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Abstract

A common assumption is that MoE routers primarily leverage semantic features
for expert selection. However, our study challenges this notion by demonstrating
that positional token information also plays a crucial role in routing decisions.
Through extensive empirical analysis, we provide evidence supporting this hy-
pothesis, develop a phenomenological explanation of the observed behavior, and
discuss practical implications for MoE-based architectures.

1 Introduction

The integration of the Mixture of Experts (MoE) approach, originally proposed by (Jacobs et al.,
1991) and (Jordan and Jacobs, 1994), into Transformer-based models has been a key driver of
recent advancements in machine learning, particularly in natural language processing (NLP) (Dai et
al., 2024; Muennighoff et al., 2024; Qwen et al., 2024; 2025). This innovation enables models to scale
efficiently, achieving higher overall parameter counts and improved performance on downstream
tasks while maintaining manageable computational requirements for training.

Mixture of Experts (MoE) approach forms a common building block which includes a set of
“experts”, typically neural networks of the same architecture but different weights, and a “router”,
a linear multi-class classifier that selects experts. The construction usually substitutes feed-forward
networks in Transformers-blocks. Only a limited subset of experts is used for processing a single
input (or token), which is an appealing feature of MoE in training and inference.

General consensus is that experts are semantically specialized, and combined with dynamical gating,
become an appealing approach for building large language models (LLMs). However, preliminary
experimental results show significant role of token position, challenging this assumption. In this
work, we address this misconception and provide multiple experiments that support our hypothesis.

Hypothesis 1.1 (Main observation)   Mixture-of-Experts (MoE) router in Transformers exploits
positional token information in addition to semantic one.

We present experimental evidence supporting our hypothesis in Section 2. Further, we offer a phe-
nomenological explanation and discuss empirical findings in more formal terms in Section 3. Finally,
we explore the practical implications of both the empirical observations and the phenomenological
model in Section 4.

2 Empirical Study

We begin with a preliminary experiment in Section 2.1 in order to gain a general understanding
of expert activations. Next, we estimate the correlations between activations of different experts
Section 2.2. Additionally, we train a classifier on embedded token sequences to predict token posi-
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Figure 1:  Average expert activation rates in the sixth MoE-block measured on SlimPajama dataset
for Switch₈ (left) and sample expert activation trajectory for OLMoE (right). The activations
trajectory is sampled from the bottom layer for the first 24 tokens with first 14 most active experts.

tions in Section 2.3. This experiment evaluates the model’s ability to recover token positions, which
is a necessary condition for the emergence of spatial structures. See Section C for futher details.

2.1 Expert Activation Rate

We observe two qualitatively distinct behaviours. The first corresponds to Switch model (see
Figure 1), where certain experts exhibit significantly higher activation rates, forming long sequences
of repeatedly active experts with stable rate values. In contrast, the OLMoE model displays a
different pattern (see Figure 3), with expert activation rates 𝑟𝑖𝑗𝑘 fluctuating around an average value
̄𝑟𝑖𝑗. We hypothesize that the difference arises from the top-1 selection. Alternatively, it could be due

to a bug in the implementation provided in Transformers (Wolf et al., 2020).

2.2 Expert Correlation Length

Our experiments show that the correlation lengths 𝜉model of the models are larger than those of
random expert activations, with a mild growth of 𝜉 with depth of MoE-layer 𝑙, peaking in the
middle layers (see Figure 2). This suggests consecutive activations of the same experts, forming
patterns influenced by high-level features. Scaling of 𝜉model with 𝑁block indicates non-uniform expert
activation and decaying long-range correlations. Since MoE-router is independent of token position,
we suggest that experts interact with each other through embeddings vectors, which carry positional
information from RoPE embeddings within the attention mechanism.

2.3 Token Position Prediction

If MoE-router is capable of capturing positional token information, then a classifier of comparable
complexity should be able to capture it as well. While predicting exact token position 𝑘 is hard merely
because of the large number of classes, the classifier should be able to predict simpler synthetic
targets, such as parity 2 | 𝑘 (even or odd) or the index of the subsequence of 𝑛 tokens, ⌊ 𝑘𝑛⌋.

According to Table 1, MoE-router is potentially capable of extracting positional information from
embeddings. While it cannot accurately predict the exact token position, it can more reliably predict
the blocks index ⌊ 𝑘𝑛⌋. Interestingly, the most notable difference in predicting is between parity and
block index of size 2. The classifier fails to predict parity but can successfully determine whether
a token belongs to the first or second half of a sequence. This points out to the importance of low-
frequency components of RoPE, while highlighting the limited utility of its high-frequency parts.

3 Phenomenological Model

Based on the empirical observations described in Section 2, we propose a phenomenological model
in Section 3.1 that characterizes the MoE-model from the perspective of statistical mechanics (SM).
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Figure 2:  Averaged correlation length ̄𝜉 scaling. Correlation lengths are averaged over experts in
OLMoE layers (left) or in the entire model (right).

Subsequently, we address the load balancing problem and suggest a new auxiliary loss within the
proposed model in Section 3.2.

3.1 Statistical Model

Consider a sequence of tokens 𝑡𝑖 and corresponding input embeddings 𝑥𝑖 with 0 ≤ 𝑖 < 𝐿 − 1. Each
token 𝑡𝑖 can be attributed to one of the states 𝑠𝑖. Gibbs gives a probability distribution on states

𝑝(𝑠𝑖|Θ, 𝑡1, 𝑡2,…, 𝑡𝐿−1) ∝ 𝑒−𝛽𝐸(𝑠𝑖;Θ,𝑡1,𝑡2,…,𝑡𝐿−1), (1)

where set of all tokens 𝑡𝑖 parametrizes energy function 𝐸 (we omit tokens in the parameter
specification from now on) and 𝛽 = 𝑇−1 is inversed temperature. Natural ordering of tokens and
corresponding experts forms a one dimensional lattice (or chain). This chain of experts ( spins in
SM) defines a one dimensional Ising model of a mixture of experts governed by Hamiltonian 𝐻(𝑠𝑖).
The form of Hamiltonian 𝐸 essentially defines all properties of the model. However, it is quite
difficult to provide closed analytical expression for 𝐸 but it is sufficient enough to reason about main
characteristics and spin interactions in particular. For example, an attention mechanics ensures non-
linear expert-expert interaction but its range is a more subtle topic.

We assume that a typical MoE model like OLMoE (Muennighoff et al., 2024) demonstrates a short-
range expert-expert interactions. From general consideration, one may expect that a Transformer
for language modeling tends to operate on a near context of tens or hundreds of tokens. For example,
grammar and syntax require agreement and concordance among words in an utterance.

The more specific argument is based on decaying of attention scores. It is a complex and different
subject which goes beyond this work and which requires an additional study. However, modern
Transformer-based architectures and models used for empirical study in Section 2 operate inter-
nally with a variant of relative positional encodings (Shaw et al., 2018) which admit scores decaying
with relative distance between tokens. Specifically, RoPE positional encodings (Su et al., 2022), a
building block of OLMoE, do indeed decays (see Section 3.4.3 in (Su et al., 2022)).¹ This constitutes
the rationale for using one dimensional model defined above as a phenomenological model of MoE-
blocks in Transformers.

3.2 Load Balancing Problem

The load balancing problem is a problem of assigning equisized batches of tokens to each expert
(Fedus et al., 2022a). Without extra efforts, a few most active expert creates a positive feedback loop
during training that makes them the only active experts in training and inference time. This well-
known fact can be reframed with our spin-glass model.

High activation rates of some experts corresponds high density of these experts (spins) in our
spin-glass. Experts can appear in different spatial structures forming topologically ordered phases.

¹More precisely, Su et al. (2022) give only an upper bound on the multiplication factor. Long-range decay
of RoPE is also challenged by Barbero et al. (2024).
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Table 1:  Quality metrics of token position 𝑘 prediction task against different (syntetic) targets for the
first MoE-block in OLMoE. Token position parity is 2 | 𝑘. Target for classification on consecutive
blocks of size 𝑛 is denoted as ⌊𝑘/𝑛⌋. Shadowed value in parentheses denotes standard deviation.

Target Classes Acc@1 Acc@2 Acc@8 AP Pr Recall F1

2 | 𝑘 2 49.9(5) — — 50.1(7) 49.9(5) 50.4(4) 50.1(4)

⌊𝑘/128⌋ 2 91.7(3) — — 96.4(5) 90.0(3) 93.9(3) 91.9(3)

⌊𝑘/64⌋ 4 75.9(3) 95.9(2) — 82.8(3) 76.0(3) 75.9(3) 75.9(3)

⌊𝑘/16⌋ 16 41.8(1) 64.7(2) 96.2(2) 41.1(4) 41.3(1) 41.8(1) 41.3(1)

⌊𝑘/4⌋ 32 13.8(2) 24.4(5) 59.5(6) 11.8(1) 13.5(2) 13.8(2) 13.6(2)

⌊𝑘/2⌋ 128 6.8(3) 12.4(5) 35.2(1) 5.8(1) 6.73(2) 6.8(3) 6.7(3)

𝑘 256 3.6(1) 6.0(1) 17.4(3) 3.0(1) 3.6(2) 3.6(1) 3.5(2)

However, Landau’s argument for absence of ordering in one dimension (Landau and Lifshitz, 2013)
breaks any ordering at all.

Remark 3.1. In contrast to one dimensional Ising model, the general case of 𝑛 > 1 allows existence
of ordering. For example, two dimensional lattices of experts and tokens can emerge from models
with augmented context like Retro (Borgeaud et al., 2022). This particularly means that training
of such kind of models could potentially require additional effort in respect to conventional MoE-
models. On the other hand, the absence of ordering in one dimension could imply reduced model
expressivity since some expert configurations are topologically prohibited.

The only remaining condition that must be met is equilibrium state, i.e. entropy 𝐻(𝑝) is maximal.

max
Θ
ℒMEM(𝑝;Θ), ℒMEM(𝑝;Θ) = 𝑇 ∑

𝐿

𝑖=1
𝐻(𝑝(𝑠𝑖)). (2)

In machine learning literature, this method is known as maximum-entropy principle (Jaynes, 1957a;
1957b). Obviously, our MEM-loss should be taken with negative sign in order to be used as an
auxiliary loss term for end-to-end training of entire model. Optimization problem (2) can be rewritten
as a minimization problem of KL-divergence between the proposed distribution and the equilibrium:

min
Θ
 𝑇 ∑

𝐿

𝑖=1
𝐷KL(𝑝(𝑠𝑖; Θ) ‖ 𝑞). (3)

Upper bound of 𝐻(𝑝) for discrete states 𝑠𝑖 corresponds to uniform distribution on 𝑠𝑖 with probability
𝑞𝑖. Since there are (𝑛𝑘) different states of 𝑘 active experts out of 𝑛 experts, 𝑞𝑖 = 1/(

𝑛
𝑘) . For example,

𝑞 = 1/(648) ≈ 2.26 ⋅ 10
−10 in case of OLMoE.

4 Practical Implications

Observations made in Section 2 lead to several practical implications which we discuss here.

Observation 4.2 (Spatial structure)   Figure 2 and Table 1 suggest that a spatial correlation among
experts exists and experts tend to form spatial structures.

Observation 4.2 motivates study of a static routing as alternative to the dynamic gating mechanism
in MoE. Static routing means an expert activation in dependence on its position. It has multiple
potential advantages in comparison to dynamic gating. First, static routing is less sensitive to data
shuffling and uneven communications among model shards with scatter and gather primitives.
Second, training complications like load balancing heuristics and loss terms can be neglected.

Observation 4.3   Statistical mechanics suggests a valid phenomenological model of MoE.

Observation 4.3 supports the applicability of the entropy maximization principle (2). This results in
the formulation of the MEM-loss (3) as an alternative to aux-loss (Fedus et al., 2022a) or Z-loss
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(Zoph et al., 2022). MEM-loss offers a clear interpretation and is theoretically grounded. However,
its practical validation in training is left for future work.

5 Comments and Discussion

In this work, we studied internal MoE dynamics empirically. Specifically, we found and experimen-
tally demonstrated spatial correlations in expert activations. Token position prediction experiment
highlights importance of positional information for entire Transformer architecture. The phenom-
enological model provides a perspective of statical mechanics and motivates MEM-loss, a theoreti-
cally grounded alternative to load balancing loss. Training MoE-model from scratch with MEM-loss
and experimenting with bigger models and models of different architectures are left for future work.

References

Barbero, F., Vitvitskyi, A., Perivolaropoulos, C., Pascanu, R., and Veličković, P. Round and Round
We Go! What makes Rotary Positional Encodings useful?. arXiv, 2024, October 8. https://doi.
org/10.48550/arXiv.2410.06205

Borgeaud, S., Mensch, A., Hoffmann, J., Cai, T., Rutherford, E., Millican, K., Driessche, G. B. V. D.,
Lespiau, J.-B., Damoc, B., Clark, A., Casas, D. D. L., Guy, A., Menick, J., Ring, R., Hennigan,
T., Huang, S., Maggiore, L., Jones, C., Cassirer, A., … Sifre, L. Improving Language Models
by Retrieving from Trillions of Tokens. Proceedings of the 39th International Conference on
Machine Learning, 2206–2240, 2022. https://proceedings.mlr.press/v162/borgeaud22a.html

Dai, D., Deng, C., Zhao, C., Xu, R. X., Gao, H., Chen, D., Li, J., Zeng, W., Yu, X., Wu, Y., Xie, Z.,
Li, Y. K., Huang, P., Luo, F., Ruan, C., Sui, Z., and Liang, W. DeepSeekMoE: Towards Ultimate
Expert Specialization in Mixture-of-Experts Language Models. CoRR, 2024. https://openreview.
net/forum?id=3FQRs7iDVa

Du, N., Huang, Y., Dai, A. M., Tong, S., Lepikhin, D., Xu, Y., Krikun, M., Zhou, Y., Yu, A. W.,
Firat, O., Zoph, B., Fedus, L., Bosma, M. P., Zhou, Z., Wang, T., Wang, E., Webster, K., Pellat,
M., Robinson, K., … Cui, C. GLaM: Efficient Scaling of Language Models with Mixture-of-
Experts. Proceedings of the 39th International Conference on Machine Learning, 5547–5569,
2022. https://proceedings.mlr.press/v162/du22c.html

Fedus, W., Dean, J., and Zoph, B. A Review of Sparse Expert Models in Deep Learning. arXiv, 2022b,
September 4. https://doi.org/10.48550/arXiv.2209.01667

Fedus, W., Zoph, B., and Shazeer, N. Switch Transformers: Scaling to Trillion Parameter Models
with Simple and Efficient Sparsity. Journal of Machine Learning Research, 23(120), 1–39,
2022a. http://jmlr.org/papers/v23/21-0998.html

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. Adaptive Mixtures of Local Experts.
Neural Computation, 3(1), 79–87, 1991. https://doi.org/https://doi.org/10.1162/neco.1991.3.1.
79

Jaynes, E. T. Information Theory and Statistical Mechanics. Physical Review, 106, 620–630, 1957a.
https://doi.org/10.1103/PhysRev.106.620

Jaynes, E. T. Information Theory and Statistical Mechanics. II. Physical Review, 108, 171–190,
1957b. https://doi.org/10.1103/PhysRev.108.171

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary, B., Bamford, C., Chaplot, D. S., Casas,
D. d. l., Hanna, E. B., Bressand, F., Lengyel, G., Bour, G., Lample, G., Lavaud, L. R., Saulnier,
L., Lachaux, M.-A., Stock, P., Subramanian, S., Yang, S., … Sayed, W. E. Mixtral of Experts.
arXiv, 2024, January 8. https://doi.org/10.48550/arXiv.2401.04088

Jiang, W. The VC Dimension for Mixtures of Binary Classifiers. Neural Comput., 12(6), 1293–1301,
2000. https://doi.org/10.1162/089976600300015367

Jordan, M. I., and Jacobs, R. A. Hierarchical Mixtures of Experts and the EM Algorithm. Neural
Computation, 6(2), 181–214, 1994. https://doi.org/10.1162/neco.1994.6.2.181

5

https://doi.org/10.48550/arXiv.2410.06205
https://proceedings.mlr.press/v162/borgeaud22a.html
https://openreview.net/forum?id=3FQRs7iDVa
https://openreview.net/forum?id=3FQRs7iDVa
https://proceedings.mlr.press/v162/du22c.html
https://doi.org/10.48550/arXiv.2209.01667
http://jmlr.org/papers/v23/21-0998.html
https://doi.org/https://doi.org/10.1162/neco.1991.3.1.79
https://doi.org/https://doi.org/10.1162/neco.1991.3.1.79
https://doi.org/10.1103/PhysRev.106.620
https://doi.org/10.1103/PhysRev.108.171
https://doi.org/10.48550/arXiv.2401.04088
https://doi.org/10.1162/089976600300015367
https://doi.org/10.1162/neco.1994.6.2.181


ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Kang, K., and Oh, J.-H. Statistical Mechanics of the Mixture of Experts. Advances in Neural
Information Processing Systems, 9, 1996. https://proceedings.neurips.cc/paper/1996/hash/a7d8
ae4569120b5bec12e7b6e9648b86-Abstract.html

Landau, L., and Lifshitz, E. Theoretical Physics: Statistical Physics (Vol. 5, Issue 1). Butterworth-
Heinemann, 2013. https://books.google.ru/books?id=VzgJN-XPTRsC

Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Huang, Y., Krikun, M., Shazeer, N., and Chen, Z.
GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding. Interna-
tional Conference on Learning Representations, 2020, October 2. https://openreview.net/forum?
id=qrwe7XHTmYb

Muennighoff, N., Soldaini, L., Groeneveld, D., Lo, K., Morrison, J., Min, S., Shi, W., Walsh, P.,
Tafjord, O., Lambert, N., Gu, Y., Arora, S., Bhagia, A., Schwenk, D., Wadden, D., Wettig, A.,
Hui, B., Dettmers, T., Kiela, D., … Hajishirzi, H. OLMoE: Open Mixture-of-Experts Language
Models. arXiv, 2024, September 3. https://doi.org/10.48550/arXiv.2409.02060

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Pretten-
hofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot,
M., and Duchesnay, E. Scikit-learn: Machine Learning in Python. Journal of Machine Learning
Research, 12, 2825–2830, 2011.

Qwen, Yang, A., Yang, B., Hui, B., Zheng, B., Yu, B., Zhou, C., Li, C., Li, C., Liu, D., Huang, F.,
Dong, G., Wei, H., Lin, H., Tang, J., Wang, J., Yang, J., Tu, J., Zhang, J., … Fan, Z. Qwen2
Technical Report. arXiv, 2024, September 10. https://doi.org/10.48550/arXiv.2407.10671

Qwen, Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu, B., Li, C., Liu, D., Huang, F., Wei,
H., Lin, H., Yang, J., Tu, J., Zhang, J., Yang, J., Yang, J., Zhou, J., Lin, J., … Qiu, Z. Qwen2.5
Technical Report. arXiv, 2025, January 2. https://doi.org/10.48550/arXiv.2412.15115

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and Liu, P. J.
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. Journal of
Machine Learning Research, 21(140), 1–67, 2020. http://jmlr.org/papers/v21/20-074.html

Rajbhandari, S., Li, C., Yao, Z., Zhang, M., Aminabadi, R. Y., Awan, A. A., Rasley, J., and He,
Y. DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-
Generation AI Scale. Proceedings of the 39th International Conference on Machine Learning,
18332–18346, 2022. https://proceedings.mlr.press/v162/rajbhandari22a.html

Shaw, P., Uszkoreit, J., and Vaswani, A. Self-Attention with Relative Position Representations. In
M. Walker, H. Ji, & A. Stent (eds.), Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pp. 464–468. Association for Computational Linguistics, 2018. https://
doi.org/10.18653/v1/N18-2074

Soboleva, D., Al-Khateeb, F., Myers, R., Steeves, J. R., Hestness, J., and Dey, N. SlimPajama:
A 627B token cleaned and deduplicated version of RedPajama, 2023. https://huggingface.co/
datasets/cerebras/SlimPajama-627B

Su, J., Lu, Y., Pan, S., Murtadha, A., Wen, B., and Liu, Y. RoFormer: Enhanced Transformer with
Rotary Position Embedding. arXiv, 2022, August 8. https://doi.org/10.48550/arXiv.2104.09864

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Ma, C., Jernite, Y., Plu,
J., Xu, C., Le Scao, T., Gugger, S., Drame, M., Lhoest, Q., and Rush, A. M. Transformers: State-
of-the-Art Natural Language Processing. 38–45, 2020. https://www.aclweb.org/anthology/2020.
emnlp-demos.6

Xue, F., Zheng, Z., Fu, Y., Ni, J., Zheng, Z., Zhou, W., and You, Y. OpenMoE: An Early Effort on
Open Mixture-of-Experts Language Models. Proceedings of the 41st International Conference
on Machine Learning, 55625–55655, 2024. https://proceedings.mlr.press/v235/xue24c.html

Yuksel, S. E., Wilson, J. N., and Gader, P. D. Twenty Years of Mixture of Experts. IEEE Transactions
on Neural Networks and Learning Systems, 23(8), 1177–1193, 2012. https://doi.org/10.1109/
TNNLS.2012.2200299

6

https://proceedings.neurips.cc/paper/1996/hash/a7d8ae4569120b5bec12e7b6e9648b86-Abstract.html
https://proceedings.neurips.cc/paper/1996/hash/a7d8ae4569120b5bec12e7b6e9648b86-Abstract.html
https://books.google.ru/books?id=VzgJN-XPTRsC
https://openreview.net/forum?id=qrwe7XHTmYb
https://openreview.net/forum?id=qrwe7XHTmYb
https://doi.org/10.48550/arXiv.2409.02060
https://doi.org/10.48550/arXiv.2407.10671
https://doi.org/10.48550/arXiv.2412.15115
http://jmlr.org/papers/v21/20-074.html
https://proceedings.mlr.press/v162/rajbhandari22a.html
https://doi.org/10.18653/v1/N18-2074
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://doi.org/10.48550/arXiv.2104.09864
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://proceedings.mlr.press/v235/xue24c.html
https://doi.org/10.1109/TNNLS.2012.2200299
https://doi.org/10.1109/TNNLS.2012.2200299


ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Zhu, T., Qu, X., Dong, D., Ruan, J., Tong, J., He, C., and Cheng, Y. LLaMA-MoE: Building Mixture-
of-Experts from LLaMA with Continual Pre-Training. In Y. Al-Onaizan, M. Bansal, & Y.-N.
Chen (eds.), Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing, pp. 15913–15923. Association for Computational Linguistics, 2024. https://doi.org/
10.18653/v1/2024.emnlp-main.890

Zoph, B., Bello, I., Kumar, S., Du, N., Huang, Y., Dean, J., Shazeer, N., and Fedus, W. ST-MoE:
Designing Stable and Transferable Sparse Expert Models. arXiv, 2022, April 29. https://doi.org/
10.48550/arXiv.2202.08906

A Related Works

Comprehensive surveys of Mixture of Experts (MoE) can be found in (Yuksel et al., 2012) and (Fedus
et al., 2022b). The first work (Yuksel et al., 2012) focuses on early works in the first twenty years of
MoE development and the second one (Fedus et al., 2022b) cover the next ten years. Initially, MoE
approach has been described in (Jacobs et al., 1991) then it has been generalized to broaded class of
hierarchical models in (Jordan and Jacobs, 1994).

Combinatorical properties. In work (Jiang, 2000) authors studed combinatorial properties of MoE
models. Specifically, they provided bounds for mixture of Bernoulli classifier and mixture of logistic
regression classifier.

Statistical properties. In work (Kang and Oh, 1996) authors considered MoE models from statistical
mechanics.

B Available MoE-Transformers

In all experiments, we use only pretrained models published on HuggingFace Hub. We make a long
list of recent Transformers models with MoE-adapter presented in literature (Dai et al., 2024; Du
et al., 2022; Jiang et al., 2024; Lepikhin et al., 2020; Muennighoff et al., 2024; Rajbhandari et al.,
2022; Xue et al., 2024; Zhu et al., 2024; Zoph et al., 2022) (see Table 2). Despite the fact there are
plenty of models available online, we are limited by two factors. Firstly, only a few models have a
necessary instrumentation required to get MoE router output logits and selected experts. The second
limitation stems from hardware available to us (i.e. 2x Nvidia V100). It’s getting even worse with the
fact that the majority of models use bfloat16 for arithmetics which has no native support on GPUs
of Volta family (fortunately, emilation via fp32 rescues the day).

We use PyTorch for our experiments. For model inference, autodiff is disable with
torch.inference_mode() context but models stay in training mode (i.e .training attribute
evaluates to true). In this way, we save memory for larger batch and sample expert activations as if
we indeed train a model.

C Miscellaneous Empirical Study

In order to ensure versatility among model architectures as well as MoE layer architectures, we
consider MoE-models of distinct two architectures: Switch (Fedus et al., 2022a) and OLMoE
(Muennighoff et al., 2024). Switch is an encoder-decoder Transformer based on T5 (Raffel et
al., 2020) with a single active expert and expert capacity 𝐶expert = 64. We use its two variants
with total number of experts 𝑁expert = 8 and 𝑁expert = 16 (Switch₈ and Switch₁₆). Despite the
encoder-decoder nature of Switch, we pass an empty premise to encoder. OLMoE is a decoder-only
transformer with 8 active experts out of total 𝑁expert = 64 experts. Pre-trained model checkpoints
published on the HuggingFace Hub were used in all experiments (see Section B). In addition, we use
a test split of a diverse SlimPajama corpus (Soboleva et al., 2023) to guarantee the representativeness
samples of expert activations.

C.1 Expert Activation Rate
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Figure 3:  Expert activation rates for the first 512 tokens and some experts of Switch₁₆ (left) and
OLMoE (right) models. Expert choice is purely random with a minor exception. Experts 1 and 15
of Switch₁₆ are outliers and demonstrates atypical behavior. Expert activation rates of OLMoE are
smoothed for better representation with Gaussian filter of 𝜎 = 2.

In order to measure in what degree experts are interleaved or overlapped each other, we collect expert
activation frequencies for specific token position and Transformer-block on a sample sequences.
Sequence are sampled from test split of SlimPajama corpus with about 500k documents. Then
aggregated frequencies over all samples 𝑐𝑖𝑗𝑘 are used to estimate expert activation rates as 𝑟𝑖𝑗𝑘 =
𝑐𝑖𝑗𝑘/∑𝑘 𝑐𝑖𝑗𝑘 (see Figure 1 and 3).

C.2 Expert Correlation Length

Table 2:  Incomplete list of availabel MoE models that can potentially be used in for experimentation.

Model Reference Parameters HuggingFace (🤗)

GShard (Lepikhin et al., 2020) 37B —

350M/13B —

PR-350M/4B —

DeepSpeed-MoE (Rajbhandari et al., 2022)

PR-1.3B/31B —

0.1B/1.9B —GLAM (Du et al., 2022)

1.7B/27B —

ST-MoE (Zoph et al., 2022) 0.8B/4.1B —

250M google/switch-base-8

1B google/switch-base-16

2B google/switch-base-32

Switch (Fedus et al., 2022a)

4B google/switch-base-64

0.24B/1.89B —DeepSeek-MoE (Dai et al., 2024)

2.8B/16.4B deepseek-ai/deepseek-moe-16b-base

3.0B/6.7B llama-moe/LLaMA-MoE-v1-3_0B-2_16

3.5B/6.7B llama-moe/LLaMA-MoE-v1-3_5B-4_16

LLaMA-MoE (Zhu et al., 2024)

3.5B/6.7B llama-moe/LLaMA-MoE-v1-3_5B-2_8

13B/47B mistralai/Mixtral-8x7B-v0.1Mixtral (Jiang et al., 2024)

39B/141B mistralai/Mixtral-8x22B-v0.1

OLMoE (Muennighoff et al., 2024) 1B/7B allenai/OLMoE-1B-7B-0924

OpenMoE (Xue et al., 2024) 8B OrionZheng/openmoe-8b

8
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Table 3:  Fitted parameters of law 𝜉/𝜉0 = exp(𝛼𝑛) to experimental data.

Model 𝑁expert 𝛼 𝜉0
1/8 0.131269 0.005969Random

1/16 0.131088 0.006606

OLMoE 8/64 0.073877 0.499299

Switch₁₆ 1/16 0.068579 0.146133

We use two definitions of correlation length. The first one 𝜉dw is defined as the ratio of the sequence
length 𝐿 to the average number of domain walls ̄𝑁 . The second one 𝜉ds is estimated with direct
computation of domain sizes 𝐿e with subsequent averaging.

𝜉dw =
𝐿
̄𝑁e
, 𝜉ds = �̄�e. (4)

In practice, 𝜉dw and 𝜉ds are correlated. However, 𝜉ds is more precise definition but more costly to
estimate than 𝜉dw. Henceforth, 𝜉 is used to denote 𝜉ds without label.

Domain size is estimated over block variables, i.e. block of 𝑁block sequential expert activation
indicators. If an expert 𝑘 is activated in merely one indicator of a block, than the entire block indicates
activation of expert 𝑘 (i.e. disjunctive union of experts).

From analysis of experimental data, we find that 𝜉 scales well with 𝑛 according exponential law, i.e.

𝜉
𝜉0
= 𝑒𝛼𝑛. (5)

We fit exponents 𝛼 for models of interest and present them in Table 3.

C.3 Token Position Prediction

We dissect OLMoE and keep only the first layer up to MoE-router. We sample embeddings short
sequences of length 𝐿 = 256 right before MoE-router but after layer normalization (normalization
is critical for training a linear models). Finally, we train a multinomial logistic with Scikit-Learn
(Pedregosa et al., 2011) with stratified 3-fold cross validataion and grid search over 𝐿2 reguralizer.
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