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Static Spatial Relation:

Where is the car located in the 3D scene?

Where is the observer located in the 3D scene?

What’s the absolute distance between the car and the observer?
Where is the observer positioned relative to the car?

Fixed Observer and Object:

e -

EENENEEENEEENENNENEENENEEENENEEN
- R _

—

-~
[ - \

(AR AR AR RARRRRIRIRRIRRRRIRRRRRRRRRIRERRIRRIR]
"D N

In this video, how does the car
move in the 3D scene relative to
its own starting orientation and

The car is moving forward and
steering toward the right side of
the frame, so it's moving
forward and turning right.

Dynamic Object-Scene Relation:

ynamic Observer-Scene
Relation:

How does the observer move in the
3D scene relative to its own starting
orientation and position?

side to the right, this relative
motion indicates that the
observer is moving in the
opposite direction, specifically,

position? & Human: Move forward. Move from in front of the car to the
& Human: Moves forward and @ VLM: car’s right side.

turns left. T-he car i's moving from the left & vLm:

= VLM: s Initially, the observer is in front of

Dynamic Object-Scene Relation:
How does the observer’s position
change relative to the car?

& Human:

the car; as it moved forward, more
of the left side appeared, showing
the observer shifted to the car’s left.

\moving leftward. )

/

Figure 1: overview

ABSTRACT

Reasoning about dynamic spatial relationships is essential, as both observers and
objects often move simultaneously. Although vision-language models (VLMs)
and visual expertise models excel in 2D tasks and static scenarios, their ability to
fully understand dynamic 3D scenarios remains limited. We introduce Dynamic
Spatial Intelligence and propose DSI-Bench, a benchmark with nearly 1,000 dy-
namic videos and over 1,700 manually annotated questions covering nine decou-
pled motion patterns of observers and objects. Spatially and temporally symmet-
ric designs reduce biases and enable systematic evaluation of models’ reasoning
about self-motion and object motion. Our evaluation of 14 VLMs and expert mod-
els reveals key limitations: models often conflate observer and object motion, ex-
hibit semantic biases, and fail to accurately infer relative relationships in dynamic
scenarios. Our DSI-Bench provides valuable findings and insights about the future
development of general and expertise models with dynamic spatial intelligence.
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1 INTRODUCTION

When early humans chased prey across open landscapes, they instinctively adjusted their running
paths in response to the animals’ movements, helping them close the distance. Likewise, modern
drivers adapt their direction and speed in response to the movements of other vehicles and pedes-
trians on the road. We live in a world where both the observer and the objects being observed are
constantly in motion. For humans, understanding how our own position shifts and how other objects
move in 3D space simultaneously is an intuitive ability rooted in basic spatial intelligence.

In recent years, significant progress has been made in visual perception and understanding. Vision-
language models (VLMs), which deeply integrate visual and linguistic modalities, have demon-
strated remarkable cross-modal semantic alignment and reasoning abilities, achieving impressive
results in open-domain perception and dialogue. State-of-the-art VLMs |OpenAll (2025a;b); |Co-
manici et al.| (2025);|Wang et al.|(2025b)); Bai et al.[(2025); ByteDance|(2025) have achieved leading
performance on 2D computer vision tasks such as detection and visual question answering, while
also demonstrating a certain degree of understanding of temporal actions and static spatial relations.
With the development of visual foundation models such as DINOv2 Oquab et al.[(2023), an increas-
ing number of studies introduce expertise models that exhibit strong zero-shot capabilities in spatial
perception. These models demonstrate superior performance and robustness in accomplishing spe-
cific tasks and perceiving task-relevant information. For example, Dust3R |Wang et al.| (2024a),
VGGT |Wang et al.| (2025a) enable robust estimation of camera poses and 3D motion trajectories,
while the CoTracker Karaev et al.| (2024) and SpatialTracker Xiao et al.| (2025) families support
pixel-level motion understanding, enabling highly accurate tracking of object and region trajectories
in videos. These advances lay a critical foundation for building multimodal systems with spatial
awareness and dynamic understanding.

However, current methods are still largely limited to scenarios where either the observer or the
objects remain static. In more realistic and practically relevant dynamic environments, where both
the observer and the objects are in motion, their performance and adaptability have not yet been
systematically explored. To fill this gap, we introduce the problem of Dynamic Spatial Intelligence,
and conduct a thorough, decoupled analysis of the ability of state-of-the-art methods to understand
different forms of motion.

Having dynamic spatial intelligence entails the ability to decouple reasoning about both the agent’s
own motion and that of other objects within a scene. This requires models to exhibit a range of so-
phisticated capabilities, including temporal reasoning, capturing spatially consistent elements during
dynamic changes, and understanding spatial relationships, which further encompasses spatiotempo-
ral understanding and reasoning.

To this end, we propose DSI-bench, a VQA benchmark dedicated to Dynamic Spatial Intelligence.
DSI-Bench comprises nearly 1000 dynamic scene videos which collected, cleaned, and clipped
from diverse sources, covering 5 decoupled motion patterns of observers and objects. Focusing on
the relationships among the observer, objects, and the scene, we designed 6 question types with
over 1,700 VQA questions, all of which are manually annotated and verified. To mitigate biases
in 3D space—such as left/right biases and correlations between object orientation and motion, we
construct spatially and temporally symmetric versions of the same questions.

Our evaluation of 14 widely used VLMs and expertise models on DSI-Bench yields several key
findings. By analyzing the models’ self-explanations and visualization outputs, we observe that: 1)
VLMs tend to conflate observer and the observed object’s motion rather than treating them as dis-
tinct. 2) Semantic biases associated with the observed object can distort visual perception, leading to
hallucinations. 3) Classical 3D constraints fail to consistently characterize relative pose relationships
in continuous dynamic scene videos.

Our contribution can be summarized as:

* We introduce a more realistic and practically valuable Dynamic Spatial Intelligence task
and propose DSI-Bench, a benchmark specifically designed for the systematic evaluation
of dynamic spatial reasoning.
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* We evaluate widely used general visual-language models and expertise visual foundation
models on DSI-Bench and, through spatially and temporally symmetric sample designs,
analyze their biases and hallucination tendencies in dynamic scenarios.

* Finally, by examining failure cases of state-of-the-art spatial foundation models, we high-
light the limitations of classical 3D constraints in dynamic spatial perception.

2 RELATED WORKS

2.1 LARGE VISION-LANGUAGE MODEL

Beyond single-frame understanding, VLMs |OpenAl| (2025aib); ByteDance| (2025)); |Comanici et al.
(2025) have advanced to capture both temporal information and static spatial relations in videos,
achieving strong performance across tasks such as detection, open dialogue, and multimodal rea-
soning. For instance, the Qwen2.5-VL [Bai et al.| (2025) series demonstrates strong performance
in long video understanding by incorporating absolute timestamp encoding. Its innovative visual
encoder further allows dynamic adjustment of frame rates and video resolution, enhancing applica-
bility across diverse video scenarios. Similarly, the InternVL-3.5{Wang et al.|(2025b) series employs
a visual resolution router that dynamically focuses on fine-grained video details, significantly im-
proving video reasoning efficiency while maintaining overall performance.

2.2 BENCHMARKS FOR SPATIAL INTELLIGENCE

To evaluate and investigate the spatial intelligence of VLMs, a series of benchmarks have been
proposed. VSI-Bench|Yang et al.|(2025a) systematically measures model performance across 8 cat-
egories of spatial reasoning tasks and examines how cognitive maps may facilitate VLM inference.
MMSI-Bench [Yang et al.| (2025b) design problems that cannot be solved from a single viewpoint,
highlighting the importance of multi-image dependency in spatial reasoning. VLM4D [Zhou et al.
(2025) extends this line of work by treating video as a four-dimensional modality, thereby exploring
the models’ capacity to capture spatiotemporal correlations.

Although these benchmarks provide a foundation for assessing spatial intelligence, they overlook
issues of multimodal hallucination and bias in VLMs. Recently, 3DSR-Bench Ma et al.| (2024)
addressed this issue by introducing the Evalflip strategy and designing queries from uncommon
perspectives to analyze hallucination in more diverse settings. Similarly, Ori-Bench [Wang et al.
(2024c) revealed that VLMs are prone to orientation hallucinations when misled by the semantic
priors of observer-centric orientations.

Nevertheless, most existing evaluations focus on static scenes or observers, limiting relevance to
real-world dynamics. To address this, we propose DSI-Bench, which treats static cases as spe-
cial forms of dynamic scenarios. DSI-Bench encompasses a rich video dataset that disentangles 5
motion types for both observers and the observed object, thereby covering a broader and more real-
istic range of applications. Furthermore, we generate diverse and complementary samples through
spatial-temporal symmetry-based augmentation and analyze model bias and hallucination via multi-
view statistical evaluation.

2.3 3D VISUAL SPATIAL EXPERTISE MODELS

The combination of classical 3D constraints with modern 2D foundation models has markedly ad-
vanced the performance and efficiency of spatial expertise models. For example, VGGT Wang et al.
(2025a) leverages DINOv2 |Oquab et al.|(2023) features and combines depth estimation, keypoint
tracking, and pose estimation, which together enable it to reconstruct complete 3D scenes efficiently
from a sequence of images. Building on this, SpatialTrackerV2 performs joint reasoning across de-
coupled spatial factors such as scene geometry, camera poses, and object motion, thereby enhancing
its ability to track dynamic object trajectories. However, classical geometric constraints|Schonberger,
& Frahm| (2016); Hartley & Zisserman| (2003)); Schonberger et al.| (2016)); [Furukawa et al.| (2015))
are primarily designed for static scenes. When both the observer and the environment are in motion,
these constraints introduce instability into keypoint tracking and distance estimation.
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3 DSI-BENCH

In this section, we introduce DSI-Bench, designed to evaluate models’ ability to perceive observer
and object motion in realistic dynamic videos. Section[3.1|proposes the concept of Dynamic Spatial
Intelligence along with its associated sub-tasks. Section[3.2]provides a detailed account of the bench-
mark construction, covering data collection and standardization, spatio-temporal flip augmentation,
and the design of QA tasks.

3.1 OVERVIEW

In dynamic scenarios, both the observer and the observed object may be in motion. Under such
conditions, the spatial relationships commonly considered in static scenes—such as the positions of
the observer and objects in 3D space, as well as their relative distances and orientations—are further
extended into temporal variations, including changes in position, distance, and orientation. As illus-
trated in Figure. [I] we refer to the perception and reasoning of these spatio-temporal relationships
collectively as Dynamic Spatial Intelligence.

We categorize tasks based on three fundamental 3D entities: the observer, the observed object, and
the scene. This yields three types of tasks:

1. Object—Scene tasks: examine spatial relationships between objects and the scene, distin-
guishing between cases where the observer is moving versus stationary.

2. Observer—Scene tasks: evaluate the ability to track changes in the observer’s 3D pose
under both dynamic and static conditions.

3. Observer—-Object tasks: focus on the relative relationship between the observer and the
observed object, with typical questions involving the estimation of distance or orientation
changes.

Building on this task taxonomy, we constructed over 1,700 VQA pairs that comprehensively cover
the above categories of dynamic spatial relationships. Detailed statistics of tasks and examples are

reported in Figure
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Figure 2: Left: Task distribution in DSI-Bench; Middle: Observer Motion distribution in DSI-
Bench; Right: Observed Motion distribution in DSI-Bench

3.2 BENCHMARK CONSTRUCTION PROCESS

The details of the DSI-Bench data construction pipeline are shown in Figure 3]

Data Collection and Standardization DSI-Bench comprises over 1,700 question-answer pairs
derived from 943 videos, sampled from the camera motion dataset (CameraBench Lin et al.|(2025)),
the object motion dataset (Kinetics-700 |[Smaira et al.[ (2020)), and the synthetic motion-control
dataset (SynFMC Shuai et al.|(2025))). To further increase the diversity of observer and object motion
patterns, we also supplemented the dataset with videos from LLaVA-178K [Zhang et al.| (2024) and
additional online sources. This diverse collection ensures that DSI-Bench captures a wide range of
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Figure 3: Illustration of the DSI-Bench construction pipeline: videos are sampled from diverse
motion datasets, QA tasks and options are template-based genrated and manually refined, and videos
are augmented with spatio-temporal flipping to mitigate data bias.

dynamic relationships. Specifically, both the observer and the observed objects exhibit three types
of motion: translation (e.g., forward or upward movement), rotation (clockwise or counterclock-
wise), and a combination of the two (e.g., forward-left or forward-right turns). We further applied
spatio-temporal flip augmentation to balance the distribution of these motion types. See the middle
and right panels of Figure [2]for detailed motion statistics of DSI-Bench.

For preprocessing, we used PySceneDetec{Castellano| to segment videos into scenes and applied
SpatialTrackerV2 to filter out clips with irregular or jittery observer motion. The human experts then
conducted the final selection and determined the starting and end points of each video. All videos
are standardized to a resolution of 480p, and overly short clips were slowed down to a duration of 3
seconds.

Question-Answer Generation. Building on the standardized video data, we manually annotated
the motion patterns of both the observer and the observed objects within the 3D scene. Using
these annotations, we then applied a template-based approach to construct Cam-Scene and Obj-
Scene VQA pairs. For a subset of videos, we additionally annotated the relative distance changes to
generate relative-distance VQA pairs. All observed objects were further annotated with orientation
information, which enabled the construction of relative-orientation VQA pairs.

To avoid ambiguity caused by shifting reference points in dynamic scenes, we followed the conven-
tions of prior work Wang et al.| (2025a)); Xiao et al.|(2025)), and fixed the 3D reference point to the
initial pose of either the observer or the observed object in each video. Finally, all VQA pairs were
reviewed, filtered, and refined by human experts to ensure clarity and eliminate ambiguity.

Spatio-Temporal Flip Augmentation To mitigate potential biases in 3D motion patterns and
to assess model robustness, we introduced spatio-temporal augmentations inspired by 3DSR-
Bench Ma et al.| (2024) and Ori-Bench [Wang et al.| (2024b). Each video is horizontally flipped
first, and both the standard and flipped versions are further reversed in time, producing four variants
in total: standard, horizontal flip, reverse, and reverse + horizontal flip.

For the corresponding VQA pairs, the questions remained unchanged, while the answer options are
symmetrically adjusted using a rule-based method (e.g., “moving forward” — “moving backward”
after reversal; “rotating clockwise” — “rotating counterclockwise” after flipping). This ensured
that the ground truth labels remained consistent. However, since video reversal shifts the reference
frame from the first to the last frame of the standard video, some samples could not be handled by
rule-based substitution alone. These cases are manually inspected and corrected by human experts.

4 EVALUATION ON DSI-BENCH

4.1 EVALUATION SETUP

Benchmark models. We conduct a comprehensive evaluation of a wide range of VLMs, encom-
passing both proprietary and open-source families, diverse model scales, and recent architectural
advances. For proprietary models, our benchmark includes Nova-pro-vl |[Amazon| (2025), GPT-
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40 |OpenAl (2025a), GPT-5 |OpenAl (2025b), Gemini-2.5-Pro |Comanici et al.| (2025) , Seed-1.6,
and Seed-1.6-vision ByteDance| (2025). For open-source models, we assess state-of-the-art models
Qwen2.5-VL Bai et al.|(2025) series and InternVL-3.5|Wang et al.|(2025b))series.

For the 3D expertise models, we selected two representative approaches, VGGT [Wang et al.|(2025a)
and SpatialTrackerV2 [Xiao et al.[(2025), for evaluation on DSI-Bench.

VLM Evaluation Details. We measure each VLM’s accuracy by directly comparing the model’s
selected answer with the ground truth, without employing any additional external models or anno-
tations for performance evaluation. For consistency, all models are evaluated with a temperature of
zero, a maximum output length of 2,048 tokens, and a video sampling rate of 5 fps.

To investigate the impact of reasoning on dynamic spatial intelligence and to analyze potential per-
formance bottlenecks of VLMs, we adopt the MindCube |Yin et al.| (2025) protocol and evaluate all
models under two distinct settings: Direct Answering (RAWQA) and Free-Form Reasoning (FFR).
In RAWQA, models are required to output only the final answer without any intermediate content,
whereas in FFR, models must articulate their reasoning process before answering. The correspond-
ing system prompts are provided in the Appendix.

Models Object-Scene Observer-Scene Observer-Object Overall
Fixed-Obs. Dyn-Obs. Static-Sce. Dyn-Sce. Distance Orientation
Random 25.00% 25.00% 25.00% 25.00%  25.00% 25.00%  25.00%
Sample-wise Evaluation
Gemini-2.5-Pro 45.54% 44.76% 54.89% 40.39%  69.75% 47.94%  46.90%
Nova-Pro-V1 38.92% 37.33% 34.57% 28.64%  46.01% 1529%  34.06%
Qwen2.5-VL-32B 37.16% 37.54% 29.46% 34.06%  58.15% 3235%  36.73%
Qwen2.5-VL-72B 41.35% 41.92% 33.26% 34.56%  58.15% 39.71%  39.61%
Seed-1.6 45.27% 45.15% 35.00% 35.52%  54.17% 4147%  41.38%
Seed-1.6-Vision 45.54% 42.87% 50.76% 39.21%  79.71% 38.53%  45.70%
GPT-40 42.43% 39.65% 37.61% 28.78%  55.98% 3235%  37.23%
GPT-5 43.37% 36.73% 39.13% 34.61% 73.55% 40.59%  40.14%
InternVL3.5-8B 39.73% 37.97% 26.20% 32.60% 62.14% 29.12%  36.41%
InternVL3.5-38B 42.02% 37.63% 34.57% 34.70%  67.39% 37.65%  39.10%

InternVL3.5-30BA3B 42.70% 39.13% 35.43% 32.10%  60.14% 34.12%  38.24%
InternVL3.5-241BA30B  44.06% 43.51% 37.28% 33.88% 61.78% 30.88%  40.59%

VGGT - - 35.55% 22.50% - - -
SpatialTrackerV2 25.89% 27.84% 42.72%  40.12%  26.42% - 34.97%
Group-wise Evaluation
Random 0.05% 0.05% 0.05% 0.05% 0.05% 0.05% 0.05%
Gemini-2.5-Pro 21.62% 18.21% 42.61% 21.86%  64.49% 31.76%  27.13%
Nova-Pro-V1 13.52% 10.82% 18.26% 8.56%  38.41% 5.88% 13.29%
Qwen2.5-v1-32B 10.81% 10.48% 14.78% 16.39%  50.72% 17.65%  16.40%
Qwen2.5-vl-72B 12.44% 10.31% 15.65% 1093% 46.38% 3529%  15.43%
Seed-1.6 16.76% 13.40% 15.22% 10.93%  42.75% 25.88%  16.11%
Seed-1.6-Vision 18.38% 13.23% 39.13% 21.49%  74.64% 30.59%  25.33%
GPT-40 14.06% 10.31% 24.78% 929%  45.65% 20.00%  15.49%
GPT-5 17.84% 13.23% 26.96% 17.49%  70.29% 25.88%  21.88%
InternVL3.5-8B 19.46% 12.03% 13.04% 19.13%  50.72% 10.59%  18.08%
InternVL3.5-38B 22.16% 12.03% 18.26% 11.84%  58.70% 28.24%  18.25%

InternVL3.5-30BA3B 22.70% 12.03% 22.61% 1821%  43.48% 23.53%  19.44%
InternVL3.5-241BA30B  16.76% 14.60% 19.57% 11.48%  49.28% 18.82%  17.41%
VGGT = = 31.30% 16.58% = = =

SpatialTrackerV2 17.39% 19.35% 40.00% 37.89% 11.49% - 28.34%

Table 1: Evaluation results for 14 models. Sample-wise accuracy treats all augmented videos as
independent; group-wise reports the fraction of video groups with at least 3 correct predictions
among augmented variants of the same original video.
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3D Expertise Model Evaluation Details. We manually calibrated the orientations of the observed
objects in the videos and accordingly removed benchmark samples that specifically tested orientation
reasoning. We also refined the masks predicted by Segment Anything to align keypoints with the
corresponding observed objects. The predicted trajectories of both the observer and the observed
objects are then extracted and mapped to the corresponding answer choices through a rule-based
procedure.

Spatio-Temporal Flip Evaluation In Section we introduce the method of constructing aug-
mented samples through spatio-temporal flipping. In testing, we employ two evaluation strategies,
Sample-wise and Group-wise, to assess model performance and robustness. In the former, each
spatio-temporal flip video is treated as an independent sample and evaluated separately; in the latter,
the four flip variations are grouped as one instance, which is counted correct only if at least three
answers are correct. The experimental results under the two strategies are presented in the upper and
lower halves of Table 3| respectively.

g B ) - Table 2: Impact of free-form reasoning on DSI-
Primnby e Bench.
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Figure 5: Performance gap of VLMs between
static and dynamic conditions.

4.2 MAIN RESULTS

Table 3| presents the main results of the evaluation in DSI-Bench, covering both proprietary and open
source VLMs, as well as 3D expertise models. We summarize the key findings below:

Current models struggle more with dynamic than with static Tasks. We present the perfor-
mance difference of the model under dynamic and static conditions in Figure [5] and observe that
dynamic scenarios consistently present greater challenges than static ones. When either the ob-
server or the observed object is in motion, most models experience a notable decline in accuracy on
tasks that are otherwise equivalent. This performance degradation is especially evident in models
with relatively advanced spatial reasoning capabilities. For example, in Seed-1.6-vision, the accu-
racy in understanding object dynamics decreases by 2.67% when the observer is moving compared
with a static observer, while the accuracy in perceiving observer motion drops by as much as 11.55%
under dynamic conditions relative to static ones.

Group-wise evaluation reinforces this observation: models show reduced robustness in dynamic
settings, and the performance gap between static and dynamic samples becomes even more pro-
nounced.
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Free-form reasoning yields only marginal and unstable benefits. Table |2{ summarizes the per-
formance difference between the model’s direct answers and its free-form reasoning. For most
models, enabling free-form reasoning leads to only minor and inconsistent improvements. For in-
stance, QwenVL2.5-72B achieves merely a 0.17% increase in overall accuracy under free-form
reasoning mode. Some models even perform worse: Gemini-2.5-Pro and InternVL3.5-241B exhibit
lower accuracy compared with directly producing answers. We attribute this to the fact that current
VLMs primarily ground their reasoning on information extracted by the visual encoder. As a result,
language-based reasoning alone cannot compensate for errors that originate from inaccurate visual
perception.

Closer inspection of VLMs’ reasoning process further reveals that VLMs often rely on common-
sense knowledge within the language modality, which sometimes introduces additional biases and
hallucinations into visual reasoning. A more detailed analysis of this phenomenon is provided in
Section[5.1] Notably, in certain cases, models fail to terminate their reasoning process and instead
generate incoherent text until reaching the maximum output token limit.

VLMs exhibit limited robustness. By comparing sample-wise and group-wise accuracy, we ob-
serve substantial performance drops across all task categories for VLMs. In contrast, 3D expertise
models such as SpatialTrackerV2 show minimal degradation under group-wise evaluation. We hy-
pothesize that VLM fail to accurately perceive dynamic spatial information in videos; instead, they
exhibit certain biases and hallucinations that impair their performance.

Scaling up model size enhances accuracy but not robustness. Larger models generally achieve
higher overall performance, but this improvement does not translate into greater robustness. We
observe that, within the same VLM architecture, increasing the number of parameters yields better
results on DSI-Bench in sample-wise evaluation. For example, QwenVL2.5-72B surpasses its 32B
counterpart by 2.8%, InternVL3.5-38B outperforms the 8B version by 2.69%, and InternVL3.5-
241B-A28B exceeds InternVL3.5-30B-A3B by 2.35%. Expanding model size enables models to
capture finer-grained details, thereby improving perceptual accuracy.

However, group-wise evaluation, which places greater emphasis on robustness, reveals the opposite
trend: QwenVL2.5-72B, InternVL3.5-38B, and InternVL3.5-241B-A28B all underperform their
smaller counterparts (32B, 8B, and 30B-A3B, respectively). This suggests that model size may
not be the principal bottleneck for video-based spatial intelligence in current VLMs. While larger
models enhance perceptual ability, they do not eliminate inherent biases in spatial perception and
reasoning patterns.

5 ERROR ANALYSIS

5.1 BIAS AND HALLUCINATION ON VLM

To identify the performance bottlenecks of VLMs, we manually examined their response tendencies
and reasoning processes, analyzing the underlying causes of errors. The following are some of our
key observations:

Forward Bias. We selected all VQA pairs in DSI-Bench whose answer options contain the string
“forward” and calculated the frequency with which VLMs chose these options. The results are pre-
sented in Figure ] Our analysis reveals that the proportion of “forward” selections by the models
far exceeds the true proportion of ground truths containing “forward,” indicating a strong selection
bias. The example of “fixed statues” shown in Figure [6] further illustrates how this “forward bias”
interferes with visual perception, leading the models to generate multimodal hallucinations. We hy-
pothesize that this bias is related to the imbalanced distribution of visual datasets, in which forward
motion predominates over other movement patterns for animals, characters, vehicles, and similar
entities.

Undecoupled Motion Reasoning. Confusion between the orientations and motions of the ob-
server and the observed object constitutes another major source of error. We find that current VLMs
are unable to independently infer the motion of the observer in 3D space and the motion of the ob-
served object. Figure [§]illustrates two representative patterns of such entangled reasoning. In Figure
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[8a] when inferring the observer’s motion, the model mistakenly substitutes the orientation and move-
ment of the observed object for that of the observer, effectively assuming that the observer and the
object are stationary relative to each other. Figure[8a]shows an example in which this relative-motion
error is erroneously generalized to the scene reference frame.

Confuse rotation with translation We identified a specific type of error in which VLMs misinter-
pret in-place rotations as translations when inferring the observer’s motion. As illustrated in Figures
[7l VLMs attempt to determine the direction of observer motion by reasoning about “which side of
the scene enters the field of view.” However, the models often fail to distinguish whether this visual
change arises from a rotation around the observer or a translation through space. In these tasks, 3D
expertise models that leverage classical geometric constraints for camera pose estimation achieve
superior performance.
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across timestamps, noting that i coy

ter’s consistent
tation, th
eft motion (ps
uding the cha

ene with a rider and
d

the character’s fi
c it b

eto
their starting point. (B) their starting point. (B)

Figure 6: For fixed objects, VLMs hallucinated Figure 7: VLMs conflated translation and rota-
forward motion. tion, which are two distinct types of motion.

In this video clip, relative to its starting orientation and location, how is the observer's location moving? In this video clip, relative to its starting orientation and location, how is the observer's location moving?

A: Moving backward-left; B: Moving forward-right; C: Moving forward-left; D: Moving backward-right A: Moving upward; B: Moving left; C- Basically unchange: D: Moving right

Gemini-2.5-Pro: Qwen2.5VL-72B: GPT-5: Gemini-2.5-Pro: Qwen2.5VL-72B: GPT:5:

Noting the man walks left-to-right on Reasoned step by step that the camera Offered a concise but perceptive Carefully analyzed the motion of Analyzed the camera as moving Jets drift rightward across the frame
aroofiop while the camera tracks him ~ must move rightward and forward to analysis, noting foreground clements objects in the frame, noting that the horizontally from lef o right along hi

with both rightward panning and Kkeep the running man centered, sliding loft and increasing subject size foreground jet shifts rightward over the line of fighter jets. with no

forward motion along the ledge, leading to the conclusion of forward- as evidence of rightward translation time, which indicates the camera is significant vertical or depth change.

correetly identifying the observer's ight motion (B) and forward approach, supporting moving left; concluded the observeris  supporting answer D,

movement as forward-right (B). answer B (forward-right) moving left (B).

Figure 8: The model fails to independently interpret the dynamics of the observer and the observed
object, often relying on relative motion for indirect inference, which leads to hallucinations.

5.2 INSTABILITY ON 3D EXPERTISE MODEL

The results in Table [3] demonstrate that 3D expertise models exhibit robust camera pose estimation
in dynamic scenarios, showing the smallest performance degradation under group-wise symmetric
evaluation. However, their ability to track observed objects is less consistent. Experimental results
indicate that in dynamic settings these models struggle to accurately estimate the relative distance
between the observer and the observed object, which may in turn indirectly impair their accuracy in
estimating object motion.

6 CONCLUSION

In this work, we study the dynamic spatial intelligence of models. We introduce a new benchmark,
DSI-Bench, which comprises over 1,700 VQA pairs constructed from nearly 1,000 videos featuring
diverse dynamic relationships. To mitigate motion-pattern biases inherent in 3D data, we adopt a
spatio-temporal flipping strategy, and we assess model robustness using a group-wise evaluation pro-
tocol. We benchmark a range of open-source and proprietary VLMs, as well as 3D expert models,
on DSI-Bench, and conduct statistical and error analyses to identify the sources of perceptual illu-
sions and biases. We hope that DSI-Bench will serve as a valuable resource for advancing models’
dynamic spatial perception and reasoning capabilities.
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A APPENDIX

A.1 FULL RESULTS OF VLM FREE-FORM REASONING

Models Object-Scene Observer-Scene Observer-Object Overall
Fixed-Obs. Dyn-Obs. Static-Sce. Dyn-Sce. Distance Orientation
Random 25.00% 25.00% 25.00% 25.00%  25.00% 25.00%  25.00%
Sample-wise Evaluation
Gemini-2.5-Pro 47.16% 44.85% 52.61% 37.61%  70.47% 4735%  45.97%
Nova-Pro-V1 41.08% 39.56% 35.76% 33.83% 39.31% 27.65%  36.86%
Qwen2.5-VL-32B 43.78% 42.44% 36.41% 36.70%  43.84% 30.29%  39.54%
Qwen2.5-VL-72B 41.89% 42.44% 37.17% 34.02%  52.36% 40.88%  39.78%
Seed-1.6 43.51% 45.58% 37.50% 36.89%  48.55% 43.82%  41.76%
Seed-1.6-Vision 42.16% 40.25% 53.26% 40.12%  83.33% 4471%  45.68%
GPT-40 41.21% 39.00% 37.83% 31.79%  59.24% 37.94%  38.36%
GPT-5 43.51% 36.81% 38.26% 35.61%  75.36% 40.88%  40.53%
InternVL3.5-8B 36.49% 37.76% 28.91% 30.24%  59.96% 33.82%  35.68%
InternVL3.5-38B 38.52% 40.12% 35.98% 33.79%  59.06% 33.82%  38.62%

InternVL3.5-30BA3B 40.81% 39.69% 35.43% 3333% 55.07% 3324%  38.17%
InternVL3.5-241BA30B  41.22% 42.65% 35.87% 32.88% 51.45% 2735%  38.54%
Group-wise Evaluation

Random 0.05% 0.05% 0.05% 0.05% 0.05% 0.05% 0.05%
Gemini-2.5-Pro 21.62% 17.35% 40.87% 2040%  63.77% 31.76%  26.11%
Nova-Pro-V1 21.08% 16.15% 25.65% 17.49%  28.99% 18.82%  19.45%
Qwen2.5-VL-32B 21.62% 15.64% 19.57% 19.49%  30.43% 12.94%  19.00%
Qwen2.5-VL-72B 14.59% 15.12% 21.74% 11.11%  40.58% 2941%  17.35%
Seed-1.6 14.06% 14.95% 18.26% 14.57%  34.78% 27.06%  17.30%
Seed-1.6-Vision 14.06% 10.82% 40.87% 19.31%  79.71% 30.59%  24.02%
GPT-40 19.46% 14.26% 26.09% 14.39%  52.17% 22.35%  19.73%
GPT-5 20.54% 12.71% 25.65% 18.94%  70.29% 2941%  22.44%
InternVL3.5-8B 14.60% 10.48% 9.13% 10.93%  47.83% 18.82%  14.19%
InternVL3.5-38B 18.92% 14.78% 16.09% 14.39%  47.10% 18.82%  17.97%

InternVL3.5-30BA3B 14.60% 11.34% 13.04% 12.57%  37.68% 21.18%  14.81%
InternVL3.5-241BA30B  13.52% 15.46% 16.96% 12.02%  39.86% 1529%  16.29%

Table 3: Free-form Reasoning results for 12 VLMs. Sample-wise accuracy treats all augmented
videos as independent; group-wise reports the fraction of video groups with at least 3 correct pre-
dictions among augmented variants of the same original video.

A.2 SYSTEM PROMPT FOR RAWQA AND FFR

RAWQA ‘‘You are a vision-language expert.

You are given a clip of video and your task is to answer a
question about the video.

You only need to provide *ONEx* correct answer selecting from the
options listed below. For example, if you think the correct
answer is 'A’ from 'A. Above B. Under C. Front D. Behind’, your
response should only be ’<answer>A</answer>’.

Please answer the question in this format strictly:
<answer>[replace your answer here, A, B, C, or D]</answer>'’

FFR *‘‘You are a vision-language expert.

You are given a clip of video and your task is to answer a
question about the video.

please provide your reasons step by step in details, then provide

12
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*ONE* correct answer selecting from the options.

You only need to provide xONE* correct answer selecting from the
options listed below. For example, if you think the correct
answer is 'A’ from ’'A. Above B. Under C. Front D. Behind’, your
response should only be ’'<answer>A</answer>'.

Please answer the question in this format strictly:
<think>[replace your reasoning here]</think>

<answer>|[replace your answer here, A, B, C, or D]</answer>''

A.3 ADDITIONAL VISUALIZATION EXAMPLES

EERRRRREEERREEERERRRRERREERRRERREEERREREEEEDEN
o v . i TR v o e

e

P =
"‘\y; < S

How is the character's location moving in the 3D scene relative to his/her/its starting orientation and location?
A: Moving right; B: Moving backward; C: Moving forward; D: Moving left

Gemini-2.5-Pro:

. wen2.5VL-72B: GPT-5:
The background moves right-to-left Q . o .
. Observes no movement in the Notes the background shifts left with
while the character stays centered, X o
Lo character or background, states none consistent scale, indicating lateral
indicating the camera and character . . - .
. . - of the options are accurate, yet still translation to the right; concludes the
move right relative to the scene. Since . PR . ; .
. chooses B without justification. character (or camera) is moving right,
the character faces the camera, this -

direction corresponds to his left, so
the answer is D.

ssii’ - L 2 288

s e ot =

In this video clip, relative to its starting orientation and location, how is the observer's location moving?
A: Moving right; B: Rotating clockwise; C: Moving left; D: Rotating counterclockwise

Gemini-2.5-Pro: Qwen2.5VL-72B: GPT-5:

The background shifts left as the The observer moves from left to right Leftward scene shift with parallax
camera tracks the person walking without changing orientation, (near objects move faster than distant
right, indicating the observer is confirming rightward translation. ones) indicates the observer is
moving right. This lateral translation translating right, not rotating.

matches option A, not rotation or
leftward motion.
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In this video clip, relative to its starting orientation and location, how is the observer's location moving?
A: Moving forward-right; B: Moving forward-left; C: Moving backward-left; D: Moving backward-right

Gemini-2.5-Pro:

. Qwen2.5VL-72B: GPT-5:
Observes the camera moving leftward
. Assumes the observer tracks the car Notes the car grows larger
and backward relative to the car— o . . .
. o as it drives forward, placing the (suggesting forward motion) and the

front grille exits right, more . : R . . .
backeround appears—concluding the camera behind and to the right, thus viewpoint shifts toward the rear-right

& pp & selecting forward-right (A). side, interpreting this as forward-right

motion is backward-left (C). T

1 L g

i

i = ~ g

In this video clip, relative to its starting orientation and location, how is the observer's location moving?
A: Moving forward-right; B: Moving forward-left; C: Moving backward-left; D: Moving backward-right

Gemini-2.5-Pro: GPT-5:

. Qwen2.5VL-72B:
The camera starts behind the . . Tracks the movement from a

. Notes the camera begins behind the . .

character and arcs to her left, ending . N centered rear view to the left side,
. . character and gradually shifts leftward . . R
in a left-profile view; correctly to capture her left side. supportin using contextual cues like the lamp’s
identifies the motion as “from back to P > Supp s position to confirm the observer ends

left” (C). answer C. up on the character’s left (C).

A.4 USE OF LLMs
We leverage LLMs to refine the expression and assist with the formatting of the paper. For sum-

marizing experimental results, LLMs are employed to distill the reasoning process, facilitating the
generation of more effective visualizations.
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