Zhang, Li Lyra Zhang, Yunan
 615 Zhang, and Xiren Zhou. Phi-4-mini technical report: Compact yet powerful multimodal language
 616 models via mixture-of-loras, 2025. URL <https://arxiv.org/abs/2503.01743>.

617 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi,
 618 Luke Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. s1: Simple test-
 619 time scaling. In Christos Christodoulopoulos, Tanmoy Chakraborty, Carolyn Rose, and Violet
 620 Peng (eds.), *Proceedings of the 2025 Conference on Empirical Methods in Natural Language
 Processing*, pp. 20286–20332, Suzhou, China, November 2025. Association for Computational
 621 Linguistics. ISBN 979-8-89176-332-6. doi: 10.18653/v1/2025.emnlp-main.1025. URL <https://aclanthology.org/2025.emnlp-main.1025/>.

622 Tergel Munkhbat, Namgyu Ho, Seo Hyun Kim, Yongjin Yang, Yujin Kim, and Se-Young Yun. Self-
 623 training elicits concise reasoning in large language models. In Wanxiang Che, Joyce Nabende,
 624 Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Findings of the Association for Com-
 putational Linguistics: ACL 2025*, pp. 25127–25152, Vienna, Austria, July 2025. Association for
 625 Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.1289.
 626 URL <https://aclanthology.org/2025.findings-acl.1289/>.

627 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
 628 Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a
 629 benchmark. In *First Conference on Language Modeling*, 2024. URL <https://openreview.net/forum?id=Ti67584b98>.

630 Claude Elwood Shannon. A mathematical theory of communication. *The Bell System Techni-
 631 cal Journal*, 27:379–423, 1948. URL [http://plan9.bell-labs.com/cm/ms/what/
 632 shannonday/shannon1948.pdf](http://plan9.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf).

633 Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas Papernot, Ross Anderson, and Yarin Gal.
 634 Ai models collapse when trained on recursively generated data. *Nature*, 631(8022):755–759,
 635 2024. doi: 10.1038/s41586-024-07566-y.

636 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 637 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas
 638 Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Cas-
 639 bon, Etienne Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xi-
 640 aohai Zhai, Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Cole-
 641 man, Yi Gao, Basil Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry,
 642 Jan-Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi,

648 Dan Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe
 649 Friesen, Abhanshu Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa
 650 Saade, Alex Feng, Alexander Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, András
 651 György, André Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia
 652 Paterson, Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini,
 653 Charlie Chen, Charline Le Lan, Christopher A. Choquette-Choo, CJ Carey, Cormac Brick, Daniel
 654 Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivaku-
 655 mar Sreepathihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eu-
 656 gene Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna
 657 Klimczak-Plucińska, Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian
 658 Ballantyne, Idan Szpektor, Ivan Nardini, Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wi-
 659 eting, Jonathan Lai, Jordi Orbay, Joseph Fernandez, Josh Newlan, Ju yeong Ji, Jyotinder Singh,
 660 Kat Black, Kathy Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine,
 661 Marina Coelho, Marvin Ritter, Matt Hoffman, Matthew Watson, Mayank Chaturvedi, Michael
 662 Moynihan, Min Ma, Nabil Babar, Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momchev, Ni-
 663 lay Chauhan, Noveen Sachdeva, Oskar Bunyan, Pankil Botarda, Paul Caron, Paul Kishan Ruben-
 664 stein, Phil Culliton, Philipp Schmid, Pier Giuseppe Sessa, Pingmei Xu, Piotr Stanczyk, Pouya
 665 Tafti, Rakesh Shivanna, Renjie Wu, Renke Pan, Reza Rokni, Rob Willoughby, Rohith Vallu,
 666 Ryan Mullins, Sammy Jerome, Sara Smoot, Sertan Girgin, Shariq Iqbal, Shashir Reddy, Shruti
 667 Sheth, Siim Põder, Sijal Bhatnagar, Sindhu Raghuram Panyam, Sivan Eiger, Susan Zhang, Tianqi
 668 Liu, Trevor Yacovone, Tyler Liechty, Uday Kalra, Utku Evci, Vedant Misra, Vincent Roseberry,
 669 Vlad Feinberg, Vlad Kolesnikov, Woohyun Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein
 670 Zhu, Zichuan Wei, Zoltan Egyed, Victor Cotruta, Minh Giang, Phoebe Kirk, Anand Rao, Kat
 671 Black, Nabila Babar, Jessica Lo, Erica Moreira, Luiz Gustavo Martins, Omar Sanseviero, Lucas
 672 Gonzalez, Zach Gleicher, Tris Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins, Joelle Bar-
 673 rral, Zoubin Ghahramani, Raia Hadsell, Yossi Matias, D. Sculley, Slav Petrov, Noah Fiedel, Noam
 674 Shazeer, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena
 675 Buchatskaya, Jean-Baptiste Alayrac, Rohan Anil, Dmitry, Lepikhin, Sebastian Borgeaud, Olivier
 676 Bachem, Armand Joulin, Alek Andreev, Cassidy Hardin, Robert Dadashi, and Léonard Hussenot.
 677 Gemma 3 technical report, 2025. URL <https://arxiv.org/abs/2503.19786>.

678 Jiakang Wang, Runze Liu, Fuzheng Zhang, Xiu Li, and Guorui Zhou. Stabilizing knowledge, pro-
 679 moting reasoning: Dual-token constraints for rlvr, 2025a. URL <https://arxiv.org/abs/2507.15778>.

680 Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xiong-Hui Chen,
 681 Jianxin Yang, Zhenru Zhang, Yuqiong Liu, An Yang, Andrew Zhao, Yang Yue, Shiji Song, Bowen
 682 Yu, Gao Huang, and Junyang Lin. Beyond the 80/20 rule: High-entropy minority tokens drive
 683 effective reinforcement learning for LLM reasoning. In *The Thirty-ninth Annual Conference on*
 684 *Neural Information Processing Systems*, 2025b. URL <https://openreview.net/forum?id=yfcpdY4gMP>.

685

686 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weim-
 687 ing Ren, Aaran Arulraj, Xuan He, Ziyuan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang,
 688 Rongqi Fan, Xiang Yue, and Wenhui Chen. MMLU-pro: A more robust and challenging multi-
 689 task language understanding benchmark. In *The Thirty-eighth Conference on Neural Information*
 690 *Processing Systems Datasets and Benchmarks Track*, 2024. URL <https://openreview.net/forum?id=y10DM6R2r3>.

691

692 Yifan Wu, Jingze Shi, Bingheng Wu, Jiayi Zhang, Xiaotian Lin, Nan Tang, and Yuyu Luo. Concise
 693 reasoning, big gains: Pruning long reasoning trace with difficulty-aware prompting, 2025. URL
 694 <https://arxiv.org/abs/2505.19716>.

695

696 Haoran Xu, Baolin Peng, Hany Awadalla, Dongdong Chen, Yen-Chun Chen, Mei Gao, Young Jin
 697 Kim, Yunsheng Li, Liliang Ren, Yelong Shen, Shuhang Wang, Weijian Xu, Jianfeng Gao, and
 698 Weizhu Chen. Phi-4-mini-reasoning: Exploring the limits of small reasoning language models in
 699 math, 2025a. URL <https://arxiv.org/abs/2504.21233>.

700

701 Wenda Xu, Rujun Han, Zifeng Wang, Long Le, Dhruv Madeka, Lei Li, William Yang Wang,
 Rishabh Agarwal, Chen-Yu Lee, and Tomas Pfister. Speculative knowledge distillation: Bridging

702 the teacher-student gap through interleaved sampling. In *The Thirteenth International Conference on Learning Representations*, 2025b. URL <https://openreview.net/forum?id=EgJhwYR2tB>.
 703
 704

705 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 706 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 707 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 708 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 709 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 710 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 711 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 712 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 713 Qiu. Qwen3 technical report, 2025a. URL <https://arxiv.org/abs/2505.09388>.
 714

715
 716 Van Yang, Xiang Yue, Vipin Chaudhary, and Xiaotian Han. Speculative thinking: Enhancing small-
 717 model reasoning with large model guidance at inference time. In *Second Conference on Language*
 718 *Modeling*, 2025b. URL <https://openreview.net/forum?id=4Ns18bSoHo>.
 719

720 Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. LIMO: Less is
 721 more for reasoning. In *Second Conference on Language Modeling*, 2025. URL <https://openreview.net/forum?id=T2TZ0RY4Zk>.
 722

723 Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang Zhou,
 724 and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large language
 725 models, 2024. URL <https://openreview.net/forum?id=cij00f8u35>.
 726
 727
 728

729 A TOKENIZER COMPATIBILITY DETAILS

730 The RSD mechanism requires precise token-level probability evaluation, making tokenizer com-
 731 patibility between teacher and student models essential. Without compatible tokenizers, token-level
 732 comparison becomes infeasible, as vocabulary from one model may not exist in, or is different from,
 733 another. Converting tokens back to text for comparison creates problems because BPE tokenizers
 734 often split rare symbols (especially mathematical ones) across multiple sub-tokens, and this recon-
 735 struction process can fail since sub-tokens represent incomplete character fragments rather than
 736 standalone symbols.
 737

738 Even though our teacher model s1.1-7B and student model Qwen3-0.6B are from the same model
 739 family, incompatible token IDs exist between them due to different training procedures. We handle
 740 these vocabulary discrepancies through several technical adjustments:
 741

742 **Vocabulary Suppression:** We suppress 128 extra entries present only in the teacher model’s vo-
 743 cabulary during generation to ensure all teacher-proposed tokens can be evaluated by the student
 744 model.
 745

746 **Separate Context Management:** For tokens unique to the student vocabulary (specifically IDs
 747 151665–151668, which include thinking delimiters like `<think>` and `</think>`), we maintain
 748 separate contexts for teacher and student models during generation. This ensures that both models
 749 can process the reasoning traces in their native token formats while enabling probability evaluation.
 750

751 **Token Mapping Example:** Token ID 151668 corresponds to `</think>` in the student model but
 752 maps to the sequence (522, 26865, 29)=(`</think>`) in the teacher’s tokenizer. During RSD
 753 generation, we preserve the native token format in the student’s context while using the mapped
 754 representation in the teacher’s context, ensuring both models can process the same semantic content.
 755

756 These technical considerations highlight why tokenizer compatibility represents a practical con-
 757 straint for RSD implementation, limiting the range of teacher-student model pairs that can be effec-
 758 tively used with this approach.
 759

756 **B EVALUATION DETAILS**
757758 We assess performance on four challenging benchmarks: AIME24 and AIME25 (competition math-
759 ematics), GPQA Diamond (Rein et al., 2024) (graduate-level science), and MATH500 (Hendrycks
760 et al., 2021) (diverse mathematical reasoning). We report avg@64 for AIMEs, avg@8 for GPQA
761 Diamond, and pass@1 for MATH500. Context limits are 8k tokens for all benchmarks but 16k for
762 GPQA Diamond to accommodate extended reasoning processes.763 For GPQA Diamond, a multiple-choice dataset with deliberately crafted distractors, we implement
764 a special handling: if models haven't produced a definitive answer by 15k tokens, we forcibly insert
765 `</think>` to terminate the thinking phase and encourage answer generation. This prevents models
766 from reasoning indefinitely and ensures fair comparison against the 25% random baseline.
767768 **C COMPUTE-EQUIVALENT SETTING**
769770 To ensure RSD's effectiveness stems from distributional alignment rather than sheer computational
771 investment, we conducted a compute-equivalent comparison. Our best-performing RSD configu-
772 ration (1% threshold), which uses a 7B teacher and a 0.6B student with 16 rejection samples, was
773 benchmarked against student-only self-distillation. To match the computational budget, we allocated
774 the self-distillation method an increased number of attempts, calculated as $((7/0.6) + 1) \times 16 \approx 203$
775 samples. The results in Table 5 show that despite this significantly larger budget and solving more
776 problems during trace generation (189/234 versus 180/234), the compute-equivalent self-distillation
777 method failed to improve performance over its baseline and continued to underperform the base
778 model. This isolates RSD's benefits to its alignment mechanism, confirming that trace quality is
779 more critical than trace quantity or the computational cost of generation.
780781 **Table 5: Compute-equivalent comparison between RSD and student-generated rejection sam-
782 pling.** Despite the increased budget, self-distillation fails to improve over the base model, demon-
783 strating that RSD's effectiveness stems from its alignment mechanism, not merely from increased
784 computational investment.

785 Models	786 AIME24	787 AIME25	788 GPQA 789 Diamond	790 MATH500	791 Average
792 Qwen3-0.6B	793 2.71	794 10.94	795 24.75	796 65.40	797 25.95
798 + Self-distill (16 rejection sampling attempts)	799 2.66	800 10.78	801 21.97	802 67.80	803 25.80
804 + Self-distill (203 rejection sampling attempts)	805 2.55	806 11.09	807 23.30	808 66.80	809 25.94
810 + RSD-generated ($p_{th}=1\%$)	811 3.28	812 12.60	813 26.77	814 66.20	815 27.21

792 **D CROSS MODEL EVALUATION RESULTS**
793794 We conducted cross-model evaluations, detailed in Table 6, to test if RSD-generated traces are uni-
795 versally beneficial. The results show that traces are highly model-specific; those generated for one
796 student model failed to improve others and often degraded performance. However, tailoring the RSD
797 process to a new student model yielded significant gains. This demonstrates that effective reasoning
798 transfer requires distributional alignment to be specifically calibrated for each student architecture.
799800 **E MULTI-STEP RSD TRAINING RESULTS**
801802 To investigate if RSD's benefits could be compounded, we tested an iterative multi-step training
803 approach. The experiment consisted of three complete cycles using the Qwen3-0.6B model, where
804 the trained model from each cycle served as the new student for the next round of trace generation.
805 Each cycle was trained for 5 epochs, maintaining the optimal probability threshold of $p_{th} = 1\%$. As
806 detailed in Table 7, the results show that this iterative process substantially degrades performance,
807 falling below both the single-step RSD model and the original baseline. This suggests that repeated
808 re-alignment creates a detrimental feedback loop, leading to issues like compounding distributional
809 drift and overfitting to narrow reasoning patterns, which prevent progressive improvement.

810
 811 **Table 6: Comprehensive cross-model evaluation demonstrating the model-specific nature of**
 812 **RSD.** Traces generated for one student (Transferred) fail to benefit other models and often degrade
 813 performance. However, when traces are generated specifically for a new student (Tailored), per-
 814 formance improves, confirming that distributional alignment must be unique to each model’s archi-
 815 tecture.

Models	AIME24	AIME25	GPQA Diamond	MATH500	Average
Qwen3-0.6B	2.71	10.94	24.75	65.40	25.95
+ s1K-1.1	1.93 (-0.78)	9.53 (-1.41)	12.88 (-11.87)	58.20 (-7.20)	20.64 (-5.31)
+ RSD-generated (Tailored)	3.28 (+0.57)	12.60 (+1.66)	26.77 (+2.02)	66.20 (+0.80)	27.21 (+1.26)
Llama-3.2-1B-Instruct	0.99	0.05	6.94	26.00	8.50
+ s1K-1.1	0.57 (-0.42)	0.05 (0.00)	9.47 (+2.53)	10.00 (-16.00)	5.02 (-3.48)
+ RSD-generated (Transferred)	0.42 (-0.57)	0.05 (0.00)	9.97 (+3.03)	20.40 (-5.60)	7.71 (-0.79)
+ RSD-generated (Tailored)	1.04 (+0.05)	0.10 (+0.05)	6.82 (-0.12)	26.40 (+0.40)	8.59 (+0.09)
Gemma-3-1B-IT	0.73	0.52	3.60	41.00	11.46
+ s1K-1.1	0.00 (-0.73)	0.00 (-0.52)	2.53 (-1.07)	13.20 (-27.80)	3.93 (-7.53)
+ RSD-generated (Transferred)	0.10 (-0.63)	0.00 (-0.52)	3.72 (+0.12)	17.00 (-24.00)	5.21 (-6.25)
Phi-4-Mini	2.66	1.41	16.79	53.80	18.66
+ s1K-1.1	5.52 (+2.86)	3.80 (+2.39)	16.48 (-0.31)	51.20 (-2.60)	19.25 (+0.59)
+ RSD-generated (Transferred)	5.89 (+3.23)	4.22 (+2.81)	18.62 (+1.83)	57.20 (+3.40)	21.48 (+2.82)
Phi-4-Mini-Reasoning	24.90	21.15	44.13	73.60	40.95
+ s1K-1.1	20.94 (-3.96)	19.84 (-1.31)	28.54 (-15.59)	79.60 (+6.00)	37.23 (-3.72)
+ RSD-generated (Transferred)	15.00 (-9.90)	17.34 (-3.81)	26.20 (-17.93)	75.00 (+1.40)	33.39 (-7.56)
Qwen3-1.7B	14.69	21.35	38.32	82.80	39.29
+ s1K-1.1	11.04 (-3.65)	17.19 (-4.16)	32.26 (-6.06)	78.20 (-4.60)	34.67 (-4.62)
+ RSD-generated (Transferred)	10.62 (-4.07)	16.67 (-4.68)	35.29 (-3.03)	76.80 (-6.00)	34.84 (-4.45)
+ RSD-generated (Tailored)	21.51 (+6.82)	20.78 (-0.57)	41.92 (+3.60)	83.00 (+0.20)	41.80 (+2.51)
Qwen3-4B	20.05	20.52	45.08	86.80	43.11
+ s1K-1.1	22.76 (+2.71)	26.88 (+6.36)	43.56 (-1.52)	86.60 (-0.20)	44.95 (+1.84)
+ RSD-generated (Transferred)	17.60 (-2.45)	22.55 (+2.03)	43.12 (-1.96)	84.80 (-2.00)	42.02 (-1.09)

837
 838 **Table 7: Performance of iterative, multi-step RSD training.** Applying RSD in multiple cycles,
 839 where the student model is updated after each cycle, leads to performance degradation compared to
 840 a single training run.

Models	AIME24	AIME25	GPQA Diamond	MATH500	Average
Qwen3-0.6B	2.71	10.94	24.75	65.40	25.95
+ RSD-generated ($p_{th}=1\%$, single step, 15 epochs)	3.28	12.60	26.77	66.20	27.21
+ RSD-generated ($p_{th}=1\%$, three steps, 5 epochs each)	1.93	9.06	22.22	61.60	23.70

F RSD TRACE LENGTHS ACROSS ARCHITECTURES

848 RSD’s effectiveness is influenced by a student model’s inherent linguistic style. Table 8 quantifies
 849 this by comparing the average token counts in traces generated for different student models. A
 850 contrast exists between the traces for Qwen3-0.6B, which average over 4,000 tokens, and those for
 851 Llama-3.2-1B-Instruct, which average only 1,081 tokens. The conciseness of the Llama-3.2-1B-
 852 Instruct traces, a reflection of its native style, provides an insufficient learning signal for complex
 853 reasoning, helping to explain the model’s minimal performance gains when using this method.

854
 855 **Table 8: Average token counts in RSD-generated traces across different student models.** Com-
 856 parison shows dramatic differences between Qwen3-0.6B (with s1.1-7B teacher) and Llama-3.2-
 857 1B-Instruct (with DeepSeek-R1-Distill-Llama-8B teacher) across probability thresholds.

Datasets	Average token count
RSD-generated ($p_{th}=10\%$, tailored for Qwen3-0.6B)	4156
RSD-generated ($p_{th}=3\%$, tailored for Qwen3-0.6B)	4211
RSD-generated ($p_{th}=1\%$, tailored for Qwen3-0.6B)	4266
RSD-generated ($p_{th}=0.3\%$, tailored for Qwen3-0.6B)	4396
RSD-generated ($p_{th}=1\%$, tailored for Llama-3.2-1B-Instruct)	1081

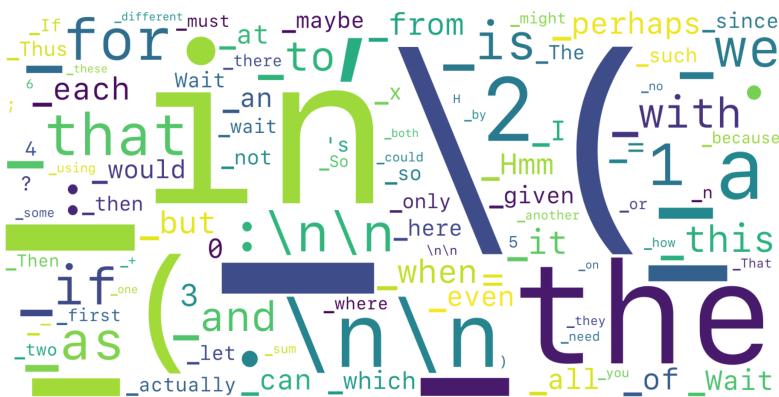


Figure 6: **Wordcloud of sub-1% probability tokens in s1K dataset traces.** Analysis reveals that problematic tokens frequently include logical connectors and transitional keywords that exceed the student model’s distributional characteristics, validating RSD’s threshold-based filtering approach.

G CHARACTERISTICS OF LOW PROBABILITY TOKENS

Figure 6 visualizes sub-1% probability tokens encountered in s1K traces under the Qwen3-0.6B student model. The analysis reveals that problematic tokens frequently include transition keywords representing reasoning patterns beyond the student model's current distributional characteristics.

H MMLU-PRO EVALUATION RESULTS

To validate the generalizability of RSD beyond mathematical and scientific reasoning, we evaluated performance on the MMLU-Pro benchmark. We specifically selected categories that demand logical deduction and reasoning: Law, Economics, Health, Psychology, Business, and Philosophy, totaling 4,849 question-answer pairs.

Table 9: **Performance on general domain reasoning (MMLU-Pro).** We report accuracy on selected categories requiring logical deduction (Law, Economics, Health, Psychology, Business, and Philosophy). Consistent with mathematical benchmarks, direct distillation degrades performance while RSD yields improvements over the base model.

Models	MMLU-Pro (Selected)
Qwen3-0.6B	30.93
+ s1K-1.1	30.54
+ RSD-generated ($p_{\text{th}}=1\%$)	31.39

As shown in Table 9, the trend observed in math and science benchmarks holds for general domain reasoning. Direct distillation of s1K-1.1 traces degrades performance relative to the base model, while the model trained on RSD-generated traces achieves improved accuracy, confirming that distributional alignment benefits extends to general reasoning.

I DETAILED S1K-1.1 VS. RSD TRACE COMPARISONS

The following comparisons between original s1K-1.1 traces and their RSD counterparts demonstrate how RSD systematically filters high-surprise tokens while preserving the logical structure and reasoning complexity of the original traces across diverse problem types and reasoning patterns.

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

<|im_start|>system|nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>|n<|im_start|>user|nGiven a rational number, write it as a fraction in lowest terms and calculate the product of the resulting numerator and denominator. For how many rational numbers between 0 and 1 will $20!^0$ be the resulting product?<|im_end|>|n<|im_start|>assistant|n<|im_end|>|n Alright, so I need to figure out how many rational numbers between 0 and 1 have a product of the numerator and denominator (when written in lowest terms) equal to 20 factorial. Let me start by understanding the problem.|nFirst, a rational number between 0 and 1 can be written as a fraction $\frac{a}{b}$ where $0 < a < b$ and (a, b) are coprime positive integers. The product $(a \times b)$ is said to be equal to 20! which is a huge number. So I need to find all pairs $((a, b))$ such that $(a \times b = 20!)$, $(0 < a < b)$, and $(\gcd(a, b) = 1)$. Then count how many such pairs exist.|nLet me break down the problem.|nGiven that $(a \times b = 20!)$ and $(\gcd(a, b) = 1)$, it means that (a) and (b) are coprime [...]|n Since (a) and (b) are coprime, each prime factor in 20! must go entirely to (a) or entirely to (b) . Hence, each coprime pair corresponds to a subset of the prime factors of 20!, where (a) is the product of the primes in the subset and (b) is the product of the remaining primes. However, since 20! is not just the product of primes, but the product of primes raised to various powers. Wait, so maybe I need to rethink that.|nWait, actually 20! has prime factors with exponents. For example, $2^{18}, 3^{10}, 5^4$, etc., up to the primes less than or equal to 20. But if I need two coprime numbers (a) and (b) such that $(a \times b = 20!)$, then each of the prime powers in the factorization of 20! must go entirely to one of the numbers (a) or (b) . So for each prime factor, we assign it to either (a) or (b) , but not both.|n|nTherefore, the number of such coprime pairs is 2^{k-1} , where (k) is the [...]|n the assignment where $a = 1$ (all primes assigned to b) and $b = 20!$ (there's exactly one such case), and a can be 1, then proceed. Wait, a is the product of assigning no primes to a (all primes to b), so that's included.|n|nBut if a and b can be written as $a = 1$ and $b = 20!$, yes, that's a coprime pair, likewise $a = 2^{18}$ and $b = 20!/2^{18}$ which is still an integer. Similarly for all subsets. Wait, but when we write a and b as coprime factors, the way I'm thinking is that the assignment is of each prime as a binary choice (to a or to b). So $2^8 = 256$ possible assignments, and each assignment defines a unique coprime pair (a, b) where $a \times b = 20!$. Since each assignment is unique, each ordered pair is distinct, even if a and b are swapped.|n|nSince such ordered pairs can have a b or a b , so then to get the (a, b) with a b , we divide by 2, which gives 128.|n|nBut wait, can it be? Let me check with a smaller factorial.|n|n[...]|n 0 and 1 such that when written in lowest terms as a/b , the product of numerator and denominator is $20! = 1 \times 2 \times 3 \times \dots \times 20$ is given by 2^k number of prime factors of $20! - 1 = 2^8 - 1 = 128$.|n|nFinal Answer*|nboxed{128}|n</think>|n|nAnswer: Given a rational number between 0 and 1, we need to write it as a fraction in lowest terms $\frac{a}{b}$ and calculate the product of the resulting numerator and denominator. We need to determine how many such rational numbers exist where the product $(a \times b = 20!)$.|n|n1. **Prime Factorization of $20!^0$:|n - The prime factors of $20!$ are 2, 3, 5, 7, 11, 13, 17, and 19. These are 8 distinct primes.|n|n2. **Coprime Pairs*|n - For $(a \times b = 20!)$ and $(\gcd(a, b) = 1)$, each prime factor of $20!$ must be assigned entirely to either (a) or (b) . This results in $2^8 = 256$ coprime pairs $((a, b))$.|n|n3. **Counting Pairs $(a < b)$ *|n - Since (a) and (b) are coprime and $(a \times b = 20!)$, each pair $((a, b))$ and $((b, a))$ are distinct. To find pairs where $(a < b)$, we divide the total number of pairs by 2, excluding the case $(a = b)$ (which is impossible since $20!$ is not a square).|n|n4. **Result**|n - The number of coprime pairs $((a, b))$ with $(a < b)$ is $\frac{256}{2} = 128$.|n|nThus, the number of rational numbers between 0 and 1 for which the product of the numerator and denominator in lowest terms is $20!$ is $\boxed{128}$.|n|n<|im_end|>|n

<|im_start|>system|nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.|nYou must respond to every query in the following manner.|nFirst, provide a step-by-step logical exploration of the problem.|nThen, provide a clear and direct response based on your reasoning, with the final answer enclosed in $\boxed{\cdot}$.|n<|im_end|>|n<|im_start|>user|nGiven a rational number, write it as a fraction in lowest terms and calculate the product of the resulting numerator and denominator. For how many rational numbers between 0 and 1 will $20!^0$ be the resulting product?<|im_end|>|n<|im_start|>assistant|n<|im_end|>|n|nOkay, let me try to work through this problem step by step. So the question is: Given a rational number between 0 and 1, write it as a fraction in lowest terms and calculate the product of the numerator and denominator. How many such rational numbers will result in the product $20!^0$?|n|nFirst, I need to understand what a rational number between [...]

means their greatest common divisor (gcd) is 1.|n|nThe problem says we need to calculate the product of the numerator and denominator (i.e., $p \times q$) for such fractions, and we need to find how many such fractions have $p \times q$ equal to $20!$.|n|nSo, first, I need to figure out all the fractions p/q where $0 < p/q < 1$, p and q are coprime, and $p \times q = 20!$.|n|nWait, hold on. If $p \times q = 20!$ and p and q are coprime, then p and q must be divisors of $20!$ and coprime to each other. Since they are coprime, they have no common prime factors. But since their product is $20!$, that means p and q are two coprime integers whose product is $20!$. So essentially, we need to find all pairs of coprime positive integers (p, q) such that $p \times q = 20!$ and p/q is between 0 and 1. Therefore, q must be greater than p , because $p/q < 1$.|n|nSo the problem reduces to finding all coprime pairs (p, q) with $p \times q = 20!$ and $q > p$.|n|n[...]

Wait, when we assign each prime to either p or q , since the primes in the factorization of $20!$ include all primes up to 19. Therefore, the number of coprime pairs (p, q) with $p < q$ is equal to half the total number of coprime pairs, right? Because for each pair (p, q) , either $p < q$ or $p > q$. Since we are considering only the ones where $p < q$, which would be half of the total, but we need to check if the pairs are ordered. However, when considering ordered pairs, the number of pairs where $p < q$ is equal to the number of pairs where $p > q$, except when $p = q$. But here, p and q are coprime, so p cannot equal q unless $p = q = 1$, but $p \times q = 20!$ implies that p and q are factors of $20!$, so the only way $p \times q = 1$ would be if $p = q = 1$, but 1 is not a prime factor of $20!$. Therefore, p and q must be distinct.|n|nTherefore, the number of coprime pairs (p, q) with $p < q$ is equal to the total number of coprime pairs divided by 2. However, since when $p = q$ [...]

distinct primes, which is 8 for $20!$, then the answer is 2^{k-1} . So $2^8 = 256$. So, 128 is the answer. Therefore, the answer is $\boxed{128}$.|n|nFinal Answer*|nboxed{128}|n</think>|n|nTo determine the number of rational numbers between 0 and 1, written in lowest terms as a fraction $\frac{p}{q}$ where $p \times q = 20!$, such that the product of the numerator and denominator equals $20!$, we start by understanding the problem constraints:|n|n1. A rational number between 0 and 1 can be expressed as a fraction $\frac{p}{q}$ where $p \times q = 20!$ and p and q are coprime (i.e., $\gcd(p, q) = 1$) and $0 < \frac{p}{q} < 1$. For such fractions, we need to compute the product $p \times q$ and count how many such products equal $20!$.|n|nKey Insight:|n - Since p and q must be coprime, each prime factor in $20!$ must be assigned to either p or q . This leads to 2^k coprime pairs (p, q) , where k is the number of distinct prime factors of $20!$.|n|nPrime Factorization of $20!$:|n - The prime factors of $20!$ are 2, 3, 5, 7, 11, 13, 17, and 19. Thus, there are 8 distinct prime factors.|n|nCalculation:|n - The number of coprime pairs (p, q) is $2^8 = 256$ (including ordered pairs where p and q could be 1).|n - Since we are interested in unordered pairs where $0 < p < q < 1$, we divide by 2, resulting in $\frac{256}{2} = 128$ such pairs.|n|nThus, the number of rational numbers between 0 and 1 where the product of the numerator and denominator equals $20!$ is:|n|n\$ \boxed{128}\$

Figure 7: **Detailed trace comparison reveals RSD’s distributional alignment.** Selectively presented sections show logically similar points from s1K-1.1 traces (left) with numerous sub-1% probability tokens (red highlights) and RSD-generated traces (right) with smooth probability transitions.