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Abstract

In this work, we train a generative denoising diffusion model (DDGM) in healthy
electrocardiogram (ECG) data capable of generating realistic healthy heartbeats.
We then show how recent advances in solving linear inverse Bayesian problems
with DDGM can be used to derive interpretable outlier detection tools for electro-
physiological anomalies.

1 Introduction

Approximately 10% of adult deaths in Europe and the United States are due to sudden cardiac death
(SCD), often incorrectly referred to as “cardiac arrest”. SCD typically occurs due to extremely rapid
ventricular arrhythmias, ie, ventricular fibrillation or ventricular tachycardia (VF/VT). These rapid
ventricular arrhythmias are often associated with structural heart disease such as cardiomyopathies or
areas of cardiac electrical heterogeneity.

Detecting and quantifying these abnormal heart rhythms with noninvasive techniques such as the
electrocardiogram (ECG) is one of the greatest challenges in cardiology. Effective treatments are
available to protect at-risk individuals, so accurate assessment is critical. To date, cardiology has
relied on left ventricular ejection fraction (LVEF) measurements to assess SCD risk. LVEF, although
valuable, has limited utility in younger patients without cardiomyopathies.

Because SCD requires an exceptionally rapid response to prevent deaths, it is extremely difficult
to collect noninvasive data directly from this population. An alternative approach is to use the
distribution of healthy signals, because databases containing such data are more readily available
[14, 34]. This approach may involve detecting outliers or anomalies in the data.

Over the past decade, several techniques have been developed to design and train generative models ca-
pable of generating highly realistic patterns from the original data, even for complex high-dimensional
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data types such as images and audio [18, 19, 11]. Denoising-Diffusion Generative Models (DDGMs)
have emerged as particularly effective generative models that convert noise to the original data domain
through a sequence of denoising steps. These models achieve impressive results in generating images
and audio data, and do so without the complexity of adversarial training [27, 31, 28, 29, 5].

Several DDGM trained on ECG have been proposed, but as far as we are concerned, they either
try to model a non-centered window of the ECG (instead of a window around an individual heart
beat) [2, 20] and/or a given lead [1]. In this work, we focus on modeling the morphology and the
inter-lead dependence of the ECG heart beat. To do so, we center the data around the R-peaks to
reduce the positional variability of the target distribution, thus making the task of generative model
easy. This also considerably simplifies the formulation of morphology-related inverse problems, such
as conditional generation of the T-wave from the QRS for example.

Recently, the concept of using generative models as informative priors for solving inverse Bayes
problems has attracted considerable attention, mainly due to their flexibility and expressive capabilities
[3, 33, 32, 13, 26, 36, 24]. DDGMs are particularly well suited for such tasks, and several studies
have investigated their use as priors for solving inverse problems [28, 8, 30, 16, 17]. In particular,
recent work by [7] and [35] has proposed consistent algorithms for sampling from the posterior of
inverse problems using DDGMs as priors.

Contributions:

• We present the first DDGM specifically trained to generate realistic, healthy electrocardio-
gram (ECG) beats, with a focus on capturing accurate ECG morphology.

• We use this novel DDGM as a prior in solving inverse problems and demonstrate its practical
utility in detecting abnormalities in ECG, in a way that is both efficient and interpretable.

2 Background

2.1 DDGM

This section gives a concise overview of the DDGM and the notations used in this paper. We
cover only the basic elements and refer to the original work for complete details and derivations
[27, 12, 31, 28]. A denoising diffusion model is a generative model consisting of a forward (noise)
and a backward ( denoising ) process. The forward noising process involves sampling a data point
X0 ∼ qdata from the data distribution, which is then converted into a sequence X1:n of recursively
corrupted versions of X0. In reverse denoising, on the other hand, Xn is sampled to Xn according to
an easily acquired reference distribution pref on Rdx and X0 is generated in Rdx by a sequence of
denoising steps. Following [15], we use the variance exploding (VE) forward noising process whose
joint law is given by

q0:n(x0:n) = qdata(x0)

n∏
t=1

qt(xt|xt−1), qt(xt|xt−1) = N (xt;xt−1, δ
2
t Idx) , (1)

where Idx is the identity matrix of size dx, {δ2t }t∈N ⊂ (0, 1) is a non-increasing sequence and
N (x;µ,Σ) is the p.d.f. of the Gaussian distribution with mean µ and covariance matrix Σ (assumed
to be non-singular) evaluated at x. For all t > 0, set σ2

t =
∑t

ℓ=1 δ
2
ℓ with the convention σ2

0 = 0.
We have qt(xt|x0) = N (xt;x0, σ

2
t Idx). The backward denoising process with parameter θ is

defined by first choosing n such that σ2
n ≫ σ2

data and then defining the backward Markov chain
pθ0:n(x0:n) = pn(xn)

∏n
t=1 p

θ
t−1(xt−1|xt) with

pn(xn) = N
(
xn; 0dx , σ

2
n Idx

)
, pθt−1(xt−1|xt) = N

(
xt−1;

σ2
t−1

σ2
t
xt +

δ2t
σ2
t
Dθ

0|t(xt),
σ2
t−1δ

2
t

σ2
t

Idx

)
(2)

where 0dx is the null vector of size dx and Dθ
0|t(xt) is a neural network with parameters θ. The

parameter θ is obtained (see [28, Theorem 1]) by solving the following optimization problem:

θ∗ ∈ argminθ

n∑
t=1

(
1

σ2
t−1

− 1

σ2
t

)

∫
∥x0 −Dθ

0|t(x0 + σ2
t ϵ)∥22N (ϵ; 0dx , Idx)qdata(dx0)dϵ . (3)
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The time 0 marginal pθ∗0 (x0) =
∫
pθ∗0:n(x0:n)dx1:n which we will refer to as the prior is used as an

approximation of qdata and the time s marginal is pθ∗s (xs) =
∫
pθ∗0:n(x0:n)dx1:s−1dxs+1:n. In the

rest of the paper we drop the dependence on the parameter θ∗.

2.2 Bayesian Inpainting and MCGdiff

In the Bayesian inpainting problem, we observe a part of state y ∈ Rdy , which can be written as
y = (x[i])i∈J , where J ⊂ [1 : dx] is a set of dy distinct observed state indexes and x[i] ∈ R is
the i-th coordinate of the vector x ∈ Rdx . For x ∈ Rdx we denote by x ∈ Rdy the coordinates
in J and we denote Jc the set of free (unobserved) indices and x ∈ Rdx−dy the vector of free
coordinates. The posterior density defined only for the free coordinates x is ϕy

0(x) ∝ p0(y
⌢x),

where ⌢ is the reconstruction operator based on the indices J, Jc, i.e., for all x ∈ Rdx , x⌢x = x.
To obtain approximate samples from ϕy

0(x), we use the MCGdiff algorithm introduced in [7].
MCGdiff is a Sequential Monte Carlo (SMC) sampler that targets the sequence of distributions
{qt(xt|y)pt(xt)}∈[1:n] with a finite set of N particles. One of the main advantages of MCGdiff is
that it is consistent, meaning that the Kullback-Leibler distance between MCGdiff samples and the
target posterior goes to 0 with a ratio of N−1.

3 Numerical Examination

3.1 Dataset

The dataset includes the training set used in the 2021 PhysioNet Challenge as indicated in [10, 22, 23].
For each patient in the dataset, records were assigned to one of three groups, training, Cross-validation
(CV), and test, with probabilities of (0.8, 0.1, 0.1), respectively.

The preprocessing procedure includes four main phases: downsampling to a frequency of 250
Hz, extraction of R peaks, beat extraction, and subsequent normalization. More details on the
preprocessing pipeline can be found in the Appendix.

3.2 DDGM

Our goal is to develop a generative model capable of generating healthy ECG beats, focusing on QRS
and T-wave morphology. Because the (I, II, III) standard ECG leads and the augmented leads (aVL,
aVR, aVF) are linearly correlated, we decided to build a generative model exclusively for the (aVL,
aVR, aVF, V1, V2, V3, V4, V5, V6) leads. We denote the ECG signal, which serves as our state
variable, as X ∈ R176×9.

Factors such as age (A), sex (S), and preceding R-R interval (RR) are known to influence QRS and
T-wave morphology, as evidenced by the existing literature (see [21, 25, 4]). Therefore, we train a
conditional DDGM that learns to generate the random variable X|A,S,RR. The training dataset
includes all patient records in the training group, with labels representing normal sinus rhythm (NSR),
sinus bradycardia (SB), sinus tachycardia (STach), or sinus arrhythmia (SA).

We have a comparable architecture and training strategy to the one in “EDM” [15], except that
we replaced the original 2D convolutional layers with 1D convolutional layers. In addition, we
introduced a positional embedding for the temporal axis within the data, and this embedding was
treated similarly to the noise level positional embedding throughout the network. Comprehensive
details on the architecture and training hyperparameters can be found in the Appendix. In each
configuration examined, the model that achieved the lowest training loss in the cross-validation
group (CV) was saved. As far as we know, we are the first to propose a generative model for
healthy heartbeats, which makes the validation of such a model a real challenge. To establish
an appropriate validation metric that evaluates how accurately the generative model reproduces
data that resemble the distribution of the training data, we rely on the Earth Mover Distance
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(EMD) *. EMD is an optimal transport distance metric that can be computed from samples only.
In Figure 4, we present the EMD values between generated samples and
samples extracted from both the training and test datasets, varying the
number of steps for the backward generation process. The generation
process is conditioned on the same population as the test data (2757
signals), and the conditioning variables are factored into the EMD
calculation. The sampled ECGs are shown in the appendix fig. 5. We
also include the EMD between the test and and same-size batches from
the training dataset as a reference (the red dashed line indicates the
mean over multiple batches). For an insight into the EMD’s magnitude,
we additionally illustrate the EMD between a corrupted test dataset
with a noise distribution of N (0, 2.5× 10−3 I) and the training dataset
(depicted in green).
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Figure 1: Generated ECGs
using the DDMG from sec-
tion 3.2.

3.3 Abnormality detection

In this section, we demonstrate how a DDGM for healthy heart beats, as introduced in Section 3.2, and
the MCGdiff when applied to the in-painting problem, can be employed as a transparent anomaly
detection tool. We consider the set of observed coordinates J to correspond to the augmented limb
leads (aVL, aVR, aVF). Those leads imparts insights into the heart’s general orientation and overall
geometry. Those leads are also further away from the heart than the pre-cordial leads (V1, V2, V3,
V4, V5, V6) and measure a resultant of the electrical activity of the whole heart. Therefore, we might
expect that the presence of localised (small) electrical anomalies to be mainly in the pre-cordial leads
and not perceptible on the augmented limb leads. That’s the reason we attempt to reconstruct the
pre-cordial leads from the augmented limb leads using MCGdiff and compare the distance between
the posterior sample with a healthy DDGM as prior and the actual pre-cordial leads of a given patient.
We expect patients with localised electrical cardiac anomalies to have a higher distance, which would
indicate how far away this patient is from the “normality”.

We sample 100 MCGdiff samples per patient for 200 patients per label using N = 50 particles.
The rationale for the choice of N = 50 is deferred to the appendix. For each setting, we calculate
the Mahalanobis distance between each non conditioned track and the posterior, which is defined
as dMH(x) :=

√
(x− µ)TΣ−1(x− µ) where µ and Σ are estimated using the posterior samples.

We then take the maximum over all the non conditioned tracks.
The boxplot of those values per label are given in fig. 2 for the
labels MI (Miocardial Infarction), IRBBB (Incomplete Right bun-
dle branch block), RBBB (Right bundle branch block) and LBBB
(Left bundle branch block) which all correspond to electrical
anomalies during the ventricular activity. We observe that the
healthy patients (NSR) show smaller values of the Mahalanobis
distance. We show in fig. 3 the posteriors ECG and the patients
ECG. This illustrates one of the main advantages of our method,
namely the visualisation of the posterior. We can provide pre-
cise information on where the signal is different from what is
expected by the generative model, something that is not possible
in black-box outlier algorithms.
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Figure 2: Distribution of maxi-
mum Mahalanobis distances for
populations from the test set.

*We use the POT library [9] for the EMD calculations.
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Figure 3: The figure displays both the posterior ECG (in blue) and the patient’s ECG (in red) for
different labels on the training set.

4 Conclusion

We proposed a DDGM trained on healthy heart ECG signals that is able to accurately reproduce the
data. We then show how this can be combined with the recent advances in solving linear inverse
problems with DDGM priors to generate an interpretable white-box outlier detection algorithm for
the ECG, that allows for the visualization of what is the expected ECG for a given conditioning
configuration against the patients ECG.
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A Appendix

A.1 Extension of MCGdiff to the Variance Exploding framework.

In [7], they consider the forward process to be the so called variance preserving framework [31]. As
shown in [15], the variance exploding framework, coupled with properly chosen discretization of the
backward sampler, shown better performance in uncoditional generatation. Therefore, we decide to
use this framework in this paper. Applying Bayes formula to the forward process eq. (1), we obtain

qn|0(xn|x0) = N
(
xn;x0, σ

2
nI
)
, qt−1|t,0(xt−1|xt, x0) = N

(
xt−1;µt(x0, xt), σ̃

2
t Id

)
,

µt(x0, xt) =
σ2
t−1xt + δ2t x0

σ2
t

, σ̃2
t =

σ2
t−1

σ2
t

δ2t .

By following the derivation in [7], we obtain the following proposal kernel and weight functions for
the SMC algorithm:

• Proposal Kernel:

pys(xs|xs+1) = p
s
(xs|xs+1)N

Ä
xs; ksy + (1− ks)µs+1(xs+1,χ0|s+1(xs+1)), σ

2
sks
ä

where ks =
σ̃2
s

σ̃2
s+σ2

s
.

• The weight function ω̃s is chosen as follows; ω̃0(x1) = p0(y|x1)
/
q1|0(x1|y),

ω̃n−1(xn) =

∫
pn−1(xn−1|xn)qn−1|0(xn−1|y)dxn−1

= N
Ä
y;µn(xn,D0|n(xn)), σ̃

2
n + σ2

s

ä
and for s ∈ [1 : n− 2],

ω̃s(xs+1) =

∫
ps(xs|xs+1)qs|0(xs|y)dxs

/
qs+1|0(xs+1|y)

=
N
Ä
y;µs+1(xs+1,D0|s+1(xs+1)), σ̃

2
s+1 + σ2

s

ä
N

(
y;xs+1, σ2

s+1

) .

(4)

A.2 Numerics

Preprocessing Pipeline: The Down-sampling phase consists of down-sampling all the signals to
a sampling frequency of 250hz. We then proceed to the R-peak extraction phase, where we extract
the channel-wise first principal component of the whole ECG. This track then is passed through a
Savitzky-Golay filter of order 3 with window length 15. Then, the r-peaks are extracted using the
method proposed in [6]. From there, a window is extracted around each r-peak r by selecting all the
tracks in the window [r − 48 : r + 128]. We then divide each track in the window by its respective
maximum absolute value attained during QRS complex.

Number of particles: As the number of particles N increases, the distance between the target
posterior distribution and the distribution of the particles from MCGdiff decreases. The question
of interest is thus when is N big enough. To obtain a initial guess into a good number of N , we
selected a patient in the test dataset and draw 103 samples from MCGdiff with N = 104. We
consider this samples as the reference samples, thus as the posterior samples. We then generated
for several different N , 103 samples using MCGdiff and calculated the EMD distance w.r.t the
reference samples. Figure 4 shows the evolution of the EMD with the number of particles N and we
see that N = 50 seems to yield a good trade-off between inference time and accuracy.
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Figure 4: EMD distance between 1000 samples from MCGdiff with N particles and 1000 samples
of MCGdiff with 105 particles, that is considered the standard samples.

Generated ECGs: We display in fig. 5 some generated ECGs from the DDGM. The conditioning
features are taken randomly from the test dataset.
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Figure 5: ECGs generated from the DDGM with random conditioning features sampled from the test
dataset.

Architecture details: We implement a very close architecture to [15] and available at https:
//github.com/NVlabs/edm as well as training procedure. The main difference is that we
replaced the 2D convolutional layers by 1D ones in every UNet. The final network use the following
parameters:

• First embedding dimension: 192,
• Number of Unet blocks per resolution: 2,
• Number of resolutions: 1,
• Dropout probability 0.10.

For the training, the following configuration was used:

• learning rate: 10−4,
• Number of epochs: 104,
• Batch Size: 1024,
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• Exponential moving average coefficient: 0.9999.

For the (forward diffusion) we used the following parameters:

• σmin = 2× 10−4,
• σmax = 80,
• σdata = 0.5,
• Importance law of σ for training: LogN (−1.2, 1.22 I).

11


	Introduction
	Background
	DDGM
	Bayesian Inpainting and MCGdiff

	Numerical Examination
	Dataset
	DDGM
	Abnormality detection

	Conclusion
	Appendix
	Extension of MCGdiff to the Variance Exploding framework.
	Numerics


