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Abstract
We show that variational learning naturally in-
duces an adaptive label smoothing where label
noise is specialized for each example. Such label-
smoothing is useful to handle examples with la-
beling errors and distribution shifts, but designing
a good adaptivity strategy is not always easy. We
propose to skip this step and simply use the natu-
ral adaptivity induced during the optimization of
a variational objective. We show empirical results
where a variational algorithm called IVON out-
performs traditional label smoothing and yields
adaptivity strategies similar to those of an exist-
ing approach. By connecting Bayesian methods
to label smoothing, our work provides a new way
to handle overconfident predictions.

1. Introduction
Adaptive strategies to Label Smoothing (LS) (Szegedy et al.,
2016) aim to adapt the label noise according to the type
of data example. Such adaptation can be more effective in
practice than its traditional counterpart where the label noise
is the same for all examples. Adaptation is useful to handle
examples that may have labeling errors, distribution shift,
or calibration issues. For such cases, the effectiveness of
adaptation has been extensively studied, for example, see
Ghoshal et al. (2021); Lee et al. (2022) for generalization
improvements, Zhang et al. (2021); Ko et al. (2023) for mis-
labelled examples, Park et al. (2023) for miscalibration, and
Xu et al. (2024) for out-of-distribution detection. Adaptivity
is useful for label smoothing to handle all such cases.

One major problem with adaptive label smoothing is that
it is not easy to design a good adaptivity strategy. For
example, a simple approach is to adapt the label noise by
using model’s predictions but there are many ways to do this,
for examples, Park et al. (2023) set the noise based on the
logits, Zhang et al. (2021); Ko et al. (2023) use the predictive
probabilities (obtained with softmax), while Lee et al. (2022)
use their entropy. All of these are reasonable ideas but the
choice of a good strategy for a given problem is not always
straightforward. A strategy that reduces miscalibration may
not be most effective for handling outliers or mislabeling.
Focusing on one issue at a time has given rise to a lot of
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Figure 1. Given a regular 6 digit (top) and an atypical one (bottom),
Label Smoothing (LS) assigns the same label noise to both (gray
bars) while variational learning assigns higher noise to the atypical
example (red bars). Adaptivity naturally arise due to the posterior.

ad-hoc and heuristic strategies, and, despite their usefulness,
designing an adaptive strategy for a task in hand remains
tricky. Our goal here is to simplify the process by presenting
and analyzing algorithms that naturally induce adaptivity.

We show that variational learning naturally induces an adap-
tive label smoothing. The smoothing arises due to the use
of the expectation of the loss in the variational objective,
taken with respect to the posterior distribution. The ex-
pectation gives rise to a label noise (among other types of
noises) which is customized for each example through its
features. Our key contribution is to derive the exact form of
the label noise (Eq. 9) for many problems and study their
behavior. We show extensive empirical results analyzing the
label noise induced by Improved Variational Online Newton
(IVON) (Shen et al., 2024). We show the following

1. Variational learning assigns higher noise to atypical or
ambiguous examples (Fig. 1 and Fig. 3).

2. IVON’s adaptive label noise behaves similarly to the
proposal of Zhang et al. (2021).

3. IVON consistently outperforms Label Smoothing in
presence of labeling errors, giving up to 9% accuracy
boost for pair-flip noise (Fig. 8) and sometimes even
around 50% for data-dependent noise (Fig. 7).

Our work connects label smoothing literature to Bayesian
methods, thereby providing a new way to handle overconfi-
dent predictions in deep learning.
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Variational Learning Induces Adaptive Label Smoothing

2. Label Smoothing and Adaptivity Strategies
Label Smoothing (LS) is a simple technique where the true
label vector yi (length K) are replaced by a smoothed ver-
sion. In its simplest form, a convex combination is used
where the smoothed labels are defined as

y′
i = (1− α)yi + αu, (1)

for some scalar α ∈ (0, 1) with u as a vector of 1/K with
K being the number of classes. This simple technique is
effective to penalize overconfident predictions because the
noise α(u− yi) reduces the importance of the label during
training (Pereyra et al., 2017). Multiple works have studied
its effectiveness, for example, to improve calibration and
representation (Müller et al., 2019), to favor flatter solutions
(Damian et al., 2021), and improve robustness to mislabelled
data (Lukasik et al., 2020; Liu, 2021) due to its connections
to loss correction (Patrini et al., 2017). Despite its simplicity,
LS has clear practical advantages.

Adaptive label smoothing aims to inject noise according to
the type of data example, for example, during learning, we
may want to inject a noise to get the smoothed label

yi|t = yi + ϵi|t. (2)

The noise ϵi|t may depend on the current model parameter
θt at iteration t, and can be varied according the model’s
opinion regarding the relevance of the examples. Such adap-
tive label smoothing uses additive noise to reweigh examples
during training. Many studies have shown the effectiveness
of the adaptive noise, which ranges from improvements in
generalization (Ghoshal et al., 2021; Lee et al., 2022), ro-
bustness to mislabeled data (Zhang et al., 2021; Ko et al.,
2023), improving calibration (Park et al., 2023) and out-of-
distribution (OOD) detection (Xu et al., 2024). By adapting
label noise, such methods aim to down-weight the problem-
atic examples.

While adaptivity is desirable, it also requires additional
effort to design a good strategy to adapt. Each specific issues
may require a different type of noise, for instance, what
works to reduce miscalibration, may not be most effective
for handling OOD detection or mislabling. Focusing on one
issue or strategy at a time has given rise to a lot of ad-hoc
and heuristic strategies, and, despite their usefulness, clarity
of good ways to design adaptivity strategy is lacking.

The simplest approach is to adapt by using the model pre-
dictions based on the logits f i(θt), but there are many ways
to use them. Zhang et al. (2021) use the following update

u← u+ S [f i(θt)] , (3)

where S[f ] vector (length K) with j’th entry defined as

Sj [f ] =
efj∑K
k=1 e

fk
, (4)

although they normalize the u after every epoch, not at
every iteration. A similar rule is used by Ko et al. (2023).
Instead of directly using the logits, Lee et al. (2022) use
them to adjust α. They do so by using the entropy of the
model-output distribution, assigning a smaller smoothing to
high entropy samples and larger smoothing to low entropy
samples. Another approach by Park et al. (2023) decrease
the label noise linearly as the logit f i(θt) increase. There
are multiple ways to use predictions but the choice of a good
strategy for a given problem is not always straightforward.

Intuitively, using model’s predictions makes sense because
predictions can tell us about the relevance of examples. Re-
gions where model is inaccurate may also contain examples
that need special attention but also those that are impos-
sible to predict. Some works have explored this from the
Bayesian viewpoint, although only using the posterior over
the labels. For example, Li et al. (2020) motivate adaptive
smoothing using Bayes error rate, implying larger smooth-
ing to example that lie near the decision boundary. Similarly,
Ghoshal et al. (2021) use a PAC-Bayes bound to motivate
adaptivity. However, there are no approaches investigating
the effectiveness of posterior over θ.

In this paper, we show that directly learning the posterior
using a variational method natural yields an adaptive label
noise. Adaptivity introduced in this fashion directly takes
various causes of uncertainty, some of which is then handled
through the label noise. The uncertainty in parameter have
other desired effect that are often missed when only focusing
on the label noise. In our context, this can simplify the
design of adaptive label smoothing or may even allow us
to entirely skip the step. We will now discuss the adaptive
label noise induced by variational learning.

3. Variational Learning Induces Adaptive LS
Variational learning aims to optimize for distribution over
parameters θ which is fundamentally different from tradi-
tional deep learning where we minimize empirical risk,

ℓ̄(θ) =

N∑
i=1

ℓi(θ) +R0(θ), (5)

with loss ℓi(θ) for the i’th example in the training dataset.
The regularizer R0(θ) is often implicitly defined through
various training choices, such as, weight-decay, initializa-
tion, and architecture design. In contrast, variational learn-
ing aims to find a distribution q(θ) ∈ Q which minimizes

L(q) =
N∑
i=1

Eq [ℓi(θ)] + DKL[q(θ) ∥ p(θ)]. (6)

The second term is the Kullback-Leibler (KL) Divergence
where the p(θ) ∝ exp(−R0(θ)) can be defined implicitly

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Variational Learning Induces Adaptive Label Smoothing

similarly to deep learning. Throughout, we will set q(θ) to
take Gaussian forms and show that, despite their differences,
variational learning can be implicitly seen as minimizing
a noisy version of Eq. 5. Existing works have studied the
weight-noise (Zhang et al., 2018; Khan et al., 2018) but our
goal here is to specifically study its effect on label noise.

3.1. A Simple Example: Logistic Regression

We start with logistic regression where we can write a closed-
form expression for the adaptive label noise. The result
extends to all loss functions using generalized linear model.
We will consider all such extensions (including neural net-
works) afterwards. For now, we consider a loss function for
binary labels yi ∈ {0, 1} with model output fi(θ),

ℓi(θ) = −yifi(θ) + log
(
1 + efi(θ)

)
. (7)

In logistic regression, we have fi(θ) = ϕ⊤
i θ where ϕi ∈

RP is the feature vector. For simplicity, let us assume
R0(θ) = 1

2∥θ∥
2 to be a quadratic regularizer. For such

a model, we can solve Eq. 5 with gradient descent (GD),

θt+1 = (1− ρt)θt − ρt

N∑
i=1

ϕi [σ(fi(θt))− yi] (8)

The result is obtained by simply taking the derivative of
Eq. 7 which gives rise to σ(f) = 1/(1+ e−f ), a binary ver-
sion of the softmax function from Eq. 4. We will now show
that, by choosing the family Q appropriately, variational
learning can be seen as GD with label noise.

We choose the distribution qt(θ) at iteration t to take a Gaus-
sian form with mean θt and covariance set to the identity,

qt(θ) = N (θ|θt, I),

and perform GD to minimize the variational objective in
Eq. 6, now denoted as L(θt), with respect to θt. Below is a
formal statement of the result.

Theorem 1 A gradient update θt+t = θt − ρt∇θtL(θt) is
equivalent to the gradient update in Eq. 8 where the label
yi are replaced by yi + ϵi|t with noise defined as

ϵi|t = σ(fi(θt))− Eqt [σ(fi(θ))]. (9)

Proof: The gradient of the expected loss in Eq. 6 can be
simplified to take a form very similar to the one in Eq. 8,

∇θtEqt [ℓi(θ)] = ∇θtEN (e|0,I)[ℓi(θt + e)]

= EN (e|0,I) [∇θtℓi(θt + e)]

= ϕi [Eqt [σ(fi(θ))]− yi]

(10)

The gradient of KL is also simplifies to

DKL[q(θ) ∥ p(θ)] = Eq

[
log

q(θ)

p(θ)

]
= 1

2∥θt∥
2 + const.

Figure 2. We plot label noise magnitude ϵi|t from Eq. 12 by vary-
ing the mean fi|t of qt(fi) while fixing its variance to 1. The noise
is large around 0 (but not at 0) with large peaks on both sides.

Using these, we can write the GD to minimize Eq. 6 as

θt+1 = (1− ρt)θt − ρt

N∑
i=1

ϕi [Eqt [σ(fi(θ))]− yi] ,

which has a similar form Eq. 8 but with one difference:
σ(fi(θ)) are replaced by their expectation over q (high-
lighted in red). By adding and subtracting σ(fi(θt)), we
can rewrite the update as Eq. 8 which has the label noise
defined in Eq. 9. ■

The result shows that the GD steps to optimize Eq. 6 is
equivalent to those to optimize Eq. 5 but with a noisy label.
The noise is adaptive and depends on where the Gaussian
distribution is located. To show this, we derive the distribu-
tion over fi = ϕ⊤

i θ, which takes a Gaussian form:

qt(fi) = N (fi|fi|t,ϕ⊤
i ϕi), (11)

where we denote fi|t = ϕ⊤
i θt. The label noise then is

simply the difference between the sigmoid σ(fi|t) of the
mean fi|t and mean of σ(fi) with respect to qt(fi), that is

ϵi|t = σ(fi|t)− Eqt [σ(fi)]. (12)

Fig. 2 plots the magnitude of this quantity as a function of
the mean fi|t but fixing the variance ϕ⊤

i ϕi = 1. We see the
noise to be large whenever fi|t around 0, with the maximum
in areas slightly away from it. The σ(f) is flat far away
from 0 and uncertainty in qt is amplified around 0, which
makes the difference also large away from 0 (but not at 0).
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Variational Learning Induces Adaptive Label Smoothing

The other factor that affects the noise is the feature ϕi.
Inputs with larger features induce larger variance. When the
features are normalized, this is unlikely to have an effect,
but this is important for the neural networks case where
features are learned.

The two factors explain why we would expect high label
noise for atypical or ambiguous examples. This is because
the predictive distribution q(fi|t) is close to 0 and may also
have a higher variance. An alternate way to understand the
impact of the two factors is to use a Taylor’s approximation
at a sample e ∼ N (0, 1),

ϵi|t ≈ σ(fi|t)− σ(fi|t + ∥ϕi∥2e) ≈ σ′(fi|t)(ϕ
⊤
i ϕi)

1/2e.
(13)

We again see the two factors: one is σ′(f) (which peaks
around 0) and the other is the feature norm. Note that this
approximation does not get better for larger number of sam-
ples, but it roughly captures the behavior away from 0.

3.2. Generalized Linear Model (GLM) with GD

The result generalizes to any loss function derived using
exponential-family distribution, for instance, the following
generalization of Eq. 7

ℓi(θ) = −y⊤
i f i(θ) +A(f i(θ)), (14)

where A(f) is a convex function called the log-partition
function. The regularize can also be a general convex func-
tion. For such models, we can derive the label noise follow-
ing almost the same procedure as in the previous section.
Due to its similarity, we omit the derivation and only give
the final form of the noise,

ϵi|t = A′(f i(θt))− Eqt [A
′(f i(θ))]. (15)

Essentially, we replace the σ(f) by the derivative A′(f).
For logistic regression, A(f) = log(1 + ef ), derivative of
which is σ(f) and we recover the result in Eq. 9. We can
extend this result to multiclass classification by considering
A(f) = log

∑K
k=1 e

fk , derivative of which is the softmax
function defined in Eq. 4. Similarly to the binary case, we
expect uncertainty in qt to be amplified near the boundary.
The label noise is therefore low for examples where softmax
yields probabilities close to 0 or 1.

3.3. Generalized Linear Model with Newton’s Method

We now go beyond GD to Newton’s method and show that
a specific variational-learning algorithm can be seen as a
noisy-label version of Newton’s method. This is a useful
step before we move to neural networks training. Here, we
find that the form of the noise has exactly same form as
Eq. 15 but the distribution qt has flexible covariance which
improves the adaptivity of the label noise.

We consider the following Newton’s update,

θt+1 = θt −
[
∇2ℓ̄(θt)

]−1∇ℓ̄(θt) (16)

which is commonly used for generalized linear models. As
shown by Khan & Rue (2023), the update can be seen as
a special case of a Variational Online Newton (VON) algo-
rithm to learn a full Gaussian with covariance Σt,

qt(θ) = N (θ|θt,Σt)

The VON updates are given as follows,

θt+1 = θt − ρtΣt+1Eqt [∇ℓ̄(θ)]
Σ−1

t+1 = (1− ρt)Σ
−1
t + ρtEqt [∇2ℓ̄(θ)].

(17)

Setting ρt = 1 yields a Newton-like update where gradi-
ents ∇ℓ̄ and Hessian ∇2ℓ̄ are replaced by their terms where
expectations are taken, namely, Eqt [∇ℓ̄] and Eqt [∇2ℓ̄]. Sim-
ilarly to the previous cases, the label noise in VON arises
due to the expectation of the gradient, while expectation of
the Hessian gives rise to other types of noise.

As shown in in App. A.1, the VON updates in Eq. 17 are
equivalent to Newton’s update in Eq. 16 where labels are
replaced by the noisy ones with noise shown in Eq. 15.
The proof technique relies on comparing the form of the
surrogates for the two algorithms. Even though the noise
has the same form, there is an important difference here.
Essentially, the Gaussian qt now is more flexible because its
covariance Σt is not fixed but learned using the Hessian. As
a result the distribution over fi now has adaptive variances,

qt(fi) = N (fi|fi|t,ϕ⊤
i Σtϕi), (18)

Therefore, now both the location and spread of the Gaus-
sians are changed for each example, and they both contribute
to the adaptivity. The result shows that second-order meth-
ods yield more adaptive label noise than first order methods,
and are expected to perform better in practice. We will later
present experiments that support this finding.

3.4. Neural Network training with IVON

We will now show that the label noise expression have simi-
lar form for the neural network case, but to derive them we
need to use Taylor’s approximation. Essentially, the form of
the expression then is similar to Eq. 13 there the adaptive
nature should roughly stay the same. We validate these
findings later through numerical experiments.

We will illustrate the derivation for the binary case which
can then be extended to other case as we did in previous
section. Taylor’s approximations is required because the
gradient of ℓi, shown below,

∇ℓi(θ) = ∇fi(θt) [σ(fi(θt))− yi] ,

4
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Figure 3. Label noise assigned by IVON and LS in MNIST dataset. Examples are ordered according to IVON’s noise, and highest and
lowest noise examples are visualized. We see that high noise is assigned to atypical examples while low noise is assigned to regular ones.

replaces the ϕi term in Eq. 8 by ∇fi(θt). As a result, we
cannot simply move the expectation over qt to derive the
label noise as we did in Eq. 10. However, we can simplify
these by using Taylor’s approximation.

We show this by using a single-sample θ
(1)
t ∼ qt Monte-

Carlo approximation (multiple samples can also be used),

Eqt [∇ℓi(θ)] ≈ ∇fi(θ
(1)
t )

[
σ(fi(θ

(1)
t ))− yi

]
.

Then, we do the following two approximations where we
use Taylor’s expansion but ignore the second-order terms,

σ(fi(θ
(1))) ≈ σ(fi(θt)) + σ′(fi(θt))∇fi(θt)(θ(1) − θt)

∇fi(θ(1)) ≈ ∇fi(θt)

With these approximations, we can write,

Eqt [∇ℓi(θ)] ≈ ∇fi(θt)
[
σ(fi(θt))− (yi + ϵi|t)

]
where the noise takes a very similar form to Eq. 13

ϵi|t ≈ σ′(fi(θt))∇fi(θt)Σ1/2
t e (19)

where e is a sample from a standard normal distribution.
The derivation generalizes to all GLM losses by replacing
σ(·) by A′(·). It also extends to variational GD and VON.

In practice, neural networks are trained with Adam-style
algorithm. In our experiments, we will use an Adam-like
version of VON, called IVON, which is recently proposed
by Shen et al. (2024). The key different to VON is that
it estimates a diagonal covariance by using an Adam-like
preconditioning update; a pseudo-code is added in Alg. 1.
The diagonal covariance is estimated through the scale vec-
tor. We will use the label noise expression given in Eq. 19
where Σt is replaced by the diagonal covariance estimated

by IVON. Note that variational learning for neural neworks
with IVON introduces many other noise other than label
noise, for instance, the noise is introduced in the features
∇f(θ), as shown above. We will analyze only the label
noise but the performance is affected by other noises too.

In our experiments, we also compare to Sharpness-Aware
Minimization (SAM) (Foret et al., 2020) which has a vari-
ational interpretation (Möllenhoff & Khan, 2022) and has
been shown to perform well with mislabelled data. Using
our techniques, it is possible to derive the label noise of
SAM but the expression would be similar to the one derived
here. The difficulty with SAM is that we need to tune the
‘size’ of adversarial perturbation, often denoted by a scalar
ρ, IVON can automatically estimate it using the posterior
variance. In our experiments, we show that IVON performs
comparably to SAM with a highly tuned ρ, and it does not
need to set any such hyperparameters.

4. Experiments
We do extensive experiments to show adaptive label noise
via variational learning and its benefits. In Sec. 4.1, we show
that IVON adapts the label noise for each examples, and
generally assigning higher noise magnitude to ambiguous
ones. In Sec. 4.2, we show that IVON’s smoothed labels
are similar to an existed adaptive smoothing method (Zhang
et al., 2021). In Sec. 4.3, we show that IVON consistently
outperforms LS when datasets have labeling errors in vari-
ous settings. Additional experiments are reported in App. B,
and experiment details are reported in App. C.

4.1. IVON’s Adaptive Label Noise

We demonstrate IVON label noise’s adaptivity on MNIST
dataset (LeCun & Cortes, 2010). We plot IVON’s label

5
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Figure 4. Smoothed label comparison among IVON (Shen et al., 2024), LS (Szegedy et al., 2016) and Online Label Smoothing (OLS)
(Zhang et al., 2021). IVON has similar adaptive label smoothing effect as OLS. α is the smoothing rate defined in Eq. 1. Y-axis is in the
log scale. We randomly pick 10 classes for CIFAR-100 due to image size limit.

noise distribution in Fig. 3, which shows that IVON adds
different label noise on each example whereas traditional
Label Smoothing defines a uniformly distributed noise for
all. By further visualizing the data, we see that IVON in-
duces stronger noise to unclear examples, which prevent
models from being overconfident on these datapoints.

4.2. Comparisons to Existing Adaptive LS Strategies

In this section, we show that IVON’s label smoothing is sim-
ilar to an adaptive method called Online Label Smoothing
(OLS) (Zhang et al., 2021). In the CIFAR-10 and CIFAR-
100 dataset (Krizhevsky & Hinton, 2009), we compare the
smoothed labels of IVON with traditional LS (Szegedy et al.,
2016) and Online Label Smoothing (OLS) (Zhang et al.,
2021). OLS adjusts the label noise according to the model’s
predictions, as described in Sec. 2. As Fig. 4 shows, IVON
has surprisingly similar smoothed label distributions as the
OLS in both datasets, while IVON tends to stronger label
noises. Variational learning’s adaptive label smoothing is
similar to existing work’s, without needing any additional
effort to design or estimate the adaptive label noise.

4.3. Comparisons on Datasets with Labeling Errors

We compare IVON to Label Smoothing (LS) (Szegedy et al.,
2016) and SAM (Foret et al., 2020) in presence of labeling
errors, and the results show that IVON consistently outper-
forms LS in various settings. To find the best performance
of the baselines, we tune several LS’s smoothing rates α (de-
fined in Eq. 1), and various SAM’s adversarial perturbation
size ρ (discussed in Sec. 3.4). We conduct studies on bench-

mark datasets with synthetic noise, where the noise level
can be adjusted, followed by evaluations on datasets with
natural noise, where the noise level is fixed and unknown.
For synthetic noise experiments, we use the CIFAR-10 and
CIFAR-100 datasets (Yu et al., 2019). For natural noise ex-
periments, we use the benchmark Clothing1M (Xiao et al.,
2015). All datasets include a clean test set.

4.3.1. SYNTHETIC NOISY DATASETS

We consider two commonly used corruptions (Patrini et al.,
2017; Li et al., 2019; Yu et al., 2019): Symmetric flipping
and Pair flipping. In symmetric flipping, a true label is re-
placed by a randomly generated class with a probability. In
pair flipping, it tries to mimic real world mistakes for simi-
lar classes, where a true label is replaced by the next class
with a probability. For training dataset, we use previous
work’s (Yu et al., 2019) code to generate noisy labels. More
experiment details are in App. C.2.

In CIFAR-10, Fig. 5 shows that IVON outperforms Label
Smoothing and SAM in different scenarios. We also ob-
serve that SAM is sensitive to the choice of ρ, while IVON
does not need to tune any hyperparameters to perform well.
In CIFAR-100, Fig. 8 shows similar trends. For instance,
in pairflip 20% noise setting, IVON outperforms best LS
performance by 9.1% and best SAM performance by 13.3%.

Meanwhile, we test the effectiveness of flexible Σt by com-
paring it with the fixed diagonal covariance. Fig. 6 shows
that learned Σt consistently outperforms fixed Σt in three
noisy datasets. The experiment results demonstrate the im-
portance of flexible Σt as stated in Sec. 3.3.
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Figure 5. Results on CIFAR-10 with symmetric noisy labels. Top: IVON outperforms Label Smoothing (LS) with different smoothing
rates α. When comparing with LS peak performances, IVON outperforms by 4.3%, 6.7% and 7.8% in three datasets, from left to right,
respectively. Down: IVON has comparable results with SAM peak performances, while SAM is sensitive to the choice of perturbation ρ.
Results are reported over 5 random seeds.

Symmetric 20% Pairflip 20%
Learned Covariance

Fixed Covariance

Symmetric 40%

Figure 6. In synthetic noisy datasets of CIFAR-100, we test IVON
with multiple fix Hessian, which fix the diagonal covariance Σt of
weight posterior as described in App. C.2. The fixed diagonal Σt

is worse than learned diagonal covariance in all datasets.

4.3.2. DATA DEPENDENT LABELING ERRORS

In this experiment, we try to understand the adaptivity of
these methods in data-dependent noisy dataset. When each
class has different noise levels, we expect LS will fail since
it induce uniform noises to all classes, while IVON’s adap-
tivity makes it stand.

First, we create a new transition matrix P of noisy label

51%
Improvement

Figure 7. Results for CIFAR-10 with data dependent noise. IVON
consistently outperforms LS and SAM in all noise levels. Further-
more, IVON can learn extremely noisy scenario, while LS and
SAM cannot.

y′ = Py, where y,y′ ∈ RK , P ∈ RK×K . We inject
difference noise level to each class, so the noise level of
each class is different:

Pi,i = 1− (κ+ βi), i ∈ [1,K]. (20)

where κ is the starting noise level and β is the increase
factor. Afterwards, we give the same transition probability
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Figure 8. Results on CIFAR-100 with symmetric noisy labels over 5 random seeds, which is similar to CIFAR-10 results in Fig. 5. IVON
outperforms LS by 2.4%, 7.8% and 9.1% in three datasets respectively. Meanwhile, IVON outperforms SAM by 9.9% in 40% symmetric
noise dataset and 13.3% in 20% pairflip noise dataset.

to the rest of the wrong classes:

Pi,j =
κ+ βi

K − 1
, i, j ∈ [1,K], i ̸= j. (21)

In experiments, we follow the hyperparameters in CIFAR-
10 synthetic noise experiment from Sec. 4.3.1. For
LS, we run smoothing rate {0, 0.1, 0.3, 0.5, 0.7, 0.9} and
report the best accuracy. For SAM, we run ρ for
{0.0, 0.05, 0.1, 0.15, 0.2, 0.5} and report the best accuracy
of them.

The experiment results for κ = {0.1 ∼ 0.5} and β = 0.05
are in Fig. 7. Overall, IVON outperforms LS and SAM
in all noise levels. Meanwhile, IVON can learn in very
noisy scenarios κ = {0.4, 0.5} while baselines can only
reach around 10% accuracy. The experiment results support
our claim that adaptive label noise induced by variational
learning is more effective than traditional label smoothing.

4.3.3. UNCONTROLLED NOISY DATASETS

We now report results on Clothing1M (Xiao et al., 2015), a
large-scale dataset that features natural label noise from the
web and consists of 1 million images across 14 categories.
We conduct experiments by using ResNet-50 as the model.

The results on Clothing1M, illustrated in Fig. 9, demonstrate
that IVON outperforms Label Smoothing and is comparable
to SAM. This experiment shows that IVON’s performance
is consistent in the large scale dataset.

0.0 0.3 0.6 0.960%

65%

70%

Ac
cu

ra
cy

0.01 0.10 0.20 0.50

Label Smoothing SAM IVON

Figure 9. Clothing 1M experiment result. The result is similar to
synthetic noisy datasets reported in Fig. 5 and Fig. 8. Results are
reported over 5 seeds.

5. Conclusion
In this paper, we show that variational learning induces adap-
tive label smoothing. We show such adaptive label noise
naturally emerges in variational learning without additional
mechanisms. We derive the exact form of the label noise,
and do extensive experiments to show its benefits. Empirical
results demonstrate that variational learning assigns stronger
label noise to ambiguous examples, induces similar noise
distributions as an existing adaptive method does (Zhang
et al., 2021), and consistently outperforms label smoothing
in the presence of labeling errors. From the Bayesian meth-
ods perspective, we present a new way to introduce label
smoothing.
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A. Derivations
A.1. Derivation of GLM with Newton’s method

For a Newton’s update, it is equivalent to the following surrogate minimization,

θt+1 = argmin
θ

[
θ⊤∇ℓ̄(θt) +

1

2
(θ − θt)

⊤∇2ℓ̄(θt)(θ − θt)
]
. (22)

We will show the noisy version of such Newton’s update are implicitly induced by the Bayesian learning rule to estimate a
full Gaussian qt(θ) = N (θ|θt,Σt) with full covariance Σt,

qt+1(θ) ∝ qt(θ)
1−ρt

N∏
i=1

e
ρt

(
θ⊤Eqt [−∇ℓi(θ)+∇2ℓi(θ)·θt]−

1
2θ

⊤Eqt [∇
2ℓi(θ)]θ

)
, (23)

as shown in Nickl et al. (2024) App. C.3. By comparing these two equations, we can show the following result.

Theorem 2 For the loss function in Eq. 14, the Bayesian learning rule shown in Eq. 23 is equivalent to Newton’s update in
Eq. 22 with a noisy label ℓ(yi + ϵi|t,θ). The noise depends on the variance ϕ⊤

i Σtϕi, as shown below:

ϵi|t = A′ (fi|t)− EN (e|0,ϕ⊤
i Σtϕi)

[
A′ (fi|t + e

)]
. (24)

There is additional noise introduced in the Hessian which depends on A′′(fi|t).

A.2. IVON pseudo code

Algorithm 1 Improved Variational Online Newton (IVON) (Shen et al., 2024).

Require: Learning rates {αt}, weight-decay δ > 0.
Require: Momentum parameters β1, β2 ∈ [0, 1).
Require: Hessian init h0 > 0.
Init: m← (NN-weights), h← h0, g← 0, λ← N .
Init: σ ← 1/

√
λ(h+ δ).

Optional: αt ← (h0 + δ)αt for all t.
1: for t = 1, 2, . . . do
2: ĝ← ∇̂ℓ̄(θ), where θ ∼ q

3: ĥ← ĝ · (θ −m)/σ2

4: g← β1g+(1−β1)ĝ

5: h← β2h+ (1− β2)ĥ+
1
2 (1− β2)

2(h− ĥ)2/(h+ δ)

6: ḡ← g/(1− βt
1)

7: m←m− αt(ḡ + δm)/(h+ δ)

8: σ ← 1/
√
λ(h+ δ)

9: end for
10: return m,σ

B. Additional Experiments
B.1. Hessian Initialization

We analyze how Hessian initialization h0 of IVON affects the accuracy. The results are in Fig. 10. IVON’s accuracy can only
vary by up to 10% when the Hessian is bigger than 0.05, and this variation is less sensitive compared to SAM’s sensitivity to
ρ, as shown in Fig. 5, Fig. 8 and Fig. 9.
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Figure 10. Results for IVON on CIFAR-100 with multiple Hessian initialization. IVON’s accuracy is consistent when having different
Hessian initializations.

C. Experiment details
C.1. Experiment details of Sec. 4.1 and Sec. 4.2

In Fig. 3, we test IVON on a 3-layers convolutional neural networks. In Fig. 4, we do experiments on ResNet-34 model. We
uses the PyTorch implementation verison1 of Online Label Smoothing (Zhang et al., 2021).

C.2. Experiments on Synthetic Noisy Datasets

For pairflip setting in CIFAR-10, the classes flipping order is: AIRPLANE→ AUTOMOBILE→ BIRD→ CAT→ DEER
→ DOG→ FROG→ HORSE→ SHIP→ TRUCK→ AIRPLANE. In CIFAR-10 experiments, we train a ResNet 34 for
200 epochs with batch size set to 50 and weight decay set to 0.001. For SAM and LS, we set initial learning rate as 0.05 and
reduce it by 0.1 at 100 epoch and 150 epoch, following hyper-parameters from previous papers. For IVON (Shen et al.,
2024), we follow the original paper to set initial learning rate as 0.2 and anneal the learning rate to zero with a cosine
schedule after a linear warmup phase over 5 epochs. We set momentum to 0.9 for all methods, and hessian momentum β2

to 1 − e−5, hessian initial h0 to 0.9, scaling parameter λ to the number of training data for IVON. For SAM, we follow
the original paper (Foret et al., 2020) and choose best neighborhood size ρ from [0.01, 0.05, 0.1, 0.2, 0.5]. In CIFAR-100
experiments, we tune the hyperparamters to the best for each method. The hyperparameters are specified in Table 1.

In Fig. 6, we fix the Hessian of IVON by setting β2 = 1 in Line 5 of Alg. 1. Therefore, covariance σ defined in Line 8 is
fixed since Hessian h is fixed.

Table 1. Hyperparamters of each method for CIFAR-100. We denote learning rate as lr, Hessian Initialization as Hessian init.

Symmetric 20% Symmetric 40% Pairflip 20%

Weight decay 2e-4 2e-4 5e-4
LS (Szegedy et al., 2016) lr 0.1 0.1 0.1
SAM (Foret et al., 2020) lr 0.05 0.1 0.1
IVON (Shen et al., 2024) lr 0.8 0.8 0.5
IVON (Shen et al., 2024) Hessian init 0.2 0.2 0.5

C.3. Clothing 1M Details

The noisy labels in Clothing1M (Xiao et al., 2015) are derived from the text surrounding the images on the web. In
constructing the dataset, noisy labels are assigned to images based on this contextual text.

1https://github.com/ankandrew/online-label-smoothing-pt
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